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Network-Constrained AC Unit Commitment Under
Uncertainty: A Benders’ Decomposition Approach

Amin Nasri, Student Member, IEEE, S. Jalal Kazempour, Member, IEEE, Antonio J. Conejo, Fellow, IEEE, and
Mehrdad Ghandhari, Senior Member, IEEE

Abstract—This paper proposes an efficient solution approach
based on Benders’ decomposition to solve a network-constrained
ac unit commitment problem under uncertainty. The wind power
production is the only source of uncertainty considered in this
paper, which is modeled through a suitable set of scenarios.
The proposed model is formulated as a two-stage stochastic
programming problem, whose first-stage refers to the day-ahead
market, and whose second-stage represents real-time operation.
The proposed Benders’ approach allows decomposing the orig-
inal problem, which is mixed-integer nonlinear and generally
intractable, into a mixed-integer linear master problem and a set
of nonlinear, but continuous subproblems, one per scenario. In ad-
dition, to temporally decompose the proposed ac unit commitment
problem, a heuristic technique is used to relax the inter-tem-
poral ramping constraints of the generating units. Numerical
results from a case study based on the IEEE one-area reliability
test system (RTS) demonstrate the usefulness of the proposed
approach.

Index Terms—Benders’ decomposition, network-constrained
ac unit commitment, stochastic programming, wind power
uncertainty.

NOTATION

The main notation used is defined below. All variables and
constants are expressed in per-unit. Symbols and written in
bold without index are vector forms of the nodal voltage mag-
nitude and the nodal voltage angles, respectively.

1) Indices:

Index for loads.
Index for generating units.
Index for wind farms.
Indices for system nodes.
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Index for wind power scenarios.
Index for time periods.

2) Sets:

Set of loads.
Set of generating units.
Set of wind farms.
Set of nodes adjacent to node .

Sets , , and include subscript if referring to the set of
wind farms, loads and generating units, respectively, located at
node .

3) Continuous Variables:

Start-up cost of unit in period .
Active power scheduled for unit in period .
Active power scheduled for wind farm in period
.

Voltage angle at node in period at the
scheduling stage.
Involuntarily active load shedding of load in
period and scenario .
Reactive power output of unit in period and
scenario .
Reserve deployed by unit in period and
scenario .
Wind power spillage of wind farm in period
and scenario .
Voltage magnitude at node in period and
scenario .
Voltage angle at node in period and scenario .

Note that the first four variables pertain to the first-stage.

4) Binary Variables:

0/1 variable that is equal to 1 if unit is scheduled
to be committed in period .

5) Constants:

Probability of scenario .
Start-up cost of unit .
Marginal cost of the energy offered by unit .
Active power consumed by load in period .
Reactive power consumed by load in period .
Active power capacity of unit .
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Minimum active power output of unit .
Initial active power output of unit .
Reactive power capacity of unit .
Minimum reactive power output of unit .
Maximum up-reserve that can be deployed by
unit .
Maximum down-reserve that can be deployed by
unit .
Maximum Ramp-up rate of unit .
Maximum Ramp-down rate of unit .
Initial reserve deployed by unit .
Capacity of transmission line .
Initial commitment status of unit .
Value of load shed for load .
Wind power production realization of farm in
period and scenario .
Maximum power production of wind farm

in period that can be scheduled at the
scheduling stage. It is assumed to be equal
to the expected power production, i.e.,

.
Reactance of transmission line .
Admittance magnitude of transmission line

.
Admittance angle of transmission line .

6) Functions:

Scheduled active power through transmission line
in period .

Active power through transmission line in
period and scenario .
Reactive power through transmission line
in period and scenario .
Apparent power through transmission line
in period and scenario .

The mathematical definitions of the functions above are given
in Appendix A.

