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In today’s practical communication networks such as the Internet, information delivery is 
performed by routing.  A promising generalization of routing is network coding.  The potential 

advantages of network coding over routing include resource (e.g., bandwidth and power) 

efficiency, computational efficiency, and robustness to network dynamics.  This tutorial article 

provides an overview of the theory, practice, and applications of network coding. 

Introduction 

What is network coding?  For a simple answer to that question, consider a router in a computer 

network.  Today, a router can merely route, or forward, messages.  Each message on an output 

link must be a copy of a message that arrived earlier on an input link.  Network coding, in 

contrast, allows each node in a network to perform some computation.  Therefore, in network 

coding, each message sent on a node’s output link can be some function or “mixture” of 

messages that arrived earlier on the node’s input links, as illustrated in Figure 1.  Thus, network 

coding is generally the transmission, mixing (or encoding), and re-mixing (or re-encoding) of 

messages arriving at nodes inside the network, such that the transmitted messages can be 

unmixed (or decoded) at their final destinations. 

 

Figure 1.  Network Coding: Network nodes can compute functions of input messages. 

Advantage #1: Maximizing Throughput 

Network coding has several advantages over routing.  The first is the potential of network 

coding to improve throughput.  Consider the following situation.  Two streams of information, 

both at bitrate 𝐵 bits per second, arrive at a node, contending for an output link, having capacity 𝐵 bits per second.  With network coding, it may be possible to increase throughput by pushing 

both streams through the bottleneck link at the same time.  The method is simple.  Using 

network coding, the node can mix the two streams together by taking their exclusive-OR (XOR) 

bit-by-bit and sending the mixed stream through the link.  In this case, XOR is the function 

computed at the node.  This increases the throughput of the network if the two streams can be 

disentangled before they reach their final destinations.  This can be done using side information 

if it is available downstream. 



As an example, Figure 2 illustrates an idealized network of routers, links, and computers.  In the 

example, all the links are directional, and have the same capacity, say 𝐵 bits per second.  

Computer 𝑠1 wishes to send information to Computer 𝑡1, and Computer 𝑠2 wishes to send 

information to Computer 𝑡2.  Observe that 𝑠1 can reach 𝑡1 only by the path 𝑠1 → 𝐴 → 𝐶 → 𝐷 →𝐹 → 𝑡1, and that 𝑠2 can reach 𝑡2 only by the path 𝑠2 → 𝐵 → 𝐶 → 𝐷 → 𝐸 → 𝑡2.  These share the 

bottleneck link 𝐶 → 𝐷. 

 

Figure 2.  Two unicast sessions contending for a bottleneck link. 

At what rates, 𝑟1 and 𝑟2, can the two sessions communicate reliably?  If the network nodes can 

only route information, then clearly the bottleneck link 𝐶 → 𝐷 must be timeshared between the 

two sessions, giving rise to the set of achievable rates { 𝑟1 , 𝑟2 :  0 ≤ 𝑟1 , 0 ≤ 𝑟2 , 𝑟1 +  𝑟2 ≤ 𝐵}, 

which is shown in Figure 3 (left).  However, if the network nodes can perform network coding, 

then both sessions can communicate reliably at rate 𝐵, giving rise to the set of achievable rates 

{ 𝑟1, 𝑟2 :  0 ≤ 𝑟1 ≤ 𝐵, 0 ≤ 𝑟2 ≤ 𝐵}, which is shown in Figure 3 (right).  To achieve the pair of 

rates (𝐵, 𝐵), for example, the two streams can be mixed at node 𝐶 using an XOR operation, and 

they can be purified downstream at nodes 𝐸 and 𝐹, again using XOR operations.  Figure 2 shows 

the information flow required for this scheme.  The pure streams are carried by the yellow and 

blue links, while the mixed stream is carried by the green links. 

 

Figure 3. Achievable communication rate regions for routing only and network coding. 

Clearly, it is not possible for either session to communicate reliably at a rate greater than 𝐵, 

since the sender and receivers in each session are connected to the network through a single 

link of capacity 𝐵.  Hence the region in Figure 3 (right) is the set of all achievable rates, which is 

called the capacity region for these sessions in this network. 

It turns out to be very difficult, in general, to determine the capacity region for an arbitrary set 

of sessions in an arbitrary network.  To be specific, let a network (𝑉, 𝐸, 𝑐) be represented by a 

set of nodes (or vertices) 𝑉, a set of directed links (or edges) 𝐸, and real-valued capacities 𝑐(𝑒) 

on each link 𝑒 ∈ 𝐸, and let a session (𝑠, 𝑇) be represented by a sender 𝑠 ∈ 𝑉 and a set of 

receivers 𝑇 ⊆ 𝑉.  (If the set of receivers consists of only a single node 𝑡, then the session is said 

to be a unicast session.  Otherwise it is said to be a multicast session.)  Given a network (𝑉, 𝐸, 𝑐) 



and a set of sessions  𝑠1, 𝑇1 , …, (𝑠𝑁 , 𝑇𝑁) with respective communication rates 𝑟1, …, 𝑟𝑁, the 

decision problem, “Is the vector of communication rates (𝑟1 , … , 𝑟𝑁) achievable, or not?” is still a 

difficult problem.  In many specific networks and sets of sessions, the answer to a specific 

decision problem may be obvious, for example, when the specified rates are particularly high or 

low.  Indeed, inner and outer bounds on the capacity region for any specific network and set of 

sessions can be readily provided.  Moreover, in many instances, these inner and outer bounds 

match, so that the capacity region is determined.  However, a precise characterization of the 

capacity region for an arbitrary network and set of sessions has remained elusive.  We shall have 

more to say about this later. 

Happily, when there is only a single session (𝑠, 𝑇) in any given network (𝑉, 𝐸, 𝑐), the capacity 

region [0, 𝐶], or simply the capacity 𝐶, is now well characterized, thanks to the recent invention 

of network coding.  Most of the remainder of this tutorial is devoted to this single session case. 

Single-Session Network Coding 

In this section we cover some of the basic theory of single-session network coding, beginning 

with the unicast case. 

The Unicast Case: MinCut Bound, Menger’s Theorem, and Path Packing 

In the unicast case, a session (𝑠, 𝑡) consists of a single sender 𝑠 and a single receiver 𝑡.  Let 𝑟(𝑠, 𝑡) designate an achievable rate of communication from 𝑠 to 𝑡 in a given network  𝑉, 𝐸, 𝑐 .  

It has long been known that an upper bound on 𝑟(𝑠, 𝑡) is the value of any 𝑠–𝑡 cut through the 

network.  An 𝑠–𝑡 cut is a partition of the network into two subsets, 𝑈 and  𝑈 , the first containing 𝑠 and the second containing 𝑡.  The value of this cut is the sum of the capacities of the links from 

nodes in 𝑈 to nodes in 𝑈 , as illustrated in Figure 4. 

