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Summary. Estimating and monitoring the quality of service of computer and communications
networks is a problem of considerable interest.The paper focuses on estimating link level delay
distributions from end-to-end path level data collected by using active probing experiments.This
is an interesting large scale statistical inverse (deconvolution) problem. We describe a flexible
class of probing experiments (‘flexicast’) for data collection and develop conditions under which
the link level delay distributions are identifiable. Maximum likelihood estimation using the EM
algorithm is studied. It does not scale well for large trees, so a faster algorithm based on solving
for local maximum likehood estimators and combining their information is proposed. The use-
fulness of the methods is illustrated on real voice over Internet protocol data that were collected
from the University of North Carolina campus network.
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1. Introduction

Computer and communications networks form the back-bone of our information society. Over

the last decade, these networks have experienced an exponential growth in terms of the number

of users, the amount of traffic and the complexity of applications. It is important for network

engineers and Internet service providers to be able to estimate and monitor the quality-of-service

parameters such as link delays, dropped packet rates and available bandwidth. However, the

decentralized nature of modern computer and communications networks has made it difficult

to assess performance. Traditional methods based on queuing analysis focus on the behaviour

of one or a small number of routers and are inadequate in characterizing the complexities of

such networks. This has led to the emergence of network tomography—an area that uses active

and passive traffic measurement schemes to quantify the performance and the quality of service

of networks. A good review of the area and challenges can be found in Castro et al. (2004).

The term network tomography was introduced in Vardi (1996), which dealt with the esti-

mation of origin–destination traffic intensities based on the total measured intensities along

individual links. See Tebaldi and West (1998), Cao et al. (2000) and Zhang et al. (2003) for

related work on this problem. Active tomography deals with estimating link level characteris-

tics, such as loss rates and delay distributions, by actively probing the network. This involves

sending probe packets from one or more sender nodes to a set of receiver nodes and measuring
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the end-to-end characteristics. The goal then is to estimate (‘recover’) the link level information

from the end-to-end path level data. This paper focuses on delay distributions.

As an example, consider the emerging application of Internet or ‘voice over Internet proto-

col’ (VOIP) telephony. VOIP is a technology that turns voice signals into packets and transmits

them over the Internet to the intended receivers. The main difference from classical telephony is

that the call does not use a dedicated connection with reserved bandwidth, but instead packets

carrying the voice data are multiplexed in the network with other traffic. For this application,

the quality-of-service requirements in terms of packet losses and delays are significantly more

stringent than non-realtime applications such as electronic mail. Recently, the University of

North Carolina (UNC) entered the planning phase of deploying VOIP telephony and wanted

to assess its campus network to determine whether it is capable of supporting the technology.

To do this, monitoring equipment and software that were capable of placing such phone calls

were installed throughout the campus network. The software allows the emulation of VOIP

calls between the monitoring devices. It then synchronizes the clocks and obtains very accurate

packet loss and delay measurements along the network paths.

15 monitoring devices from Avaya Laboratories were deployed in a variety of buildings and

on a range of capacity links through the UNC network. The locations included dormitories,

libraries and various academic buildings. The links included large capacity gigabit links, smaller

100 Mbit links and one wireless link. Monitoring VOIP transmissions between these buildings

allows us to examine traffic influenced by the physical conditions of the link and the demands

of various groups of users. Fig. 1(a) gives the physical connectivity of the UNC network. Each

of the nodes on the circle has a basic machine that can place a VOIP phone call to any of

the other end points. The three nodes in the middle are part of the core (main routers) of the

network. One of these internal nodes, the upper router linked to Sitterson Hall, also connects

to the gateway that exchanges traffic with the rest of the Internet. The measured data consist of

end-to-end delays and losses. We shall use data that were collected from this study to illustrate

our methodology in Section 8.

Although the physical structure of a network can be arbitrary (Fig. 1(a)), the logical topology

for the probing experiment can be represented more simply (Fig. 1(b)). We shall follow the com-

mon practice in the literature and focus attention on logical topologies that can be described by

trees: acyclic graphs with one vertex designated as the root (Fig. 2(b)). Formally, let T = .V , E/ be

a tree with node set V and link set E . The nodes follow a canonical numbering scheme, starting

from the root node 0. All links will be named after the node at their terminus so, in Fig. 2, link

Fig. 1. (a) Schematic diagram of the UNC network and (b) logical topology of the network
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Fig. 2. (a) Three-layer, binary, symmetric tree and (b) general tree with notation

1 refers to the link connecting nodes 0 and 1. The parent of node k ∈V will be written f.k/.

In a tree, all nodes have a parent except for the root node. Define f i.k/ recursively as follows:

f i.k/ = f{f i−1.k/}, where f 1.k/ = f.k/. Node k is said to be in layer L if f L.k/ = 0. Let D.k/

denote the children of node k, which is the collection of nodes whose parent is k. Let R denote

the set of leaf or receiver nodes, i.e. nodes with no children. Finally, an internal node is a node

with both a parent and a set of children. Fig. 2(a) shows a simple binary tree with three layers.

We shall use it later to illustrate some of the techniques.

Packets can be sent from a source to a destination by using two basic transmission protocols:

a ‘unicast’ scheme that sends a packet from a source to one receiver at a time, and a ‘multicast’

scheme that sends a packet simultaneously to a set of specified receivers. In previous work, the

term multicast experiment refers to the situation in which all the receiver nodes are probed

simultaneously. We shall refer to it instead as an ‘omnicast’ probing experiment. The ‘flexicast’

experiments in Section 3 are also based on multicast transmission, although they do not involve

sending the packet to all receivers in the network.

The estimation of loss rates based on active probing has been studied by many researchers

(see Cáceres et al. (1999), Xi et al. (2007) and references therein). Link delay tomography was

first studied by Lo Presti et al. (2002), who developed a heuristic estimator for omnicast exper-

iments based on solving polynomial equations, which can be very inefficient. Liang and Yu

(2003) developed a pseudolikelihood approach by considering all possible pairwise results from

each individual full omnicast result. We shall compare these two techniques with our methods

later in the paper. Shih and Hero (2003) presented an estimator that models link delay by using

a point mass at zero and a finite mixture of Gaussian distributions.

The rest of the paper is organized as follows. Section 2 describes the models and assumptions.

Section 3 describes the framework for probing studies, introduces flexicast probing experi-

ments and studies conditions under which the link level delay parameters are estimable from
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end-to-end, path level data. Section 4 deals with maximum likelihood estimation using the EM

algorithm and develops its computational and theoretical aspects. Alternative heuristic algo-

rithms that are faster and scale well to larger networks are discussed in Section 5. An extensive

numerical investigation of the procedures is also presented by using the ns-2 network simu-

lation software. Finally, the methods are illustrated on real data that were collected from the

UNC campus network.

2. Models and assumptions

Following Lo Presti et al. (2002) and Liang and Yu (2003), we shall consider nonparamet-

ric estimation of the delay distributions by using a discrete distribution with a fixed, univer-

sal bin size. Specifically, let Xk be the delay that is accumulated on link k, taking values in

the set {0, q, . . . , bq}. Here q is the bin size and b is the maximum discrete delay (which is

assumed to be common for all the links). Although this framework seems restrictive, it is use-

ful for several reasons. First, experience with real network traffic data shows that behaviour

tends to vary with the particular network being studied, so selecting a particular parametric

family for modelling the link delay distribution is difficult. Moreover, the delay data typically

exhibit bursty behaviour, in which case the tails of the distribution are of considerable inter-

est. The discrete model makes no assumptions about where the mass is located, so the tails

of heavy-tailed distributions can be estimated provided that we have a sufficient number of

probes. The bin size can be chosen adaptively after the data have been collected. Smaller bin

sizes can be used to estimate detailed information about the distribution. Large bin sizes can

be used to obtain tail information. Examples of this will be discussed in the data analysis

section.

