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ABSTRACT

Precisely how the anatomical structure of the brain supports a wide range of complex functions remains a 

question of marked importance in both basic and clinical neuroscience. Progress has been hampered by 

the lack of theoretical frameworks explaining how a structural network of relatively rigid inter-areal 

connections can produce a diverse repertoire of functional neural dynamics. Here, we address this gap by20
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positing that the brain’s structural network architecture determines the set of accessible functional21

connectivity patterns according to predictions of network control theory. In a large developmental cohort22

of 823 youths aged 8 to 23 years, we found that the flexibility of a brain region’s functional connectivity23

was positively correlated with the proportion of its structural links extending to different cognitive24

systems. Notably, this relationship was mediated by nodes’ boundary controllability, suggesting that a25

region’s strategic location on the boundaries of modules may underpin the capacity to integrate26

information across different cognitive processes. Broadly, our study provides a mechanistic framework27

that illustrates how temporal flexibility observed in functional networks may be mediated by the28

controllability of the underlying structural connectivity.29

AUTHOR SUMMARY

Precisely how the relatively rigid white matter wiring of the human brain gives rise to a diverse repertoire30

of functional neural dynamics is not well understood. In this work, we combined tools from network31

science and control theory to address this question. Capitalizing on a large developmental cohort, we32

demonstrated that the ability of a brain region to flexibly change its functional module allegiance over33

time (i.e., its modular flexibility), was positively correlated with its proportion of anatomical edges34

projecting to multiple cognitive networks (i.e., its structural participation coefficient). Moreover, this35

relationship was strongly mediated by the region’s boundary controllability, a metric capturing its36

capacity to integrate information across multiple cognitive domains.37

INTRODUCTION

The human brain is a complex interconnected system. Neural signals from one region spread to other38

regions in the system by traveling through underlying nerve fibers. Conceptually, every function has its39

foundation in structure (Huntenberg, Bazin, & Margulies, 2018; Park & Friston, 2013). Yet in practice, it40

is methodologically challenging to construct interpretable and theoretically justified relations between41

structure and function (Suarez, Markello, Betzel, & Misic, 2020). A key challenge lies in addressing42

precisely how individual neural circuits interact with each other and thereby give rise to brain dynamics.43
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A second challenge lies in addressing the marked differences in structural and functional connectivity44

fingerprints across individuals (Finn et al., 2015; S. Mueller et al., 2013).45

A promising approach to meet these challenges is network neuroscience. Network neuroscience46

utilizes graph theory to understand connectivity patterns in neural systems. The computational toolbox of47

network neuroscience can be used to encode data acquired from multiple imaging modalities including48

diffusion weighted imaging (DWI) and functional magnetic resonance imaging (fMRI) (Bassett &49

Sporns, 2017). The former allows us to quantify the structural connectivity defined from axonal50

projections, whereas the latter provides time series of the brain’s blood-oxygen-level-dependent (BOLD)51

activity that can be used to assess its functional connectivity (Bassett et al., 2011; Bullmore & Sporns,52

2009; Hutchison et al., 2013). Therefore, network neuroscience equips us with a highly appropriate53

framework to address our question on how the diverse functional expression of the human brain emerges54

from its underlying structural architecture.55

Although several prior studies have utilized graph theoretical principles to predict functional56

connectivity given the underlying structural connectivity, it still remains unclear how relatively rigid57

anatomical networks give rise to functional time series encoding flexible dynamic signals (Deco, Jirsa, &58

McIntosh, 2011; Goñi et al., 2014; Hermundstad et al., 2013; Honey et al., 2009; Mišić et al., 2016; Park59

& Friston, 2013; Supekar et al., 2010; Vasquez-Rodriguez et al., 2019). An early attempt to tackle this60

problem focused on the statistical similarity between spatio-temporal structural and functional61

connectivity patterns (Honey et al., 2009), and reported that functional patterns, although variable, are62

constrained by the underlying structure. More recent studies have used principles from communication63

theory to predict activity (Goñi et al., 2014), as well as to suggest that the transient nature of functional64

connectivity depends on both the anatomical connections and the dynamic coordination of polysynaptic65

pathways (Shen, Hutchison, Bezgin, Everling, & McIntosh, 2015). Complementary studies have also66

begun to evaluate the relation between flexible functional expression and enhanced cognitive67

performance (Baum et al., 2017, 2020; Bertolero, Yeo, & D’Esposito, 2015; Cocuzza, Ito, Schultz,68

Bassett, & Cole, 2020; Cole, Ito, Cocuzza, & Sanchez-Romero, 2021; Hermundstad et al., 2013; Park &69

Friston, 2013; Rosenberg, Martinez, et al., 2020; Rosenberg, Scheinost, et al., 2020; Sanchez-Alonso,70

Rosenberg, & Aslin, 2021; Supekar et al., 2010; Wendelken et al., 2017; Yoo et al., 2020).71
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A crucial consideration when attempting to bridge structure and function is the identification of72

descriptive statistics of network organization that can be translated from structural to functional73

modalities (Cabral, Kringelbach, & Deco, 2017; Murphy, Bertolero, Papadopoulos, Lydon-Staley, &74

Bassett, 2020). One such descriptive statistic considered in this work is modular flexibility (Khambhati,75

Sizemore, Betzel, & Bassett, 2018). Modular flexibility represents how frequently brain regions change76

the functional modules they belong to, across time. On a dynamic functional network, a region that is77

more likely to be connected to multiple functional modules at different time-points is hence more78

flexible. Indeed, modularity has been reported to flexibly vary across time in a manner that tracks79

cognitive processes, including working-memory performance (Pedersen, Zalesky, Omidvarnia, &80

Jackson, 2018), executive function (Baum et al., 2017), learning capability (Bassett et al., 2011),81

attention (Shine, Koyejo, & Poldrack, 2016), ability to respond to environmental uncertainty (Kao et al.,82