I. INTRODUCTION

A. Motivation

U NIT commitment (UC) is a crucial short-term decision-
making problem in power system operations, whose ob-

jective is to determine the least-cost commitment and dispatch
of generating units to serve the load. The deterministic form
of the UC problem and its solution strategies are extensively
documented in the literature, e.g., [1]–[3]. However, the recent
increase of stochastic production units, especially wind power,
in generation portfolios calls for a stochastic form of the UC
problem, instead of a deterministic one. Moreover, a precise
modeling of the physical laws characterizing this problem is
needed as increasing wind power production generally results
in stressed operating conditions. Hence, the need for an ac mod-
eling arises.

B. Literature Review and Contributions

Large-scale integration of wind power increases significantly
the level of uncertainty [4], hence the need of a stochastic UC
approach. The stochastic UC problem was first studied in mid
1990s [5], [6]. More recent works include [7]–[9]. These ap-
proaches embed a dc representation of transmission system, ren-
dering a mixed-integer linear UC problem (network-constrained
dc-UC problem), which is generally tractable [10]–[13]. It is
worth mentioning that due to the simplifications considered in
the dc-UC problems, i.e., the exclusion of voltage magnitude
and reactive power constraints, an ex-post verification is re-
quired to check that the results obtained are implementable.

A UC problem including an ac network representation (net-
work-constrained ac-UC problem) provides a comparatively
more precise description of power system operations, partic-
ularly as operating conditions become increasingly stressed
due to increasing wind production. However, the ac unit
commitment (ac-UC) problem is mixed-integer nonlinear, and
thus hard to solve. In the technical literature, there are few
works addressing the ac-UC problem. Reference [14] proposes
an approach based on Benders’ decomposition to solve an
ac network-constrained hydrothermal scheduling problem. A
security-constrained ac-UC problem is proposed in [15], whose
objective is to minimize the system’s operating cost while
maintaining appropriate security. The solution strategy pro-
posed in [15] is to decompose the original ac-UC problem into
a master problem without enforcing the network constraints,
and a subproblem to check the feasibility of the master solution
from the network constraint point of view. Note that wind
power uncertainty is not modeled either in [14] or [15]. Refer-
ence [16] formulates a security-constrained stochastic ac-UC
problem under wind power uncertainty, and discusses potential
solution techniques, but numerical results are not reported.

This paper proposes a network-constrained ac-UC problem
in which the wind power uncertainty is characterized by a set
of suitable scenarios. To cope with wind power uncertainty, a
two-stage stochastic programming model is considered, whose
first-stage represents the day-ahead market, and whose second-
stage represents the real-time operating conditions involving
wind power realizations.

Considering the context above, the contributions of this paper
are fourfold:

1) To propose a two-stage network-constrained ac-UC
problem for a system with significant wind power pro-
duction, which is stochastic, mixed-integer, nonlinear and
generally hard to solve. Note that a very limited number
of works in the literature consider the ac representation of
transmission network within the UC problem [17].

2) To decompose the proposed network-constrained ac-UC
problem by scenario and time period, which ease the
computational burden. To the best of our knowledge,
none of the previous works proposes a similar approach.
Some papers are available in the literature considering the
stochastic UC problem and solving it by decomposition
approaches [17]; however all of them consider dc network
constraints, not the more complex ac ones. Moreover, to
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Fig. 1. Two-stage stochastic decision framework of the proposed ac-UC
problem.

the best of our knowledge, no paper in the literature takes
the advantages of wind uncertainty to convexify the ac-UC
problem, making it possible the use of decomposition
techniques.

3) To implement Benders’ decomposition, which requires it-
eratively solving a) a mixed-integer linear master problem,
and b) a set of nonlinear, but continuous subproblems.

4) To endogenously model voltage constraints within the pro-
posed network-constrained ac-UC framework, and to nu-
merically show that those constraints may result in a dif-
ferent commitment of generating units. This is important
since such constraints are not enforced within the dc-UC
problems, which are commonly used in practice.

Note that in the rest of this paper the terms “dc-UC” and
“ac-UC” refer to “network-constrained dc-UC” and “network-
constrained ac-UC” problems, respectively.

