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Recently much attention has been focused on multilevel programming, a branch of mathematical 
programming that can be viewed either as a generalization of min-max problems or as a particular 
class of Stackelberg games with continuous variables. The network design problem with continuous 
decision variables representing link capacities can be cast into such a framework. We first give a 
formal description of the problem and then develop various suboptimal procedures to solve it. 
Worst-case behaviour results concerning the heuristics, as well as numerical results on a small 
network, are presented. 
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Games. 

I. Introduction 

There are many  si tuat ions where different levels of decisions are involved. Most 

of the large-scale mathemat ica l  p rogramming  literature that  deals with decentral ized 

managemen t  of resources covers models of  such problems where the various decision 

makers act in a cooperat ive manner .  Models  of noncoopera t ive  decision making 

are found  in the game theory literature and  are usual ly restricted to a small n u m b e r  

of  players or variables. Recently some authors  have investigated si tuations where 

decision makers at various levels act in a hierarchical  manner :  at a given level, 

decision makers are b o u n d  by the decisions of the lower levels and  maximize their 

own profit accordingly,  taking into account  the reactions of the lower levels; for a 

complete and  formal descr ipt ion see Bard and  Falk [4]. I f  x and  y represent the 

decision vectors associated with the upper  and  lower level respectively, the bilevel 

p rogramming  problem considered may be formulated as: 

Min  F(x ,  y )  
x c X  

(1) 
sub jec t to  y ~  I a r g m i n  G ( x , z ) }  

L z ~ Y ( x )  

where X is the feasible set of the x-variables,  and Y ( x )  the feasible set, possibly 

dependen t  on x, of the y-variables.  Algori thms have been  developed for l inear  cost 
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functions ( F  and G linear, X and Y polyhedral) by Bialas and Karwan [6], Bard 
and Falk [4], Papavassilopoulos [22], Candler and Townsley [8], and for the general 
case by Bard [3] and Papavassilopoulos [23]. 

In this paper  we consider a generalization of problem (1) where the y-variables 
are the solution of an equilibrium problem formulated as a variational inequality. 

Then the problem becomes: 

Min F(x, y) 
xEX 

(2) 
subject to ( y -  z)~H(x, y) <<- 0 Vz e Y(x),  

y c Y(x).  

The network design problem that we consider has already been formulated and 
studied, in particular, by Dafermos [9], Abdulaal and Leblanc [2], Dantzig et al. 
[12] and Gershwin et al. [26]; it consists in optimally balancing the transportation, 
investment and maintenance costs of  a network subject to congestion, where users 
behave according to Wardrop 's  first principle of traffic equilibrium (user-optimum, 
see Wardrop [27]) which is akin to the Nash-Courno t  principle of  the theory of 
games (Haurie and Marcotte [15]). The x-vector represents the improvements made 

to the network, X the set of  feasible improvements,  y the mult icommodity flow 
variables and Y(x)  the polyhedron of feasible flows, which is independent of x. In 
particular, the x-variables will reflect the capacities of the network links; for a given 
link flow, the corresponding link traversal time will be a decreasing function of its 
capacity. In other words: the higher the capacity, the lower the congestion. 

The remainder of the paper  is structured as follows: first we give a mathematical 
formulation of the problem, then we prove some theoretical results about the 
problem; finally we propose solution algorithms of a heuristic nature which will be 
analyzed theoretically and tested numerically. 

2. Mathematical formulation 

Throughout this paper, the subscript ' a '  will refer to a link of the network. Denote 
N:  set of nodes. 
A: set of one-way links. 
O: set of  origins. 
A: set of  destinations. 
v k = (vk)a~A: flOW vector of  commodity k (trips originating from origin k). 
va = Y~ vk: total flow on link a. 

k~O 

v = (Va)a~A: total flow vector. 

za: c apac i t yo f  link a. 

gkt: trip demand between origin k e I2 and destination l ~ A. 
In the remainder of the paper, we will call a set of  flow vectors feasible if it satisfies 
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the following flow conservation and non-negativity constraints: 

I ~Agk! i f i = k 6 0 ,  
I 

j E N  j c N  

otherwise, 

v ~ O .  

