
Network Coding Meets TCP

Michael Mitzenmacher
Joint work with

Jay-Kumar Sudararajan, Devavrat Shah,
Muriel Medard, Joao Barros

Network Coding

• Packets can be encoded arbitrarily, not just
by end nodes, but also by nodes within the
network.
– End-to-end codes a special case.

• Standard example : butterfly network.

Butterfly Example

• Want both bits to get
to both y and z as
quick as possible.
– Delay, throughput.

• Bottleneck at link
from w to x.

s

t u

y z

w

b1

b1

b1

b2

b2

b2

x

Butterfly Example

• Want both bits to get
to both y and z as
quick as possible.
– Delay, throughput.

• Bottleneck at link
from w to x.

• Solution : encode by
sending linear
combination of bits.

s

t u

y z

w

b1

b1

b1

b1 + b2

b2

b2

b2

x
b1 + b2b1 + b2

Practice?

• Will network coding achieve wide use in
practice, or just a mathematical toy?
– Jury is still out… but lots of believers.

• Lots of theory, projects.
• Avalanche, COPE, MORE,…

• Potential problem: incremental deployment
/ backward compatibility.
– Standard problem for anything new.

TCP and Coding

• For incremental deployment, best to be
compatible or friendly with TCP.

• Not easy; TCP not designed for coding.
• TCP combines reliability and congestion

control; with coding, you don’t want
reliability.
– But still the need for congestion control.

Comparison : Fountain Codes

• Fountain codes use coding just at endpoints.
– Random XORs of packets.

• Congestion control issues a big problem for
usage. TCP-friendliness/TCP-compatibility.

• Special schemes designed for:
– Multicast congestion control.
– Long-distance, high-bandwidth connections.

The Problem

P3 P2 P1

Sender Buffer

Network

Receiver Buffer
P1 + P2
P2 + P3

P1 + P2 + P3

Can’t acknowledge a packet until you can decode.
Usually, decoding requires a number of packets.
Code / acknowledge over small blocks to avoid
delay, manage complexity.

Compare to ARQ

• Retransmit lost packets
• Low delay, queue size
• Streaming, not blocks
• Not efficient on broadcast

links
• Link-by-link ARQ does

not achieve network
multicast capacity.

• Transmit linear
combinations of packets

• Achieves min-cut
multicast capacity

• Extends to broadcast links
• Congestion control

requires feedback
• Decoding delay: block-

based

Context: Reliable communication over a (wireless) network of packet erasure channels

ARQ Network Coding

Goals

• Devise a system that behaves as close to TCP as
possible, while masking non-congestion wireless
losses from congestion control where possible.
– Standard TCP/wireless problem.

• Stream-based, not block-based.
• Low delay.
• Focus on wireless setting.

– Where network coding can offer biggest benefits.
– Not necessarily a universal solution.

Main Idea : Coding ACKs

• What does it mean to “see” a packet?
• Standard notion: we have a copy of the packet.

– Doesn’t work well in coding setting.
– Implies must decode to see a packet.

• New definition: we have a packet that will allow
us to decode once enough useful packets arrive.
– Packet is useful if linearly independent.
– When enough useful packets arrive can decode.

Coding ACKs

• For a message of size n, need n useful
packets.

• Each coded packet corresponds to a degree
of freedom.

• Instead of acknowledging individual
packets, acknowledge newly arrived
degrees of freedom.

Coding ACKs

4 2 5 0 0 0 0
3 1 2 5 0 0 0
1 2 3 4 1 0 0
3 3 1 2 1 0 0
1 2 5 4 5 0 0

4 2 5 0 0 0 0
3 1 2 5 0 0 0
1 2 3 4 1 0 0
3 3 1 2 1 0 0
1 2 5 4 5 0 0

4p1 + 2p2 + 5p3

Original message : p1, p2, p3…

Coded
Packets

c1
c2
c3
c4
c5

Coding ACKs

4 2 5 0 0 0 0
3 1 2 5 0 0 0
1 2 3 4 1 0 0
3 3 1 2 1 0 0
1 2 5 4 5 0 0

4 2 5 0 0 0 0
3 1 2 5 0 0 0
1 2 3 4 1 0 0
3 3 1 2 1 0 0
1 2 5 4 5 0 0

4p1 + 2p2 + 5p3

Original message : p1, p2, p3…

Coded
Packets

c1
c2
c3
c4
c5

When c1 comes in, you’ve “seen” packet 1; eventually
you’ll be able to decode it. And so on…

Coding ACKs

1 4 5 3 0 0 0
0 1 3 2 6 0 0
0 0 1 6 2 0 0
0 0 0 1 5 0 0
0 0 0 0 1 0 0

4 2 5 0 0 0 0
3 1 2 5 0 0 0
1 2 3 4 1 0 0
3 3 1 2 1 0 0
1 2 5 4 5 0 0

4p1 + 2p2 + 5p3

Original message : p1, p2, p3…

Coded
Packets

c1
c2
c3
c4
c5

Use Gaussian elimination as packets arrive to check for
a new seen packet.