II. AC-UC MODEL

A. Stochastic Framework

Fig. 1 depicts the two-stage stochastic framework consid-
ered in this paper. Note that these two stages are simultane-
ously considered. The first-stage includes the scheduling deci-
sions made at the day-ahead market. Such decisions are adapted
to any wind production realization in the second-stage, where
the real-time operating conditions corresponding to individual
wind scenarios are represented. This way, prior to the uncer-
tainty realization in the second-stage, the system is optimally
prepositioned via scheduling decisions in the first-stage. There-
fore, the first-stage decisions are scenario-independent, while
each second-stage decision adapts to the operating conditions
of the corresponding wind power realization. Further details on
the two-stage stochastic programming model used in this paper
can be found in [4].

The proposed ac-UC problem clears the day-ahead market
while considering all plausible real-time operating conditions.
Therefore, the scheduling decisions made at the first-stage (day-

ahead market) are consistent with those conditions. Since op-
erating limits are enforced explicitly at the second-stage for all
plausible operating conditions, the resulting schedule is both op-
timal and consistent with real-time operating conditions.

B. Modeling Assumptions

For the sake of clarity, the modeling assumptions considered
in this work are listed as follows:

1) The first-stage of the proposed UC problem (that represents
the day-ahead market) embodies a dc network representa-
tion, while the second-stage (that represents the real-time
operation) embeds an ac one. This assumption is consistent
with the functioning of most real-world electricity markets.

2) For the sake of simplicity, only wind power uncertainty is
taken into account. However, other uncertainties can be in-
corporated into the model. The uncertainty of wind power
production is modeled through a set of plausible scenarios
based on the available forecasted data.

3) The minimum up-time and minimum down-time con-
straints of thermal units are not considered in this paper.
To consider them, additional binary variables are required
[18].

4) A number of units are available to provide reserve.
5) The wind power production cost is assumed to be nil.
6) All loads are assumed to be inelastic.
7) Wind farms of Type 3 DFIG and Type 4 full converter are

able to provide voltage support in steady-state and dynam-
ically [19]. However, for the sake of simplicity, we assume
unit power factor for all wind farms.

8) The security constraints are not modeled in this work.
However, such constraints can be easily incorporated in
the proposed framework.

C. Formulation

The considered two-stage ac-UC problem is formulated as
(1)–(3). Objective function (1) represents the system’s expected
cost, and is subject to first-stage constraints (2) and second-
stage constraints (3). The optimization variables of the ac-UC
problem (1)–(3) are the elements of the set:Ξ

Note that the mathematical definitions of the functions used
in (2) and (3) are given in Appendix A.

The objective function is

Ξ
(1)

The first two terms of (1) correspond to the system’s cost at
scheduling time (first-stage), while the other two terms refer to
the expected cost in real-time operation (second-stage). The first
term represents the start-up cost of the units, the second one
refers to their production cost, and the third term represents the
reserve deployment cost. Note that the reserve deployment cost
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(third term) refers to the production cost of the additional energy
produced in real-time operation to offset the energy imbalance
occurred due to wind power variability. This term is in fact the
product of the generating unit’s marginal cost and the produc-
tion increment from day-ahead to real-time operation. Finally,
the last term of (1) is the load curtailment cost.

The first-stage constraints are

(2a)
(2b)
(2c)

(2d)

(2e)

(2f)
(2g)
(2h)
(2i)
(2j)
(2k)

Constraints (2a) represent the active power balance at sched-
uling time at each node and for each time period. Constraints
(2b) and (2c) enforce the lower and upper bounds for active
power production of generating units and wind farms, respec-
tively. Constraints (2d) and (2e) ensure that the hourly changes
of scheduled power do not violate the ramp-rate limits. Con-
straints (2f) enforce lower and upper bounds of voltage angles.
Constraints (2g) set as the reference node. The capacity
of each transmission line is enforced through (2h). Constraints
(2i)–(2k) allow calculating the start-up cost of the units.

