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High-dimensional data sets generated by high-throughput tech-
nologies, such as DNA microarray, are often the outputs of complex
networked systems driven by hidden regulatory signals. Tradi-
tional statistical methods for computing low-dimensional or hid-
den representations of these data sets, such as principal compo-
nent analysis and independent component analysis, ignore the
underlying network structures and provide decompositions based
purely on a priori statistical constraints on the computed compo-
nent signals. The resulting decomposition thus provides a phe-
nomenological model for the observed data and does not neces-
sarily contain physically or biologically meaningful signals. Here,
we develop a method, called network component analysis, for
uncovering hidden regulatory signals from outputs of networked
systems, when only a partial knowledge of the underlying network
topology is available. The a priori network structure information is
first tested for compliance with a set of identifiability criteria. For
networks that satisfy the criteria, the signals from the regulatory
nodes and their strengths of influence on each output node can be
faithfully reconstructed. This method is first validated experimen-
tally by using the absorbance spectra of a network of various
hemoglobin species. The method is then applied to microarray data
generated from yeast Saccharamyces cerevisiae and the activities
of various transcription factors during cell cycle are reconstructed
by using recently discovered connectivity information for the
underlying transcriptional regulatory networks.

H igh-throughput techniques in biology, such as DNA mi-
croarray (1), have generated a large amount of data that can

potentially provide systems-level information regarding the un-
derlying dynamics and mechanisms. These high-dimensional
output data are typically the end products of low-dimensional
regulatory signals driven through an interacting network. As
illustrated in Fig. 1, the relationship between the lower dimen-
sional regulatory signals (or states) and output data can be
modeled by a bipartite networked system, where the output
signals (e.g., gene expression levels) are generated by weighted
functions of the intracellular states (e.g., the activity of the
transcription factors). A major challenge in systems biology is to
derive methodologies for simultaneous reconstructions of the
hidden dynamics of the regulatory signals.

In recent years, statistical techniques for determining low-
dimensional representations of high-dimensional data sets, e.g.,
principal component analysis (PCA) (2) or singular value de-
composition (3–5) and independent component analysis (ICA)
(6), have been applied successfully to deduce biologically sig-
nificant information from high-throughput data sets. It is im-
portant to recognize that such dimensionality reduction tech-
niques are not designed to address the hidden dynamics
reconstruction problem addressed in this article. For example,
PCA and ICA both would generate linear networks for inter-
preting the observed data set, where the regulatory signals are
constrained to be mutually orthogonal and statistically indepen-
dent, respectively. However, both the reconstructed signals and
the networks do not match the real system and provide only a
phenomenological modeling of the observed data. In fact, as we
show later, it is impossible to reconstruct the underlying regu-
latory state without additional constraints.

Fortunately, for many biological systems partial prior knowl-
edge about the connectivity patterns of the bipartite networks is
beginning to become available via high-throughput experiments
(7) or data mining of interaction knowledge (8–10), even though
the detailed mechanisms remain undiscovered. Currently, how-
ever, it is unclear whether and how such qualitative connectivity
information can be used to generate quantitative regulatory
signals and further network details. Motivated by this pressing
question in systems biology, we first derive a set of criteria for
such prior connectivity information to be sufficient to solve the
reverse engineering problem. We then provide a framework for
the reconstruction process once such criteria are satisfied. This
approach, termed NCA, is experimentally validated by using

Abbreviations: PCA, principal component analysis; ICA, independent component analysis;
NCA, network component analysis; TFA, transcription factor activity; CS, control strength.
†To whom correspondence may be addressed. E-mail: liaoj@ucla.edu or vwani@
ee.ucla.edu.
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Fig. 1. A regulatory system in which the output data are driven by regulatory
signals through a bipartite network. Network component analysis (NCA) takes
advantage of partial network connectivity knowledge and is able to recon-
struct regulatory signals and the weighted connectivity strength. For example,
if a regulatory node or factor is known from experimental evidence to have
negligible or no effect on an output signal, then the corresponding edge may
be removed or, equivalently, its weight may be set to zero. As discussed in the
text, such qualitative knowledge for a number of large biological systems is
becoming available through high-throughput experiments. In contrast, tra-
ditional methods such as PCA and ICA depend on statistical assumptions and
cannot reconstruct regulatory signals or connectivity strength.
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absorbance spectra of reconstructed biological solutions where
the mixing (connectivity) pattern is known. Finally, we demon-
strate the utility of NCA to genomewide gene expression data in
yeast Saccharomyces cerevisiae during cell cycle. As the bipartite
network shown in Fig. 1 can represent many different types of
data that are determined by multiple competing factors, the
method developed here, NCA, can be applied to a large number
of problems, where qualitative network structural information is
available.