 

Figure 4.  Upper bound on unicast capacity. 

The minimum of the values of all such 𝑠–𝑡 cuts, herein designated 𝑀𝑖𝑛𝐶𝑢𝑡(𝑠, 𝑡), is clearly also 

an upper bound on 𝑟(𝑠, 𝑡).  That is, 𝑟 𝑠, 𝑡 ≤ 𝑀𝑖𝑛𝐶𝑢𝑡(𝑠, 𝑡).  In 1927, Menger proved a variant of 

the following theorem, which was later to become known as the MaxFlow – MinCut Theorem:  

for undirected graphs with unit capacity edges, there always exists a set of 𝑕 = 𝑀𝑖𝑛𝐶𝑢𝑡(𝑠, 𝑡) 

edge-disjoint paths between 𝑠 and 𝑡 (1).  Thus, by routing information over this set of 𝑕 unit-

capacity edge-disjoint paths, we can achieve reliable communication between 𝑠 and 𝑡 at the 

maximum possible rate, 𝑟 𝑠, 𝑡 = 𝑀𝑖𝑛𝐶𝑢𝑡(𝑠, 𝑡).  In 1956, Ford and Fulkerson (and 

independently Elias, Feinstein, and Shannon) provided constructive algorithms for finding the 



maximum flow, i.e., for packing the maximum number of unit-capacity edge-disjoint paths from 𝑠 to 𝑡, in polynomial time (2)(3).  These results were later extended to include directed graphs, 

edges with real-valued capacities, and more efficient algorithms; see, for example, (4).  Thus 

Menger’s theorem and the Ford-Fulkerson algorithm provide the basis for achieving the capacity 

of a network in the single-session unicast case. 

The Broadcast Case: Edmonds' Theorem and Spanning Tree Packing 

In the broadcast case, a session consists of a single sender 𝑠 and a set of receivers 𝑉 consisting 

of all the nodes in the network (𝑉, 𝐸, 𝑐).  Let 𝑟(𝑠, 𝑉) designate an achievable rate at which 𝑠 can 

broadcast common information reliably to all the other nodes in the network.  Clearly, an upper 

bound on 𝑟(𝑠, 𝑉) is the maximum rate at which 𝑠 can communicate reliably with any single 

receiver 𝑣 ∈ 𝑉.  Thus, 𝑟 𝑠, 𝑉 ≤ min𝑣∈𝑉 𝑀𝑖𝑛𝐶𝑢𝑡(𝑠, 𝑣).  It turns out that the upper bound, 

min𝑣∈𝑉 𝑀𝑖𝑛𝐶𝑢𝑡(𝑠, 𝑣), is also achievable, as proved in 1972 by Edmonds, who showed for 

directed graphs with unit capacity edges that the maximum number of edge-disjoint directed 

spanning trees rooted at 𝑠 is equal to min𝑣∈𝑉 𝑀𝑖𝑛𝐶𝑢𝑡(𝑠, 𝑣) (5).  (A directed spanning tree 

rooted at 𝑠 reaches every node in 𝑉 through edges in 𝐸.)  By routing information over these 

spanning trees, we can achieve reliable broadcast from 𝑠 to 𝑉 at the maximum possible rate, 𝑟 𝑠, 𝑉 = min𝑣∈𝑉 𝑀𝑖𝑛𝐶𝑢𝑡 𝑠, 𝑣 .  Thus, 𝐶 = min𝑣∈𝑉 𝑀𝑖𝑛𝐶𝑢𝑡 𝑠, 𝑣  can be considered the 

broadcast capacity of the network.  Moreover, a maximal set of spanning trees achieving the 

broadcast capacity can be found in polynomial time. 

The Multicast Case: Steiner Tree Packing and Non-Achievability of MinCut Bound 

In the multicast case, a session consists of a single sender 𝑠 and a set of receivers 𝑇 ⊆ 𝑉.  Let 𝑟(𝑠, 𝑇) designate an achievable rate at which 𝑠 can multicast common information reliably to all 

the nodes in 𝑇.  Clearly,  𝑀𝑖𝑛𝐶𝑢𝑡(𝑠, 𝑡) remains an upper bound on this rate for any 𝑡 ∈ 𝑇.  Thus, 𝑟 𝑠, 𝑇 ≤ min𝑡∈𝑇 𝑀𝑖𝑛𝐶𝑢𝑡(𝑠, 𝑡).  Unfortunately, unlike the broadcast case, the upper bound may 

not be achievable by routing information through a set of edge-disjoint trees, as the following 

example shows. 

Figure 5 (a) shows a seven-node network with unit-capacity directed links.  A sending node 𝑠 is 

on the left (in green) and two receiving nodes 𝑇 =  𝑡1, 𝑡2  are on the right (in red).  Figure 5 (b) 

and (c) show that there are two edge-disjoint directed paths from the sender to each of the two 

receivers.  Hence, min𝑡∈𝑇 𝑀𝑖𝑛𝐶𝑢𝑡 𝑠, 𝑡 = 2.  However, multicast at this rate is not achievable 

merely by routing information along a set of edge-disjoint trees.  Figure 5 (d)-(h) show the only 

possible Steiner trees from 𝑠 to 𝑇.  (A Steiner tree, also known as a multicast tree, from 𝑠 to 𝑇 in 

a graph (𝑉, 𝐸) is a tree rooted at 𝑠 that reaches every node in 𝑇 through edges in 𝐸.)  Any two 

of these Steiner trees share at least one edge.  Hence, in this network the maximum number of 

edge-disjoint Steiner trees from 𝑠 to 𝑇 is 1.  Thus routing along a maximal set of edge-disjoint 

Steiner trees cannot in general achieve throughput equal to the upper bound 



min𝑡∈𝑇 𝑀𝑖𝑛𝐶𝑢𝑡 𝑠, 𝑡 . 
1
  Worse, finding such a maximal set of edge-disjoint Steiner trees turns 

out to be NP-hard (6). 

 

Figure 5. One Multicast Session.  (a) Sender 𝒔 in green, receivers 𝑻 = {𝒕𝟏,𝒕𝟐} in red.  (b,c) Maximal sets of edge-

disjoint paths from s to 𝒕𝟏 and 𝒕𝟐, demonstrating 𝐦𝐢𝐧𝒕∈𝑻 𝑴𝒊𝒏𝑪𝒖𝒕 𝒔, 𝒕 = 𝟐.  (d)-(h) All five possible multicast trees 

from 𝒔 to 𝑻, no two of which are edge-disjoint.  (i) Network coding achieves the multicast capacity. 