(3) 

Let q~ be the set of mult icommodity flow vectors satisfying (3). For the sake of 
brevity we will write v c q~ although, formally, we should write (vk)k~a C q~. Let 
S(v, z) be a vector-valued function giving the traversal times of all links as a function 
of the total flow Vector v and the capacity vector z = (z,)a~a. It may be shown 
(Smith [24], Dafermos [10]) that a feasible flow vector v* constitutes a user 
equilibrium for a given capacity vector z, if and only if it satisfies the following 

variational inequality: 

(/)* -- v ( i ) ) T s ( v  ~g, Z) ~ 0, i = 1, 2 , . . . ,  n, (4) 

for all extremal flows v (n of q~. 
Whenever the Jacobian matrix 7vS(v, z) is symmetric for fixed z, (4) is equivalent 

to solving the convex programming problem: 

Min ~ S ( t , z )  dt (5) 
VCt3O d 

0 

where the line integral does not depend on the path of  integration. The solution of 
(5) may be efficiently found by using primal methods of feasible directions for 
solving convex flow problems (see Nguyen [21], Leblanc [17], Daganzo [11], 
Bertsekas and Gafni [5], Florian [14]). 

Assumption 1. For z fixed, the function S(v, z) is continuously differentiable, positive 
and strictly monotone for all nonnegative v. 

Under Assumption 1, a solution to (4) exists and is unique (Aashtiani a n d  

Magnanti [ 1]). 
Using the previous notation, the bilevel program (2) may be written as: 

Min v V S ( v , z ) + g ( z )  
z~O 

~ (6) 
sub j ec t t o  (v-v(i))-rs(v,z)<~O, i = l , 2 , . . . , n ,  

where g(z)  represents the capital investment and operating costs of  building and 
operating a network with capacities z. 1 

1 Assuming a discount factor p > 0, we have: g(z) = [ p/(1 + p)]c(z) + m(z) where c(z) is the actual 
cost of building the network and m(z) is the operating cost. 
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Formulation (6) suggests a finitely convergent constraint accumulation algorithm 
(see Marcotte [20]). This can be contrasted with a somewhat similar result (Corollary 
2.1) in Blankenship and Falk [7]) where ,~(v)&So S(t, z )d t  is concave rather than 

convex. 

Assumption 2. The function g(z) is link-separable, i.e., 

g(z) = ~ g,(za) with each function ga nonnegative 
a ~ A  

increasing and continuously differentiable. Also: g ( 0 ) =  0. 

The bilevel problem (6) may be rewritten as: 

Min V(z)TS(v(z), z)+g(z)  
z~O 

(7) 

where v(z) is the unique solution to variational inequality (4). 
Some attempts have been made to solve (7) directly, using descent methods 

(see [2]). Difficulties stem from the fact that the objective function, although 
continuous, is not in general convex or differentiable as a function of the argument 
z (Dafermos [9], Marcotte [19]). Also, each evaluation of the objective in (7) 

requires the solution of a user equilibrium problem, which is prohibitive. 
We will now introduce a related problem that is easier to solve and can be used 

to provide both lower bounds and upper  bounds on the true optimum. 

A system-optimal problem is obtained by removing the variational constraint on 

v; problem (6) then becomes: 

Min F(v, z) = vVS(v, z)+g(z).  (8) 
v~ qb 
z~O 

Let (v*, z*) and (15, ~) be the solutions to (6) and (8) respectively. Since v(z), the 
user-optimum flow corresponding to capacity vector z, is a feasible solution for 

problem (6), we have the following obvious relations: 

F(e, e) ~ F(v(z*),  z*) = F(v*, z*) <~ V(v(e) ,  e). 

Assumption 3. The function S(v, Z) is link-separable and has the form: S(v, z) = 
(S,(va/za)),~A, where S, are positive, increasing, continuously differentiable and 
convex functions. By convention we set Sa(va/za)= 0 whenever va = za = 0. 

Under Assumption 3, the function V T" S (v ,  2") can easily be shown to be convex. 
Furthermore, if the function g is convex, then it follows that (8) is a convex 
programming problem in the variables v and z. 
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It can be further simplified (Los [18], Marcotte [20]) by first performing the 
minimization with respect to the z~-variables, for each link-flow v~ fixed: 

Min v~S~ + g . (z . )  (9) 
za~O 

whose unique solution will be denoted Za(Va). This yields the problem: 

// "~ V a 
Min S, v ~ S , l - - !  +g~(z~(v~)). (10) 
V~CI 9 aEA k g a ( 1 ) a ) ]  

This last formulation is that of a standard convex flow assignment problem. 

3. Linear or concave objective 

When the cost function g is linear, both the system-optimum and user-optimum 
problem possess interesting properties. We first recall a result of Los [18]: 

Proposition 3. I f  Assumptions 1, 2, 3 hold and the cost function g is linear, i.e., 
ga(za) = l, za Va ~ A, then the objective function in problem (10) is linear. 