The second-stage constraints are

(3a)

(3b)
(3c)
(3d)
(3e)
(3f)
(3g)

(3h)

(3i)
(3j)

(3k)
(3l)

(3m)

Constraints (3a) and (3b) represent the active and reactive power
balance in real-time operation at each node and for each time
period and scenario. Active power balance constraints (3a) en-
force that the deviations of wind production are met with reserve
deployment of generating units, and/or wind power spillage of
farms, and/or curtailment of loads. Constraints (3c)–(3g) bound
the value of unserved load, wind power spillage, active power
reserve deployed, total active power production and reactive
power production of generating units, respectively. Constraints
(3h) and (3i) enforce ramp-rate limits. Constraints (3j) enforce
the lower and upper bounds of nodes’ voltage magnitude. Fi-
nally, constraints (3k)–(3m) are similar to (2f)–(2h), but for
real-time operation.

Finally, note that the proposed ac-UC problem (1)–(3) is
mixed-integer, nonlinear and generally intractable. To make it
solvable, Benders’ decomposition is applied as described in the
next section.

III. BENDERS’ SOLUTION

This section proposes a solution strategy based on Benders’
decomposition to solve problem (1)–(3).

A. Complicating Variables and Convexification

If first-stage variables and are fixed to given values
in problem (1)–(3), this problem decomposes into 1) a sce-
nario-independent mixed-integer linear problem (representing
the first-stage), and 2) a set of nonlinear continuous problems,
one per scenario (representing the second-stage). Therefore,

and are complicating variables, and Benders’ decom-
position can be potentially applied [20].

Although the original ac-UC problem (1)–(3) is non-convex
and Benders’ decomposition is not generally applicable, if the
number of wind power scenarios is large enough, the objective
function (1) as a function of the complicating variables convex-
ifies as shown in [21]. In other words, the objective function of
an expected value stochastic programming problem convexifies
as the number of scenarios increases. The reason of this is that
the objective function represents the expectation over a number
of scenarios. Thus, as the number of scenarios increases, the
diversity of objective functions increases, while the weight of
each single-scenario decreases. This results in a smoothing ef-
fect leading to the convexification of the expected value objec-
tive function. This convexification allows a successful imple-
mentation of Benders’ decomposition.

Benders’ convergence is guaranteed if the objective function
of the original problem projected on the subspace of the com-
plicating variables has a convex envelope. The proposed ac-UC
problem (1)–(3) is “sufficiently” convexified by considering a
large enough number of scenarios, and our numerical analysis
confirms the well-functioning of the proposed decomposition
algorithm. Nevertheless, convergence cannot be generally guar-
anteed for the considered problem.

Finally, note that the asymptotic convexification yielded by
increasing the number of scenarios is not a heuristic, provided
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that a large-enough number of scenarios is considered. As the
number of scenarios increases, the objective function of the con-
sidered model asymptotically convexifies. Thus, it seems rea-
sonable to approximate the objective function with a convex
objective.

B. Decomposition by Scenario and Time Period

Fixing the complicating variables and to given
values decomposes the ac-UC problem (1)–(3) by scenario.
However, the ramping constraints (3h) and (3i), which links
time periods, impede the ac-UC problem to decompose by time
period.