Mathematical Framework
The multidimensional data are organized in a format where M
samples (or time points) of N output variables (such as the
expression ratio of transcripts) is collected in the rows of a matrix
[E] (size: N rows ! M columns). We seek to reconstruct a model
of the type:

"E# ! "A#"P#. [1]

Here the matrix [P] (size: L ! M) consists of samples of L
regulatory signals, where L is in general much smaller than N,
thus resulting in the reduction in dimensionality. The matrix [A]
(size: N ! L) encodes the connectivity strength between the
regulatory layer and the output signals (Fig. 1). Eq. 1 represents
the linear approximation of any detailed mechanistic model and
is commonly used as the first approximation when the latter is
unavailable.

The decomposition of a matrix [E] into two matrices, [A] and
[P], according to Eq. 1 is an inverse problem whose solution is
in general not uniquely defined unless further assumptions on
the matrices [A] or [P] are made. This can be seen by introducing
a nonsingular matrix [X] (L ! L) such that [A! ] $ [A][X] and [P! ]
$ [X%1][P], and

"E# ! &"A#"X#'&"X %1#"P#' ! "A! #"P! #. [2]

Thus, without further constraints, [E] cannot be uniquely de-
composed to [A] and [P] according to Eq. 1. Conventional
approaches, such as PCA and ICA, typically seek a matrix [A]
such that the resulting reconstructed signal matrix [P] satisfies
orthogonality or independence criteria, respectively. When deal-
ing with data generated from structured networks, such as
biological systems, these decomposition techniques present two
drawbacks. First, the implicit statistical assumptions on the
regulatory signals lack biological foundation. Second, the recon-
structed connectivity structure is unlikely to be consistent with
the underlying network structure. Therefore, we seek a decom-
position method that makes no assumption on the statistical
properties of the regulatory signals and that, at the same time,
allows proper handling of the prior knowledge on the structure
characterizing a given system.

Criteria for NCA
According to Eq. 2, multiple [A]s and [P]s can reconstruct data
[E] equally well. However, when certain connectivity constraints
are imposed on [A], the [X] matrix in Eq. 2 can only be diagonal
(for proof, see Appendix 1, which is published as supporting
information on the PNAS web site). Furthermore, when [A] has
full column rank and [P] has full row rank, Eq. 2 represents all
of the possible alternative solutions of the decomposition of [E]
(see Appendix 1 for proof). Under these conditions, Eq. 1 results
in a unique decomposition of the data, up to a scaling factor.
Therefore, certain network structures enable the decomposition
of data. This type of decomposition is defined as NCA. In
summary, the criteria for NCA to be feasible are:

(i) The connectivity matrix [A] must have full-column rank.
(ii) When a node in the regulatory layer is removed along with

all of the output nodes connected to it, the resulting network

must be characterized by a connectivity matrix that still has
full-column rank. This condition implies that each column of [A]
must have at least L-1 zeros.

(iii) [P] must have full row rank. In other words, each
regulatory signal cannot be expressed as a linear combination of
the other regulatory signals.

If these criteria are satisfied, the data matrix [E] can be
uniquely decomposed to a connectivity matrix [A] and signal
matrix [P] when a scaling rule applies. The matrix [A] contains
the estimated connectivity strength on each edge, whereas the
matrix [P] contains the regulatory signals of each regulatory
node.