Proof. Replacing ga(za) by laza in (9) we obtain the one dimensional minimization 
problems: 

(5 Min v~S~ + l~z.. (11) 
Za~O 

By differentiating with respect to za, we obtain the necessary and sufficient 
condition for a minimum: 

va S va =la. (12) 
\ z a /  \ z a /  

Let u~ be the unique solution to the equation x Z S ' ( x ) =  la. Then ua is positive 
and assigns a value to the ratio v~/z,,, including the case where va --za --0. 2 

Replacing za by Va/Ua in the objective (11) yields: 

which is linear in v. [] 

Proposition 3 shows that the system-optimum problem (11) can be solved by 
performing shortest path calculations. 

The next proposition states that, under slightly more restrictive assumptions, the 
system-optimum and user-optimum problems are equivalent, regardless of the 
topology of the maximal network or the values of the entries of the trip matrix. 

z This wil l  a lso be true of  al l  heuris t ics  cons idered  in this  paper .  
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Assumption 4. The cost function is linear and each of its components is proportional 
to the corresponding arc length and capacity, i.e., 

ga(za)=ldaz~ 

where da represents the physical length of arc a, and l is a constant. 

Assumption 4 implies that the investment and maintenance costs are homogeneous 
throughout the network. 

Assumption 5. The link traversal times are nonnegative and homogeneous 
throughout the network and proportional to the arc lengths, i.e., 

Sa(-~) = da°( va]\zj forsomefunct ion  or. 

Proposition 4. Under Assumptions 1, 2, 3, 4 and 5, the solution(s) to the system- 
optimum problem (8) is feasible and thus optimal for the user-optimal problem (6). 

Proof. Under the above assumptions, the system-optimum problem is 

Min~ a~A~ VJ~°-(V~) +Id~z~" (13) 

z~0 

At the optimum one must have: 

za/ \ z , /  

Let u be the unique solution to the equation 

x ~ o " ( x )  = I. 

We have: za = va/u. After substitution in (13) we get: 

Min~e a~A ~ da[°r(u)+l] l)a 

which is equivalent to: 

Min Y~ d~v~. (14) 
vEcl) a~A 

Let v* be a (not necessarily unique) optimal solution to (14), and let z*=  v*/u. 
We must prove that v* is the user equilibrium corresponding to the capacity vector 
z*, i.e. that v* satisfies the variational inequality: 

Y. (v*-v~ )dao" <~0, i = l , 2 , . . . n .  (15) 
a~A Z~a 
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v* being solution of (14), we have: 

~. (V*a - -  V(ai))da ~ O, i = 1, 2 , . . .  n .  
a E A  

Multiplying by the constant cr(v*/z*)= o'(u), we get the desired result. [] 

In general however, when Assumptions 4 and 5 are not satisfied, characterization 
of the optimal solution for the user-optimum problem (6) is difficult. The next 
proposition gives a property possessed by at least one solution flow vector v*. 

P r o p o s i t i o n  5. I f  g is linear and assumptions 1, 2, 3 hold, there exists a solution vector 
(v*, z*) to (6) for which v* is an extremal flow, i.e., v* = v (i) for a certain index i. 

Proof. We make the change of variable: 

V a 
k a  ~ - - .  

Za 

This is equivalent to using the congestion levels on the links of the maximal 
network as the primary decision variables. The user-optimum problem (6) then 
becomes: 

la Va 
Min F(v, k )=  52 v ~ S a ( k a ) + - -  
k~O a ~ A  k a  

(16) 

subjectto v c / a r g m i n  Y ' ,  w~. a~Aw"Sa(k")}" 

Let (v*, k*) be a solution to the above problem (16). Since q~ is convex and may 
be assumed bounded without loss of generality, we can express v* as a convex 
combination of extremal points of q~: 

v*=52 &v (~), &>O,  52 h~=l ,  
i E l  i c l  

where I is a subset of (1, 2, . . . ,  n). Now, v* is feasible for (16) and must therefore 
be a minimum for the expression 

E w.S.(k*) ,  
a E A  

i.e., 

E 2 A,v~')So(k*) <~ 2 woSo(k*) 
a ~ A  i ~ I  a ~ A  

Z h, Z (~) * v.  S.(ka)<~ 2 w.Sa(k*) 
iEI  a c A  a ~ A  

The h~ being positive, we conclude that 

~, (i) , v~ Sa(ka)<~ E woS.(k*) 
a ~ A  a ~ A  

V w c c]), 

V w c Crp. 

V w E ~  V i i i  
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and the v(° 's  are feasible for (6), with k = k*. N o w  

F(v* ,  k * ) =  E ,~, Aiv(ai) Sa(k*a) k*] 

Thus F(v (i), k*) = F(v*, k*) for all i in I by the opt imal i ty  o f  (v*, k*), and the 
v(i)'s are opt imal .  This completes  the proof .  []  

Corol lary 6. I f  g is concave and Assumptions 1, 2, 3 hold, there exists an optimal 
solution (v*, z*) to (6) where v* is an extremal flow of 4. 