2020), and overall cognitive flexibility (Braun et al., 2015).83

How does this flexible modularity arise from the relatively fixed white matter connectivity patterns? To84

answer this question, we first turn to the way in which brain regions connect across modules. We use a85

measure called the participation coefficient, which quantifies the relative distribution of a node’s edges86

between its own and different modules across the full brain network (Baum et al., 2017; Guimera &87

Amaral, 2005; Power, Schlaggar, Lessov-Schlaggar, & Petersen, 2013). A lower participation coefficient88

indicates that a node has edges primarily restricted to its own structural or functional community,89

whereas a larger participation coefficient indicates that a node has edges uniformly distributed across90

multiple communities (Power et al., 2013). To deepen our understanding, we next turn to a measure91

called boundary controllability, recently introduced in the network control theory (NCT) literature92

(Pasqualetti, Zampieri, & Bullo, 2014). The structural network architecture of a system, particularly as93

measured by its controllability, can determine the range of dynamics that the system can support94

(Towlson et al., 2018; Yan et al., 2017). Intuitively, structural boundary controllability measures the95

necessary input required by a node to drive the overall system along a desired trajectory (Gu, Pasqualetti,96

et al., 2015). The role of controllability in regulating dynamic brain state transitions as well as predicting97

the maturity of adolescent brain systems during development has been corroborated by several recent98

studies (Cornblath et al., 2020; Cui et al., 2020; Tang et al., 2017).99
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In the present work, we sought to understand the relationship between rigid structure and flexible100

dynamics. Our approach was to examine the relationships between the participation coefficients of both101

structural and functional networks, the boundary controllability of structural networks, and the modular102

flexibility of dynamic functional networks, across regions and among individuals. We hypothesized that103

the participation coefficients of the structural network architecture would positively correlate with the104

corresponding flexibility of the functional network. Such a potential association is conceptually justified:105

a node with edges connecting only to other nodes within its own module would not typically be expected106

to suddenly alter its connectivity patterns and establish connections with nodes from different modules,107

over a short period of time. Moreover, we theorized that this relationship between structural participation108

coefficients and modular flexibility would be fully mediated by the serial effects of boundary109

controllability and functional participation coefficients. By bridging structure to dynamics in this110

step-wise fashion, we conceptually unpack the transfer function from rigidity to flexibility.111

MATERIALS AND METHODS

Data acquisition and preprocessing112

We used T1-weighted, diffusion tensor imaging (DTI) and resting-state fMRI BOLD data taken from 823113

healthy individuals from the Philadelphia Neurodevelopmental Cohort (PNC) (Ingalhalikar et al., 2014;114

Satterthwaite et al., 2014). All participants were between 8-23 years of age and their accompanying DTI115

and fMRI data passed stringent quality control (Roalf et al., 2016; Rosen et al., 2018; Satterthwaite et al.,116

2014, 2013). All MRI scans were acquired on the same 3T Siemens Tim Trio whole-body scanner with a117

32-channel head coil at the Hospital of the University of Pennsylvania. The Institutional Review Boards118

of both the University of Pennsylvania and the Children’s Hospital of Philadelphia have approved the119

study procedures.120

The standardized structural imaging protocol included a T1-weighted scan obtained using a127

magnetization-prepared, rapid-acquisition gradient-echo sequence (repetition time: TR = 1810ms, echo128

time: TE = 3.5ms, field of view: FoV = 180 × 240mm2, voxel dimensions = 1 x 1 x 1mm3, flip angle =129

9◦) and a DTI scan acquired using a twice-refocused spin-echo single-shot echo-planar imaging sequence130

(TR = 8100ms, TE = 82ms, FoV = 240 x 240mm2, voxel dimensions = 2 x 2 x 2mm3, flip angle =131

90◦/180◦/180◦). The T1-weighted scans were pre-processed using the automated FreeSurfer software132
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Figure 1. Structural and Functional Processing Pipeline Schematic. The (A) diffusive fiber tractography obtained from the DTI scans and (B) the resting-

state BOLD fMRI time series are parcellated using (C) the 234-region Lausanne atlas, to construct (D) structural connectivity matrices and (E) functional

time series for each subject. The structural connectivity matrices are then used to compute each region’s (F) boundary controllability, whereas the functional

time series are used to assess the modular dynamics of the time-resolved functional networks by calculating (G) the modular flexibility of each region. In our

proposed analysis, the participation coefficients obtained from (H) the community partition of the static networks act as mediators in predicting how flexible

the functional network will be, given its structural connections, thereby bridging the two imaging modalities.

121

122

123

124

125

126

suite (version 5.3) (Dale, Fischl, & Sereno, 1999; Fischl, Sereno, & Dale, 1999) and parcellated into 234133

individualized network nodes based on the Lausanne atlas (Cammoun et al., 2012). Each node was then134

assigned to one of eight pre-defined functional modules (Yeo et al., 2011): visual, somatomotor, dorsal135

attention, ventral attention, limbic, frontoparietal control, default mode network, and subcortical. The136

DTI scans were pre-processed using FSL, including skull stripping as well as correction for eddy currents137

and in-scanner motion (Smith et al., 2004). Deterministic tractography was then implemented using DSI138

Studio, and symmetric adjacency matrices were generated for each subject where the edge weight139

between two given nodes was defined as the mean fractional anisotropy along the connecting140
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streamlines (Yeh, Verstynen, Wang, Fernández-Miranda, & Tseng, 2014). A more detailed description of141

the parameters used in the proposed processing pipeline can be found in Ref. (Baum et al., 2017).142

Resting-state fMRI scans were also acquired for each subject using a BOLD sequence (TR = 3000ms,143