To test the feasibility of NCA, one first constructs an initial [A]
matrix based on knowledge of connectivity. The [A] entry at ith
row and jth column (aij) represents the control strength of each
regulatory node j on output node i. If this pair is not connected,
the value for aij is zero. Otherwise, it is arbitrarily set to a nonzero
number as an initial value. Thus, the [A] matrix has a dimension
of N ! L, where N is the number of output nodes and L is the
number of regulatory nodes (e.g., transcription factors) consid-
ered. Given the initial connectivity matrix [A] (N ! L), we first
test whether it has full column rank (criterion i). If this criterion
is satisfied, we then form a set of reduced matrices [Arj], by
removing the jth column and all of the rows of A corresponding
to the nonzero entries of its jth column. For example, if

Criterion ii is satisfied, if and only if, for any possible choice of
a single regulatory node, the corresponding reduced matrix has
rank equal to L-1.

Criterion iii cannot be tested a priori, but it implies the
necessary condition that L (the number of regulatory nodes)
must be less than M (the number of data points). If L is indeed
less than M, the matrix [P] is likely to have full row rank for real
biological data. This rank condition should be checked after [P]
is obtained from NCA. If L ( M, a subnetwork should be
generated to reduce L. This can be done by removing selected
regulatory nodes together with all of the output nodes they
control. If the subsystem satisfy L ) M, then proceed to test the
other criteria. If the subsystem satisfies all three criteria, then it
is NCA compliant.

A simple example is shown in Fig. 2, which presents a
completely identifiable network (Fig. 2a) and an unidentifiable
network (Fig. 2b), although the two matrices have an identical
number of constraints (zero entries). The network in Fig. 2b does
not satisfy the identifiability criterion because of the connectivity
pattern of R3.
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Method for NCA
Once the identifiability of a given system has been established,
the regulatory signals, [P], and the connectivity strength, [A], can
be reconstructed through the following procedure. An initial
guess for the connectivity matrix A is formed by setting to zero
all of the elements corresponding to missing edges between the
regulatory layer and the output layer. The remaining elements
can be initialized to an arbitrary value. Because the experimental
measurements are noisy, an exact solution to the decomposition
problem does not exist in general. However, when the above
NCA criteria are satisfied, the estimation problem becomes well
posed, and a solution that provides the best fit in the least-
squares sense can be computed. We proceed by minimizing the
following objective function:

min#"E# " "A#"P##2, [5]

s.t. A!Z0,

where Z0 is the topology induced by the network connectivity
pattern. Additional constraints on the nature of the regulation
(positive or negative) can also be included in the optimization
framework, but are not strictly required by the method in
general.

The above objective function is equivalent to a constrained
maximum-likelihood procedure in the presence of Gaussian
noise with independent and identically distributed components.
The actual estimation of [A] and [P] is performed by using a
two-step least-squares algorithm, which exploits the biconvexity
properties of linear decompositions (Appendix 2, which is pub-
lished as supporting information on the PNAS web site). The
variability of our estimates is assessed by using a bootstrap
procedure (Appendix 3, which is published as supporting infor-
mation on the PNAS web site).

Normalization of [A] and [P] can be achieved by a nonsingular
diagonal matrix [X] in Eq. 2. The elements of [X] should be
selected according to the physical or biological nature of the data
set. As an example, the columns of [A] (for each regulatory node
across all of the output node) can be normalized so that the mean
absolute value of the nonzero elements is equal to the number
of controlled output nodes. With this normalization, the rows of
[P] for different regulatory nodes represent the average effect of
the regulator on the output nodes it controls, and the columns
of [A] represent the relative control strength for the same
regulator on different output nodes.

Experimental Validation of NCA
To verify experimentally the NCA method described above, we
used a network of seven hemoglobin solutions as a test case. Each
solution contains a combination of three components: oxyhe-
moglobin, methemoglobin, and cyano-methemoglobin. These
solutions were prepared according to Appendix 4, which is
published as supporting information on the PNAS web site, and
the absorbance spectra were taken between 380 and 700 nm with
1-nm increments. According to Beer–Lambert law, the absor-
bance spectra can be described as follows:

"Abs# ! "C#"##, [6]

where the rows of [Abs] are the absorbance spectra of each
solution at each wavelength, the columns of the connectivity
matrix [C] are the concentrations of each component, and the
rows of [#] are the spectra of pure components. The connectivity
diagram of this solution network is shown in Fig. 3a, where the
components of the four solutions are known, but the concen-
tration of each component and the pure-component spectra are
assumed to be unknown and will be determined from the
solution spectra by using NCA.