Alswede et al.'s Theorem, Multicast Capacity 

Nevertheless, reliable multicast from 𝑠 to 𝑇 in Figure 5 can occur at the upper bound if network 

coding is used.  Figure 5 (i) shows how two unit-bandwidth streams, 𝑎 and 𝑏, can be encoded at 

an interior node to produce a mixed stream, 𝑎 + 𝑏, from which stream 𝑎 can later be subtracted 

to recover stream 𝑏, and vice versa, thus delivering both streams to both receivers.  Here, 

addition and subtraction are operations over a finite field, specifically XOR operations.  

Amazingly, reliable multicast at a rate equal to the upper bound, min𝑡∈𝑇 𝑀𝑖𝑛𝐶𝑢𝑡 𝑠, 𝑡 , can 

always be achieved in any network using network coding, as proved in 2000 in the seminal work 

of Alswede, Cai, Li, and Yeung (7).  (We shall not display a proof here, but see Koetter and 

Médard (8) for a beautiful algebraic proof, or see either of the tutorials listed in the Conclusion.)  

Thus, 𝑕 = min𝑡∈𝑇 𝑀𝑖𝑛𝐶𝑢𝑡 𝑠, 𝑡  can be considered to be the multicast capacity, or simply the 

capacity (since the formula works for unicast and broadcast as well) for an arbitrary single 

session in an arbitrary directed network. 

Perhaps more amazingly, linear network coding is sufficient to achieve the multicast capacity, as 

proved in 2003 by Li, Yeung, and Cai (9) and by Koetter and Médard (8).  Linear network coding 

means that the messages (e.g., 𝑦1 , 𝑦2, and 𝑦3 in Figure 1) can be considered vectors of elements 

from a finite field, and the functions performed at the nodes can be simple linear combinations 

over this finite field (e.g., 𝑓1 𝑦1 , 𝑦2 , 𝑦3 = 𝛼1𝑦1 + 𝛼2𝑦2 + 𝛼3𝑦3 and 𝑓2 𝑦1 , 𝑦2 , 𝑦3 = 𝛽1𝑦1 +𝛽2𝑦2 + 𝛽3𝑦3).  Furthermore, all the decoding at the receivers can be performed using linear 

                                                           
1
 To be more precise, the maximum throughput for routing is achieved by a fractional packing of Steiner 

trees, where each Steiner tree can be used for a fraction of the time, with the average usage of each edge 

not exceeding its capacity. It can be shown that the maximum routing throughput for this example is 1.5, 

which is still less than the minimum of the min-cut values, 2. 



operations.  Jaggi, Sanders, et al. provided a polynomial time algorithm for finding the encoding 

and decoding coefficients in directed acyclic networks (10), and Erez and Feder extended the 

approach to directed networks with cycles (11). 

In summary, using linear network coding, the multicast capacity in a directed network can 

always be achieved, and the coding coefficients necessary to achieve the capacity can be 

computed in polynomial time.  In contrast, if only routing can be used, not only is it generally 

impossible to achieve the multicast capacity, but computing the set of edge-disjoint multicast 

trees necessary to achieve the best possible routing is a problem that is NP-hard in general. 

Advantage #2: Minimizing Energy per Bit 

There are advantages to network coding beyond maximizing throughput.  In particular, network 

coding can minimize the amount of energy required per packet (or other unit) of information 

multicast in a wireless network.  Figure 6 shows a wireless network with nodes arranged in a 

square, with radio ranges such that the nodes can directly communicate with neighbors 

horizontally and vertically, but not diagonally.  There is a single multicast session with a sender 𝑠 

at the top center and receivers 𝑡1 and 𝑡2 at the bottom left and right corners.  Assuming that 

each transmission takes one unit of energy, we can use the number of transmissions as a proxy 

for the amount of energy required to multicast each packet.  If only routing is permitted, then it 

is possible to show that a minimum of five transmissions is required to multicast a packet from 𝑠 

to 𝑡1 and 𝑡2.  (For example, the first transmission broadcasts the packet to the sender’s two 
neighbors, and four other transmissions move the packet to the two receivers, as illustrated in 

Figure 6 (left).)  However, if network coding is permitted, then only 4.5 transmissions per packet 

are required on average, using nine transmissions for two packets 𝑎 and 𝑏.  (For example, three 

transmissions can move packet 𝑎 to receiver 𝑡1, three transmissions can move packet 𝑏 to 

receiver 𝑡2, two transmissions can move packets 𝑎 and 𝑏 to an intermediate node, and a final 

transmission can broadcast 𝑎 + 𝑏 back out to the receivers, as illustrated in Figure 6 (right).)  It 

can be shown that under this model of a wireless network, linear network coding can always 

achieve the minimum energy per packet and the required coding coefficients can be computed 

in polynomial time (12).  In contrast, “minimum energy” multicast routing is NP-hard to 

compute, and may not even achieve the minimum possible energy. 

 

Figure 6.  Network coding minimizes energy per packet.  Sender 𝒔𝟏 is in green; receivers 𝒕𝟏 and 𝒕𝟐 are in red. 



Advantage #3: Minimizing Delay 

Network coding can also minimize the delay, as measured, for example, by the maximum 

number of hops for a packet to reach a receiver.  Figure 7 shows a network of four nodes 

arranged in a tetrahedron, with unit-capacity edges running down the sides and around the 

bottom in a cycle.  There is a single sender at the top and three receivers at the bottom.  It is 

easy to verify that the 𝑀𝑖𝑛𝐶𝑢𝑡 between the sender and any receiver is two.  Edmonds’ theorem 
therefore guarantees the existence of two edge-disjoint spanning trees along which the sender 

can route two unit-rate streams to the three receivers.  Figure 7 (left) shows essentially the only 

such spanning trees, modulo symmetries.  Note that the depth of the blue tree is three, which is 

therefore the minimum possible overall delay if only routing can be used to communicate at 

rate two.  In contrast, Figure 7 (right) shows that if network coding can be used, it is possible to 

reduce the delay to two, by routing stream 𝑎 along the yellow path, stream 𝑏 along the blue 

path, and their mixture 𝑎 + 𝑏 along the green path. 

 

Figure 7. Network coding minimizes delay. 

Applicability to Real Networks: Theory vs. Practice 

Network Coding is presumably highly applicable to communication in real networks – the 

primary example being the Internet – both at the IP layer, for example in routers in ISPs, and at 

the application layer, both in dedicated infrastructure such as content distribution networks and 

in ad hoc networks such as peer-to-peer networks.  But network coding should presumably also 

have applications to wireless ad hoc multihop networks, sensor networks, stationary wireless 

residential or community mesh networks, and so forth.  In the following section, we address 

how practical network coding might be done in real networks, where packets are subject to 

random loss and delay; edges have variable capacities due to congestion and other cross traffic; 

node and link failures, as well as additions and deletion, are common, as they might be in peer-

to-peer and ad hoc networks; cycles are everywhere; the multicast capacity may be unknown; 

and there is no centralized knowledge of the graph topology or the encoder or decoder 

functions. 

