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Network Contro l by Bayesian Broadcast 
RONALD L. RIVEST 

Abstract-A transmission control strategy is described for slotted- 
ALOHA-type broadcast channels with ternary feedback. At each time slot, 
each station estimates the probability that n stations are ready to transmit 
a packet for each n, using Bayes’ rule and the observed history of 
collisions, successful transmissions, and holes (empty slots). A station 
transmits a packet in a probabilistic manner based on these estimates. Tbis 
strategy is called Bayesian broadcast. An elegant and very practical 
strategy-pseudo-Bayesian broadcast-is then derived by approximating 
the probability estimates with a Poisson distribution with mean Y and 
further simplifying. Each station keeps a copy of V, transmits a packet with 
probability 1 / Y, and then updates Y in two steps:. 

l For collisions, increment v  by (e - 2)-l = 1.39221 *.* . For suc- 
cesses and holes, decrement Y by 1. 

l Set Y to max  (V + x, l), where x is an estimate of the arrival rate A 
of new packets into the system. 

Simulation results are presented showing that pseudo-Bayesian broadcast 
performs well in practice, and methods that can be used to prove that 
certain versions of pseudo-Bayesian broadcast are stable for X < e - ’ are 
discussed. 

I. I IwR~IXJCTI~N 

W  E PROPOSE a  new strategy for the problem of 
controlling traffic on  a  local-area or satellite broad- 

cast communicat ions network. We  begin by first present- 
ing a  strategy (called Bayesian broadcast) which is power- 
ful but unlikely to be  cost effective in practice. The  name 
Bayesian broadcast was chosen because each station uses 
Bayes’ rule to estimate dynamically the probability that n  
stations are active, for each n. The  stations calculate a  
broadcast (or transmissio: probability that is opt imum 
given the available global information. This strategy is 
essentially equivalent to a  proposal of An and  Ge lenbe [l, 
pp. 305-3061,  based on  earlier work by Segall [2]. 

Our new strategy (which we call pseudo-Bayesian broad- 
cast) is an  extremely simple and  elegant approximation to 
Bayesian broadcast. We  give simulation results showing 
that pseudo-Bayesian broadcast is exceptionally effective 
and  stable in practice. 

Consider a  network with some number  (possibly in- 
finite) of stations. Each station is given packets to transmit 
by an  associated processor. In practice a  station may have 
a  queue  of packets ready to send if its processor is gener-  
ating packets more quickly than the station can transmit 
them. However, we assume that each station has at most 
one  packet to transmit at any time. We  say a  station is 
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active if it has a  packet to transmit; otherwise, it is 
inactive. 

We assume time  is divided into slots, each long enough  
to transmit one  packet (the “slotted ALOHA” or “S- 
ALOHA” mode l). Our procedures general ize for other 
mode ls; however, we do  not treat these issues here. 

When  a  slot begins each active station must decide, 
either deterministically or stochastically, whether or not to 
transmit its packet. There are three possible outcomes: 

l a hole if no  stations transmit; 
0  a  success if one  station transmits; or 
l a collision if more than one  station transmits. 

We  assume that each station in the network can tell which 
of the three possible outcomes has occurred-this is the 
ternary feedback mode l. 

We  assume that the network objective is to m inimize the 
average delay exper ienced by a  packet between the time  it 
is given to a  station and  the time  it is successfully trans- 
m itted; by Little’s result [3] this is equivalent to m inimiz- 
ing the average backlog in the network. Each station will 
have a  common control strategy specifying how often it will 
transmit packets, including how often it will retransmit a  
packet which was involved in a  collision. 

Our approach has the following general  form. Just be- 
fore slot t begins, each station k in the network computes 
a  value for its broadcast probability b,,,. Then  station k 
will transmit a  packet (if it has one)  with probability b, f, 
independent of whether previous attempts had  been  made  
to transmit that packet. 

We  assume that each station k computes b,,, from the 
globally available network history, indicating whether each 
slot was a  hole, a  success, or a  collision. Since the stations 
only use global information to compute the broadcast 
probabilities b,, 1, each station will compute the same 
value b, for b,,,, and our Bayesian updating procedure will 
be  relatively straightforward. 