TE = 32ms, FoV = 192 x 192mm2, voxel dimensions = 3 x 3 x 3mm3, flip angle = 90◦). The functional144

images were pre-processed using a previously validated pipeline (Ciric et al., 2017). Steps included145

correction for distortions induced by magnetic field inhomogeneities, removal of the initial four volumes146

of each acquisition to allow for steady-state magnetization, re-alignment of all volumes to a reference147

volume, co-registration of functional data to structural data, temporal band-pass filtering, and de-noising148

(confound regression applied, including 36 regressors as well as spike regression) of the BOLD time149

series (Ciric et al., 2017; Satterthwaite et al., 2013). In-scanner head motion was defined as the mean150

relative root-mean-squared displacement calculated during the time series re-alignment step of the151

pipeline (Satterthwaite et al., 2013). After the data were pre-processed, the scans were parcellated into152

the same 234 individualized network nodes as the DTI scans. Functional connectivity matrices were153

finally generated for each subject where the edge weight between two given nodes was defined as the154

Pearson’s correlation coefficient between their corresponding BOLD signals. The overall pipeline is155

schematically illustrated in Figure 1.156

Participation Coefficients157

Participation coefficients measure the extent to which a node’s connectivity profile participates diversely

across modules. Mathematically, given a network wherein Nm designates the total number of modules

considered (here set to eight), s iterates through the eight pre-defined functional modules mentioned in

the previous section, lis represents the number of links between node i and nodes in module s, and

di =
∑

s l
i
s represents the total degree of node i, the participation coefficient of node i is defined as:

pci = 1−
Nm
∑

s=1

(

lis
di

)2

. (1)

Participation coefficients range between zero and one, where a value of zero indicates that a node’s edges158

are entirely restricted to its own community and a value of one indicates that a node’s edges uniformly159

extend across all other modules in the network (Power et al., 2013).160

Boundary Controllability of Structural Networks161
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NCT is a mathematical framework that aims to assess whether a network can be controlled. Specifically,162

NCT asks whether the output of the overall system can be driven towards a desired outcome given a set163

of input signals. There are several metrics from NCT that attempt to quantify a node’s overall ability to164

alter other nodes’ neurophysiological states (Pasqualetti et al., 2014). Here, we focused on a metric called165

boundary controllability. Assuming we have a structural connectivity matrix constructed from a DTI166

scan, the boundary controllability of a node is a heuristic metric predicting its ability to integrate167

information across different cognitive processes. In other words, brain regions with high boundary168

controllability tend to lie at the boundaries between network communities, and are thus thought to be169

structurally predisposed to efficiently control the integration of different cognitive systems (Gu,170

Pasqualetti, et al., 2015).171

In order to calculate the boundary controllability of each brain region, we first partitioned the cortical172

mantle into communities, using a common community-detection algorithm (Louvain-like locally greedy173

heuristic algorithm) (Bassett et al., 2013; Blondel, Guillaume, Lambiotte, & Lefebvre, 2008; Gu,174

Pasqualetti, et al., 2015). Based on that community partition, we identified an initial set of boundary175

nodes (N1) and assigned them a boundary controllability value of one (Pasqualetti et al., 2014). Then, we176

used an iterative process to further partition the network into communities to identify more boundary177

nodes at increasingly finer levels of the modular hierarchy, until all nodes were assigned a boundary178

controllability value. During each step of this iterative process, the boundary controllability value of each179

node i was set to (N −Ni)/N , where N is the total number of cortical brain regions and Ni is the180

number of nodes on the boundary between communities (Gu, Pasqualetti, et al., 2015).181

Modular Flexibility of Functional Networks182

Brain regions have been shown to interact among themselves across multiple temporal scales, even at rest183

(Betzel et al., 2019; Meunier, Lambiotte, Fornito, Ersche, & Bullmore, 2009; M. E. Newman, 2006;184

Rubinov & Sporns, 2010). This property gives rise to modular dynamics which can be assessed185

quantitatively by modular flexibility (Bassett et al., 2011).186

The parcellated time series of each subject xN×T (N = 234 regions, T = 120 TRs) were divided into 10

non-overlapping time-windows, and the temporal network {Aijt}
10
t=1 was constructed by defining Aijt as

the Pearson’s correlation coefficient between the BOLD time series of regions i and j within the tth

–8–
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sliding window Telesford et al. (2016). Each time-window corresponded to a layer in the multi-layer

network, and the multi-layer signed modularity function was defined as (Mucha, Richardson, Macon,

Porter, & Onnela, 2010):

Qmulti−layer =
T
∑

t=1

∑

ij

[(A+
ijt − γP+

ijt)− (A−

ijt − γP−

ijt)]δ(g
t
i , g

t
j)

+
T−1
∑

t=1

∑

i

ω · δ(gti , g
t+1
i ),

(2)

where Aijt = A+
ijt − A−

ijt is decomposed into its positive and negative parts with P+
ijt and P−

ijt187

representing the corresponding parts obtained from null models (Newman-Girvan) (M. E. J. Newman &188

Girvan, 2004). The label gti denotes the community assignment of node i in the tth layer, δ(x, y) is the189

Kronecker-δ function set equal to 1 if x = y and to 0 otherwise, γ is a parameter that tunes the size of190

communities (here, equal to 1), and ω represents the coupling strength between neighboring layers (here,191

equal to 1). A recent study identified that the test-retest reliability in calculating dynamic network192

measures, such as modular flexibility, depended on parameter selection (i.e., γ and ω), among other193

factors (Yang et al., 2020). Even though that study identified the parameter value pair with the overall194

highest intra-correlation coefficient to be (γ, ω) = (1.05, 2.05), we implemented the more widely used195

pair (γ, ω) = (1, 1) (Bassett et al., 2011; Betzel, Satterthwaitte, Gold, & Bassett, 2017; Braun et al., 2015;196