Proof. Using the notat ions  in the p roo f  of  Proposi t ion  5 we prove,  fol lowing the 

same line of  reasoning,  the feasibility of  the extremal  flows v (° for  p rob lem (6). Also, 

implies 

[ }[ 7 F(v*, k*) (i) , (17) 
i ~ I  a £ A  i I a ~ A  

by concavity of  ga. 
Therefore  

va Sa(k~)+gal~_~l l  ~ A,F(v ('), k*) F ( v * , k * ) ~ >  ~ Ai ~2 (i) . = 
i ~ l  a c A  \ K a  ] . . ]  i ~ I  

Now (v*, k*) opt imal  implies that  

F(v (i), k*) = F(v*, k*) for all i in I 

and the v(i)'s are op t imal  for (6). [] 

Corol lary 7. I f  g is strictly concave and Assumptions 1, 2, 3 hold, any solution (v*, z*) 
to (6) is such that v* is an extremal point of cI). 

Proof.  In  the preceding proof ,  the inequali ty (17) is strict 3 unless I is composed  of  

a single e lement  i*, and  

Ai* = 1, v* = v (i*). [] 

z We rule out the rather uninteresting case where all v~'s are zero for some origin k. 
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The last two corollaries are interesting because they do not rest in any way on the 
concavity (or strict concavity) of the objective function F(v, z). They can be con- 
trasted with the results of Bialas and Karwan [6] pertaining to the linear bilevel 
programming problem. Actually, F may be nonconcave even with the Sa's convex 
and the ga's concave. 

Proposition 5 and its two corollaries, although providing a partial characterization 
of the optimal solution, cannot be used directly to design a search algorithm. There 
still remains the problem of optimally allocating an extremal flow v (° to the network 
asociated with the capacity vector z. 

4. Heuristic procedures 

The formulation (6) suggests (see Marcotte [20]) the use of a restriction procedure 
for solving problem (6). Unfortunately the resulting restricted subproblems are 
nonconvex. 

In this section we propose four heuristic procedures whose theoretical and 
numerical behavior will be analyzed in the next two sections. In the remainder of 
the paper the congestion functions will be of the BPR-type, i.e., 

(va) ( v ~  p with p positive, (18) so ~ -=~°+~°\zo/ 
and the cost functions will be power functions: g~(z~)= laz m with m > 0 ,  thus 
satisfying Assumptions 1, 2 and 3 previously stated. 

One heuristic (namely H3) relies on these particular functional forms. The others 
can be readily applied to the general case. 

4.1. Heuristic HO 

This heuristic determines a feasible suboptimal solution (v(5), 5), where 5 is the 

vector of capacities on the network that are optimal in the system-optimal problem 
(8), and v(5) is the used equilibrium flow vector corresponding to the network 
having 5 as its capacity vector. That is, we let (~, 5) be solution of the system-optimum 
problem (8) and let (v(5), 5) be the feasible suboptimal solution. 

In view of the difficulty of solving the user-optimum problem, this procedure has 
been proposed, among others, by Dantzig et al. [12]. 

4.2. Heuristic H2 

This procedure has been applied by Tan et al. [26] to the Traffic Signals Setting 
Problem. One iteration of the algorithm consists of solving sequentially an optimiz- 
ation problem involving the capacity variables, with the flow variables fixed, and a 
user-optimized equiibrium problem corresponding to this new capacity vector. After 
several iterations of this process, one hopes that convergence toward a 'good' solution 
will be obtained. 
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Algorithm H2 
Step 1 (Initialization). Choose any positive capacity vector ~. 
Step 2. Solve the equilibrium problem (equilibrium phase) 

Min 2 Sa dt (19) 
vctIa aEA 

whose solution is ~3. 
Step 3. Solve (optimization phase) 

Min r, ~aSa +ga(z,) (20) 
z>~O a~A 

whose solution is z*; set ff~ z*. 
If I[~-z*ll < e, STOP; otherwise return to step 2. A 

The optimization phase at step 3 simply consists of finding the roots of the 
equations: 

( ? ( /  Vo S" Vo =g ' ( zo ) ,  a c a .  
\ za/ \ z , /  

It is shown in Marcotte [19, 20] that heuristic H2 actually solves the following 
convex optimization problem: 

Min }~ Sa dt (21) 
v~tzb a~A 

where Za(Va) is solution of (20). 
Under our assumptions about the functional form of So and g~ we have: 

= ( P [ 3 a ~ l / ( m + P ) ° .  (p+l ) / (p+m)  (22) 

Za(Va) \mlo/ o . . . .  