Throughout the paper, we shall ignore losses or infinite delays. We can always estimate the

loss rates and the finite delay distributions separately and combine the results to estimate the

overall network behaviour. In addition, we make the assumption (which is common in the net-

work tomography literature) that the packet delays are temporally independent and that the

delay of a packet on a link is independent of the delay on the other links in the path. The

assumption of temporal independence is reasonable as long as the interval between probes is

sufficiently large. Temporal stationarity is reasonable as long as the probing period is sufficiently

short to avoid major network changes. The adequacy of the spatial assumption will depend on

the particular network being studied and whether there are other physical links connecting the

nodes.

The data are collected by recording the total delay that a packet experiences as it travels from

the root node to the receiver nodes. For example, in Fig. 2(b), probe packets would be sent from

node 0 to various collections of nodes 2, 3, 6, 8, 9, 10, 11, 12, 13, 14 and 15 and the delays that

are experienced along their corresponding paths would be recorded. Physically, each end-to-end

delay is the sum of the individual link delays along the path. If a scheme has a collection of k

receivers, a single observation would be a k-tuple of delays.

Let P0,k denote the path from node 0 to node k, and let

Yk = ∑

i∈P0,k

Xi

be the cumulative delay accumulated from the root node to node k. For example, Y3 =X1 +X3

in Fig. 2(b). The measurements that are obtained from a delay tomography experiment consist

of cumulative delays Yr, r ∈R. Let αk.i/=P.Xk = iq/, i=1, . . . , b. Our objective is to estimate

this set of values for k ∈E and i in {0, 1, . . . , b} by using the Yr-measurements.
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In what follows, we shall use the notation �αk = .αk.0/, αk.1/, . . . , αk.b//′ and �α = .�α′
0,

�α′
1, . . . , �α′

|E |]/
′. Let πj,k.i/ be the probability that the delay that is accumulated on path Pj,k

is equal to i units. This is a function of �α.

3. Flexicast probing experiments

Although the omnicast probing experiment is easy to implement, it suffers from several disad-

vantages. Suppose that there are R receivers and the total number of possible bins associated

with the path level delay distribution of the ith receiver is Bi. Then, the total number of possible

outcomes is of order Π
R
i=1Bi, which can be a huge number. As we shall see later, the computa-

tional efficiency of most estimation methods depends on this number. As an example, let each

link level delay distribution have the same number of bins: b=4. Further, suppose that we have

a symmetric binary tree with five layers. Then, there are R=16 receivers and Bi =19 for the path

level delay distributions of all the receivers, so the approximate number of possible outcomes is

2:8×1020.

A second, perhaps more important, issue is the lack of flexibility as it involves probing the

entire network each time. In practice, we are interested in monitoring the network over a period

of time, and so we need a flexible scheme that allows us to probe different parts of the network

with different degrees of intensity depending on where there are bottle-necks or quality-of-

service problems. We consider a flexible class of probing experiments called ‘flexicast’ experi-

ments to address these problems in the context of delay tomography.

Define a k-cast scheme as a scheme that sends probes from a receiver to a specified set of

k receiver nodes. For example, for the tree in Fig. 2(b), 〈2,3〉 is a two-cast (or bicast) scheme

whereas 〈6, 12, 13, 14, 15〉 is a five-cast scheme. A flexicast experiment C is a combination of

k-cast schemes Cj, j =1, . . . , M, with possibly different values of k, that allows us to estimate all

the link level parameters. Returning to Fig. 2, one flexicast experiment made up of a collection

of bicast and unicast schemes is C ={〈2,3〉, 〈6, 12〉, 〈13, 14〉, 〈8, 9〉, 〈10〉, 〈11〉, 〈15〉}. Another that

uses larger k-casts is C ={〈2,3〉, 〈6, 12, 13, 14, 15〉, 〈8, 9, 10, 11〉}.

A natural question is when will a flexicast experiment lead to identifiability? We provide

below a necessary and sufficient condition. The proof is based on the idea that an individual

k-cast probe can identify all the path distributions between branching nodes on its subtree. It

suffices for the collection to be sufficiently rich in terms of subtrees that the individual links can

be expressed as functions of paths from different schemes. We formalize this intuition in the

following proposition. The proof is deferred to Appendix A.

Proposition 1. Let T be a general tree network, and suppose that its link delay distributions

are discrete. Let C be a collection of k-cast schemes Cj, j =1, . . . , M. The link level delay distri-

butions are identifiable if and only if

(a) for every internal node s∈T \{0, R} there is at least one k-cast scheme Cj ∈C, with k> 1,

such that s is a branching node for Cj, and

(b) every receiver r ∈R is covered by at least one Cj ∈C.

Remark 1. We have restricted attention to discrete distributions as they are the focus of the

present paper, but the result holds more generally. First, the result can be shown to hold as long

as the distribution has at least one point mass. It will also hold for purely continuous distribu-

tions under some conditions (such as higher order moments depending on the mean). It does

not, however, hold for arbitrary continuous distributions. This can be seen easily by using a

two-layer tree (the top two layers of the tree in Fig. 2(a)) with a source node 0, internal node 1
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and receiver nodes 2 and 3. Let the link level delay random variables be X1, X2 and X3 and the

path level delay random variables at receiver nodes 2 and 3 be Y2 =X1 +X2 and Y3 =X1 +X3.

Suppose that the Xis are independent N.µi, 1). Then, we cannot recover the µis from the joint

distribution of Y2 and Y3.

4. Maximum likelihood estimation

Active delay tomography is a large scale inverse problem. For example, consider the omnicast

problem for the topology that is given in Fig. 2(b). Here we must use the 11-dimensional end-

to-end measurements to estimate the 15 link delay distributions. The key is the dependence

among the 11-dimensional data that is induced by the simultaneous probing. This dependence

gives us additional information that allows us to deconvolve the path level delay into link level

information. We consider maximum likelihood estimation first.

We need some additional notation. Let T Cj be the subtree that is probed by scheme Cj ∈C,

with node set VCj and link set ECj . Let X Cj = {0, 1, . . . , b}|ECj | be the set of all possible link

delay combinations that could arise from this scheme. Each x ∈X Cj is an |ECj |-tuple giving a

possible link delay combination. Let the function y.x, T Cj / give the end-to-end delay arising

in scheme Cj from link outcome x ∈ X Cj . Define the set of all possible end-to-end delays as

YCj ={y.x, T Cj /|x∈X Cj}. Let γCj
.y/=P.YCj =y/, the probabilities for the end-to-end experi-

mental outcomes.

We illustrate this notation by using Fig. 2(b). Suppose that we probe the pair 〈2,3〉. Let b=1

so Xk ∈{0, 1}. The link set is E 〈2,3〉 ={1,2,3}. Assume that only a single probe packet is used for

this scheme, and it experiences link delays of 0, 1 and 1 on each link. We then have x= .0, 1, 1/

and y = .1, 1/. The probability of this link delay set is

P{X〈2,3〉 = .0, 1, 1/}=α1.0/ α2.1/ α3.1/:

The probability of this end-to-end outcome is

P{Y 〈2,3〉 = .1, 1/}=α1.0/ α2.1/ α3.1/+α1.1/ α2.0/ α3.1/,

which is the sum of the probabilities for the link outcomes which can give rise to this end-to-end

outcome.