In Section II we develop the “theory” of Bayesian 
broadcast, showing how each station can choose a  broad- 
cast probability for each slot which is opt imum given the 
available global information. However, the full Bayesian 
broadcast is a  bit demanding to implement, so in Section 
III we provide a  very simple practical implementation 
based on  these ideas, which we call pseudo-Bayesian 
broadcast. In Section IV we present some very encourag- 
ing experimental results on  the average backlog when 
using pseudo-Bayesian broadcast. In Section V of this 
paper  we review related work on  this problem, and  relate 
our results to this work. 
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How likely is it to have a hole, success, or collision for a 
given broadcast probability b, ( and waiting probability 
w, = 1 - b,) and given value N, = n? The probabilities are 

IN, = n) = H,,(n) = WY (1) P (hole 

P (success 

P (collision 

IN, = n) = S,,(n) = n * b, * WY-’ (2) 

IN, = n) = C,,(n) = 1 - Hbl(n) - S,,(n). 

(3) 

II. BAYESIAN BROADCAST 

Let Nt denote the number of active stations at time t 
(i.e., the number of stations which are ready to transmit a 
packet). This value will decrease with successes and in- 
crease when a processor gives an inactive station packet. 

To motivate our development, we begin by considering 
the “complete knowledge” case where each station knows 
the value of N, before slot t begins. This is unrealistic, 
since N, cannot be determined from the available informa- 
tion, but it is of interest to determine how the stations 
should act in this case. 

The optimum value for b, is 
b, = l/N,; (4 

this maximizes S,,(N,). Note that b, depends only on N,. 
If b, is chosen optimally as l/N,, the expected number 

of stations attempting to transmit will be one, and the 
probabilities of holes, successes, and collisions will be 

(6) 

cl,N,(Nt) = ’ - Hl,N,(Nt) - sl,NttNt) = l - f- t7) 

(The approximations hold for large N,.) 
However, the stations will typically not know the correct 

value for N,. For example, some inactive stations may have 
received newly generated packets during slot t - 1 which 
they will be ready to transmit during slot t. 

In the first procedure we describe, which we call the 
Bayesian broadcast algorithm, each station will use the 
evidence available up to time t to estimate the likelihood 
P n,I that N, = n for each n 2 0. That is, 

P n.t = Pr(N, = n), for n = 0, . . . (8) 

given the available evidence. We call this procedure 
Bayesian broadcast, since it relies on Bayesian reasoning to 
estimate j, = ( pO, 1, pl, f, . . . ). 

The Bayesian broadcast procedure described here is not 
new; it is essentially the same as the proposal of An and 
Gelenbe [l, pp. 305-3061 based on the technique proposed 
by Segall[2] to estimate recursively the number of stations 
waiting to transmit a packet. The only difference between 
our formulation and theirs is that in our version new 
packets are not transmitted immediately with probability 

one, but rather with the same transmission probability that 
is used for the backlogged packets. 

In the Bayesian broadcast procedure, each station begins 
with the initial distribution PO = (LO, 0, . * * )-it assumes 
that all stations are inactive. Each station will compute the 
same vector j?, using the available global feedback infor- 
mation. The vector p, = ( pO, [, * * * ) summarizes the global 
information available about N,. 

With the Bayesian broadcast procedure, each station 
performs the following four steps during each time slot. 

l Compute the optimal broadcast probability b, from 
the initial probability vector pt. 

l If the station is active, transmit its packet with prob- 
ability b,. 

l Perform a Bayesian update of j, (the initial probabil- 
ity distribution for N,) to obtain j: (the final prob- 
ability distribution for N,), using the evidence (hole, 
success, or collision) observed in time slot t. 

l Convert the final probabilities & for N, into initial 
probabilities P,+t for N,,, by considering the genera- 
tion of new packets and the fact that a packet may 
have been successfully transmitted during time slot t 
(i.e., modeling the flow of packets into and out of the 
system). 