Practical Network Coding 

Making network coding practical relies on three key ideas: random coding, packet tagging, and 

buffering.  Random coding allows the encoding to proceed in a distributed manner.  Tagging 

each packet with the corresponding coding vector allows the decoding to proceed in a 

distributed manner.  Buffering allow for asynchronous packet arrivals and departures with 

arbitrarily varying rates, delay, and loss.  Before introducing these techniques, however, let us 

establish the general algebraic framework behind linear network coding. 



Local and Global Encoding Vectors, Decoding 

To begin, consider an acyclic network (𝑉, 𝐸, 𝑐) with unit capacity edges, i.e., 𝑐 𝑒 = 1 for all 𝑒 ∈ 𝐸, meaning that each edge can carry one symbol per unit of time.  Assume also that each 

symbol is an element of a finite field 𝐹. 

Let there be a single sender 𝑠 ∈ 𝑉 and a set of receivers 𝑇 ⊆ 𝑉.  Let 𝑕 = 𝑀𝑖𝑛𝐶𝑢𝑡(𝑠, 𝑇) be the 

multicast capacity.  Let 𝑥1 , … , 𝑥𝑕  be the 𝑕 symbols that we wish to multicast from 𝑠 to 𝑇 in each 

unit of time. 

For each edge 𝑒 emanating from a node 𝑣, let 𝑦 𝑒  denote the symbol carried on 𝑒.  The symbol 𝑦 𝑒 , regarded as an element of the finite field 𝐹, can be computed as a linear combination of 

the symbols 𝑦(𝑒 ′) on edges 𝑒 ′  entering node 𝑣, namely, 𝑦 𝑒 =  𝛽𝑒 ′𝑒 ′  𝑒 𝑦(𝑒 ′).  The 

coefficients of the linear combination form a vector 𝜷 𝑒 =  𝛽𝑒 ′  𝑒  , known as the local 

encoding vector on edge 𝑒.  The length of this vector is the number of edges 𝑒 ′entering 𝑣.  The 

local encoding vectors on edges 𝑒 leaving 𝑣 characterize the network functions performed at 𝑣. 

For the sake of uniformity of notation, we can introduce artificial edges 𝑒1
′ , … , 𝑒𝑕′  entering 𝑠, and 

let the symbols 𝑦 𝑒1
′  , … , 𝑦(𝑒𝑕′ ) on these edges be equal to 𝑥1 , … , 𝑥𝑕 .  Then, by induction, it is 

clear that the “code” symbol 𝑦(𝑒) on any edge 𝑒 ∈ 𝐸 in the network can be computed as a 

linear combination of the “source” symbols 𝑥1 , … , 𝑥𝑕 , namely, 𝑦 𝑒 =  𝑔𝑖 𝑒 𝑥𝑖𝑕𝑖=1 .  The 

coefficients of this linear combination form a vector 𝒈 𝑒 = [𝑔1 𝑒 , . . , 𝑔𝑕 𝑒 ], known as the 

global encoding vector on edge 𝑒.  The global encoding vector 𝒈(𝑒) represents the code symbol 𝑦(𝑒) in terms of the source symbols 𝑥1 , …𝑥𝑕 .  It is easy to see that the global encoding vectors 

themselves can be computed recursively as 𝒈 𝑒 =  𝛽𝑒 ′𝑒 ′  𝑒 𝒈(𝑒 ′), using the coefficients of 

the local encoding vectors 𝜷(𝑒). 

Suppose now that a receiver 𝑡 ∈ 𝑇 receives code symbols 𝑦 𝑒1 , … , 𝑦(𝑒𝑕) on edges 𝑒1 , … , 𝑒𝑕  

entering 𝑡.  The received code symbols can be expressed in terms of the source symbols as  𝑦(𝑒1)⋮𝑦(𝑒𝑕)
 =  𝑔1(𝑒1) ⋯ 𝑔𝑕(𝑒1)⋮ ⋱ ⋮𝑔1(𝑒𝑕) ⋯ 𝑔𝑕(𝑒𝑕)

  𝑥1⋮𝑥𝑕 = 𝐺𝑡  𝑥1⋮𝑥𝑕 , 

where the 𝑖th row of the matrix 𝐺𝑡  is the global encoding vector associated with edge 𝑒𝑖  
entering receiver 𝑡.  Receiver 𝑡 can therefore recover the 𝑕 source symbols by inverting the 

matrix 𝐺𝑡  and applying the inverse to its received code symbols. 

Random Encoding and Invertibility 

It turns out that 𝐺𝑡  will be invertible with high probability if all of the coefficients of all of the 

local encoding vectors in the network are chosen randomly, independently, and uniformly from 

the field 𝐹, provided that the field size is sufficiently large relative to the size of the network, as 

shown independently by Ho et al. (13) and Sanders et al. (14).  For example, if  𝐹 = 216  and  𝐸 = 28, then 𝐺𝑡  will be invertible with probability at least 1 −  𝐸 /|𝐹| = 0.996.  Empirical 

evidence suggests that this bound is quite loose; 𝐺𝑡  is still invertible with high probability even 

when  𝐹 = 28 and the network has hundreds of edges.  Thus, random linear codes work well.  

This is the first key idea towards making network coding practical, since each node can, in a 



distributed way, choose its own encoding coefficients at random, independently of the other 

nodes. 

Packet Tagging 

In a real network, symbols flow sequentially over the edges, and moreover, the symbols are 

grouped into packets.  For example, each packet in the Internet can typically contain up to 1400 

bytes or so.  If  𝐹 = 216 , then each packet can contain about 700 symbols, whereas if  𝐹 = 28, 

then each packet can contain about 1400 symbols.  Thus, we can think of each packet in the 

network as being a vector of code symbols 𝒚 𝑒 =  𝑦1 𝑒 , … , 𝑦𝑁 𝑒  .  By likewise grouping the 

source symbols into packets 𝒙𝑖 =  𝑥𝑖,1 , … , 𝑥𝑖,𝑁 ,  the above algebraic relationships carry over to 

packets.  That is, each packet 𝒚 𝑒  on edge 𝑒 can be computed as a linear combination of the 

packets 𝒚(𝑒 ′) on the preceding edges or, alternatively, as a linear combination of the source 

packets 𝒙1 , … , 𝒙𝑕 , i.e., 𝒚 𝑒 =  𝛽𝑒 ′𝑒 ′  𝑒 𝒚 𝑒 ′ =  𝑔𝑖 𝑒 𝒙𝑖𝑕𝑖=1 .  As before,  𝒚(𝑒1)⋮𝒚(𝑒𝑕)
 =  𝑔1(𝑒1) ⋯ 𝑔𝑕(𝑒1)⋮ ⋱ ⋮𝑔1(𝑒𝑕) ⋯ 𝑔𝑕(𝑒𝑕)

  𝒙1⋮𝒙𝑕 = 𝐺𝑡  𝒙1⋮𝒙𝑕 , 

so each receiver 𝑡 can recover the source packets by inverting the matrix 𝐺𝑡  and applying the 

inverse to its received code packets. 