4.1. EM algorithm

The discrete nonparametric distribution framework results in multinomial outcomes for path

level data. Specifically, the observations consist of the number of times that we observe each

individual outcome �y from the set of outcomes YCj for a given scheme. Denote these counts as

N
Cj

�y . Consider the likelihood equation

l.�α; Y/= ∑

Cj∈C

∑

�y∈Y
Cj

N
Cj

�y log{γCj
.�y; �α/}: .1/

This expression is difficult to maximize directly. However, it is a classical example of a missing

data problem: if the counts for the unobserved link delays were known, the maximization would

be fairly straightforward as the link outcomes are also simple multinomial experiments. The EM

algorithm is a natural candidate for computing the maximum likelihood estimates in this setting.

For distributions in exponential families, we need to impute just the sufficient statistics for each

link: the counts for the number of times that Xk took on each value.
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The E-step can be broken into two parts. Assume that we have some parameter vector

�α.q−1/. First, we compute the expected number of times that each link delay vector �x occurred

as

N
Cj.q/

�x = P. �XCj =�x/.q/

P{�YCj = �y.�x/}.q/
N

Cj

�y : .2/

Then, we use these values to compute the number of times that probes on link k had a delay of

i units as

M
.q/
k,i = ∑

Cj∈C:k∈T
Cj

∑

�x∈X
Cj :xk=i

N
Cj.q/

�x : .3/

We also need to keep track of mk, which is the total number of probes that crossed link k.

The M-step is quite simple once the sufficient statistics have been imputed:

αk.i/.q/ = 1

mk

M
.q/
k,i : .4/

4.2. Partitioning

The computationally challenging aspect in our setting is to partition the observed end-to-end

delays into the set of possible link delay combinations. These details are given next.

Consider Fig. 3(a). Suppose that this is the probing tree for a five-cast experiment and that

the maximum link delay is b = 2. Suppose further that a single probe results in the observed

delay vector Y = .2 3 3 4 3/. We need to partition this end-to-end delay vector systematically

into the complete list of all possible link delay vectors that give this result. We move from

top to bottom, identifying possible delays for links starting at the top of the tree and moving

downwards. We begin by listing possible link delays for the first link, between nodes 0 and

1, and leaving the rest of the delays as path delays. This amounts to imagining that the tree

takes the form of the shrub that is shown in Fig. 3(b), with each branch of the shrub hav-

ing a maximum delay determined by b and the number of links from node 1 to each of the

receivers.

To obtain the lower bound of the possible delays for the first link, consider the minimum

delay that is possible on this link that will give the observed values. The lower bound is the

maximum of a set containing 0 and each observed value minus the maximum delay that could

be obtained on its branch, Yr −grb, where gr is the number of links that are hidden in the branch

of the shrub connecting receiver r to the splitting node. For this example, the value is 1. The

upper bound is simply the minimum of b and the set of observed values. Here the value is 2.

This allows us to expand the observed delay into the set of link 1 delays and the remaining

delays:

. 2 3 3 4 3 /→
(

1 1 2 2 3 2

2 0 1 1 2 1

)

: .5/

We have now isolated the delays that could occur on the first link. We have also isolated the

delays that could occur on the second and third links. Now we need to expand the triplets .2 3 2/

and .1 2 1/. This is done exactly as before by considering only the portion of the tree that is

rooted on the link between nodes 1 and 4. Each triplet is an end-to-end observation from this

portion of the tree. For each set, we imagine the tree to be a three-branch shrub and expand the

observation on the possible values that could occur on link 4:
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Fig. 3. Partitioning example: (a) probing subtree and (b) its corresponding shrub

(

1 1 2 2 3 2

2 0 1 1 2 1

)

→

⎛

⎜

⎜

⎜

⎝

1 1 2 0 2 3 2

1 1 2 1 1 2 1

1 1 2 2 0 1 0

2 0 1 0 1 2 1

2 0 1 1 0 1 0

⎞

⎟

⎟

⎟

⎠

: .6/

Partitioning the second shrub gave us the range of values for links 4 and 5 leaving all the pairs

comprising the last two columns. Each pair can be partitioned into the three component parts

of this remaining shrub to give us the full partition for the observed delay on this tree:

⎛

⎜

⎜

⎜

⎝

1 1 2 0 2 3 2

1 1 2 1 1 2 1

1 1 2 2 0 1 0

2 0 1 0 1 2 1

2 0 1 1 0 1 0

⎞

⎟

⎟

⎟

⎠

→

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 2 0 2 1 2 1

1 1 2 0 2 2 1 0

1 1 2 1 1 0 2 1

1 1 2 1 1 1 1 0

1 1 2 2 0 0 1 0

2 0 1 0 1 0 2 1

2 0 1 0 1 1 1 0

2 0 1 1 0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

: .7/

Formally, let a shrub be any tree graph with a single internal node which has one or more

children that are all receivers. Partitioning the shrub is all that is required to partition any tree

or subtree. By moving downwards from the top and expanding one link at a time, we can ignore

any structure below the link of interest. The tree becomes a shrub by considering each receiver

descended from the link of interest to be on a separate branch. After expanding the desired link,

the remaining delay can again be partitioned by using the shrub algorithm. A single recursive
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function is all that is required: it would partition the tree as if it were a shrub and then call itself

to partition the subshrubs.

The algorithm for the general shrub with r receivers is quite simple. Let Y = .Y1, . . . , Yr/ be the

delay that is observed on the shrub. Further, let t be the maximum delay that can be observed

on the trunk and let li be the maximum delay that can be observed on leaf i. We have

a=max{0, max
i

.Yi − li/}, .8/

z=min{t, min
i

.Yi/} .9/

as the minimum and maximum possible values for the trunk delay. Thus, in one for-loop it is

easy to make the expansion:

Y = .Y1, . . . , Yr/→X=

⎛

⎜

⎜

⎝

a Y1 −a . . . Yr −a

a+1 Y1 − .a+1/ . . . Yr − .a+1/
:::

:::
: : :

:::

z Y1 − z . . . Yr − z

⎞

⎟

⎟

⎠

: .10/

4.3. EM complexity

To study the complexity of a single EM iteration, consider first a specific k-cast scheme. There are

b|T Cj | link delay outcomes for this probe. For each of these, there are |T Cj | multiplications to

compute the probability of the link delay outcome. For each outcome, there is also a single addi-

tion to tally up the end-to-end probabilities and a single division to compute the conditional

probability of each outcome given the end-to-end outcome. Finally, there are |T Cj | additions to

tally up the sufficient statistics. Overall, this gives us O.b|T Cj |/ operations. The largest subtree

sets the complexity for the E-step at O.b|T Clarge |/ where Clarge is the experiment on the subtree

with the most links. The M-step is trivial, consisting of |Eb| divisions.

There are a few things to note. First, mixtures of bicast (k =2) and unicast schemes offer the

best complexity while meeting the identifiability conditions. Additionally, they scale better than

k-casts with larger values of k. In particular, an omnicast scheme does not scale well.

If the tree grows in size but not in depth, then the bicast schemes should scale well because

this will simply result in more bicast schemes rather than more complicated bicast schemes. This

property does not hold for omnicast schemes which have complexity O.b|E |/.
Also of note, the complexity that is stated here is the extreme worst case based on observing

every possible delay combination from every probing experiment. In practice, both the parti-

tioning and the estimation consider only the observed delays which will significantly reduce the

average case complexity.