Pedersen et al., 2018; Telesford et al., 2016) because the corresponding modular flexibility values were197

virtually identical (r = 0.963, p = 0).198

In order to explore the temporal evolution of each module in the multi-layer network, each node within

each time-window was assigned into a community, indicating its module allegiance. For this purpose, a

Louvain-like locally greedy heuristic algorithm (Braun et al., 2015) was used to maximize the modularity

index Qmulti−layer. This process gave rise to a partition matrix GN×T (N = 234 regions, T = 10

time-windows) in which Gi,t represented the community to which node i in layer t belonged. The nodal

flexibility fi of each region i was then defined as:

fi = 1−
1

T − 1

T−1
∑

t=1

δ(Gi,t, Gi,t+1), (3)

–9–
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and assesses how often brain region i shifts its community assignment between temporal layers. On the199

subject level, the global flexibility of the entire network was defined as the mean of all regional fi values:200

F = 1
N

∑N

i=1 fi. An in-depth description of the method can be found in Ref. (Khambhati et al., 2018).201

Statistical Analyses202

All analyses were performed using the SPSS statistical software (v26, Armonk, NY: IBM Corporation)203

and Python (v3.9). A threshold for significance of p < 0.05 was used. Pearson’s correlation coefficients204

(r) and p-values were reported for each bivariate analysis. In order to address the potential spatial205

autocorrelation between our structural and functional metrics of interest, we applied a previously206

validated spatial permutation framework (i.e., spin test with 100,000 permutations) to generate null207

models (Alexander-Bloch et al., 2018). For those analyses (i.e., Figures 2A and D), the corresponding208

p-values are reported as pspin. Moreover, for all multiple linear regression analyses performed, age, sex,209

and in-scanner head motion were adjusted for, and correction for multiple comparisons was performed210

using the Benjamini-Hochberg false discovery rate (FDR) procedure (i.e., Figures 4 and 5) (Benjamini &211

Hochberg, 1995).212

Mediation Model213

All mediation analyses were performed using the PROCESS (v3.4) statistical macro for SPSS (Hayes,214

2017). Structural participation coefficients were designated as the independent variable, boundary215

controllability as the first mediator, functional participation coefficients as the second mediator, and216

modular flexibility as the dependent variable. Age, sex, and in-scanner head motion were used as217

covariates in all subject-wide analyses. The hypothesized serial mediation effect was tested using218

bootstrapping (10,000 samples). Mediation was deemed significant if the bootstrapping confidence219

interval did not include zero. Unstandardized regression coefficients (c) and p-values were reported for220

each association within the mediation analysis.221

For the purpose of maintaining consistency, all variables within the mediation model were rescaled to222

range from zero to one. Moreover, in order to incorporate temporal directionality into the model, the223

functional participation coefficient of each node was calculated only during the first time-window of the224
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Figure 2. Region-wide patterns. Structural patterns are shown in the first row: (A) Boundary controllability was significantly correlated with the structural

participation coefficient (r = 0.59, pspin = 1 × 10−5; the shaded areas correspond to the confidence curves for the fitted line). In order to address the

potential spatial autocorrelation between boundary controllability and the structural participation coefficient, we applied a spatial permutation framework (spin

test; see Methods). We also show the average patterns of regional fluctuations of (B) the structural participation coefficients and (C) boundary controllability,

across all subjects. Functional patterns are shown in the second row: (D) Modular flexibility was significantly correlated with the functional participation

coefficient (r = 0.78, pspin = 2×10−5). In order to address the potential spatial autocorrelation between modular flexibility and the functional participation

coefficient, we applied a spatial permutation framework (spin test; see Methods). We also show the average patterns of regional fluctuations of (E) the functional

participation coefficients and (F) modular flexibility across all subjects.

227

228

229

230
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234

resting-state fMRI BOLD sequence, whereas its modular flexibility was averaged across all remaining225

time-windows (second through tenth).226

RESULTS
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Structural Participation Coefficients Positively Correlate with Boundary Controllability235

A brain region’s structural participation coefficient quantifies its role in communicating across multiple236

modules (Hall et al., 2018). Similarly, boundary controllability assesses a region’s predicted ability to237

integrate information from different cognitive modules, attributing higher values to regions that are238

located on the boundary of larger modules (Medaglia et al., 2018). Therefore, we hypothesized that these239

two metrics would be positively correlated. To examine this hypothesis, we computed both metrics for240

each region and averaged them across all subjects. We observed a strong positive correlation (r = 0.59,241

pspin = 1× 10−5) between the structural participation coefficient and boundary controllability across242

regions (Figure 2A). Regionally, the parietal and temporal lobes displayed high values of the243

participation coefficient and boundary controllability, whereas the occipital lobe displayed low values244

(Figures 2B and C).245

Functional Participation Coefficients Positively Correlate with Modular Flexibility246

As described earlier, modular flexibility assesses how often a node shifts its community assignment247

across different time-windows. Functional participation coefficients reflect the same property on the248

static level; that is, during one time-window. Indeed, some regions known as connector hubs, play a249

gating role across multiple communities and have a larger functional participation coefficient (Bertolero,250

Yeo, Bassett, & D’Esposito, 2018; Cohen & D’Esposito, 2016). The same regions would also be251

theoretically expected to often shift their allegiance between different cognitive networks, across multiple252

temporal scales. Thus, we hypothesized that the participation coefficients obtained from the static253

functional network would be positively correlated with the functional network’s flexibility across time.254

To test our hypothesis, we first computed these two metrics for each region and averaged the values255

across subjects. We observed that the functional participation coefficients and the modular flexibility256

were strongly positively correlated across regions (r = 0.78, pspin = 2× 10−5; Figure 2D). Moreover, the257

temporal lobe displayed high values of functional participation coefficient and modular flexibility,258

whereas the medial frontal lobe displayed low values (Figures 2E and F).259

Boundary Controllability and Functional Participation Coefficients Serially Mediate the Relationship between267