Now we come to the second key idea for making network coding practical: packet tagging.  

Suppose every packet carried on edge 𝑒 is tagged with the global encoding vector 𝒈(𝑒) 

associated with the edge.  This can be easily accomplished, for example, by prefixing the 𝑖th 

information vector 𝒙𝑖  with the 𝑖th unit vector 𝒖𝑖  and applying the usual algebraic operations to 

the resulting vector. In this way each packet is automatically tagged with the appropriate global 

encoding vector, since [𝒈 𝑒 , 𝒚 𝑒 ] =  𝛽𝑒 ′𝑒 ′  𝑒 [𝒈 𝑒 ′ , 𝒚 𝑒 ′ ] =  𝑔𝑖 𝑒 [𝒖𝑖 , 𝒙𝑖𝑕𝑖=1 ]. 

The cost of the tag 𝒈(𝑒) is 𝑕 extra symbols per packet.  If 𝑕 = 50 and  𝐹 = 28, then the 

overhead is about 50 1400 ≈ 3%, for example. The benefit of the tag, however, is that the 

global encoding vectors needed to decode the received packets can be found within the packets 

themselves.  This means that the receivers do not need to know the encoding functions within 

the network, or even the network topology, to compute 𝐺𝑡 .  Nor does 𝐺𝑡  need to be 

communicated to the receiver a priori or over a side communication mechanism.  In fact, the 

network can be dynamic, with nodes and edges being added and removed in an ad hoc way.  

Node failure, link failure, and packet loss can occur in unknown locations.  The encoding 

functions can be time varying and random.  Thus, decoding can be robust, provided that the 

network through which the received packets 𝒚 𝑒1 , … , 𝒚(𝑒𝑕) are computed maintains 𝑀𝑖𝑛𝐶𝑢𝑡 𝑠, 𝑡 ≥ 𝑕.  Any receiver 𝑡 for which 𝑀𝑖𝑛𝐶𝑢𝑡 𝑠, 𝑡  falls below 𝑕 may not be able to 

decode. 

Buffering and Generations 

By themselves, the random coding and packet tagging schemes just outlined are not sufficient to 

make network coding practical in real networks.  In real networks, the “unit capacity” edges are 

grouped into real edges, packets on real edges are carried sequentially, the number of packets 



per unit time on each edge varies due to loss, congestion, and competing traffic, and cycles are 

everywhere.  In addition, the information source may be a continuous stream of packets. 

If the information source is a continuous stream of packets, it can be blocked into 𝑕 source 

packets per block.  Let us say that all the code packets in the network related to the 𝑘th block of 

source packets 𝒙𝑘𝑕+1 , … , 𝒙𝑘𝑕+𝑕  belong to generation 𝑘, where 𝑕 is the generation size.  To keep 

track of packets in same generation, each packet can be tagged with its generation number 𝑘. 

Packets within a generation can now be synchronized by buffering, which is the third key idea 

for making network coding practical.  Figure 8 illustrates a typical network node with three 

incoming links and one outgoing link.  Packets, tagged by generation number (shown as packet 

color) arrive sequentially through each link, subject to jitter, loss, and variable rate.  As packets 

arrive at the node, they are put into a common buffer sorted by generation number, with the 

“current generation” at the head of the queue. 

 

Figure 8. Buffering at a node. 

Whenever there is a transmission opportunity on an outgoing link, an outgoing packet is formed 

by taking a random linear combination of packets in the current generation, as illustrated in 

Figure 9.  Transmission opportunities can occur, for example, for constant bit rate links at fixed 

intervals, for TCP connections whenever the TCP window slides over, or for wireless links when 

the MAC gains access to the channel. 

 

Figure 9.  Forming an outgoing packet. 

Periodically, the current generation of packets can be flushed out of the buffer according to a 

flushing policy.  Packets in previous generations that arrive late at a node can be discarded. 

Earliest Decoding 

Decoding at any node can be achieved by collecting 𝑕 or more packets in a given generation, 

stacking their symbols row-by-row, extracting the symbols in the packet tags to form 𝐺𝑡 , and 



applying the inverse of 𝐺𝑡 , if it exists, to the symbols in the packet payloads.  (Equivalently, 

Gaussian elimination could be performed on the matrix of symbols formed by the stacked 

packet tags and payloads.)  The algorithmic decoding delay in this block decoding method is the 

length of time for the receiver to collect 𝑕 packets, which is of course proportional to the 

generation size 𝑕. 

A decoding method with lower algorithmic decoding delay is earliest decoding, in which 

Gaussian elimination is performed immediately after each packet is received, on the matrix of 

symbols formed by the packets stacked so far.  Since 𝐺𝑡  tends to be lower triangular (i.e., the 𝑖th 

received packet tends to be a linear combination of the first 𝑖 source packets because of 

causality of computation in the network), it is typically possible to decode the first 𝑖 source 

packets after receiving fewer more than 𝑖 code packets.  Experimental results show that the 

algorithmic decoding delay of earliest decoding is often on the order of a few source packets, 

much smaller than that of the block decoding. 

Routing Example 

The above techniques for practical network coding were simulated in (15) on the network 

shown in Figure 10, purportedly representing the SpintLink ISP network in North America, as 

determined by the University of Washington Rocketfuel project (16).  The network consists of 89 

nodes and 972 bidirectional edges, with edge capacities scaled inversely proportionally to the 

link costs inferred by Rocketfuel.  A node in Seattle was arbitrarily chosen as the sender, and 20 

other nodes were arbitrarily chosen as receivers, spanning a range with 𝑀𝑖𝑛𝐶𝑢𝑡(𝑠, 𝑡) from 450 

Mbps (between Seattle and Chicago) to 833 Mbps (between Seattle and San Jose). 

 

Figure 10. Sprint network. 