4.3. Heuristic H3 

The idea consists of finding a capacity vector for which the system-optimal flow 
vector ~ is an equilibrium flow. 

Putting the value of Za(V~) given by expression (22) into the objective F(v, z) we 
find 

where 

~{argmino~aVa(aa+davP(m 1)/{m+p))} (23) 

m) G) . 
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In order that the solution be an equilibrium, it must satisfy the variational 

inequality 

~. (va-v(~ i)) aa+Cla <~0, i = l , . . . , n .  (24) 
a c A  

Now, (24) corresponds to the mathematical program: 

t P 

where ~'a(Va) is a function giving the desired value of za, and depends on the 
corresponding link-flow v,. The problems defined by (23) and (25) will possess 

identical solutions if: 

va " t P 

for all va/> 0. 
This identity is realized if we take 

= P + l a n d b  a ( 1  ~l/p(p[3a) l/(p+m) 
~(v~)=b~v] withn  p+m = \ - ~ /  \ m l J  (26) 

Thus the solution vector (~a, b~])a~A is feasible for (6). 

4.4. Heuristic H5 

Heuristics H2 and H3 can be viewed as particular instances of  a general heuristic 
procedure which consists of  solving a convex network optimization problem in v 
and z whose solution satisfies the variational constraints (6). Indeed, consider the 

parameterized problem: 

Min J(v,z) a- Y, C~a+fla dt+~alaz~. (27) 
v,z a ~ A  

There exists a vector s c = (SCa)~A such that the optimal solution to (27) is optimal 
for (6). However the choice of such an optimal ~: is of  the same degree of difficulty 

as :solving the original bilevel problem. The rational behind heuristic H5 is to set 
all ~:a's to  some predetermined value ~:, yielding the following convex mathematical 
programming problem: 

o,z o~A L p+l \za/ J+(laz?" (28) 

This corresponds to minimizing the weighted sum of user-perceived travelling times 
and of the investment and maintenance costs of  the network. 
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If  £ is set to the value 1 / ( p +  1), then the optimal solution to (28) consists of an 

equilibrium flow vector t3 associated with a capacity vector i satisfying the system- 
optimal relation (22). Since this corresponds to the characterization of the solutions 

obtained from heuristic H2, it can be concluded that heuristic H2 is subsumed by 

heuristic H5. Similarly, it is easily shown that heuristic H3 corresponds to setting 
to the value p + 1. 

5. Worst-case analysis of  the heuristics 

In this section we develop upper bounds on the ratio of the values of heuristic 

and exact solutions. The analysis does not depend on the network structure. 

Definition 

Cost of heuristic solution 
RL(H)  = Sup 

~,¢,t Cost of optimal solution = Sup eq/3,l 
N,A N,A 

F(V(zH),Z H) 

F(v*, z*) 

where z H is the capacity vector obtained from heuristic H (H = H0, H2, H3 o r  H 5 ) .  4 

5.1. Heuristic HO 

Proposition 8. l i m p ~  R~( HO) >~ 2. 

Proof. Consider the network of Figure 1. 

We set 

p2 
Sl(X)=p, S2(x)=S3(x)=½(l+x ), 

g l ( X )  = 0, g2(X) = g3(X) = 12px. 

Since links 2 and 3 play similar roles, we can replace them by a fictitious link 4 

that must carry a flow of at least p units, and with congestion and cost functions 
given by 

84(2 ) = 1 + x p2, g '4(X) = px. 

l ink 1 

~ 3 3  g13 ~g12 "~ g231 : p 1 

2 
Fig. 1. Worst-case network for heuristic H0. 

4 Heuristics H I  and H4, based on nonconvex network optimization programs, are analyzed in [20]. 
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The system-optimum problem is 

Min~ pVlq-1)4Elq-(D41P2 d +PZ4" 

z>~O 

The optimal z4 must satisfy 

/ v  \Pz+l 

and the problem becomes 

I [l\p2/(p2+2) "] 
Min pvl + D4 1 ~- ( i )  + p(p2+2)/(p2+l)/ 
~ o  \ P l  =l" 

The optimal solution is 

~51 = 1, /54 = p ,  54=p (pz+I)/(p2+'). 

The cost of  this solution is F(~5, 5 ) = p 2 +  O(p) ,  where limp_~ O ( p ) / p  < ~ .  
Now the equilibrium is not reached since travel time on link 4 is less than the 

corresponding travel time on link 1. A fraction of travellers will therefore switch 
from link 1 to link 4, until travel times on both links are equal to p. This equilibrium 

occurs before v~ gets to zero, since we have: 

- -  = I+  \p(p'+2)/<p'+~>] > p for p sufficiently large. 