Structural Participation Coefficients and Modular Flexibility268
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Figure 3. Serial Mediation Model. We examined the hypothesis that the structural participation coefficient of each brain region (obtained from the DTI

sequences) can predict its modular flexibility (obtained from the resting-state fMRI BOLD sequences) via the serial mediation effects of boundary controllability

and the functional participation coefficient. In order to establish temporal directionality within the mediation model, the functional participation coefficient

was calculated only during the first time-window of the functional time series and modular flexibility was averaged across all remaining time-windows (second

through tenth). The unstandardized regression coefficient (c) and p-value are reported for each association within the mediation analysis. Moreover, the total

and direct effects of the structural participation coefficient (independent variable) on modular flexibility (dependent variable) are also provided (total effect:

regression coefficient c, p-value; direct effect: regression coefficient c′, p-value).

260

261

262

263

264

265

266

In the previous two sections, we established that a region’s ability to dynamically interact with multiple269

cognitive modules (via structural controllability and functional flexibility) was also reflected on the static270

level (via participation coefficients), in both structural and functional modalities. We next attempted to271

bridge the two imaging modalities. We hypothesized that the structural participation coefficient of a272

region would predict its functional modular flexibility via the serial mediation effects of its boundary273

controllability and functional participation coefficient. In testing this hypothesis, we found that, across274

regions, the structural participation coefficient (the independent variable) was positively correlated with275

temporal modular flexibility (the dependent variable) (r = 0.16, pspin = 0.012). As theorized, this effect276

was serially mediated by boundary controllability and functional participation coefficients (Figure 3; total277

effect = 0.215; p = 0.002, indirect effect = 0.190; Bootstrapping Confidence Interval = [0.119 0.269]).278

It is noteworthy that the significant positive correlation between structural participation coefficients279

and (the second mediator) functional participation coefficients (r = 0.32, p = 3.88× 10−7) became280
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non-significant after regressing out (the first mediator) boundary controllability (c = 0.097; p = 0.25).281

Similarly, even though the positive association between boundary controllability and modular flexibility282

was significant (r = 0.32, p = 5.54× 10−7), it became non-significant once the functional participation283

coefficient was regressed out of the model (c = 0.009, p = 0.84). More importantly, however, the direct284

effect of the structural participation coefficient on modular flexibility became non-significant once the285

effects of the mediators were regressed out of the model (Figure 3; c′ = −0.049, p = 0.41). These286

statistical results strongly support the notion that the total effect of the structural participation coefficient287

on modular flexibility is indeed fully mediated by the serial effects of boundary controllability and the288

functional participation coefficient.289

Relationship between Participation Coefficients, Boundary Controllability, and Modular Flexibility, across298

subjects299

Thus far, we have focused on regional variation in structure and dynamics, and their relations. Next, we300

turn to subject-level variation to better understand inter-individual differences. Specifically, we examine301

the relationship(s) between participation coefficients, boundary controllability, and modular flexibility,302

across subjects. We used multiple linear regression models to adjust for age, sex, and in-scanner head303

motion (corrected for multiple comparisons using FDR). As in the regional analyses, we observed that304

the structural participation coefficient was positively correlated with boundary controllability (Figure 4A;305

r = 0.22, p = 3× 10−10; FDR) and with the functional participation coefficient (Figure 4B; r = 0.10,306

p = 0.005; FDR), but not with modular flexibility (Figure 4C; r = 0.03, p = 0.40; FDR). Moreover,307

boundary controllability was correlated with the functional participation coefficient (Figure 4D; r = 0.10,308

p = 0.005; FDR) and had a trending association with modular flexibility (Figure 4E; r = 0.07, p = 0.07;309

FDR). Lastly, we observed a strong positive correlation between average functional participation310

coefficient and modular flexibility (Figure 4F; r = 0.41, p = 1× 10−33; FDR). We note that in each311

aforementioned multiple regression model, age was significantly and consistently correlated with the312

dependent variable (Figure 4A: p = 1.6× 10−7, Figure 4B: p = 0.002, Figure 4C: p = 0.003, Figure 4D:313

p = 0.002, Figure 4E: p = 0.007, and Figure 4F: p = 0.066; FDR).314

Although we observed no significant correlation between the structural participation coefficient and315

modular flexibility across subjects, a mediation effect between the two variables could still exist (Hayes,316
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Figure 4. Subject-wide correlations. We examined whether the correlations observed within our structural and functional variables across regions persisted

across subjects. In all analyses, we adjusted for age, sex, and in-scanner head motion (FDR corrected for multiple comparisons). Here we show leverage

plots corresponding to the multiple linear regression models used: (A) The structural participation coefficient was significantly correlated with boundary

controllability (r = 0.22, p = 3 × 10−10) and with (B) the functional participation coefficient (r = 0.10, p = 0.005), but not with (C) modular flexibility

(r = 0.03, p = 0.40). (D) Global boundary controllability was also positively associated with the average functional participation coefficient for each subject

(r = 0.10, p = 0.005) and had a trending relationship with (E) modular flexibility (r = 0.07, p = 0.07). Lastly, as in the regional case, (F) each subject’s

average functional participation coefficient was strongly correlated with its corresponding modular flexibility (r = 0.41, p = 1 × 10−33). The shaded areas

correspond to the confidence curves for the fitted lines.
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297

2018). Thus, we examined whether boundary controllability and the functional participation coefficient317

still played a serial mediation effect in regulating the relationship between the structural participation318

coefficient and modular flexibility. Once again, we observed a significant mediation effect in the same319

direction as observed in the regional analyses (total effect = 0.034, p = 0.37; indirect effect = 0.006;320