In Sections II-A-C below we consider the details in- 
volved in the preceding steps. 

A. Computing the Broadcast Probability 

One can choose b, to maximize the expected chance of a 
success, even though there is uncertainty about N, as 
summarized in jt, since 

E(P( successat timet)) = Cp,,; S,,(n). (9) 
n 

Given jt, this is a polynomial in the unknown variable b,. 
In practice there would be at most a finite number of 
nonzero coefficients at any time, so that we can compute 
the value 6, which maximizes (9) by differentiating and 
root finding. 

(In practice the computation required to compute b, 
would probably be excessive. One could use the approxi- 
mation (E(N,))-l. However, we believe that in practice 
the pseudo-Bayesian broadcast algorithm to be described 
later will be the best choice.) 

B. Bayesian Updating of the Probability Vector 

We now describe how each station computes its final 
probability distribution for N,, given that slot t was a hole, 
a success, or a collision. This problem is well suited for an 
application of Bayes’ rule: 

P(H1E) = 
P@lHPW) 

P(E) . 
00) 

(The final probability P(HIE) of a hypothesis H, after 
evidence E is received, is equal to the initial probability 
P(H) of H times the probability P(EIH) that E will 
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occur given H, divided by the overall probability P(E) of 
evidence E.) 

We have a  hypothesis N, = n, for each n 2 0. The  
values p, , f are the initial probabilities of these hypotheses 
before the evidence from time  slot t is considered. 

Let p,‘, f denote the final probability P( N, = n IE,) where 
E, is the slot t evidence (hole, success, or collision), and  let 

K = (P&t9P;,t7 . . . ) (11) 
denote the corresponding final probability vector. The  p;, f 
are easily obtained using Bayes’ rule by mu ltiplying each 
initial probability p,,, r by the appropriate likelihood Hb,( n), 
S$,(n), or C,!(n) according to whether a  hole, success, or 
collision was observed, and  then normalizing so that the 
P’ n,t add up  to one. 

This completes our description of how each station 
incorporates the slot t evidence into its probability distri- 
bution for N,. The  resulting distribution makes the best 
possible use of the globally available information; one  
cannot improve over this application of Bayes’ rule. (See 
[4, ch. 391.) However, it may be  possible to achieve better 
results by using information local to the transmitting 
processors, or by somehow using a  strategy to m inimize 
the long-run delay which is not a  “one-step look-ahead” 
strategy as is Bayesian broadcast. We  do  not pursue these 
possibilities here. 

C. Converting the Final Probabilities j: into the Initial 
Probabilities ji,, 1  

F inally, we convert j&!, the final probability distribution 
for N,, into an  initial distribution for N,,,. Why  m ight 
Pi, ttl be different than P;,~? F irst, if slot t was a  success, 
the expected number  of active stations will decrease by 
one. Second, we expect some inactive stations to receive 
new packets from their processors during slot t, so the 
expected number  of active stations will increase for this 
reason. 

1) Modeling Successful Packet Transmission: We mode l 
the effect of successes as follows. We  let p$ denote a  
station’s estimate of the probability that the number  of 
active stations is n, taking into account the evidence from 
the channel, including the effect of a  success on  the 
number  of active stations. 

If time  slot t contained a  success, then we set 

P” = P,‘+1, f> n,t forn = l;.. (12) 
(note that p,$, f = 0 if E, = success); otherwise, we set 

P” = PA,,, n,f forn = 0, ... . (13) 
The  vector p;’ = (p&, P;,~, . . . ) is used as input into the 
next step, where the generat ion of new packets is taken 
into account. 