The cost of  this solution is 

F ( v ( 5 ) ,  5) = 2p2+ O(p) .  

The optimal solution consists of  slightly increasing the capacity on arc 4 to allow 
for all (p + 1) travellers; the corresponding cost is 

F(v* ,  z * ) = p Z + O ( p )  

Thus l i m p ~ F ( v ( 5 ) ,  5 ) / F ( v * ,  z*)~>2. [] 

5.2. Heuristic H2  

Proposition 9. R~'(H2) = p + 1. 

Proof. For m = 1 and So(x)=  a a + ~ a x  p, problem (21) takes the form 

/ /. \P/~P+'>I 
(29) 
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Let ~ be solution o f  (29) and i ,  = za (~ )=  (pC3a/lo)l/(p+l)va. We have 

I (F] a~A 

[ la "~p/(p+l)'] 

--o?A J 
/ I  X~p/(p+l)'] 

a~A AV "a 

<~(p+l) 2 e. aa /L = ( p + l ) F ( ¢ e )  
.ca p/3o 

where 15 is solution of  the system-opt imum problem. 

Finally, 

F(~, i )  <~ (p + 1)F(15, 5) <~ (p + 1)F(v*,  z*). 

This proves that Rl~(H2)~<p+ 1. To prove the reverse inequality, consider  the 

network of  Figure 2. 

~/~-path 1~~,.~ 
origin ~ p a t h  2~//'p dest inat ion 

Fig. 2. Worst-case network for heuristic H2. 

Path 1 is composed  of  n identical arcs for which tea =/3~ = 1 and l~ = p ( l / n )  (p+I)/p. 
Path 2 comprises a unique arc with a .  =/3a = 1 and l~ = p ( n  - 1) (r+l)/p. 

One unit of  flow must travel f rom the origin to the destination. 

Heuristic H2 yields the path flows: 

~1=0, ~2 = 1, 

with total cost 

F(~, ~) = n (p  + 1 ) - p .  

The opt imal  solution consists in routing all the flow on path 1, with cost: 

F (v* ,  z*) = n + p +  1. 

Therefore 

F(~ ,3 )  n ( p + l ) - p  
lim lim p + 1. []  
, ~ F ( v * , z * )  . ~ o o  n + p + l  

5.3. Heuristic H3 

Proposition I0 

m ( p + l )  p 
RP.,(H3) - - +  

m + p  ( m + p ) ( p + l )  "Iv" 
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Proof. Let 03, 2) be the solution given by heuristic H3. From (26) we find its cost: 

F ( , , ~ ) = I ~ A ~ a  { + [ m ( p + l ) d ~ + l ~ ( ~  " m+p ~m/p-1 ) 
aa L p+m m ~ /  JvP(~-')/(P+m)/" 

The error is maximum when all c~ are zero, which yields: 

R P ( H 3 ) = S u p  m ( p + l )  ~_[ m__+p_ .1 m/p fl~/Pla 
~o,to m+p Lm(p+ 1)J d(a m+p)/p 

_ m ( p + l )  4 P 
m+p (m+p)(p+l)  "/p" 

For m = l  we get 

R~(H3) = 1 P 
- , l + l / p  ~ P ~- 1 = RiP(H2). (p + 1) 

Corollary 11. limm~o,m>o RP~(H3) = 1 and limp-~ RP(H3) = 2. 

Proof. The proof is straightforward. [] 

The first statement of Corollary 11 indicates that, in the important particular case 
where the investment costs are strongly concave (economies of scale exist), the 
solutions to the user-optimized and system-optimized problems will be almost 
similar. Concavity of the ga's leads however to a concave optimization problem for 
which no efficient solution procedures exist yet. The limit case m = 0 corresponds 
to the discrete network design problem (without congestion) and has been treated 
extensively in the literature: Magnanti and Wong [28], Hoang [16], Dionne [13], etc. 

5.4. Heuristic 1-15 

The following lemma will be used to find bounds for RP(H5). 

Lemma 12. Let c~ = ( C~a)a~ A and fl = ( fla)~A be two arc length vectors of non-negative 
numbers and k> O. Let: 

~ {argmin P(v) a (a + fl)Tv}, (30) 

~ {argmin F(v) a=(a + kfi)W v}. (31) 

Then we have 

t~(v) Max~'k 1 / Sup ~ = ,7~.  t K J  

Proof. Suppose k is greater than 1 and consider a network with two parallel arcs 
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linking an origin and a destination.  Let a = (n, 1), fl = (0, n - 1 - ~ )  for  n large. We 
have: 13 = (0, l )  since 

1 
0 / 1 + 3 1  = n >  1+  n -  1 - - =  0/2-1- ~2.  

n 

Also: ~ = (1, 0) since 

0/l q- kfll = n < l + k (  n - 1 - - 1 )  = O/2 + k/~2, 

for  n sufficiently large. Hence  

implies 

But 

~(~)  l + k ( n - l - 1 / n )  
~ (~ )  n . - ~  

Sup F(z3) > k. 