For field size  𝐹 = 216  and generation size 𝑕 = 100, Figure 11 shows the average rank of the 

set of global encoding vectors received in each generation, normalized to the sending rate (e.g., 

a received rank of 75 out of 100 is normalized to 75% of the sending rate) as a function of 

sending rate (in Mbps), for five different receivers.  The 𝑀𝑖𝑛𝐶𝑢𝑡 between Seattle and each 

receiver is shown in the key.  It can be seen that as the sending rate increases, the received rank 

increases proportionally, up to the 𝑀𝑖𝑛𝐶𝑢𝑡, at which point it saturates.  Thus for any collection 



of receivers 𝑇, if the sending rate is limited to the multicast capacity min𝑡∈𝑇 𝑀𝑖𝑛𝐶𝑢𝑡(𝑠, 𝑡), it is 

possible in practice to achieve reliable multicast very close to capacity.  For further details, see 

(15). 

 

Figure 11. Received rank as a function of sending rate. 

Applications 

Despite the above example, building network coding into IP-level routers in the Internet is 

unlikely to be practical in the near future, for a variety of reasons
2
.  However, building network 

coding into overlay networks is quite feasible.  In overlay networks, “nodes” are application-

level programs running in computers and “edges” are transport-level connections between 

computers.  Overlay networks can be infrastructure-based, as typified by content distribution 

networks such as Akamai or Limelight, or they can be ad-hoc or peer-to-peer (P2P) networks of 

end hosts drawn together temporarily to fulfill a particular communication task, such as live 

broadcast, media on demand, file download, instant messaging, storage, telephony, 

conferencing, or gaming.  In this section, we take a quick romp through such applications of 

network coding, ending with applications to wireless and sensor networks. 

File Download 

One of the most common network communication tasks is downloading a file from a server to a 

client computer, whether the file is a web page, a picture, a music track, a movie, a program, or 

other kind of document.  Traditionally, the downloaded file is unicast from the server to the 

client, but if delay is ignored, this can be viewed as a multicast of the file from the server to a 

large collection of clients using a large amount of buffering.  From the multicast point of view, it 

can be seen that network coding can potentially increase the throughput and hence reduce the 

average download time. 

To see how this can be done, consider downloading the file over a P2P network formed from all 

the nodes that are currently downloading the file.  Newly arriving nodes join the network by 
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 e.g., the need to keep computation and per-flow state out of the core, the need for backward 

compatibility with a massive deployed base, and the need for multipath routing to make network coding 

effective. 
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connecting to a subset of the existing nodes.  The original and still most popular protocol for P2P 

file downloading is BitTorrent (17).  In BitTorrent, the file is divided evenly into 𝑕 “pieces.”  Each 

node negotiates to obtain pieces of the file from its neighbors, until the node obtains all 𝑕 

pieces and can depart the network.  After a node obtains a new piece, it announces the 

acquisition to its neighbors, so that every node knows which pieces every neighbor has.  When 

requesting a particular piece from a neighbor, a node typically requests a local rarest piece, that 

is, a piece that is least common among all of the node’s neighbors.  This ensures that pieces are 

propagated approximately uniformly through the network, avoiding information bottlenecks. 

A new protocol for P2P file downloading based on network coding is Avalanche (18).  In 

Avalanche, the file is again divided evenly into 𝑕 pieces.  This time, the pieces 𝒙1 , … , 𝒙𝑕  are 

regarded as vectors of elements over a finite field.  Instead of transmitting uncoded pieces to its 

neighbors, a node transmits coded pieces, where each coded piece 𝒚(𝑒) is a random linear 

combination  𝛽𝑒 ′  𝑒 𝒚𝑒 ′ (𝑒 ′) of the coded pieces 𝒚(𝑒 ′) already received by the node, and 

hence 𝒚 𝑒  is ultimately some linear combination  𝑔𝑖(𝑒)𝒙𝑖𝑕𝑖=1  of the original, uncoded pieces.  

Each coded piece 𝒚(𝑒) is tagged with its global encoding vector [𝑔1 𝑒 , … , 𝑔𝑕 𝑒 ].  Thus when a 

node receives enough coded pieces with linearly independent global encoding vectors, it can 

reconstruct the original file, and can depart the network. 

At any given time, every node in the P2P network is a receiver.  Hence the problem is actually a 

broadcast problem.  In this case, theoretically, network coding provides no advantage in 

throughput over routing, since there exists an optimal set of edge-disjoint multicast trees over 

which routing can be performed at the broadcast capacity.  In BitTorrent, the set of multicast 

trees is induced by the paths that are followed by the pieces as they are distributed from the 

sender to the receivers.  The difficulty is finding an optimal set of multicast trees in a distributed 

way, especially when the network topology is changing underneath. 

Gkantsidis et al. show in Figure 12 that network coding can outperform a BitTorrent-like local 

rarest approach by 10-30% (19)
3
.  Similar conclusions were found in (20). 
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 In the figure, network coding (NC) is compared to local rarest (LR) and forward error correction (FEC) 

schemes.  (In the FEC scheme, forward error correction is applied to the original uncoded pieces to obtain 

a large number of coded pieces, which are then distributed through the network using LR.)  The figure 

also compares free and tit-for-tat (TFT) versions of each scheme.  In the TFT versions, the difference 

between the number of pieces sent and received by any node is bounded by two. 



 

Figure 12. Network Coding vs. Local Rarest vs. FEC.  Courtesy of Gkantsidis and Rodriguez. 

Video on Demand, Live Media Broadcast, Game Spectating, and Instant Messaging 

Video on demand is essentially a file download in which the pieces of the downloaded file must 

arrive in order and be decoded in real time, after some small delay.  Network coding can be 

applied in this case by breaking the file into generations, which can be downloaded sequentially.  

A similar technique can be applied, or course, to live media broadcast.  Earliest decoding can be 

used to further reduce delay.   Similar to live media broadcast is game spectating, in which 

spectators can watch other gamers play.  Instant messaging (IM) is also similar to live broadcast, 

but with typically low bit rate (and bursty) text messages and a softer delay constraint.  

However, IM is increasingly including larger messages such as images and audio clips.  Flooding, 

which is usually used for IM in P2P networks, is inefficient when used on larger files.  Network 

coding can be applied in all of these cases to improve efficiency in overlay networks. 