2) Modeling the Generation of New Packets: There are 
many ways to mode l the generat ion of new packets. We  
are actually concerned with the rate at which stations 
“become active,” i.e., convert from having no  packet to 
send during time  slot t to having a  packet to send during 
time  slot t + 1. We  take the usual approach and  assume 

that new packets arrive according to a  Poisson distribution 
with parameter A, and  that X i,s estimated reasonably 
accurately (let us call the estimate A). We  can compute the 
initial probabilities for N, + i : 

n,t+l = i Pi:‘1. Px(n -A. P (14 
j=O 

Here Pi( n - j) denotes the value of the Poisson density 
function at point n - j; i.e., the estimated probability that 
n -j new packets will arrive during a  time  slot. This 
completes our description of the Bayesian broadcast proce- 
dure since we now have our initial estimates for the 
distribution of N,,, for the next time  slot. 

III. THE PSEUDO-BAYESIAN BROADCAST ALGORITHM 

We now present a  practical implementation of the above 
ideas, which we call the pseudo-Bayesian broadcast al- 
gorithm. We  derive this algorithm by assuming that j, can 
be  reasonably approximated by a  Poisson distribution with 
mean  v; the station’s value of v at time  t represents the 
station’s estimate of N,. We  use the notation v rather than 
the subscripted form vl for convenience in this section: v 
now denotes a  changeable control parameter for the sta- 
tions. Let 

--Y n 

P,(n) = y (15) 

denote the Poisson density at n for Poisson parameter v. 
Each station will keep only v, rather than the vector j,, 
and  will approximate the initial probability p,,, f by P,,(n). 

To  develop the pseudo-Bayesian broadcast and  prob- 
ability updat ing procedure, we first consider the equations 
that would be  used for a  ,true Bayesian update of the 
Poisson approximation for j, if b, is the actual broadcast 
probability (and w, = 1  - b,). These equations represent 
the unnormal ized final probability values: 

PV(n) . H,,(n) = epYbt. P,,,(n) (16) 

P,(n) . S,,(n) = vb, . evbl + PVWr(n - 1) (17) 

Pv(n) . cb,(n> = ‘dn> ’ (l - Hb,(n) - sb,(n)). (18) 

From (9) and  (17) it is easy to compute the best broad- 
cast probability: 

(19) 

no  complicated root-finding is needed.  Thus we have de- 
rived our first practical benefit from the Poisson ap- 
proximation: it becomes trival to compute the desired 
broadcast probability b,. 

We next consider the problem of updat ing v in as 
Bayesian a  manner  as possible, while preserving our Pois- 
son approximation. We  shall see that for holes and  suc- 
cesses we can use Bayes’ rule exactly, while for collisions 
we must introduce an  approximation error to preserve the 
Poisson approximation. 
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From (16) we see that for holes the Bayesian updating 
takes a simple form since the resulting distribution will 
also be Poisson with mean VW, = max (v - l,O). In other 
words, when a hole occurs, the stations reduce their esti- 
mate of the expected number of active stations by one, 
unless v is already less than one, in which case they set v 
to zero. 

From (17) we see that for successes the Bayesian updat- 
ing and success modeling also takes a simple form. Here 
(17) will yield a Poisson distribution with mean v - 1 
shifted one place to the right. However, the effect of 
modeling a successful transmission shifts the distribution 
one place to the left. The net result is that the Poisson 
assumption remains valid, and each station should decre- 
ment its state variable v by 1. 

If there is a collision, Bayes’ rule will not yield a Poisson 
distribution for the final probabilities. However; we ap- 
proximate the result by a Poisson distribution by setting v 
to be the mean of the resulting distribution, which is (using 
x to denote v . b,): 

II 

XL 
v+ 

ex - x-l 

which simplifies in the case v 2 1, b, = l/v to 

(20) 

1 
v+---- 

e-2’ (21) 

(It is somewhat surprising that we get a constant increment 
to v in this case.) For v < 1, (20) is reasonably well 
approximated by 

2.39221 (22) 

which is the value (20) yields for v = 1. Using (22) is 
equivalent to requiring that v 2 1 at all times. The follow- 
ing algorithm makes this simplification. We now sum- 
marize the above analysis, assumptions, and approxima- 
tions in the following presentation of the pseudo-Bayesian 
broadcast algorithm. 