/~(fi) ~< kP(~)  ~< kP(fi)  <~ kff'(13) always holds,  and 

Sup f i ( f )  ~< k. 

Therefore  

Sup ff'(~) ,~,/3,q) ~ =k"  

I f  k is less than  1 we replace p rob lem (31) by the equivalent  p roblem:  Minv ~ ~ (0/ /k  + 
/3)vv. Reasoning  exactly as before,  exchanging the roles of  0/ and/3 ,  we find 

~ (~ )  1 
Sup 
~,~,® P(~) k 

Removing  the condi t ion on k yields the desired result. []  

Proposition 13 

P < ~ R P ( H 5 ) ~  < 1)1/O+1) 1-t P lq  ~ : ( p + l )  ( p +  ¢ ( p + l )  " 

Proof. After substi tuting za by its value in the objective of  (27) and setting m to 1, 

we get the problem:  

Min Y, v a oG-b +l)l/(p+l)(PW1)flla/(P+l) . (32) 
v~* a~A ( p  



158 P. Marcotte / Bilevel network design 

The real cost of the solution v (e) to (27) is: 

F Iv(~)xp-1 

where z(¢)=[pfl,J(p+l)~la]ll(p+l)v~f ), for all a in A. After replacing z (f) by its 
value we obtain 

F(L~('~),Z(')) ~ ~ l ) (<)rola-- i - l  ( ~pl(p+l)(p-t - 1)pl(p+i) 
a ~ A  L p + l \  

-'b~ll(p+l)(pPq_ l)ll(p+l))ea] (33) 

with 
[ l  \p/(p+l) 

1 1 / ( p + l )  a 

Applying Lemma 12 to expressions (32) and (33) we get: 

l [~p/(p+l)(p+l)p/(p+l ) 

(p+l)l/(p+l) -+ ~(1/(p+l)(pq_ 1)1/(..+1) ~p/(p+l) 

p 
= ~ +  1 ( p +  1 + ~ ) = 1 - ~  sO(p+ 1) > 1. 

This proves the first inequality. Now consider the system-optimal cost function, 
obtained after replacing z by its value: 

F(v, z(v)) = ~ va(aa + ea). (34) 
aEA 

Applying again Lemma 12 to (32) and (34), the second inequality will hold if the 
quantity 

W ("+') { P ) 
0"(~:) = (P-f- 1)l /(p+l)t l  -~ ~ ( ~  1) 

is greater or equal to 1. Letting p/(p+ l )= .q  we have 

1 q 

°(~)=(i / ( l_q)) i -q~ (lq-~)" 

The minimum value of  o-(~:) is obtained when q~q-1 + q(q _ 1)seq-2 = 0 or s ¢ = 1 - q 
and 

( "q) o-(~) ~ (1 -- q) l -q( l  -- q)q\l + 1 -- 

=(1--q)l-q(1--qS_(1--q)l-q(1--q)q 1=1. [] 
1--q 
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Corollary 14. For ~= 1 we have 2~<limp_~o~ RiP(H5) =4.  

Proof. Replace ~: by 1 in Proposition 13; we have 

l i m a +  p = 2  and l i m .  1 ( + P )2 
p -~  p + l  p._,oe(p+l)l/(p+l) 1 p + l  =4.  [] 

159 

In order to obtain strong bounds for heuristic H5, we can choose ~: = ~(p) such 
as to minimize the term U ( ~ ) = o ' ( ~ ) ( l + p / ~ ( p + l ) ) .  We make the change of 
variable: p / ( p +  1)= q, and ~ve rewrite: 

U(~:) = (1 - q)l q~q 1 + . 

We want to minimize the term V(~:) = ~q (1 + q~ ~)2 = ~q + 2q~q 1 + q2~:q-2 with respect 

to the variable 4:. 
The minimum value is obtained at the positive zero of the derivative: 

V'(~) = q~q-3(~2 + 2(q - 1)~:+ q(q - 2)). 

Thus 

P ~ : = 2 - q = 2 - - -  [] 
p + l "  

Remarks. For ~ = 1 / ( p  + 1) (heuristic H2), we have o-(~) = 1 and R p (H2) = p + 1, 
which corresponds to the statement of  Proposition 9. 