Distributed Storage 

A file can be reliably stored in a distributed way across a collection of unreliable nodes, if there 

is sufficient redundancy.  Using a Reed-Solomon code, for example, a file of size 𝑀 can be 

partitioned into 𝑘 pieces 𝒙1 , … , 𝒙𝑘  each of size 𝑀/𝑘, coded into 𝑛 > 𝑘 pieces 𝒚1 , … , 𝒚𝑛  each of 

size 𝑀/𝑘, and distributed across 𝑛 storage nodes, such that the original file can be retrieved as 

long as at least 𝑘 nodes are on line, by reading a coded piece of size 𝑀/𝑘 from each of 𝑘 nodes 

and decoding.  Unfortunately, maintaining this level of reliability in the face of node churn can 

be a challenge.  Specifically, whenever a node fails permanently, it must be replaced by a new 

node.  The new node must regenerate a coded piece of size 𝑀/𝑘 by reading a coded piece of 

size 𝑀/𝑘 from each of 𝑘 other nodes, decoding, and re-encoding.  This results in communicating 

essentially the entire file across the network for each node failure, which can be a very large 

amount of maintenance communication when 𝑛 is large, nodes fail frequently, and files are not 

otherwise accessed frequently.  Dimakis et al. have shown that if network coding is used, 

however, at the cost of a small increase in storage (by a factor 𝛽 < 2), a new node can 

regenerate its coded data of size 𝛽𝑀/𝑘 by obtaining randomly re-encoded data of size 𝛽𝑀/𝑘2 

from each of 𝑘 other nodes.  This results in communicating essentially only a small fraction of 



the file (size 𝛽𝑀/𝑘) across the network for each node failure (21).  Other applications of 

network coding to distributed storage can be found in (22)(23). 

Wireless Mesh Networks 

Another convenient place to deploy network coding, besides an application-level overlay 

network, is a link-layer underlay network such as a wireless mesh network, on top of which an IP 

network can run transparently.  In Figure 6 we have already seen how the number of 

transmissions required for two wireless nodes to exchange packets through an intermediary can 

be reduced from four to three using network coding.  In fact this can be extended to multiple 

hops.  If a wireless node 𝑠 sends a stream of packets to a wireless node 𝑡 over a long series of 

hops, then 𝑡 can send an equal-rate stream of packets in the reverse direction to 𝑠 for free, i.e., 

without any additional transmissions on the intermediate hops, for a savings approaching 2:1.  

Wu et al., who invented the technique, gave the name physical piggybacking to using XORs to 

combine packets at a wireless node for local decoding by neighbors with side information (24). 

Katti et al. extended the work of Wu et al. to the case where the side information is obtained by 

overhearing (25).  Figure 13 illustrates a stream of packets 𝑎 transmitted from 𝑠1 to 𝑡1 and 

another stream of packets 𝑏 being transmitted from 𝑠2 to 𝑡2, along paths that cross at a central 

wireless node.  Neighbors of the central node overhear packets 𝑎 and 𝑏 as they are transmitted 

to the central node as indicated.  Thus the central node can code both packets 𝑎 and 𝑏 into a 

single packet 𝑎 + 𝑏, which can be decoded immediately by both neighbors using the overheard 

packets as side information. 

 

Figure 13. Opportunistic network coding in a wireless mesh. 

Katti et al. propose opportunistic coding (COPE), in which each node maintains a queue of 

received uncoded packets 𝑝1 , 𝑝2 , … , 𝑝𝑛 , … destined (according to their packet headers and the 

node’s routing table) for next hop recipients 𝑟1 , 𝑟2 , … , 𝑟𝑛 , ….   The node then pops the packet 𝑝1 

and steps through the queue to greedily add packets for mixing, while ensuring that all of the 

next hop recipients can immediately decode the resulting mixture. A recipient can immediate 

decode a mixture packet if it knows all but one uncoded packet. For example, a mixture packet 𝑝1 + 𝑝3 + 𝑝4 is valid if node 𝑟1 knows 𝑝3 and 𝑝4, node 𝑟3 knows 𝑝1 and 𝑝4, and node 𝑟4 knows 𝑝1 and 𝑝3. 



Figure 14 shows total network throughput as a function of the number of sender/receiver pairs 

in a simulation of 100 WiFi nodes randomly placed in a 800m x 800m area, transmitting UDP 

packets as fast as the MAC allows, for no coding and variations of network coding.  It can be 

seen that when there are only a few flows, coding opportunities are limited, but when 

communication becomes dense, opportunistic network coding can increase the total throughput 

by a factor of three or more, completely transparently to the IP networking layer.  For more 

information, see (25). 

 

Figure 14. Advantage of network coding over routing.  Courtesy of Katti et al. 

Sensor Networks 

As a final application of network coding, consider the visionary work of Petrovid, Ramchandran, 
and Rabaey (26), in which sensors are conceived to be so small that they can be mixed into cans 

of paint, can be spread onto surfaces, and can harvest energy from the environment, to form 

sensing surfaces over a built-in communication backplane.  To reduce each node’s size and 
energy requirements, the narrowband radio’s off-chip quartz oscillator is replaced by an on-chip 

LC circuit.  However, the center frequency of the LC circuit is random, subject to the statistical 

variations of the manufacturing process.  This means, essentially, that each node picks a random 

channel on which to transmit, and another random channel on which to receive.  Petrovid et al. 

show, using a random graph construction, that the throughput between any two nodes is 

constant if only routing is used, but grows linearly in the number of channels if network coding 

is used, and the radio ranges are optimally chosen.  The reason network coding helps greatly 

here is that the randomly mixed packets can implicitly find their way towards the destination, 

whereas explicitly identifying routes is difficult when the graph connectivity is unknown. See 

(26) for details. 

Advanced topics 

Security  

When applying network coding in practice, we need to be careful about potential security 

threats.  One form of attack, called a pollution attack, is particularly relevant when using the 

practical network coding techniques mentioned earlier.  Consider a malicious node injecting a 

junk packet into the network.  Although this might also occur in a traditional system without 

network coding, its effect is far more serious with network coding.  If the junk packet is mixed 

into the buffer of a node, the buffer will be polluted, the output of the node will become junk, 

and this may soon propagate to the entire network.  Fortunately, recent studies have proposed 



several counter-measures, including a homomorphic hash scheme (27), a homomorphic 

signature scheme (28), and a secure random checksum scheme (27). All of these techniques try 

to detect a polluted packet before it gets mixed into the buffer.  

Resource Optimization 

In practical network coding, generating an output packet is easy:  simply combine the buffered 

packets using a set of randomly generated coefficients.  But how fast should output packets be 

generated?  If the network resources follow a “use it or lose it” model, then output packets can 

be generated as fast as possible.  However, for typical networking scenarios, this is not the case. 

Hence the rate at which mixture packets are generated must be properly controlled.  This 

problem can be formulated as a mathematical optimization, where the variables are the 

allocated link rates and the sending rate at the source.  Such an optimization can be viewed as a 

generalization of classical network flow optimization for routing in transport and information 

networks.  In network flow optimization for routing, the key notion is a flow, which 

characterizes the resources needed for unicast; in network flow optimization for coding, the key 

notion is a (link-wise) maximum of flows, which characterizes the resources needed for network 

coding-based multicast.  Several recent studies propose centralized and distributed, primal and 

dual algorithms for the optimization; see, e.g., (29)(30)(31)(32)(33), and the references therein. 