Unfortunately, the EM algorithm does not scale well as the tree becomes deeper for any

k-cast scheme. For such topologies, we explore alternative fast estimators in a later section.

Note, however, that the EM algorithm can be made computationally more efficient through

parallelization. Note that the E-step involves computing a sum that ranges first over the schemes

and then over the outcomes for that experiment. This sum can be broken down into component

pieces which can be computed simultaneously and combined.

4.4. Numerical investigation of EM algorithm

This section studies effects of the tree size and the number of bins (in the discrete delay distri-

bution) on the convergence of the EM algorithm. These two factors determine the number of

model parameters. In practice, we have flexibility over the number of bins but we have limited

control over the tree size. For example, in a monitoring situation, a coarse distribution can
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be estimated quickly and still provide enough information to detect anomalies in the network.

However, we can only obtain a smaller tree by lumping several links together and eliminating

some of the receivers.

Consider first the effect of the tree size, in terms of both number of links and layers. We

start with a two-layer symmetric binary tree so that there is a total of three links. Then, we

add two children at a time. So the five-link tree corresponds to adding two children to one

of the receiver nodes. The seven-link tree adds two children to the other receiver nodes (so

this is just a three-layer symmetric binary tree). We proceed in this manner until we obtain

the four-layer symmetric binary tree with 15 links (see the x-axis of Fig. 4(a)). The remaining

model components are held fixed. In particular, each link has a five-bin uniform delay dis-

tribution that is chosen because it provides maximum entropy; thus it is the most difficult to

resolve. We use a flexicast experiment that is a minimal set of bicast schemes that satisfy the

identifiability conditions. Some additional studies indicated that convergence for the EM algo-

rithm does not seem to depend greatly on the number of probes that are used. Hence, in these

investigations, each bicast scheme used 1000 probes for each link in its subtree. For each tree

size, 50 sets of data were generated and used for estimation. The convergence criterion was a

change in the log-likelihood of less than 10−4. Fig. 4(a) shows the number of iterations that

are required for convergence for each data set. The average number of iterations for each size

is plotted with standard deviation error bars. This suggests that the average number of itera-

tions seems to be increasing at a rate that is faster than linear (perhaps exponential) with the

number of links. This is a further indication that the EM algorithm does not scale well to larger

networks.

Next, consider the effect of the number of bins in each link with uniform delay distributions.

The number of bins on each link was varied from 2 to 15. We considered both two-layer and

three-layer binary symmetric trees with three and seven links respectively. Again, a minimal

bicast experiment with 1000 probes per scheme was used. The results for both trees are shown

in Fig. 4(b). In this scenario, the average number of iterations seems to grow approximately

linearly with the number of bins on each link. This is an important observation that we shall

exploit later in developing a faster algorithm.

4.5. Asymptotic properties of the maximum likelihood estimator

Given the multinomial nature of the underlying k-cast schemes, the asymptotic properties of

the maximum likelihood estimator (MLE) mostly follow from general principles. The difference

arises because the flexicast experiments imply that individual probes are not independent and

identically distributed. The proposition below establishes that the Fisher information matrix

is positive definite at the true value �α0. Thus, the likelihood has a unique maximum in a local

neighbourhood of the true value �α0.

Proposition 2. The Fisher information matrix I.�α0/ for the MLE based on end-to-end quan-

tized measurements from a flexicast experiment C is finite and positive definite.

The proof can be found in Lawrence (2005). The main idea is to treat the Fisher information

as the covariance of the score function and then to consider various hypothetical data sets to

establish that it must be positive definite.

Proposition 3. Let nCj =n→λCj as n→∞ with 0<λCj <1 for j =1, . . . , M. Then, �αMLE → �α0,

almost surely, and
√

n.�αMLE − �α0/⇒Z, where Z ∼N{�0, I−1.�α/}.

Proposition 3 follows from proposition 2 by using standard arguments (Lawrence, 2005).
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Fig. 4. (a) Number of iterations versus tree size and (b) number of iterations versus bin size for two- ( . . . . . . .)
and three- ( ) layer trees

5. Faster, heuristic, algorithms

5.1. Grafting

We propose a method that is called grafting which computes the ‘local MLE’ on each subtree

and uses peeling to combine the results. Shown in Fig. 5, peeling is the process of using a known
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Fig. 5. Peeling is the process of using a known path distribution and the known distribution for one end of
the path to solve for the distribution of the other end

path distribution and a known distribution from one end of that path to solve for the distribution

on the other end (see the proof of proposition 1). In essence, grafting treats each k-cast scheme

as an omnicast experiment on the probing subtree. It uses an EM algorithm to solve for the

MLE of the logical links on this subtree and then uses peeling to obtain estimates for individ-

ual links. For collections of bicast and unicast schemes, this technique scales very well because

the EM algorithm is applied to a series of three-link, two-layer trees. Thus the complexity is a

cubic polynomial in the number of bins, which is a vast improvement over the standard MLE

complexity. On the basis of the investigations that were discussed previously, increasing the

number of bins on the links increases the average number of iterations approximately linearly

whereas adding links tends to increase the required iterations exponentially. This local scheme

takes advantage of this fact by trading links for bins.

We shall explain the details by using a flexicast experiment with just bicast and unicast schemes.

First, consider a bicast scheme and the corresponding subtree. Let the trunk have t links and the

two branches have l1 and l2 links. The subtree has just three logical links with varying numbers

of bins on each: the trunk has tb + 1 bins and the branches have l1b + 1 and l2b + 1 bins. We

apply the EM algorithm to this logical subtree and solve for its MLE. This is done for all the

bicast schemes. This gives the estimates for the trunks and branches of all the bicast subtrees.

Individual links can be now be obtained in one of several ways. Consider first the simple

peeling from the proof of proposition 1. This is straightforward and non-iterative although not

very statistically efficient as only some of the bin probabilities from each known distribution

are used in computing the unknown distribution. At least one pair must split at node 1, so at

least one of the local MLEs must give us an estimate for link 1. Now, at least one scheme gives

us the local MLE for the path from the root node to every child of node 1. So the individual

links up to these points can be identified through peeling. This process continues down the tree,

identifying each link. The receivers that are covered by bicast experiments can be identified as

the branches in a subtree or by peeling from the branches. The receivers that are covered by only

unicast experiments can also be identified by peeling.

We now propose a more sophisticated peeling mechanism. This is a fixed point type of algo-

rithm that arises from postulating an EM algorithm for imaginary data. Imagine that we send n

probes across the path. Form data by setting nd =n π0,2.d/. The data are counts of the number

of times that delay d was observed on the path for all possible d. In the E-step, we want to

compute Mi, the expected number of times that delay i was seen on the unknown link. After the

qth iteration, this is given by

M
.q+1/
i =

b
∑

j=0

α
.q/

2 .i/ α1.j/

π
.q/

0,2.i+ j/
ni+j, .11/

where �π.q/

0,2 is updated with each update of �α.q/

2 . Note that this is not the quantity that was used

to generate the data. Since we obtain our estimates by dividing Mi by n, we obtain

α2.i/.q+1/ =
b

∑

j=0

α
.q/

2 .i/ α1.j/

π
.q/

0,2.i+ j/
π0,2.i+ j/: .12/
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This equation is no longer based on our imaginary data. It is run until �α2 approaches its fixed

point. Note that this fixed point algorithm is simply an EM algorithm for computing one link

level distribution from the path level and other link level distributions and meets standard condi-

tions for convergence. Unlike the simple method, this peeling function uses all of the information

from the two known distributions.