Bootstrapping Confidence Interval = [0.0002 0.0125]). However, when age, sex, and in-scanner head321
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motion were also included as covariates in the mediation model, the significance disappeared (total effect322

= -0.005, p = 0.90; indirect effect = 0.003; Bootstrapping Confidence Interval = [-0.001 0.009]).323

Developmental Trajectories of Participation Coefficients, Boundary Controllability, and Modular Flexibility324

Due to the substantial effects of age in the aforementioned subject-wide analyses, we tracked the325

age-related changes in all pertinent variables. We specifically examined the relationships between age326

and the structural and functional participation coefficients, boundary controllability, and modular327

flexibility, after regressing out the effects of sex and in-scanner head motion (corrected for multiple328

comparisons; FDR). Notably, all variables of interest decreased linearly with age, with the structural329

markers (i.e., structural participation coefficient, Figure 5A, r = −0.20 and p = 2× 10−8; boundary330

controllability, Figure 5B, r = −0.22 and p = 3× 10−10) displaying larger effect sizes than their331

functional counterparts (i.e., functional participation coefficient, Figure 5C, r = −0.14 and332

p = 1× 10−4; modular flexibility, Figure 5D, r = −0.12 and p = 4× 10−4).333

DISCUSSION

The brain is an interconnected dynamical system whose functional expression relies on the underlying339

white matter architecture (Deco et al., 2013). The intrinsic mechanisms, however, of how such a diverse340

repertoire of functions emerges from a relatively rigid anatomical backbone have yet to be fully341

understood. In this study, we combined tools from network neuroscience and control theory to examine342

whether and how white matter tractography networks support the flexible modular architecture of the343

brain, as derived from resting-state fMRI BOLD signals. In structural networks, we found that a region’s344

participation coefficient was strongly positively correlated with its boundary controllability, suggesting345

that its ability to be controlled by external input can be assessed by the distribution of edges within its346

own and different modules across the network. Similarly, in functional networks, we found that a region’s347

participation coefficient strongly correlated with its modular flexibility, suggesting that a region’s348

flexibility across multiple temporal windows can be captured by its static participation in the349

communication occurring both within and between modules. Collectively, these observations provide us350

with foundational intuitions regarding how temporally-evolving patterns of communication can arise351

from fixed structural connectomes.352
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Figure 5. Age-related changes in structural and functional metrics. Global structural and functional metrics were derived per individual by averaging

the corresponding values across brain regions. (A) The structural participation coefficient (r = −0.20, p = 2 × 10−8; FDR), (B) boundary controllability

(r = −0.22, p = 3 × 10−10; FDR), (C) functional participation coefficient (r = −0.14, p = 1 × 10−4; FDR), and (D) modular flexibility (r = −0.12,

p = 4× 10−4; FDR) all declined linearly with age. The effects of sex and in-scanner head motion were regressed out, and each analysis was FDR corrected

for multiple comparisons. The shaded areas correspond to the confidence curves for the fitted lines.
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Structurefunction relations across anatomical regions353

Once a network structure is provided, one can begin to understand the anatomical support for various354

patterns of communication both within and between its component modules (Avena-Koenigsberger,355

Misic, & Sporns, 2018). Each module (or community) consists of a group of densely interconnected356

nodes (Sporns & Betzel, 2016). Each node can then be assigned a participation coefficient which357

quantifies its connectivity distribution across communities (Guimera & Amaral, 2005). A high358

participation coefficient indicates strong between-module and weak within-module connectivity; a low359

participation coefficient indicates a more uniformly distributed connectivity pattern across modules.360
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Intuitively, whether a region’s connections remain local to or expand beyond their community could361

partially determine that region’s control over signal transduction throughout the network (Gu, Pasqualetti,362

et al., 2015; Medaglia et al., 2018). Here we validated that intuition in our structural analyses, where the363

participation coefficient of a given node displayed a strong correlation with its boundary controllability.364

The result also deepens our understanding of the brain’s structural organization. The participation365

coefficient is calculated from a single scale of modules as defined by the eight cognitive systems366

examined (Yeo et al., 2011), whereas the boundary controllability assesses a region’s location betwixt367

modules defined across all scales, from eight modules to N modules. Hence, the strong relation between368

these two variables indicates that submodules tend to be formed by larger modules breaking at a hinge,369

rather than by the center of a large module falling out, like a donut hole. It would be interesting in future370

work to further examine individual differences in these hinge-like hierarchies and assess their relevance371

for cognitive function.372

Whereas white matter structure provides anatomical support for communication patterns, the brain’s373

functional dynamics can provide more direct measurements of those putative patterns. In a functional374

brain network, the participation coefficient can be used to assess how uniformly the edges of a node span375

modules in a single temporal window, which is typically chosen to be the full duration of the functional376

scan (Power et al., 2013). In contrast, modular flexibility can be used to assess how the allegiance of a377

node to a module changes over multiple temporal windows, or over different time scales (Khambhati et378

al., 2018). For instance, a node that constantly shifts its allegiance between different communities over a379

task duration or resting-state period would have a high modular flexibility value. Flexibility is a380

fundamental property of dynamical and adaptive systems, which is thought to support a range of human381

cognitive processes including motivation (O’Ralley, 2020), working memory (Pedersen et al., 2018), and382

cognitive flexibility (Braun et al., 2015; Ramos-Nunez et al., 2017), is age-dependent (Malagurski, Liem,383

Oschwald, Merillat, & Janche, 2020; Schlesinger, Turner, Lopez, Miller, & Carlson, 2017), and can be384

modulated by mood (Betzel et al., 2017), exercise (Sinha, Berg, Yassa, & Gluck, 2021), and hormonal385

fluctuations (J. M. Mueller et al., 2021). Following existing literature discussing the relationship between386

static and dynamic connectivity (Betzel, Fukushima, He, Zuo, & Sporns, 2016), we asked whether a387

region’s static participation coefficient was associated with its dynamic flexibility. That is, if a region is –388

on average – strongly connected to multiple modules, does that region also have a propensity to change389
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the module to which it is most strongly connected over short time periods? We find that that answer is390