The Pseudo-Bayesian Broadcast Procedure: Each station 
maintains a copy of v and, during each slot, 

l 

a 

a 

broadcasts with probability l/v if it has a packet; 
decrements v by 1 if the current slot is a hole or a 
success, and increments v by (e - 2)-l = 
1.392211 . . . if the current slot is a collision; 
sets v to maxA(v + i, l), where fi is an estimate of the 
arrival rate h of new packets into the system. (For 
example, one m ight estimate the arrival rate by the 
observed average success rate, or use the constant 
value x = e-l. See Section V for some discussion of 
this issue.) 

We note that the pseudo-Bayesian broadcast procedure 
actually only needs binary feedback since it only needs to 
distinguish collisions from noncollisions. 

We note that since each station now only maintains a 
single parameter v, it would be simple to broadcast v with 

every packet. In this way stations which have just 
powered-up can “synchronize” easily. 

IV. EXPERIMENTALRESULTS 

The pseudo-Bayesian broadcast procedure was simu- 
lated for lo6 time slots (40 trials of 25 000 steps each) for 
a number of different Poisson arrival rates A. For each 
trial the average backlog (i.e., the average of N, over the 25 
000 steps) was computed as a sample data point. The mean 
Nr and standard deviation ur of these 40 sample points 
are given in Table I. 

TABLE1 
MEANANDSTANDARDDEVIATIONFORBACKLOG 

x NY 0: 

0.10 0.144 0.0069 
0.15 0.28 0.012 
0.20 0.555 0.85 
0.25 1.00 0.097 
0.30 2.31 0.32 
0.32 3.73 0.54 
0.34 7.03 1.58 
0.35 12.35 3.82 
0.36 28.38 20.86 
0.37 63.11 39.7 

For these experiments the arrival rate X was estimated 
by setting i to 0.500 initially and then using the recursion 

A = 0.995r; + 0.005s (23) 
where s = 1 if the current slot contained a success, and 
s = 0 otherwise. This estimates the average success rate, 
which will only be a good estimate of the average arrival 
rate when the scheme is acting in a stable manner. 
Tsitsiklis [5] discusses this issue further. 

In Table II we give Fy, the average (over the 40 trials) 
frequency of having no backlog during a trial of 25 000 
steps, and Ly,“, the average last step number when there 
was no backlog. The last statistic supports the view that 
the method is stable for h = 0.36 and unstable for X = 
0.37. 

TABLE11 
FREQUENCYOFNOBACKLOGANDLASTINSTANCEOFNOBACKLOG 

x F,a LT 
0.10 2320 24991 
0.15 3274 24995 
0.20 3154 24964 
0.25 4204 24993 
0.30 3714 24966 
0.32 3235 24967 
0.34 2312 24867 
0.35 1701 24433 
0.36 1026 22361 
0.37 424 13605 

It is clear from (6) that we should not expect to be able 
to handle X > e-l = 0.3678 . . . . We see that the al- 
gorithm becomes unstable for X > e-l, as expected. 
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V. DISCUSSION 

In this section we discuss the pseudo-Bayesian broadcast 
strategy in relation to previous work. Ga llager [6] provides 
an  excellent overview of the state of the art in mu ltiaccess 
channels, and  the special issue of this TRANSACTIONS [7] 
contains many excellent papers on  this topic. Tanenbaum 
[8] surveys a  number  of possible approaches to this prob- 
lem, in a  more general  framework. Note that the S-ALOHA 
mode l used here differs from the more common “Ethernet” 
mode l [9] since here we have fixed length packets and  fixed 
length time  slots. 

station transmits with probability l/v. He considers the 
class of schemes parameterized by (a, b, c), where v is 
increased by a in the case of a  hole, by b in the case of a  
successful transmission, and  by c in the case of a  collision. 
The  pseudo-Bayesian broadcast scheme is a  member  of 
this class, with parameters (-1 + A, -1 + i, (e - 2)-l 
+ i). This particular choice of parameters was not men-  
t ioned by Kelly. 