The peeling method can lead to multiple estimates for some links. The easiest way to address

this problem is to combine them, using either a simple average or a weighted average. For the

latter, if we have two estimates of �α1 from experiments C1 and C2, we can combine them as

follows to obtain

�̃α1 = nC1 �αC1 +nC2 �αC2

nC1 +nC2
: .13/

It can be shown that the grafting algorithm yields estimators that are consistent and asymp-

totically normal. The computation of the asymptotic variance is complicated and the simplest

way to compute the variance is to use bootstrap or other resampling methods.

5.2. A comparison of the various estimators

5.2.1. Other estimators in the literature

Two other estimation procedures have been proposed in the literature for the delay tomography

problem. Both are based on omnicast probing and rely on the same modelling assumptions as

those presented here: discrete delay with temporal and spatial independence. The first, which

was discussed by Lo Presti et al. (2002), depends on solving polynomials. At some link k, the

estimator uses the data from the subtree rooted at the link to create a polynomial for each unit

of delay, i. The degree of the polynomial is |D.k/|. The second root of this polynomial gives us

the cumulative probability of delay i on link k. The principal drawback of this estimator is that

it does not use all of the information that is available. End-to-end delays that are larger than

the largest allowable link delay are ignored. Additionally, the nature of the estimator allows

inappropriate results from the polynomial solution such as negative values or values that are

greater than 1.

The estimator by Liang and Yu (2003) is based on a pseudolikelihood approach. The com-

plexity of the omnicast experiment is reduced by looking at just bicast projections—all pairwise

combinations—and using a pseudolikelihood that treats them as independent. For example,

the network in Fig. 2(b) has 11 receivers, so the omnicast experiment results in 11-dimensional

delay observations. There are 55 possible pairs of receivers, so the pseudolikelihood scheme

treats all the possible pairs of delays as 55 independent bicast observations. The motivating

idea is that processing the data as pairs is computationally much more efficient than processing

the omnicast data. This can be justified if the gain in computational speed offsets the loss in

statistical efficiency.

5.2.2. Computational efficiency

Computational speed of the estimators is clearly a major consideration in real applications.

Network monitoring requires the ability to solve the inverse estimation problem very quickly.

In this section, we investigate the computational efficiencies of the various methods for several

different tree structures. Specifically, we compare the efficiencies of the MLEs based on omnicast

probing, the all-pairs bicast experiment and the ‘minimal plus one’ (min+1) bicast experiment.

Recall that a minimal flexicast experiment refers to a combination of bicast and unicast prob-

ing schemes that satisfy the identifiability condition. For a symmetric binary tree, this consists of
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Table 1. Three-layer tree com-
parison: average computing time

Estimator Time (s)

MLE 46.93
PLE 32.68
Polynomial 3.96
All-pairs MLE 17.19
Min+1 MLE 11.11
All-pairs graft 9.11
Min+1 graft 5.59

just bicast schemes. To see this, consider the three-layer, binary, symmetric tree in Fig. 2(a). The

minimal bicast experiment is {〈4, 5〉, 〈5, 6〉, 〈6, 7〉}. This experiment is unbalanced as receiver

links 4 and 7 are covered only once whereas links 5 and 6 are covered twice. A more balanced

approach is obtained by adding pair 〈4, 7〉. This ensures that each link on a particular layer

of a binary, symmetric tree is covered by the same number of experiments. We refer to such

experiments as min+1 flexicast experiments.

In addition to the MLEs, we also consider the pseudolikelihood estimator (PLE), the poly-

nomial estimator from Lo Presti et al. (2002) and grafting for all-pairs bicast and min+1 bicast

experiments. All the estimators were implemented by using MATLAB with the combinatorial

partitioning components of the likelihood-based methods written in C. The link delays follow

a five-bin truncated geometric distribution. The parameters of the distributions were varied in

a manner to keep the situations realistic: the interior links have high probability of 0 as com-

pared with edge links to simulate the difference between internal links with large bandwidth

and smaller local links. The comparisons of efficiency were based on 100 simulated data sets

and are shown in Table 1.

The polynomial estimator is, of course, the fastest. This is partially driven by the fact that

it is solving quadratic equations in this example (binary tree) and the formulae for the estim-

ates are obtained explicitly. The effect of having a large number of children on the polynomial

estimator will be investigated later. We shall also see later that this algorithm can be consid-

erably inefficient in a statistical sense. As is to be expected, the PLE is faster than the MLE

based on the full EM algorithm; however, it does not gain as much over the MLE as does the

pure bicast algorithm. The all-pairs bicast is more than twice as fast as the likelihood-based

multicast estimators, whereas the PLE does not seem to benefit from an order of magnitude

gain.

5.2.2.1. Unbalanced tree. Here we consider the tree structure that is shown in Fig. 2(b). We

investigate only the PLE, the minimum pairs bicast MLE, the all-pairs grafting procedure and

the minimum pairs grafting procedure. The polynomial estimator was dropped because of the

difficulty in implementing it for general trees. It is studied below, however, for another situation.

The link delay distributions were again chosen to be a five-bin, truncated geometric distri-

bution. Table 2 shows the results of the comparisons. The pseudolikelihood is the slowest. The

all-pairs grafting requires a tenth of the computation time of the PLE despite sharing similar

amounts of data. The flexicast experiment with minimum bicasts has a smaller number of pairs,

so it should be expected to save in computational time. The full MLE for this minimum pairs

experiment takes about a 40th of the time of the PLE in this example. The grafting procedure
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Table 2. Computational speeds of
estimators applied to data from
Fig. 2(b)

Estimator Average
time (s)

PLE 401.27
Minimum 10.12

pairs MLE
All pairs 41.61

grafting
Minimum 4.99

pairs grafting

Table 3. Comparison of computa-
tion time for grafting and the polyno-
mial estimator on shrubs with varying
numbers of children

Number of Times (s) for the
children following estimators

Grafting Polynomial

2 0.48 1.02
6 0.84 1.08

10 0.99 1.13

with minimum pairs is extremely fast, comparable in speed with the time that is achieved by the

polynomial estimator on the simpler tree that was discussed previously.

5.2.2.2. Shrub comparison. Here we investigate only the two fastest estimators: the grafting

procedure with minimum bicast pairs and the polynomial estimator. We study a set of simple

cases: shrubs with increasing numbers of children to see how the performance varies. For each

configuration, we generated 1000 data sets from truncated geometric distributions on each link.

Table 3 lists the average computation times for shrubs with two, six and 10 children. The grafting

procedure is uniformly faster on this test, even when it must combine information from five trees

in the 10-child example. The polynomial estimator performs at its best on small trees with small

numbers of bins. However, when the true bin probability is small, we found that it can lead to

negative estimates in a significant number of cases.

5.2.3. Statistical efficiency

Statistical efficiency has received little attention in the literature, perhaps because of the inher-

ent assumption that a large number of probes can be obtained easily. In reality, however, active

experimentation perturbs the network, and so too much probing in a short period of time can

end up causing delay and losses on the network. If we spread the probing over an extended

period, it will invalidate the stationarity assumption. As a result, we must limit the number of

probes, so any effective estimator must be reasonably efficient.
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We also note that it is difficult to compare the statistical efficiencies of estimates that are based

on bicast or other flexicast experiments with those that are based on an omnicast experiment as

they are not on an equal footing. If the total number of probes is fixed, the total amount of traffic

expected is different for omnicast and flexicast experiments. Even if we fix the total amount of

expected traffic on all links under the schemes, different links will have different expected num-

bers of probes. It is not possible to make the expected number of probes in each link be the

same under the different schemes. Moreover, omnicast experiments contain information about

all higher order moments whereas the flexicast experiments are designed to sacrifice the higher

order moments to reduce data complexity.