Multi-session Network Coding 

Single-session network coding is well understood in both theory and practice.  In contrast, the 

general problem of multi-session network coding, where multiple communicating sessions with 

independent data share a network of lossless links with rate constraints, has proven to be 

extremely challenging.   denote theThere are many examples that indicate the intricacy of the 

problem.  For instance, a rather surprising result is that linear coding is generally insufficient to 

achieve all points in the capacity region (34).  Why is multi-session network coding so hard?  In 

single-session network coding, every receiver wants the same sources of information; hence it is 

not too surprising that randomly mixing the packets in the network is the best thing to do.  In 

multi-session network coding, however, if packets are randomly mixed in the network, a 

receiver may receive many coded packets but still cannot decode them since they are “polluted” 
by unwanted sources.  In general, mixing more packets together increases the diversity of the 

mixture, as it may potentially be useful to more receivers; however, that makes it difficult for 

receivers to clean out the pollution from a mixture packet.  Intuitively, it is the need for careful 

mixing and demixing that makes this problem hard. For some progress on constructive multi-

session network coding, see, e.g., (35) and the references therein. 

Despite the difficulty in arriving at concrete constructive schemes, the capacity region for multi-

session network coding in acyclic graphs has been characterized using information theoretic 

techniques. This characterization is based on a notion called entropy space, introduced by 

Raymond Yeung. Let 𝑁 be a set of 𝑛 random variables. Let 𝐻𝑛  denote the (2𝑛 − 1)-dimensional 

Euclidean space where the coordinates {𝑕𝐴: ∅ ⊂ 𝐴 ⊆ 𝑁} correspond to the nonempty subsets 

of 𝑁. A vector 𝒉 ∈ 𝐻𝑛  is called entropic if for a certain joint distribution of random variables in 𝑁, 𝑕𝐴  is equal to the joint entropy of the random variables in 𝐴, for every 𝐴. Thus an entropic 



vector 𝒉 describes a possible vector value taken by the (2𝑛 − 1) joint entropies of the 𝑛 random 

variables. The set of all such entropic vectors, denoted by Γ𝑛∗, is called the entropy space. Based 

on the entropy space, an inner bound and an outer bound of the capacity region for multi-

session network coding in acyclic graphs are presented in (36). We now explain the outer bound 

briefly. Let 𝑁 specifically refer to the set of 𝑛 random variables comprising one random variable 

for each source and one random variable for each edge. The outer bound is essentially 

characterized via a set of linear constraints on 𝒉 ∈ Γn
∗, where Γn

∗ refers to the closure of Γn
∗. 

Intuitively, the set of linear constraints express: (i) the joint entropy of the sources equals the 

sum of the individual entropies (i.e., the sources are independent), (ii) the conditional entropy of 

each edge variable given its predecessor edges is zero (i.e., each edge is generated by its 

predecessors), (iii) at each receiver, the conditional entropy of its needed sources given its 

incoming edges is zero (i.e., the receiver indeed can recover the sources it needs), (iv) the 

entropy of each edge variable cannot exceed the edge capacity, and (v) the source rate cannot 

exceed the entropy of the source variable. More recently, the gap between the bounds is closed 

in (37) with a careful bounding of the constrained regions in the entropy space. To prove the 

achievability of the region, random coding techniques similar in flavor to what Shannon used in 

his papers are used to show the existence of solutions. For details, please refer to (36)(37). 

Joint Network Coding and Distributed Source Coding 

Distributed source coding refers to the problem of separate compression of correlated sources.  

For example, suppose two correlated newspapers, 𝑋1 and 𝑋2, are available at two locations.  We 

want to maximally compress them into 𝑓 𝑋1  and 𝑔(𝑋2), while ensuring that a receiver can 

recover 𝑋1 and 𝑋2 from 𝑓 𝑋1  and 𝑔(𝑋2).  This problem was answered in 1972 by Slepian and 

Wolf (38), who characterized the fundamental limit for distributed lossless compression.  

Recently, progress has been made regarding practical design of codes approaching the limit; 

please see (39) for an excellent tutorial. 

Now consider a generalization of this problem, where multiple correlated sources are to be 

multicast to multiple receivers over a network of lossless links with bit-rate constraints. This 

problem is also a generalization of the single-session network coding problem. The fundamental 

limit for this problem is recently found by Song and Yeung (40) and Ho et al. (41).  It turns out 

that random linear mixing is also optimal for this generalized problem.  

However, random linear mixing does not immediately lead to a low-complexity solution here.  

Whereas in single-session network coding, a decoder solves the unknowns from an equal 

number of independent linear equations, in the generalized problem a decoder faces more 

unknowns than equations.  The optimal decoder maximizes the a posteriori probability of the 

unknowns given the observed linear equations and the correlation statistics.  If unstructured 

random linear mixing is used, the decoding complexity can be too high to make the scheme 

practical.  A natural thought is then whether we can induce some structure to reduce the 

complexity.  For some progress along this line, please see (42) and the references therein. 



Joint Network Coding and Channel Coding 

In Figure 6, we saw that network coding can make packet exchange more efficient in wireless 

networks.  The gist is that if a node 𝐴 has 𝑎, a node 𝐵 has 𝑏, and intermediate node 𝐶 has both 𝑎 and 𝑏, then 𝐶 can broadcast 𝑎 XOR 𝑏 to 𝐴 and 𝐵, simultaneously transferring 𝑏 to 𝐴 and 𝑎 to 𝐵.  Now suppose that the rates of the wireless links from 𝐶 to 𝐴 and 𝐵 are 3 bps and 2 bps, 

respectively.  Using the earlier technique, we can send 𝑎 XOR 𝑏 at rate 2 bps.  Interestingly, with 

joint network coding and channel coding, a better result is possible:  a 2-bit packet 𝑎 =  𝑎1 , 𝑎2  
and a 3-bit packet 𝑏 =  𝑏1 , 𝑏2 , 𝑏3  can be delivered to their intended receivers in one second.  

Here is how to do this.  As illustrated in Figure 15, we use 8-PSK to send three bits 𝑚1, 𝑚2, 𝑚3.  

The first two bits are the XOR of 𝑎 with the first two bits of 𝑏; the third bit is 𝑏3.  Node 𝐴 has a 

better channel, with rate 3 bps; we assume it is able to recover all three transmitted bits and 

hence recover 𝑏.  Node 𝐵 already knows the last bit.  Hence to node 𝐵 the transmitted symbol 

seems to be from a 4-point constellation, and it can resolve the ambiguity.  We conclude from 

this “appetizer” example that jointly performing network coding and channel coding can achieve 

higher rates.  For more information, please see (43)(44). 

 

Figure 15.  Joint network coding and channel coding. 

Conclusion 

Network coding is a new tool of both theoretical and practical importance.  To read further, 

consult the references herein, or the tutorials by Yeung et al. (45) and Fragouli et al. (46). 
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