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Network Coding

• Packets can be encoded arbitrarily, not just 
by end nodes, but also by nodes within the 
network.
– End-to-end codes a special case.

• Standard example : butterfly network.



Butterfly Example

• Want both bits to get 
to both y and z as 
quick as possible.
– Delay, throughput.

• Bottleneck at link 
from w to x.
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Butterfly Example

• Want both bits to get 
to both y and z as 
quick as possible.
– Delay, throughput.

• Bottleneck at link 
from w to x.

• Solution : encode by 
sending linear 
combination of bits.

s

t u

y z

w

b1

b1

b1

b1 + b2

b2

b2

b2

x
b1 + b2b1 + b2



Practice?

• Will network coding achieve wide use in 
practice, or just a mathematical toy?
– Jury is still out… but lots of believers.

• Lots of theory, projects.
• Avalanche, COPE, MORE,… 

• Potential problem:  incremental deployment 
/ backward compatibility.
– Standard problem for anything new.



TCP and Coding

• For incremental deployment, best to be 
compatible or friendly with TCP.

• Not easy;  TCP not designed for coding.
• TCP combines reliability and congestion 

control;  with coding, you don’t want 
reliability.
– But still the need for congestion control.



Comparison : Fountain Codes

• Fountain codes use coding just at endpoints.
– Random XORs of packets.

• Congestion control issues a big problem for 
usage.  TCP-friendliness/TCP-compatibility.

• Special schemes designed for:
– Multicast congestion control.
– Long-distance, high-bandwidth connections.



The Problem

P3 P2 P1

Sender Buffer

Network

Receiver Buffer
P1 + P2
P2 + P3

P1 + P2 + P3

Can’t acknowledge a packet until you can decode.
Usually, decoding requires a number of packets.
Code / acknowledge over small blocks to avoid 
delay, manage complexity.



Compare to ARQ

• Retransmit lost packets
• Low delay, queue size
• Streaming, not blocks
• Not efficient on broadcast 

links
• Link-by-link ARQ does 

not achieve network 
multicast capacity.

• Transmit linear 
combinations of packets

• Achieves min-cut 
multicast capacity

• Extends to broadcast links
• Congestion control 

requires feedback
• Decoding delay: block-

based

Context:   Reliable communication over a (wireless) network of packet erasure channels

ARQ Network Coding



Goals

• Devise a system that behaves as close to TCP as 
possible, while masking non-congestion wireless 
losses from congestion control where possible.
– Standard TCP/wireless problem.

• Stream-based, not block-based.
• Low delay.
• Focus on wireless setting.

– Where network coding can offer biggest benefits.
– Not necessarily a universal solution.



Main Idea : Coding ACKs

• What does it mean to “see” a packet?
• Standard notion:  we have a copy of the packet.

– Doesn’t work well in coding setting.
– Implies must decode to see a packet.

• New definition:  we have a packet that will allow 
us to decode once enough useful packets arrive.
– Packet is useful if linearly independent.
– When enough useful packets arrive can decode.



Coding ACKs

• For a message of size n, need n useful 
packets.

• Each coded packet corresponds to a degree 
of freedom.

• Instead of acknowledging individual 
packets, acknowledge newly arrived 
degrees of freedom.



Coding ACKs

4  2  5  0  0  0  0
3  1  2  5  0  0  0
1  2  3  4  1  0  0
3  3  1  2  1  0  0
1  2  5  4  5  0  0

4  2  5  0  0  0  0
3  1  2  5  0  0  0
1  2  3  4  1  0  0
3  3  1  2  1  0  0
1  2  5  4  5  0  0

4p1 + 2p2 + 5p3

Original message : p1, p2, p3… 
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Coding ACKs

4  2  5  0  0  0  0
3  1  2  5  0  0  0
1  2  3  4  1  0  0
3  3  1  2  1  0  0
1  2  5  4  5  0  0

4  2  5  0  0  0  0
3  1  2  5  0  0  0
1  2  3  4  1  0  0
3  3  1  2  1  0  0
1  2  5  4  5  0  0

4p1 + 2p2 + 5p3

Original message : p1, p2, p3… 

Coded
Packets

c1
c2
c3
c4
c5

When c1 comes in, you’ve “seen” packet 1; eventually 
you’ll be able to decode it.  And so on…



Coding ACKs

1  4  5  3  0  0  0
0  1  3  2  6  0  0
0  0  1  6  2  0  0
0  0  0  1  5  0  0
0  0  0  0  1  0  0

4  2  5  0  0  0  0
3  1  2  5  0  0  0
1  2  3  4  1  0  0
3  3  1  2  1  0  0
1  2  5  4  5  0  0

4p1 + 2p2 + 5p3

Original message : p1, p2, p3… 

Coded
Packets

c1
c2
c3
c4
c5

Use Gaussian elimination as packets arrive to check for
a new seen packet.