In general, an appropriate balance is needed between model
accuracy and computational burden. To this end, a heuristic
technique is used in this paper to decompose the proposed
ac-UC problem by time period. This technique allows reducing
the computational burden, but at the potential cost of intro-
ducing imprecision in the final solution. According to this
heuristic technique, the inter-temporal ramping constraints
(3h) and (3i) are relaxed and enforced just locally. That is, at
time , ramping limits are enforced with respect to time ,
and time periods are processed successively from the first to
the last one. However, note that if needed, a reduced number
of hours (e.g., 3 or 4) may be processed at the same time,
which may be helpful for periods with high increase/decrease
in demand and/or renewable production levels. Our extensive
numerical simulations show that the results obtained with and
without such a heuristic technique are close enough. Note that
the temporal decomposition used is myopic, and it cannot be
applied in power systems with inter-temporal constraints (e.g.,
a power system with a significant number of hydro units or
large-scale energy storage facilities) since these inter-temporal
constraints cannot be locally relaxed. Hydroelectric systems
are not prevalent in most parts of the world [22], but for such
systems the proposed ac-UC problem is still applicable and
computationally efficient by decomposing the problem only
by scenario (and not by time period). Note that the number of
scenarios is generally much larger than the number of hours
within the time horizon considered.

The formulation of Benders’ master problem and subprob-
lems are provided in the next subsections.

C. Subproblem

The subproblem for scenario and time period is formulated
as (4) below. All variables pertain to Benders’ iteration :

Ξ (4a)

(4b)
(4c)
(4d)

Objective function (4a) represents total operation costs in real
time operation. Constraint (4b) comprises the second-stage con-
straints. Constraints (4c) and (4d) fix the values of the compli-
cating variables to given values obtained from the solution of

the master problem. The formulation of the master problem is
provided in the next subsection.

Reactive power constraints (3g) and voltage magnitude con-
straints (3j) are enforced in each subproblem (4), while similar
constraints are not enforced in the master problem. Thus, the
fixed values in (4c) and (4d) obtained from the master problem
may make subproblems (4) infeasible. To prevent infeasibility,
a number of non-negative slack variables are included in the
reactive power and voltage magnitude constraints, along with
penalties in the objective function (4a) [20], [23]. Thus, the al-
ways-feasible form of (4) is (5) as follows:

Ξ
(5a)

(5b)

(5c)
(5d)

(5e)

(5f)
(5g)

(5h)

The optimization variables pertaining to each subproblem (5)
are the elements of the set:Ξ
Note that , , and are non-nega-
tive slack variables, while and are large enough positive
constants.

Note also that is a continuous variable in each subproblem
(5), while it is a binary variable in the original problem (1)–(3)
and the master problem (7). Thus, each subproblem (5) is con-
tinuous and nonlinear.

The complicating variables are fixed through constraints (5g)
and (5h), whose dual variables, and , provide sen-
sitivities to be used in building Benders’ cuts for the master
problem. These sensitivities are obtained as follows:

(6a)

(6b)
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In addition, the following value is calculated to be used in
(6d) and master problem (7):

(6c)

The upper bound for the optimal value of objective function
of the original problem (1)–(3) at iteration is obtained as

(6d)

where the value of is calculated using fixed values for
.

D. Master Problem

The master problem corresponding to the original problem
(1) – (3) is formulated as (7) below. All variables refer to Ben-
ders’ iteration . The objective function (7a) corresponds to (1),
where represents the expected cost in real-time operation:

Ξ (7a)

(7b)

(7c)
(7d)

(7e)

(7f)

Master problem (7) is mixed-integer linear, and its optimiza-
tion variables are the elements of the set:Ξ

Constraints (7b) are Benders’ cuts, which are generated one
per iteration. Note that the feasibility cuts are not required in
the master problem because always-feasible subproblems (5)
are used within the proposed Benders’ algorithm. This “trick”
has proven to be computationally efficient. Constraint (7c) im-
poses a lower bound on to accelerate convergence. Con-
straint (7d) enforce all first-stage constraints, except (2b). In-
stead of (2b), constraints (7e) and (7f) are included in the master
problem to improve convergence. Note that and

are parameters obtained from the solution of the
subproblems in the previous iteration. In fact, in addition to
the Benders’ cuts (7b), constraints (7e) and (7f) further link the
master problem and the subproblems.

The value of objective function (7a), i.e., , is a lower
bound for the optimal value of the objective function of problem
(1)–(3). The solution of the master problem (7) updates the
values of complicating variables.