For ~ = p  + 1 (heuristic H3) we have R~ (H5)>t 1 + p / ( p  + 1) 2 and equality holds 

for p = 1. For p less or equal to 1, it provides a valid upper bound; for p greater 
than 1 it is not valid any more, but the upper  bound is much too large, being O(p).  
In general the upper  bound on RiP(H5) will be quite pessimistic. 

Following the same line of  reasoning, it is possible to derive bounds for RP(H5).  
The proof  requires the equivalent of Lemma 12 for nonlinear cost functions and is 
technical. Furthermore the upper  bounds tend to be loose. 

6. Computational results 

The numerical tests have been performed on a network taken from Steenbrink 
[25] and reproduced in Figure 3. It is characterized by a large number  of  paths 
between pairs of nodes, and these paths share many common arcs. The first data 

set utilizes Steenbrink's congestion functions. The second data set utilizes a much 
denser trip matrix; parameters have been chosen in such a way as to induce high 
congestion levels, hoping that there would be significant differences between the 

system-optimum and user-optimum solutions. However, in one instance the H2- 
solution was actually better than the system-optimal solution! This result can be 

explained by numerical inaccuracies arising while solving convex flow problems. 
These were solved using a modification by Florian [14] of the Frank-Wolfe  procedure 
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4 2 

5 3 

9 nodes 
36 one-way links 

Fig. 3. S teenbr ink ' s  ne twork:  9 nodes ,  36 links. 

requiring more computer  memory, but with much better convergence properties. 

Furher details on these tests may be found in Marcotte [20]. 
Tables 1 and 2 give the ratios of the heuristic objective to the system-optimal 

objective, for data sets 1 and 2 respectively. 
In the first experience with data set 1, the values of  the H0 and H2 solutions are 

identical, although the flows and capacities are quite different. This suggests the 

existence of distinct optima. 

Table  1 

Numer ica l  results  wi th  first da ta  set 

p m H0 H2 H3 H5 ( (  = 1) 

1 1 1 1.003 1.003 1.080 1.023 
2 1 2 1.002 1.001 1.202 1.025 

3 1 3 1.018 1.034 1.270 1.038 
4 2 1 1.000 1.000 1.202 1.082 

5 2 2 1.002 1.001 1.583 1.134 
6 4 1 1.000 1.000 1.379 1.216 
7 4 2 1.000 0.999* 1.953 1.358 

* Due to imper fec t  convergence.  

Table  2 

Numer ica l  resul ts  wi th  second data  set 

p m H0 H2 H3 H5 ( (  = 1) 

1 1 1 1.000 1.019 1.193 1.068 
2 1 2 1.002 1.005 1.367 1.046 
3 2 1 1.003 1.006 1.320 1.139 

4 2 2 1.001 1.003 1.627 1.146 

5 4 1 1.002 1.007 1.449 1.256 

6 4 2 1.000 1.001 1.936 1.350 
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Solut ions  given by heur is t ic  H0 are consis tent ly  the  best ,  and  so close to the 

sy s t em-op t imum value,  that  they are, to all extent ,  op t imal .  This good  pe r fo rmance  

o f  H0 has been  p rev ious ly  r epor ted  in Los [18]. One shou ld  note  f inal ly that ,  unl ike  

heurist ics  H3 and  H5, the  qual i ty  o f  the H0 and  H2 solu t ions  does  not  seem to be 

much  inf luenced by  var ious  o f  the pa ramete r s  p and  m. 

8. Conclusion 

In this p a p e r  we have conduc t ed  a fa i r ly  extensive s tudy o f  a pa r t i cu la r  k ind  o f  

cont inuous ,  non l inea r  ne twork  design p rob lem,  which  can be m o d e l l e d  as a bi level  

p r o g r a m m i n g  p rob lem.  A l though  there is not  much  hope  of  deve lop ing  exact  so lu t ion  

a lgor i thms for  large or  even medium-s ize  ne tworks ,  the numer ica l  exper iments  t end  

to show that  heuris t ics  H0 and  H2 yie ld  nea r -op t ima l  solut ions.  

Theore t ica l  a t tempts  have been  made  to loca l ly  improve  on the so lu t ion  ob t a ined  

f rom H0, b a s e d  on cu t t ing-p lane  ideas  der ived  f rom the nonconvex  fo rmula t ion  

(6). This resu l ted  in two a lgor i thms,  H1 and  H4, that  have been  descr ibed  and  

ana lyzed  in [20]. Howeve r  the overal l  complex i ty  o f  these a lgor i thms  more  than  

offsets the sl ight  improvemen t s  they could  br ing  to the subop t ima l  so lu t ions  p r o v i d e d  

by  ei ther  H0 or  H2. 
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