To keep the comparisons meaningful, we shall examine the efficiencies of estimation meth-

ods based on omnicast and bicast experiments separately. The comparisons here are based on

a three-layer symmetric binary tree. The link delay distributions were chosen to be truncated

geometric with five bins.

Fig. 6 shows the performance of the full EM-based MLE, PLE and the polynomial estimator

for the last bin for three links: α1.4/, α2.4/ and α4.4/. The size of the omnicast experiment

was 20000 total probes. Recall that α1 is the first link on the tree whereas α4 corresponds to

one of the receiver nodes. Fig. 6 suggests that the bias is small (medians close to the true values).

Fig. 6. Box plots of the estimates for (a) α1.4/, (b) α2.4/ and (c) α4.4/ for three multicast-based estimators
(mean-squared errors are given in parentheses)
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Fig. 7. Box plots of the estimates for (a) α1.0/, (b) α2.0/ and (c) α4.0/ for four bicast-based estimators
(mean-squared errors are given in parentheses)

The performance of the PLE is close to that of the MLE on links 1 and 4 with interquartile

range ratios of 1.01 and 1.06. The performance on the interior link is somewhat worse with an

interquartile range ratio of 1.38. This conclusion seems to be true in general; i.e. the relative

performance of the PLE grows worse as we move to the interior of the tree. So we would expect

the performance to be poor for internal nodes in the middle of a large tree with many layers.

The polynomial estimator, in contrast, is considerably less efficient in all three cases with

interquartile range ratios of 1.36, 3.18 and 2.47. The mean-squared error (which is shown on

the plots beneath the labels) tells a similar story. For the PLE it is 1.39, 1.72 and 1.09 times as

large as that for the MLE and for the polynomial estimator it is 1.46, 7.49 and 6.11 times as

large as that for the MLE. We also compared the performance of the estimators for other bins

and links. In general, the performance of the polynomial estimator is quite good for the first

link (�α1) but becomes progressively worse as we move deeper down the tree. This is because the

polynomial estimator uses much of the data in estimating the first link but uses increasingly less

data as we move down.

For the bicast-based estimators, we considered two different experiments:

(a) all possible pairs and

(b) min+1.
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Fig. 8. Box plots of the estimates for (a) α1.4/, (b) α2.4/ and (c) α4.4/ for four bicast-based estimators
(mean-squared errors are given in parentheses)

The estimators include the all-pairs MLE, all-pairs grafting, min+1 MLE, and min+1 graft-

ing. The comparisons of the estimators for the first and last bins are shown in Figs 7 and 8

respectively. In terms of precision, the min+1 MLE is very comparable with the all-pairs MLE

except for estimating α2.4/. For α4.4/, it is actually slightly better. This can be explained by the

fact that the min+1 experiment allocates more probes for a scheme, 〈4, 5〉, that isolates link

4, thereby giving us a more precise estimate for this link. The grafting algorithms do slightly

worse than the MLEs. For the all-pairs experiment, the interquartile range ratios of the grafting

estimates to the MLEs for the zero bin on links 1, 2 and 4 are 1.27, 1.02 and 1.41. For the four

bins they are 1.23, 2.16 and 1.56. For the min+1 experiment, the interquartile range ratios for

the zero bins on links 1, 2 and 4 are 1.44, 1.65 and 1.19. For the four bins they are 1.80, 1.44

and 1.74. In general the less precise algorithms do not perform as well in the interior of the tree

at the tails of the distributions.

Examining the mean-squared error gives us further information that includes the apparent

bias that is observed in the plots for some of the zero bins. The mean-squared errors reflect this

bias as the grafting algorithms have smaller mean-squared errors than the MLE, despite having

a larger spread. This effect disappears on the later bins and we see the same general trend as

that indicated by the interquartile ranges.



Network Delay Tomography 803

6. Optimal allocation of probes

We now turn to an important issue in designing flexicast experiments, i.e. how to allocate the

number of probes optimally among the various schemes within a flexicast experiment. The ques-

tion of interest is the following: given a fixed budget of probes, how should they be allocated

among the various flexicast schemes?

It turns out that the optimal allocations depend on the values of the unknown delay distri-

butions and the tree topology. This is called local optimality in the design literature (Chernoff,

1953). We describe results from a limited study based on binary symmetric trees and bicast

schemes to provide some insights and suggest how one could go about studying the problem in

general. A comprehensive study of this problem is part of on-going work.

We conduct our study on a three-layer binary symmetric tree (Fig. 2(a)). For each link delay

distribution, we use a geometric distribution truncated to five bins. On the basis of our experience

with real data and the network simulator, the truncated geometric distribution is a reasonable

choice with its large mass at 0 and decaying tails. We let the parameter of the distributions range

from p=0:1 to p=0:9 with a step size of 0:1. This range allows us to consider very good links

with light tails (p=0:9) and more congested links with heavier tails (p=0:1).

We use the following bicast experiment: C ={〈4, 5〉, 〈6, 7〉, 〈5, 6〉, 〈4, 7〉}. Note that the last two

schemes split at node 1 whereas the first two schemes split at a lower level. We view links 1, 4,

5, 6 and 7 as edge links whereas links 2 and 3 will be considered internal or back-bone links.

Links of the same type (edge and back-bone) will have the same distribution. On the basis of

this symmetry, the optimal proportion of probes that are sent to schemes 〈4, 5〉 and 〈6, 7〉 should

be equal; likewise for schemes 〈5, 6〉 and 〈4, 7〉. Let τ refer to the total proportion of probes that

are sent to the first group; then the second group will receive a proportion 1 − τ . The design

problem is to identify the optimal value of τ .

The criterion that we use here is D-optimality, which is commonly used in the experimental

design literature. Specifically, the optimal value of τ is obtained by maximizing the determin-

ant of the Fisher information matrix. As noted before, this value depends on the unknown

parameters of the delay distributions, in addition to the tree topology. This is referred to as

local D-optimality.

First, we consider the optimal τ for the situation in which all the link level distributions are

identical. Interestingly, the optimal value of τ is constant (around 0.75) as p ranges from 0:1 to

about 0:8 and then decreases slightly to about 0:7 as p increases to 0:9. On the basis of this, the

bicast pairs 〈4, 5〉 and 〈6, 7〉, which split at a lower level in the tree, should receive about 35–37%

of the probes each whereas pairs 〈5, 6〉 and 〈4, 7〉, which split at a higher level, should receive

only about 12–15% of the probes. Note that the pairs that split at the lower level provide the

most information for estimating the receiver links. Further, the total number of probes at each

link varies: under the above optimal setting, all the probes pass through the link at the top layer,

links in layer 2 (the ‘back-bone’ links) each see about three-quarters of the probes, and those at

layer 3 (receiver links) each see only a quarter of the probes.

Fig. 9 shows the optimal allocations for a two-dimensional situation: the edge links (link 1

and the receiver links) have the same truncated geometric distribution with ‘failure’ probability

p1 (the x-axis) whereas the back-bone links 2 and 3 have the same distribution with probability

p2 (the y-axis). The z-axis shows the values of τ , the optimal allocation. For most of the p1 −p2

values, the optimal value of τ is between 0.6 and 0.8, again indicating that a higher proportion

should be sent to the bicast pairs that split at the lower level. The exception is, when the failure

probability p2 of the back-bone links becomes larger than about 0.8 and p1 is in the range

0.1–0.5, the values of τ decrease, implying that the pairs that split at a higher level should
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Fig. 9. (a) Optimal allocation of probes with all links the same and (b) optimal allocation of probes with
interior links the same and edge links the same

receive a larger proportion of the probes. This is probably due to the higher congestion on link 1

as compared with the back-bone links. Probes splitting at node 1 help to provide a good estimate

of link 1, which is important in this case for sorting out the links below it.