Fig. 2. Flowchart of the proposed Benders’ algorithm.

E. Benders’ Algorithm

The proposed Benders’ algorithm is as follows:

1) Input: a small tolerance to control convergence, and
initial guesses of the complicating variables, and

.
2) Initialization: Set , ,

and .
3) Initial scenario: Consider scenario .
4) Initial time period: Consider time period .
5) Subproblem solution: Solve (5) for scenario and time

period and calculate .
6) Next time period: Consider the next time period, and

repeat step 5. If all time periods have been considered, go
to the next step.

7) Next scenario: Consider the next scenario, and repeat
steps 4 to 6. If all scenarios have been considered, go to
the next step.

8) Convergency check: If , the optimal
solution with a level of accuracy has been obtained.
Otherwise, calculate and the sensitivities to build the
next Benders’ cut. Then, set .

9) Master problem solution: Solve (7), calculate
and update the values of complicating variables. Then,
continue in step 3.

The flowchart of the proposed Benders’ algorithm is depicted
in Fig. 2.
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TABLE I
NETWORK DATA

TABLE II
DATA FOR GENERATING UNITS

TABLE III
LOAD FACTOR CORRESPONDING TO EACH TIME PERIOD

IV. CASE STUDY

This section presents numerical results for a case study based
on the IEEE one-area 24-node reliability test system (RTS) [24].
In this study, a daily time horizon (time periods to ) is
considered. Under the per-unit system used, 1 p.u. of power is
equivalent to 100 MW.

A. Data

Network data are those reported in [24], except the ones
given in Table I. In addition, data for generating units are given
in Table II. Note that generating units 1, 2, 5 and 6 do not pro-
vide reserve. Note also that to highlight voltage issues, the syn-
chronous condenser connected to node 14 in [24] is removed.

Hourly active and reactive loads are those given in [24] mul-
tiplied by the hourly load factors provided in Table III. Accord-
ingly, time period is the peak hour.

Two wind farms located at nodes 3 and 14 are considered,
whose installed capacities are 2.85 p.u. and 2.96 p.u., respec-
tively. Total wind capacity (i.e., 5.81 p.u.) is 13.71% of the total
installed capacity (42.36 p.u.). The wind power production un-
certainties are characterized through 40 scenarios, as illustrated

Fig. 3. Wind power scenarios of the farm (a) located at node 3, (b) and of that
located at node 14.

TABLE IV
PROBABILITY OF EACH SCENARIO

in Fig. 3, whose upper plot corresponds to the farm located at
node 3, and whose lower plot refers to the farm located at node
14. Note that each dot illustrates the wind production level of
the corresponding farm for a given time period under a partic-
ular scenario. In other words, each scenario of any of the two
plots contains 24 dots indicating the wind production levels of
the corresponding farm over 24 time periods. These 40 scenarios
have been derived from historical data, and accurately represent
the uncertainty without making the considered problem compu-
tationally intractable. The corresponding probabilities are
given in Table IV. Based on the scenarios considered, the ex-
pected total wind power production over the 24 time periods is
1.72 p.u. (i.e., 29.60% of the total wind capacity).

The value of load shedding for all demands ( ) is consid-
ered 10 000 $/p.u. Finally, tolerance required for convergence
check is set to 0.3% of the value of the objective function (ex-
pected cost).

B. Cases Considered

Three different cases are analyzed:
Case A) This case refers to a dc-UC problem, where both
stages embody a dc representation of the network. This
problem is directly solved using a mixed-integer linear
solver.
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TABLE V
MATHEMATICAL CHARACTERISTICS OF EACH UC PROBLEM

Fig. 4. Commitment status of the units for Cases A-C.

Case B) This case refers to an ac-UC problem based on
model (1)–(3) solved by the proposed Benders’ algorithm.
The voltage magnitude of each node is enforced to be
within 0.9 p.u. and 1.1 p.u.
Case C) This case is similar to Case B, but constraints on
the voltage magnitude of nodes are relaxed. In this case,
the voltage magnitude of nodes can lie within 0.5 p.u. and
1.5 p.u. Although this case is not realistic, it is considered
for illustrative purposes.