“yes”: a region’s functional participation coefficient and modular flexibility were strongly positively391

correlated. This correspondence between the temporal average and the time-resolved behavior provides392

deeper insight into the nature of regional roles within a functional network. What appears over all393

time-windows as a broad participation is in fact produced by temporally resolved affiliations, where a394

region participates most closely with different modules at different time-points.395

What mediates the relationship between structure and dynamics?396

Given the cognitive and clinical relevance of flexibility (Bailey, Aboud, Nguyen, & Cutting, 2018;397

Barbey, 2018; Bassett, Yang, Wymbs, & Grafton, 2015; Chong et al., 2019; Doucet, Bassett, Yao, Glahn,398

& Frangou, 2017; Finc et al., 2017; Harlalka, Bapi, Vinod, & Roy, 2019; Rolls, Cheng, & Feng, 2021;399

Shine, Bissett, et al., 2016; Zhang et al., 2016), it is important to establish a statistically principled400

pathway whereby modular flexibility could be regulated, and might depend upon underlying structure.401

Accordingly, we tested the hypothesis that a region’s structural participation coefficient predicts its402

corresponding functional flexibility, via the serial mediation effects of its boundary controllability and403

functional participation coefficient. In order to account for temporal directionality in this mediation404

model, we computed each region’s functional participation coefficient only during the first time-window405

(out of a total of 10 non-overlapping time-windows) of the resting-state fMRI BOLD sequence, and we406

calculated its modular flexibility across all remaining time-windows of the same sequence. Consistent407

with our hypothesis, we found a strong serial mediation effect between structural participation408

coefficients and functional flexibility, which was fully mediated by the serial effects of boundary409

controllability and functional participation coefficient (Figure 3). This directional mediation effect was410

strong – yielding a ratio of indirect to total effect of 0.88 – in predicting the functional flexibility of a411

region given its structural participation coefficient (Kenny, Kashy, & Bolger, 1998). Notably, when the412

mediation effects of the two mediators were regressed out of the model, the significant association413

between structural participation coefficients and modular flexibility disappeared, suggesting that a full414

mediation effect was present (Hayes, 2018; Rucker, Preacher, Tormala, & Petty, 2011).415

Overall, this result shows how a static structural property of a region can mediate a dynamic functional416

property of the same region. Specifically, the distribution of a region’s edges at a given time-point can417
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mediate how a region shifts the edges’ module allegiance over a period of time. Our observation that418

boundary controllability and functional participation coefficients strongly mediated this relationship,419

demonstrates that in addition to having edges reaching different modules across the network, a region’s420

strategic placement on the boundaries of such modules is also important in assessing its flexibility. This421

dependence is intuitive, and existing on the boundary bestows the region with the ability to potentially422

integrate information across different cognitive processes. Indeed, connector hubs – nodes with diverse423

connections across modules and anatomically located at the boundaries between communities – have424

been previously reported to coordinate connectivity changes occurring between nodes from different425

communities, during cognitive tasks (Bertolero et al., 2018; Gratton, Laumann, Gordon, Adeyemo, &426

Petersen, 2016).427

Structurefunction relations across individuals & through development428

In order to examine how the relationships between participation coefficients, structural controllability,429

and functional flexibility varied across participants, we computed a global average metric for each430

structural and functional marker, per individual, and repeated the above analyses across a large431

developmental cohort of youth (PNC) (Satterthwaite et al., 2014). Overall, the associations between the432

variables of interest remained significant in multiple linear regression models adjusting for age, sex, and433

in-scanner head motion, as in the region-wide analyses. There were, however, two main differences434

between the across-region and the across-subjects results: (i) the relationship between the structural435

participation coefficient and modular flexibility became non-significant in the across-subjects analysis,436

and (ii) age was consistently correlated with the dependent variable in all regression models.437

Even though there was no correlation between the structural participation coefficient and modular438

flexibility in the across-subjects analysis, we re-tested our hypothesis that the relationship between the439

two variables was still mediated by the structural networks’ boundary controllability and the functional440

networks’ participation coefficients (Hayes, 2018). Similarly to the across-region analysis, we discovered441

that a mediation effect of the same directionality was still present and significant. Notably, however,442

when we included age as a covariate, the mediation effect was no longer significant. This observation443

could reflect the instrumental role that age plays in shaping structural and functional connectivity during444

this developmental period.445
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The important effect of age in the subject-wide mediation model, in addition to our earlier observation446

that age was strongly correlated with each one of the variables explored in the subject-wide analyses,447

motivated us to study the age-related changes in all structural and functional variables of interest. Such448

changes are anticipated, given that the age range of our cohort spans childhood and adolescence, which is449

a critical period of neurodevelopment and neuroplasticity (Brun et al., 2009; Casey, Tottenham, Liston, &450

Durston, 2005; Foulkes & Blakemore, 2018; Fuhrmann, Knoll, & Blakemore, 2015; Lenroot et al., 2009;451

Somerville et al., 2018). We found that both sets of structural (i.e., structural participation coefficient and452

boundary controllability) and functional (i.e., functional participation coefficient and modular flexibility)453

metrics decreased linearly with age, with the former displaying larger effect sizes.454

The robust age-related decrease of the structural participation coefficient across youth observed in this455

study has been previously reported (Baum et al., 2017; Dosenbach et al., 2010; Fair et al., 2009; Gu,456