Formal Definition

• A node has seen a packet pk if it can
compute a linear combination pk+q where q
is a linear combination of packets with
index larger than k.

• When all packets have been seen, decoding
is possible.

Layered Architecture

Data ACK

Application

TCP

MAC / PHY

Application

TCP

MAC / PHY

SOURCE SIDE RECEIVER SIDE

IP IP

Physical medium

Eg. HTTP, FTP

Transport layer: Reliability,
flow and congestion control

Network layer (Routing)

Medium access,
channel coding

TCP using Network Coding

Data ACK

Application

TCP

IP

Application

TCP

IP

SOURCE SIDE RECEIVER SIDE

Network coding layer Network coding layer

Lower layers

The Sender Module

• Buffers packets in the current window from
the TCP source, sends linear combinations.

• Need for redundancy factor R.
– Sending rate should account for loss rate.
– Send a constant factor more packets.
– Open issue : determine R dynamically?

Redundancy

• Too low R
– TCP times out and backs off drastically.

• Too high R
– Losses recovered – TCP window advances

smoothly.
– Throughput reduced due to low code rate.
– Congestion increases.

• Right R is 1/(1-p), where p is the loss rate.

Which TCP to Use?

• Use redundancy to match sending rate to desired
data rate.
– Masking wireless losses not due to congestion.
– TCP Reno reacts to losses; does not seem suitable here.

• Continuing work – make this approach TCP Reno compatible.

• Instead use TCP Vegas.
– Sets window based on Round Trip Times.
– We use RTTs not of packets, but of degrees of freedom.

Measurement of RTTs

TX_SERIAL_NUM=3

4321 pppp +++

4321 pppp +++ 22

4321 pppp 43 +++

4321 pppp 624 +++
Lost

Lost
seen 1p

seen 2p
ACK=2

ACK=3

RTT1

RTT2

TX_SERIAL_NUM=1

TX_SERIAL_NUM=2TX_SERIAL_NUM=4

t=0

The Receiver Module
• Acknowledgment: ACK a packet upon seeing it (even

before it is decoded).
• With high probability (if field size is large), every

random linear combination will cause next unseen
packet to be seen.

• Buffer incoming linear combinations until they can be
decoded.
– Possibly can decode early.
– Interesting design tradeoff for future work.

• Upon decoding, deliver the packets to the TCP sink.

Decoding Early

4 2 5 0 0 0 0
3 1 2 5 0 0 0
1 2 3 4 1 0 0
3 3 1 2 1 0 0
1 2 5 4 5 0 0

Some Simulations

1 2 53 4

1 Mbps ,
100 ms

SRC
1

SRC
2

SINK
1

SINK
2

Fairness

0% Loss Rate, Redundancy 1

Resilience to Losses

Caveats

• Does not use link layer retransmission.
– Would help TCP under high loss rates!

• Network coding headers.
– Need to give coefficients for linear combination!
– Shared pseudorandom generators help.

• Assumes large field size.
– Small field size might lead to non-useful packets.
– In practice, field size of 256 (8 bits) very effective.

• Decoding time.

Redundancy factor

Overall loss rate is roughly 20%

Redundancy Behavior

• Overshooting optimal redundancy : graceful
slowdown of throughput.

• Undershooting : less graceful.
– TCP timeouts.

• But even R = 1 is better (by approx. factor
of 2) over unmodified TCP.

Re-encoding Experiment

• To see if true network coding (not just end-
to-end) is helpful.

• 4 node network, losses along all link.
– But biggest losses on last link.

• Re-encode along last link.
– Node has a buffer, sends linear combinations of

buffered packets.
– R for sender is 1.8, for node 3 is 1.5.

Re-encoding

TCP : 0.0042 Mbps ; Coding E-to-E : 0.1420 Mbps ;
Re-encoding : 0.2448 Mbps

Conclusions
• New coding layer proposed between TCP and IP.
• Novel ACK mechanism provides clean interface

between network coding and existing congestion
control protocols.

• Ideas also work with intermediate node coding.
• Possible extensions to multipath TCP and to

multicast sessions.
• Not a final solution, but a step towards realizing

the potential of network coding in practice.
– Proof of concept ; theory.
– Next stage: deployments underway.

Other Recent Work of Interest

• Hash-Based Techniques for
High-Speed Packet Processing
– A. Kirsch, M. Mitzenmacher, and G. Varghese
– Survey article

• Why Simple Hash Functions Work:
Exploiting the Entropy in a Data Stream
– M. Mitzenmacher and S. Vadhan
– Explains why simple hash functions work so well for

hash tables, Bloom filters, etc.
– Randomness in data “combines” with randomness in

choice of hash function.

More About Me

• Website: www .eecs.harvard.edu/~michaelm
– Links to papers
– Link to book
– Link to blog : mybiasedcoin

• mybiasedcoin.blogspot.com