Table V mathematically characterizes the non-decomposed
dc-UC problem (Case A), the non-decomposed ac-UC problem,
and the decomposed ac-UC problem (Cases B and C). Note that
the non-decomposed dc-UC problem (Case A) includes the dc
version of ac constraints (3), which is given in Appendix B as
constraints (9).

The corresponding numerical results are given and analyzed
in the next subsection.

C. Numerical Results

The expected cost, i.e., the value of objective function (1),
for the three cases considered are given in the second column of
Table VI. Additionally, the commitment status of the units are
depicted in Fig. 4. Note that for all cases, neither load curtail-
ment nor wind power spillage occurs.

TABLE VI
NUMERICAL RESULTS FOR CASES A-C

According to Table VI and Fig. 4, the following observations
are in order:

1) The expected cost in Case A (dc-UC problem) is compar-
atively smaller than that of Cases B and C (ac-UC prob-
lems). The reason of this is that the ac-UC problem en-
forces more realistic constraints than those of the dc-UC
one. Also, the expected cost of Case B is comparatively
higher than that of Case C, where voltage magnitude con-
straints are not tightly enforced.

2) The dc-UC and ac-UC problems yield different commit-
ment status for the generating units. According to Fig. 4,
generating units 22 and 23 are decommitted in Case A
(dc-UC problem), while they are committed in peak hours
of Case B (ac-UC problem). Similarly, generating unit 9 is
committed in time periods 1 and 2 of Case B.

3) In addition to the commitment status of generating units,
the dispatch results of committed units from the dc-UC and
ac-UC formulations are different. For example in Cases A
and B, generating unit 32 is scheduled in peak hour 3.2
p.u. and 2.5 p.u., respectively.

4) The reason for these differences is the constraints that are
not modeled in the dc-UC formulation (Case A), i.e., re-
active power constraints (3g) and voltage magnitude con-
straints (3j). For example, the numerical results of Case
B (ac-UC problem) illustrate that the voltage magnitudes
of node 6 within different scenarios and time periods are
mostly equal to its upper bound, i.e., 1.1 p.u. However,
the results obtained by dc-UC model (Case A) misrepre-
sent such constraint, since it does not consider the voltage
magnitude bounds. In addition to constraints (3g) and (3j),
power losses in the network is the other reason of differ-
ences, as it is modeled in the ac-UC problem (Case B), but
it is not in the dc-UC problem (Case A).

5) According to Fig. 4, although both Cases B and C solve
ac-UC problems, different bounds on voltage magnitude
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Fig. 5. Evolution of Benders’ algorithm in Case B.

constraints (3j) render slightly different results. For ex-
ample, the comparatively small generating unit 15 is fully
committed in Case C, while it is fully decommitted in Case
B. On the other hand, the comparatively large generating
unit 9 is not committed in Case C for time periods and ,
while it is in Case B. These differences allow concluding
that the voltage magnitude constraint may potentially alter
the commitment results.

Finally, Fig. 5 illustrates the evolution of Benders’ algorithm
in Case B (ac-UC problem). This algorithm converges in iter-
ation 25, where the difference between (upper curve) and

(lower curve) is smaller than the considered tolerance.

D. Computational, Optimality, and Implementation Issues

Each subproblem (5) is solved using CONOPT [26] under
GAMS [27], while the master problem (7) is solved using
CPLEX 12.1 [25] under GAMS [27], both on a Sun Fire
X4600M2 with 8 Quad-Core processors clocking at 2.9 GHz
and 256 GB of RAM.

The following computational, optimality and implementation
issues are in order:

• We report that we have verified the well-functioning of the
heuristic technique explained in Section III-B. To this end,
the expected cost for dc-UC problem is obtained using the
proposed Benders’ algorithm. Its difference with respect to
that of Case A (the non-decomposed solution) is verified to
be smaller than 0.2%.