Formal Definition

• A node has seen a packet pk if it can 
compute a linear combination pk+q where q 
is a linear combination of packets with 
index larger than k.

• When all packets have been seen, decoding 
is possible.



Layered Architecture
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Physical medium

Eg. HTTP, FTP

Transport layer: Reliability, 
flow and congestion control

Network layer (Routing)

Medium access, 
channel coding



TCP using Network Coding
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The Sender Module

• Buffers packets in the current window from 
the TCP source, sends linear combinations.

• Need for redundancy factor R.
– Sending rate should account for loss rate.
– Send a constant factor more packets.
– Open issue : determine R dynamically?



Redundancy 

• Too low R
– TCP times out and backs off drastically.

• Too high R
– Losses recovered – TCP window advances 

smoothly.
– Throughput reduced due to low code rate.
– Congestion increases.

• Right R is 1/(1-p), where p is the loss rate.



Which TCP to Use?

• Use redundancy to match sending rate to desired 
data rate.
– Masking wireless losses not due to congestion.
– TCP Reno reacts to losses;  does not seem suitable here.

• Continuing work – make this approach TCP Reno compatible.

• Instead use TCP Vegas.
– Sets window based on Round Trip Times.
– We use RTTs not of packets, but of degrees of freedom.



Measurement of RTTs
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The Receiver Module
• Acknowledgment: ACK a packet upon seeing it (even 

before it is decoded).
• With high probability (if field size is large), every 

random linear combination will cause next unseen 
packet to be seen.

• Buffer incoming linear combinations until they can be 
decoded.
– Possibly can decode early.
– Interesting design tradeoff for future work.

• Upon decoding, deliver the packets to the TCP sink.



Decoding Early

4  2  5  0  0  0  0
3  1  2  5  0  0  0
1  2  3  4  1  0  0
3  3  1  2  1  0  0
1  2  5  4  5  0  0



Some Simulations
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Fairness

0% Loss Rate, Redundancy 1



Resilience to Losses



Caveats

• Does not use link layer retransmission.
– Would help TCP under high loss rates!

• Network coding headers.
– Need to give coefficients for linear combination!
– Shared pseudorandom generators help.

• Assumes large field size.
– Small field size might lead to non-useful packets.
– In practice, field size of 256 (8 bits) very effective.

• Decoding time.



Redundancy factor

Overall loss rate is roughly 20%



Redundancy Behavior

• Overshooting optimal redundancy : graceful 
slowdown of throughput.

• Undershooting : less graceful.
– TCP timeouts.

• But even R = 1 is better (by approx. factor 
of 2) over unmodified TCP.



Re-encoding Experiment

• To see if true network coding (not just end-
to-end) is helpful.

• 4 node network, losses along all link.
– But biggest losses on last link.

• Re-encode along last link.
– Node has a buffer, sends linear combinations of 

buffered packets.  
– R for sender is 1.8, for node 3 is 1.5.



Re-encoding

TCP : 0.0042 Mbps ;  Coding E-to-E : 0.1420 Mbps ;
Re-encoding : 0.2448 Mbps



Conclusions
• New coding layer proposed between TCP and IP.
• Novel ACK mechanism provides clean interface 

between network coding and existing congestion 
control protocols.

• Ideas also work with intermediate node coding.
• Possible extensions to multipath TCP and to 

multicast sessions.
• Not a final solution, but a step towards realizing 

the potential of network coding in practice.
– Proof of concept ; theory.
– Next stage: deployments underway.



Other Recent Work of Interest

• Hash-Based Techniques for                            
High-Speed Packet Processing 
– A. Kirsch, M. Mitzenmacher, and G. Varghese
– Survey article

• Why Simple Hash Functions Work:             
Exploiting the Entropy in a Data Stream
– M. Mitzenmacher and S. Vadhan
– Explains why simple hash functions work so well for 

hash tables, Bloom filters, etc.
– Randomness in data “combines” with randomness in 

choice of hash function.



More About Me

• Website:  www .eecs.harvard.edu/~michaelm
– Links to papers
– Link to book
– Link to blog : mybiasedcoin

• mybiasedcoin.blogspot.com