The connectivity matrix [C] is initiated by using nonzero
random numbers and 0s for components present or absent,
respectively, in the solution according to Fig. 3a. The initial [C]
matrix was verified to satisfy the NCA criteria. The decompo-
sition was carried out according to the NCA algorithm briefly
described above and detailed in Appendix 2. Results (Fig. 3b)
show that the pure component spectra ([#]) resulted from NCA
agree well with the true spectra obtained from independent
measurements of pure components. Despite the similarity
among the pure component spectra, NCA was able to resolve the
differences. In contrast, singular value decomposition or ICA
cannot reconstruct the pure component spectra faithfully (Fig.
3b). In addition, the concentrations estimated from the [C]
matrix show satisfactory agreement with the true concentrations
(Table 1). Note that the spectra were decomposed by using only
the known components, but not the concentrations of the
solutions. However, the NCA method was able to simultaneously
determine the concentrations of each component and the spec-
tra of pure components.

Application to Gene Expression Regulation
Because the NCA method is experimentally verified with a test
system, we now explore its utility in a more challenging system,
transcriptional regulation in yeast. In general, transcription of
genes is controlled by a smaller number of transcription factors,
whose activation via posttranslational modification or ligand
binding is the determining factor for gene expression. The
activated form of a transcription factor, rather than its expression
level, is what controls promoters and dictates the physiological
state of the cell. We consider the signal transmitted to different
promoters as the transcription factor activity (TFA). Corre-
spondingly, the control strength (CS) quantifies how each pro-
moter receives the signal and it reflects the relative contribution
of the transcription factor to the expression of different genes
(Fig. 1). Determining TFAs provides a basis for pinpointing
perturbations caused by drug effects, genetic mutation, or
complex environmental challenges. However, these regulatory
quantities, even individually, are difficult to measure.

Typically, the first-order regulatory relationships between
transcription factor and gene expression is represented by a
bipartite network similar to that shown in Fig. 1, where the
connections (or edges) represent the binding of a transcription
factor to the gene’s promoter region. A recently introduced
genomewide location analysis (11, 12) allows the detection of
transcription factor binding to promoter regions and provides a
method for reconstructing such genomewide transcription con-

Fig. 2. A completely identifiable network (a) and an unidentifiable network
(b). Although the two initial [A] matrices describing the network matrices
have an identical number of constraints (zero entries), the network in b does
not satisfy the identifiability conditions because of the connectivity pattern of
R3. The edges in red are the differences between the two networks.

15524 ! www.pnas.org"cgi"doi"10.1073"pnas.2136632100 Liao et al.



nectivity diagrams (Fig. 1). The availability of such information
allows further inference of regulatory signal represented by the
TFA and the CS of the transcription factors on the genes.

To analyze the gene expression data, we approximate the
relationship between transcription factor activities and gene
expression levels, by a log-linear model of the type:

Ei&t'
Ei&0'

! $
j$1

L % TFAj&t'
TFAj&0'&CSij

, [7]

where Ei(t) is the gene expression level, TFAj(t), j $ 1, . . . , L is
a set of transcriptional regulator activities, and CSij represents

the control strength of transcription factor j on gene i. Log-linear
models are used in several disciplines as a standard tool to
approximate nonlinear systems and have the following advan-
tages: (i) Because they represent linear approximations (i.e., in
the log-log space), they inherit the usual benefits of linearization,
i.e., they are locally accurate and computationally tractable. (ii)
Unlike standard linear models (i.e., in the original data space),
the log-linear models still allow a restricted nonlinear relation-
ship between inputs and outputs. In the case of DNA microarray
data, because gene expression levels are typically measured with
respect to a reference level, it is particularly convenient to work
with relative quantities as in Eq. 7. As a further justification of
our log-linear model, we show in Appendix 5, which is published
as supporting information on the PNAS web site, that Eq. 7 can
be derived by linearizing a phenomenological model, based on
Hill’s equations, that has been used previously to describe the
relationship between promoter activity and transcription factor
activities (13). In particular, the value of CSij is determined by the
Hill coefficients and the transcription factor affinity to the
promoter region. The following expression in a matrix form can
be derived from Eq. 7 after taking the logarithm:

log"Er# ! "CS# log"TFAr# , [8]

where the elements Erij(t) $ Eij(t)"Eij(0) and TFArkj(t) $
TFAkj (t)"TFAkj(0) are the relative gene expression levels and
transcription factor activities. The rows of [Er] (size: N ! M) and
[TFAr] (size: L ! M) are the time courses of relative gene