In the original ALOHA scheme [lo] a  station broadcasts 
a  new packet in the next slot. (A policy of this sort is 
called immediate first transmission (IFT) instead of de- 
layed first transmission (DFT).) If a  collision occurred, 
then the packet becomes backlogged and is broadcast in 
succeeding slots with a  fixed probability f until it is 
successfully transmitted. We  note that in our scheme 
new packets and  backlogged packets are treated identically 
-the control policy does not distinguish them. 

The  most important question is, of course, “Is the 
pseudo-Bayesian broadcast scheme stable for all X < e-l?” 
The  answer turns out to be  a  conditional “yes” (condi- 
tional on  the manner  in which the stations compute A). 

l Kelly [15] has shown that the ratio K = N,/v will drift 
towards unity whenever (a, b, c) are chosen so that 

[(a - c)epK + (b - c)Ke-’ + c] (24) 

(the expected “drift” of v) is negative for K < 1  and  
positive for K > 1, and  furthermore that 

The  idea of decreasing the broadcast probabilities in the 
event of a  collision, and  increasing it in the event of a  
success and/or a  collision, is not new. For example, Gerla 
and  Kleinrock [ll] discuss a  number  of adaptive strategies 
for the’ S-ALOHA network, some of which do  not dis- 
tinguish new from backlogged packets, and  which may be  
sensitive to the observed congestion on  the channel. An 
and  Ge lenbe [l] discuss other variations, including a  ver- 
sion of the Bayesian broadcast procedure as noted previ- 
ously. 

h - Ke-’ < K[(a - c)e-” + (b - c)KeeK + c] (25) 

for K > 1. In our case the above inequalities hold for 
X < e-‘, assuming that stations use fi = e-l uniformly. The  
drift (24) will have the correct sign when the stations 
overestimate the arrival rate X by using the upper  bound  
e-l. This analysis was pointed out in Tsitsiklis [5], who 
suggested as well that using fi = e-l may be  the most 
robust approach to estimating X. (The reader may also 
want to consult Hajek [16] for a  more fully described 
version of a  drift analysis of this sort.) 

Hajek and  Van Loon  [12] present another adaptive 
scheme. Their scheme was IFT, and  mu ltiplies f (the 
transmission probability for backlogged packets) by 1.518 
for holes, by 1.000 for successes, and  by 0.559 for colli- 
sions (keeping f within some pre-established bounds as 
well). For the algorithm of Hajek and  Van Loon  [12] it is 
reported that the average number  of backlogged packets 
for X = 0.32 is approximately 5.0 (To compare our results 
with theirs, subtract X from our values of Nr since they 
do  not count newly arrived packets in the backlog.) 

l M ikhailov [17] has presented techniques that are capa- 
ble of proving the stability of this type, according to Kelly 
[15] and  Tsitsiklis [5]. (The author has not seen the details 
of these methods.) 

l Tsitsiklis [5] has presented a  nice direct proof that the 
pseudo-Bayesian broadcast algorithm is, indeed stable 
whenever X < e-‘, assuming that A < A, i.e., that the 
estimate of X is always an  overestimate. Tsitsiklis also 
shows that if X > A, then instabilities may arise. 

We  see that the pseudo-Bayesian broadcast algorithm 
appears to offer significantly improved performance over 
the Hajek and  Van Loon  algorithm. (To be  fair, we note 
that their ma in objective was to prove that their algorithm 
was stable for X < e-l.) 

VI. CONCLUSION 

Merakos and  Kazakos [13] have made  a  careful study of 
Hajek and  Van Loon’s scheme and  have rederived in a  
different way the parameters (1.518, 1.000, 0.559) men-  
t ioned earlier. They also study the effect of errors in the 
feedback process on  the performance of the scheme. Kumar 
and  Merakos [14] present a  related scheme for updat ing 
broadcast probabilities, but which is not provably stable 
for all X < e-l. 

We  believe the proposed pseudo-Bayesian broadcast 
procedure will be  found to be  exceptionally effective in 
practice since it makes nearly the “best possible use” of 
the information available on  the network in determining 
the broadcast probabilities to use. 
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