The above results provide some limited insights into the optimal allocation issue. As noted

before, the optimal results depend on the unknown delay distributions, so we cannot obtain

universally optimal results for all distributions. In practice, we can take various approaches in

achieving efficient (or close to efficient) probe allocations. The simplest is to use prior knowl-

edge based on historical information and to treat it as the truth. A better alternative that

uses prior information more formally is the use of Bayesian optimal design techniques (see,

for example, Chaloner and Verdinelli (1995)). However, this is a complex, non-linear optimal

design problem. Perhaps the most practical alternative is to use a two-stage experimentation

where the estimates from the first stage are used to obtain the optimal estimates for the second-

stage probing.

7. Simulation studies

In this section, we use simulation to assess the performance of the estimation methods under

two scenarios:
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(a) under the stochastic model assumptions in Section 2 and

(b) using the ns-2 network simulator.

7.1. Model-based simulation

Our simulation studies showed that, if the true link level distributions are discrete, the MLE as

well as grafting methods can recover the link level estimates well without any bias. When the true

distributions are continuous, however, the binning seems to introduce some bias. The problem

arises from the fact that the end-to-end data are grouped into bins, so we have discretized sums

instead of sums of discrete values from each link. The extent of the bias depends on the bin size,

the link and other variables.

To develop some insights, we considered a three-layer symmetric binary tree (Fig. 2(a)) and

focused on the MLE for a minimum bicast experiment. Each link distribution was taken to be

a mixture of exponentials with mean 1 and point mass at 0. The point mass, corresponding

to no delay, is common in many real situations. Various bin sizes and point mass probabilities

were considered in the study. Fig. 10 show the results from links 1, 2 and 4 (link 3 has the same

Fig. 10. Observed (�) and estimated ( ) distributions for links (a) 1, (b) 2 and (c) 4 showing bias when
the estimation is applied to binned end-to-end data: the distributions are exponential with mean 1 mixed with
point mass at 0 with probability 0.2; the bin size is 0.25
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Fig. 11. Observed (�) and estimated ( ) delays for links (a) 1 and (b) 2 of the ns-2 example

behaviour as 2 and links 5, 6 and 7 have the same behaviour as link 4) with a bin size of q=0:25

and a point mass with probability p=0:2.

In general, the largest bias occurs for the zero bin (αk.0/); if point mass probabilities or bin

sizes increase, this bias grows smaller. For instance, for a bin size of q = 0:25 and point mass

probabilities of 0.1, 0.2 and 0.4, the underestimates of the zero probability on link 4 are 34%,
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24% and 9% respectively. For a bin size of q = 4, the corresponding underestimates reduce to

8%, 6% and 4%. Note also from Fig. 10 that the bias is greatest for the receiver node (link 4)

and decreases as we go up to the source node.

The effect of this bias on the other bins is much smaller. For the most part, the bias at the

zero bin seems to be spread across the rest of the distribution. The estimate at bin 1 seems to

compensate somewhat more than the other bins. There is also some compensation across links;

the zero bin for link 1 is overestimated whereas the zero bins for other links are underestimated.

We are currently exploring some methods for correcting this bias.

7.2. Network simulation

We now examine the performance of the proposed estimators in a realistic network environment

by using the ns-2 (Information Sciences Institute, 2004) simulation package. This allows us

to construct any topology, to generate traffic and to transmit packets by using a real network

protocol. It gives users control over the hardware and software aspects of a network including

bandwidth, propagation delay, traffic volume and traffic protocol. We constructed the topology

that was shown in Fig. 1 to mimic the UNC network. For links between core routers, we used

500 Mbit links and, for links to end points, we used 50 Mbit links. Background traffic on the core

links consists of 27 transmission control protocol connections and five user datagram protocol

connections. Transmission control protocol connections acknowledge reception of packets by

the receiver. Lost packets are retransmitted by the sender and result in a slower rate of transmis-

sion. Therefore, transmission control protocol connections are responsive to congestion. User

datagram protocol connections do not have any of these features and continue to send packets

at a constant rate, thus being unresponsive to patterns of congestion. On the edge links, the

background consists of six transmission control protocol connections and one user datagram

protocol connection. The probe traffic consists of 40-bit user datagram protocol packets using

the multicast protocol.

Every tenth of a second, the probing mechanism selects a scheme at random from C =
{〈4, 5〉, 〈6, 7〉, 〈8, 10〉, 〈11, 12〉, 〈13, 14〉, 〈15, 16〉, 〈17, 18〉} and sends a packet to its receivers. Prob-

ing lasts for 700 s, resulting in about 1000 packets sent to each pair. This is approximately the

length of a session that we would use for monitoring a real network. The end-to-end delays are

discretized by using a bin size of q = 0:00005s. This is an extremely fine scale, resulting in a

maximum link delay setting of b=155. Furthermore, the ns-2 package allows us to record the

true link delays and hence to obtain directly the link delay distributions for verification.

Figs 11 and 12 show the fitted distributions along with the observed distributions for selected

links. We see the effect of the bias from binning that was discussed in the last section. Aside

from this, the estimation procedure does a very good job of capturing the distribution despite a

violation of the temporal and spatial independence assumptions in the model. The results show

that the estimation procedure performs well in a real network setting.

8. Application to the University of North Carolina campus network data

We now illustrate the usefulness of the results that have been developed here by applying them

to the UNC campus network to assess VOIP capabilities. As discussed before, this realtime

application requires an excellent quality of link to be successful. In particular, any large delays

can significantly reduce the quality of the phone calls. We have collected extensive amounts of

data but report here only selected results based on data collected at 2-h intervals starting at 8.00

a.m. and ending at 2.00 a.m. on a typical school-day.
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Fig. 12. Observed (�) and estimated ( ) delays for links (a) 6, (b) 11 and (c) 15 of the ns-2 example

The data were collected by using a tool that was designed by Avaya Laboratories for testing

a network’s readiness for VOIP. There are two parts to the tool. First, there are the monitoring

devices: computers deployed throughout the network with the capability of exchanging VOIP

style traffic. These devices run an operating system that allows them to measure accurately the

time at which packets are sent and received. The machines collect these time stamps and report

them back to the second part of the system: the collection software. This software remotely con-

trols the devices and determines all the features of each call, such as source–destination devices,

start time, duration and protocol, which includes the interpacket time intervals. The software

collects the time stamps when the calls are finished and processes them. The processing consists

of adjusting the time stamps to account for the difference between the machines’ clocks, and

then calculating the one-way end-to-end delays.

For the data collection, Sitterson served as the root, and we used seven bicast pairs to cover

the 14 receiver nodes: C ={〈4, 5〉, 〈6, 7〉, 〈8, 10〉, 〈11, 12〉, 〈13, 14〉, 〈15, 16〉, 〈17, 18〉}. The network

allowed only the unicast transmission protocol, so back-to-back probing was used to simulate

multicast transmissions. The span of time between the two packets comprising the back-to-back

probe was of the order of a few nanoseconds whereas the time between successive probes was a

tenth of a second. Prior experimentation using the call synthesis tool and this probing method

leads us to believe that the correlation between the two packets on the shared links is close
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Fig. 13. Probability of a large delay on each link throughout the day: (a) Sitterson; (b), (c) core to core;
(d) Venable; (e) Davis; (f) McColl; (g) Tarrson; (h) Rosenau; (i) core to core; (j) university library; (k) Everett;
(l) Old East; (m) Hinton; (n) Craige; (o) Smith; (p) Greenlaw; (q) South; (r) Phillips

to 1. Each probing session consisted of two passes through the pairs in the order presented.