Fig. 3. Experimental validation of the NCA method using absorbance spectra of hemoglobin solutions. OxyHb, oxyhemoglobin; MetHb, methemoglobin;
CyanoHb, cyano-methemoglobin. (a) The connectivity (mixing) diagram of the seven Hb solutions from three pure components that serve as the regulatory nodes.
(b) The regulatory signals (pure component spectra) derived from NCA agree well with the true values, whereas those derived from PCA or ICA do not.

Table 1. Concentrations of the hemoglobin solutions estimated
from the NCA analysis agree reasonably well with the true
values (in parentheses)

Mixture OxyHb, $M MetHb, $M CyanoHb, $M

M1 0.13 (0.13) 3.8 (4.3) 0 (0)
M2 5.1 (6.4) 0 (0) 5.8 (5.8)
M3 0 (0) 3.8 (4.3) 1.2 (1.2)
M4 0.13 (0.13) 3.3 (3.8) 1.2 (1.2)
M5 2.6 (3.8) 2.9 (3.3) 0 (0)
M6 2.6 (2.6) 0 (0) 9.3 (9.3)
M7 0 (0) 1.9 (2.4) 5.8 (5.8)

OxyHb, oxyhemoglobin; MetHb, methemoglobin; CyanoHb, cyano-methe-
moglobin.

Liao et al. PNAS ! December 23, 2003 ! vol. 100 ! no. 26 ! 15525

BI
O

PH
YS

IC
S



expression levels and transcription factor activities, respectively,
and [CS] (size: N ! L) is the matrix with elements CSik. Several
linear decompositions of the matrix log [Er] have been used
extensively in the study of gene expression array: as an example,
Alter et al. (14) propose to use singular value decomposition to
find the lower dimensional projections of the expression data
that present the largest degree of variation. By using singular
value decomposition, one implicitly assumes that the TFAs
possess an orthogonal structure. Alternative approaches based
for example on ICA have also been investigated (6). These aim
at finding a decomposition of the data into statistically indepen-

dent basis functions, using an unsupervised learning method.
Although any of these decomposition techniques have strong
statistical foundations, their molecular basis is difficult to
pinpoint.

Application to Saccharomyces cerevisiae Cell Cycle Regulation
In eukaryotes, the transcriptional regulation can be grouped in
terms of DNA-binding transcription factors, which recruit chro-
matin-modifying enzymes and components of transcription ap-
paratus. Here, we used cell cycle regulation in S. cerevisiae as an
example to test the applicability of the above approach. The

Fig. 4. S. cerevisiae cell cycle regulation. (a) The histogram of mean absolute errors (MAE) shows that the majority of the genes were fitted reasonably well.
MAE is defined as MAE ! ¥i ! 1

N log10ERi " log10E!R! i"N. (b) The dynamics of the TFAs for 11 transcription factors involved in cell cycle regulation. Different stages
in the cell cycle are indicated by the color code. Rows I, II, and III represent experiments using different synchronization methods: elutriation, % factor arrest, and
arrest of a cdc15 temperature-sensitive mutant, respectively. Shaded areas span four standard deviations (estimated by using a bootstrap technique as explained
in Appendix 3). (c) The comparison between expression levels and activities of selected transcription factors shows that the expression levels do not exhibit an
oscillatory behavior, whereas TFAs do.

15526 ! www.pnas.org"cgi"doi"10.1073"pnas.2136632100 Liao et al.



connectivity between transcription factors and genes was ob-
tained from the genomewide location analysis (7). Microarray
data sets used for yeast cell cycle were taken from cultures
synchronized by elutriation, %-factor arrest, and arrest of a cdc15
temperature sensitive mutant (15). We focused on the 11
transcription factors that are known to be related to cell-cycle
regulation (7). Initially, 570 genes regulated by these 11 tran-
scription factors were selected from a total of 1,134 genes in the
data set. Because other transcription factors also contribute to
the regulations of these genes, the network contains 44 tran-
scription factors. This network was checked for NCA compliance
by examining each of the reduced matrices for its rank. By
trimming transcription factors and associated genes that violate
this test, the final data set contains 441 genes with 33 transcrip-
tion factors.