• The computational times required for solving different
instances are provided in the last column of Table VI.
The computational time to solve Case B is comparatively
higher. Note that both Cases B and C are solved iteratively,
however the constraints of Case B are tighter. On the other
hand, Case A is solved in a non-iterative way, thus its
computational time is comparatively smaller.

• To speed-up convergence, suitable values for constants
, , and need to be derived. In this paper, the

values considered are , , and , respectively,
obtained through a trial-and-error analysis. Note that too
large values of constants and may lead to conver-
gence fluctuations, while comparatively small values may
lead to infeasible solutions.

• Note that the original ac-UC problem (1)–(3) is
non-convex, and since the number of scenarios cannot
be increased beyond a limit to ensure computational
tractability, the result obtained may not be a global op-
timal. To overcome such issue, a multi-start decomposition

approach is used [28]. Accordingly, the proposed de-
composition problem is solved several times considering
diverse initial points, and finally the one leading to the
smallest value for the objective function (1) is selected.
Among the diverse initial solutions checked, the flat start,
i.e., and , shows the best performance.

• To assess the effect of the considered tolerance on the so-
lution obtained, the proposed decomposition algorithm has
been re-run considering a smaller value for , i.e., 0.1%.
The total cost of operation has not significantly changed:
$651 304.6 for and $651 909.9 for
(Case B). However, the number of iterations required for
the convergence of Benders’ algorithm and therefore the
CPU time increases significantly with .

• Note that reducing the number of scenarios is computation-
ally appropriate if decomposition techniques are not used,
while a larger number of scenarios is generally better if
decomposition techniques are used. It is important to note
that using a larger number of scenarios generally results in
higher accuracy.

• Note that in the decomposed cases considered (Cases B
and C), the number of subproblems is , being
each of them comparatively small. The CPU time needed
to solve each subproblem is about to 2% of the total time,
which is reasonable. This means that the computational
time may not significantly increase if a comparatively
larger system is considered provided that the number
of scenarios is reduced. However, to tackle case studies
pertaining to real-world systems with thousands of nodes
and lines and a large number of scenarios, the following
additional alternatives are also available:
• To use a supercomputer,
• To implement parallelization techniques [29],
• To apply appropriate techniques to simplify the network

[30] and/or to reduce the number of scenarios [31],
• To decompose the UC problem by area [32].

V. CONCLUSIONS

This paper proposes an efficient solution approach based on
Benders’ decomposition to solve a network-constrained ac-UC
problem under uncertainty. The proposed approach allows
decomposing such problem, which is mixed-integer nonlinear
and generally intractable, into a mixed-integer linear master
problem and a set of nonlinear but continuous subproblems, one
per scenario and time period. Note that there is no off-the-shelf
solver available for a MINLP problem, while MILP and NLP
problems are both solvable using available commercial solvers.
The numerical results obtained validate the well-functioning of
the proposed approach.

We point out that the commitment status and dispatch re-
sults of generating units obtained by the dc and ac formulations
might be different. The reasons for the differences are 1) the
constraints that are not modeled in the dc-UC formulation, i.e.,
reactive power and voltage magnitude constraints, and 2) power
losses which are not considered in the dc-UC formulation. It is
also pointed out that the tightness level of voltage magnitude
constraint in the ac-UC problem may potentially alter the com-
mitment results.
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APPENDIX A

This appendix provides the functions used in this paper. Func-
tion used in (2a) and (2h) is mathematically formulated
as follows:

(8a)

Functions , , and used
in (3a), (3b), and (3m) are mathematically formulated as fol-
lows:

(8b)

(8c)

(8d)

APPENDIX B

The dc version of ac constraints (3) included in the non-de-
composed dc-UC problem (Case A of Section IV-B) is provided
as follows:

(9a)
(9b)

(9c)
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