Satterthwaite, et al., 2015). As a region’s participation coefficient decreases, it develops strong457

within-module connectivity and weak between-module connectivity. The corresponding increase in458

modular segregation across development has been shown to enhance network efficiency via the459

strengthening of hub edges, and to support executive performance (Baum et al., 2017). Here we further460

observe that boundary controllability decreases with age, while other metrics of controllability (average461

and modal) have been reported to increase over the same developmental period (Tang et al., 2017). This462

pattern of findings is particularly notable as boundary controllability is driven by changes in modular463

architecture, whereas neurodevelopmental changes in average and modal controllability are not (Gu,464

Pasqualetti, et al., 2015; Tang et al., 2017). These observations suggest that a fundamental change in465

graph architecture is taking place throughout this developmental period that potentially contributes to the466

maturity of brain modules, in support of the emergence of functional roles of cognitive systems (Gu,467

Satterthwaite, et al., 2015) associated with network segregation (Baker et al., 2015; Baum et al., 2017;468

Fair et al., 2009, 2007). Furthermore, the changes in modular flexibility that we observed across this469

period could represent enhanced communication plasticity, paving the way for the emergence of470

high-order cognitive functions characteristic of adulthood (Geerligs, Saliasi, Maurits, & Lorist, 2015;471

Luna, Marek, Larsen, Tervo-Clemmens, & Chahal, 2015).472

LIMITATIONS & FUTURE DIRECTIONS
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The work should be examined in light of several methodological considerations and limitations. This473

study, by design, was cross-sectional aiming to explore how functional flexibility emerged from the474

underlying white matter architecture. A cross-sectional design is limited in its ability to tease apart475

temporal precedence. As such, it would be highly informative to also include longitudinal data that476

address how the structural and functional properties of each region change during this crucial period of477

neurodevelopment. In order to account for temporal directionality in our mediation analyses, we478

computed functional participation coefficients from the first temporal window of the fMRI BOLD479

sequence and modular flexibility from the remaining time-windows. This approach could, however, raise480

the issue that incorporating functional signals from a single time-window with limited time series length481

could inflate signal noise (Noble, Scheinost, & Constable, 2019). In order to address this potential482

concern, we repeated our mediation analyses after computing mean functional participation coefficients483

and modular flexibility from all time-windows; all conclusions remained the same. Moreover, although484

most of the structural and functional markers examined here have been separately reported to regulate485

cognitive functions such as executive function (Baum et al., 2017; Reineberg & Banich, 2016),486

processing speed (Varangis, Habeck, Razlighi, & Stern, 2019), and working memory (Stevens, Tappon,487

Garg, & Fair, 2012), it would be beneficial to incorporate clinical and neurocognitive dimensions into our488

mediation models. Incorporating behavioral data will address the question of how the serial mediation489

model as a whole could shape behavior and cognition, and how deficits in the inter-relations among its490

components could potentially lead to neurological and psychiatric developmental disorders (Aerts, Fias,491

Caeyenberghs, & Marinazzo, 2016; Griffa, Baumann, Thiran, & Hagmann, 2013; Millan et al., 2012;492

Warren et al., 2014). Finally, replicating our results in different cohorts during the same period would be493

of paramount importance to ensure reproducibility.494

CONCLUSION

In this study, we used tools from network neuroscience and control theory to examine how the brain’s495

relatively rigid white matter architecture gives rise to a diverse repertoire of flexible neural dynamics,496

during normative development. We demonstrated that a brain region’s ability to display temporal497

flexibility in its functional expression positively correlated with the relative proportion of its anatomical498

edges reaching different cognitive modules across the brain. Indeed, this relationship was strongly499
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mediated by the region’s boundary controllability, that is its capacity to integrate information across500

multiple cognitive processes. Overall, this work addresses the central question of how the human brain’s501

anatomical pathways support changes in flexible neural dynamics across late childhood, adolescence, and502

early adulthood, and provides a framework that could be used to study how neurological and psychiatric503

disorders emerge during that critical period of high neuroplasticity. Such analyses can leverage data on504

neurocognitive performance and clinical features available on this sample.505
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Recent work in several fields of science has identified a bias in citation practices such that papers from523

women and other minority scholars are under-cited relative to the number of such papers in the field524

(Caplar, Tacchella, & Birrer, 2017; Dion, Sumner, & Mitchell, 2018; Dworkin et al., 2020; Maliniak,525

Powers, & Walter, 2013; Mitchell, Lange, & Brus, 2013). We obtained the predicted gender of the first526

and last author of each reference by using databases that store the probability of a first name being carried527

by a woman (Dworkin et al., 2020). By this measure (and excluding self-citations to the first and last528

authors of our current paper), our references contain 12.15% woman(first)/woman(last), 9.35%529

man/woman, 23.36% woman/man, and 55.14% man/man. This method is limited in that a) names,530

pronouns, and social media profiles used to construct the databases may not, in every case, be indicative531

of gender identity and b) it cannot account for intersex, non-binary, or transgender people. We look532

forward to future work that could help us better understand how to support equitable practices in science.533

534

REFERENCES535

536

Aerts, H., Fias, W., Caeyenberghs, K., & Marinazzo, D. (2016). Brain networks under attack: robustness properties and the537

impact of lesions. Brain, 139(12), 3063–3083.538

Alexander-Bloch, A., Shou, H., Liu, S., Satterthwaite, T. D., Glahn, D. C., Shinohara, R. T., . . . Raznahan, A. (2018). On539

testing for spatial correspondence between maps of human brain structure and function. Neuroimage, 178, 540-551.540

Avena-Koenigsberger, A., Misic, B., & Sporns, O. (2018). Communication dynamics in complex brain networks. Nature541

Reviews Neuroscience, 19(1), 17.542

Bailey, S. K., Aboud, K. S., Nguyen, T. Q., & Cutting, L. E. (2018). Applying a network framework to the neurobiology of543

reading and dyslexia. Journal of Developmental Disorders, 10(37).544
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