Interestingly, the NCA provides a very good fit to most of the
microarray expression data (Fig. 4a). The columns of [CS] were
normalized so that the mean absolute value of the nonzero
elements is equal to the number of controlled genes. Thus, the
rows of [TFA] for different transcription factors represent the
average effect of the regulator on the genes it controls, and
the columns of [CS] represent the relative CS for the same
regulator on different genes. It is recognized that binding assays
may yield false positive or false negative results, and that
transcription factor binding does not guarantee regulation (16).
The general agreement between data and the NCA model
provides evidence for the regulatory role of a transcription factor
with respect to a particular gene. In particular, a very small value
of the CS for a particular gene-transcription factor connection is
usually indicative of poor likelihood for such regulatory role.

The dynamics of TFAs (Fig. 4b) reveal the role of each
transcription factor during cell cycle regulation. In contrast, the
expression ratios obtained from DNA microarray experiments
(Fig. 4c) do not reveal regulatory features by themselves. Fig. 4c
shows that TFAs of most of the recognized cell cycle regulators
exhibited a cyclic behavior. Among the 11 recognized cell cycle
regulators (7), Stb1, Mcm1, and Mbp1 exhibited the greatest
amplitudes in their TFAs, whereas Skn7 and Swi6 showed little
cyclic behavior. Swi6 has been shown to associate with Mbp1 or
Swi4 (17), whereas Skn7 has to bind to Mbp1 to exert cell cycle
regulation (18). Perhaps the oscillatory feature needed for cell
cycle regulation comes from their binding partners. Indeed, Skn7
is also involved in oxidative stress response and heat shock
response, and thus an oscillatory feature in this transcription
factor is not expected.

Conclusion
We developed a data decomposition method, NCA, for recon-
structing regulatory signals and CSs by using partial and quali-
tative network connectivity information. As stated above, this
method contrasts with traditional methods such as PCA and ICA
in that it does not make any assumption regarding the statistical
properties of the regulatory signals. Rather, network structure,
even if incompletely known, is used to generate a network-
consistent representation of the regulatory signals. This method
is validated experimentally by using absorbance spectra and then
applied to transcriptional regulatory networks.

Many other types of large-scale data, such as neuronal signals,
signal transduction data, metabolic f luxes, and protein–protein
interaction information, may potentially be modeled as the
output of underlying functional networks that are driven by
regulatory signals. Thus for determining the underlying regula-
tory states, the network connectivity structures cannot be ig-
nored. In these cases, traditional methods such as PCA and ICA
will yield to NCA as the underlying network topologies are
determined or inferred at an iterative process to aid the deduc-
tion of network topology. Even when the network structural
information is partially known, trial network structures can be
used to generate regulatory signals, which may be useful in an
iterative process to aid the deduction of network technology.

As illustrated in this article, perhaps the most immediate
impact of the NCA analysis will be for DNA microarray data.
Our technique builds on earlier pioneering work in related areas
(13, 19). For example, Ronen et al. (13) propose a method for
estimating the kinetic parameters of simple regulatory network
architectures, by fitting a kinetic model to high-resolution pro-
moter activity data. Such a method is capable of dealing with a
basic architecture, where all operons are regulated by a single
transcription factor, and where the regulatory mechanism is well
characterized. Recently, Gardner et al. (19) presented a com-
bined experimental-computational technique for inferring ge-
netic network structure. This technique determines network
connectivity in systems in which both the input and the output
signals are accessible.

Although the connectivity information between genes and
transcription factors is not currently available for all organisms,
it is expected that such information will be widely accessible in
the near future by using various methods (7, 11, 19, 20).
Meanwhile, the amount of large-scale gene expression data
obtained by using either microarray or equivalent technologies
is increasing rapidly, and the accuracy of these data is expected
to improve. We expect that with both types of data widely
available, quantitative reconstructions of transcriptional regula-
tory networks with NCA analysis will be routinely performed.
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