On each pass, each pair was probed for 50 s. Thus, we have 1000 probes for each pair during

each monitoring session. Maximum likelihood estimation was used to deconvolve the link

distributions.

In this section, we present results that are related only to discovering links that have signifi-

cant probabilities of large delays. For this reason, we used a bin size of q=0:0002 s. Above this

threshold, delays can become detrimental to the quality of calls. We expect that most links in

this network would have distributions with most of the mass on the zero bin. None-the-less, a

mass as low as 0.01 on the rest of the delays could prove troublesome.

Fig. 13 shows the probability of delays that are larger than 0.0002 s at various times through-

out the day. First, note that the links between the main core routers are of very high quality.

The Sitterson outgoing link is also extremely good. The rest of the links do experience some

congestion, varying over the course of the day. Many of the school buildings show a diurnal

effect with large amounts of activity contributing to higher delays starting around noon and

continuing throughout the afternoon. In particular, there is a little spike around 4.00 p.m. This
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Fig. 14. Delay distribution at 12.00 p.m. and 10.00 p.m. for (a) Davis Library, (b) South Building and
(c) Hinton Dormitory

spike is evident on link 9 which is a larger core-to-core router. The dormitory links show more

consistent traffic throughout the entire day with some elevated delays in the later evening. Links

that show 1% or more large delays would probably require an upgrade to be able to handle the

increased load that is placed on them by VOIP, which uses a more aggressive protocol than the

prevalent transmission control protocol traffic. Several receiver links already show close to 5%

large delays without a strong VOIP presence. Even the large link 9 seems to be problematic as it

needs to perform almost flawlessly to handle considerably more traffic than the receiver links.

To look at some aspects of the analysis in more detail, we solved the inverse problem using a

bin size of q=0:00002s for the time periods 12.00 p.m. and 10.00 p.m. This gave us 10 times the

resolution of the above analysis. Further, it allowed us to break down the previous analysis to

see where the delays fall within the smallest bin. Fig. 14 shows the first 20 bins of these detailed

results for Davis Library, South Building and Hinton Dormitory. The first thing to note is

that most of the mass is still on the lowest bins so the vast majority of packets experience very

little delay. Both Davis Library and South Building exhibit a strong diurnal effect. Unlike the

dormitory, the traffic in these buildings dies off late at night.

The analyses of other similar data sets that were collected on the network over a period of time

showed remarkable stability in the results and conclusions. These delay probabilities indicated

to the UNC information technology group that the current network is not capable of support-



Network Delay Tomography 811

ing the VOIP application. From our point of view, the results are qualitatively consistent with

the overall behaviour that is to be expected for this network. This serves as a validation of the

techniques that were studied here, from both statistical and implementation perspectives.

9. Concluding remarks

We have introduced a flexible class of probing experiments for active network tomography and

studied the properties of several methods for estimating the link level delay distributions of

computer and communications networks. Both simulation and real data were used to illustrate

the usefulness of the methodology. The use of the full EM algorithm is practical for small to

moderate trees, especially with minimum identifiable flexicast experiments (bicast and unicast

schemes). With larger networks, the grafting algorithm that was proposed in the paper provides

a practical alternative. The fast algorithm is especially useful for monitoring the networks to

detect degradation in quality of service and to localize the problem quickly to links or small

regions of the network. We are currently studying monitoring and diagnostic procedures for

this problem.

We have followed the literature in the area in making some simplifying assumptions. For

example, the logical topology of the network has been assumed to be single source, known and

fixed. Extensions to multisource topologies, although conceptually straightforward, neverthe-

less introduce technical challenges that are currently under investigation. Further, in practice,

the network’s topology can be to a certain degree unknown or changing periodically. There

is on-going work in the network engineering literature to address these topics. The assump-

tion of spatiotemporal stationarity is also commonly made in this area. As we have noted, the

temporal stationarity assumption is not critical as the time between probes is of the order of

milliseconds. The spatial assumption is more problematic although more realistic models can

be developed only in the context of specific real networks. Additional work is also required to

assess the performance of the methods for larger networks. We note, however, that even if the

actual network is large, one typically aggregates many of the links and focuses on a smaller

topology for studying network performance.
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Appendix A: Proof of proposition 1

We first establish sufficiency of an omnicast experiment. This will show that an individual k-cast scheme
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identifies all the distributions on the paths between source, branching nodes and receivers of its subtrees.
We can then show that the above conditions guarantee that we have enough subtrees to solve for every
link delay distribution. The proof of necessity will proceed by contradiction.

For omnicast probing, we consider two cases.

(a) Case 1—receiver node k—consider all omnicast probes that result in zero delay on all remaining
receivers except k. This set of probes allows us to estimate �αk as these probes consist of direct
observations from link k.

(b) Case 2—internal node k—we proceed by induction. Suppose that we have identified the distributions
for all links that are descendants of k. Let R.k/ represent the receivers that are descended from k.
Consider probes that result in zero delay on all nodes except those in R.k/ which all experience i
delay. Let γk.i/ be the probability that each r ∈R.k/ has an end-to-end delay of i. From this, we can
estimate γk.i/ for each i. Since we have estimates of link delay distributions of the descendants of k,
we can now estimate �αk.

This proof implies that a single k-cast scheme will identify the following distributions: the path between
the source and the first splitting node, the paths between any two splitting nodes and the paths between
a splitting node and a receiver. Now we focus on a collection of flexicast schemes. Here we consider three
cases.

(a) Case 1: there is some k-cast scheme Cj in which branching occurs at node 1, the only child of the root
node. Based on the omnicast identifiability proof, this experiment identifies the delay distribution
for link 1, �α1.

(b) Case 2: let s be some internal node. Assume that we have identified all the delay distributions for
links k ∈P0,f.s/. There is a scheme Cj for which branching occurs at node s. This scheme identifies
the path level distribution �π0,s. We can construct �π0,f.s/ and solve for �αs:

αs.0/=π0,s.0/=π0,f.s/,

αs.d/= 1

π0,f.s/.0/

{

π0,s.d/−
d−1
∑

δ=max.0, d−Bf.s//

αs.δ/ π0,f.s/.d − δ/

}

, ∀d =1, . . . , b,

where Bf.s/ is the maximum delay up to this node. We call this solution peeling since we are peeling
the unknown distribution from the path level distributions. It can be used more generally and can
take other functional forms.

(c) Case 3: let r be some receiver node. Assume that we have identified all the delay distributions for
links k ∈P0,f.r/. There is some scheme Cj which probes receiver r. From this, we can estimate the
path probability π0, r. We can construct �π0,f.r/ and use peeling to obtain �αr.

It is easy to see the necessity of covering all the receivers: if we do not probe a receiver, we can never
estimate its link delay distribution. To see the necessity of branching at each internal node, consider a col-
lection of schemes in which branching occurs at all internal nodes except some node s. Each link d ∈D.s/
will always occur as part of a logical link that also includes link s. We will be able to obtain estimates for
�πf.s/,d for each d ∈D.s/ but we shall have no information with which to peel the two apart. In essence,
these estimates are like unicast measurements which are not sufficient for estimation.
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