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Recently much attention has been focused on multilevel programming, a branch of mathematical
programming that can be viewed either as a generalization of min-max problems or as a particular
class of Stackelberg games with continuous variables. The network design problem with continuous
decision variables representing link capacities can be cast into such a framework. We first give a
formal description of the problem and then develop various suboptimal procedures to solve it.
Worst-case behaviour results concerning the heuristics, as well as numerical results on a small
network, are presented.
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1. Introduction

There are many situations where different levels of decisions are involved. Most
of the large-scale mathematical programming literature that deals with decentralized
management of resources covers models of such problems where the various decision
makers act in a cooperative manner. Models of noncooperative decision making
are found in the game theory literature and are usually restricted to a small number
of players or variables. Recently some authors have investigated situations where
decision makers at various levels act in a hierarchical manner: at a given level,
decision makers are bound by the decisions of the lower levels and maximize their
own profit accordingly, taking into account the reactions of the lower levels; for a
complete and formal description see Bard and Falk [4]. If x and y represent the
decision vectors associated with the upper and lower level respectively, the bilevel
programming problem considered may be formulated as:

Min F(x,y)
xeX
(1)
subjectto ye {argmin G(x, z)}
ze Y(x)

where X is the feasible set of the x-variables, and Y(x) the feasible set, possibly
dependent on x, of the y-variables. Algorithms have been developed for linear cost
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functions (F and G linear, X and Y polyhedral) by Bialas and Karwan [6], Bard
and Falk [4], Papavassilopoulos [22], Candler and Townsley [8], and for the general
case by Bard [3] and Papavassilopoulos [23].

In this paper we consider a generalization of problem (1) where the y-variables
are the solution of an equilibrium problem formulated as a variational inequality.
Then the problem becomes:

Min F(x,y)

xeX

(2)
subjectto (y—z)"H(x,y)<0 Vze Y(x),

yve Y(x).

The network design problem that we consider has already been formulated and
studied, in particular, by Dafermos [9], Abdulaal and Leblanc [2], Dantzig et al.
[12] and Gershwin et al. [26]; it consists in optimally balancing the transportation,
investment and maintenance costs of a network subject to congestion, where users
behave according to Wardrop’s first principle of traffic equilibrium (user-optimum,
see Wardrop [27]) which is akin to the Nash-Cournot principle of the theory of
games (Haurie and Marcotte [15]). The x-vector represents the improvements made
to the network, X the set of feasible improvements, y the multicommodity flow
variables and Y(x) the polyhedron of feasible flows, which is independent of x. In
particular, the x-variables will reflect the capacities of the network links; for a given
link flow, the corresponding link traversal time will be a decreasing function of its
capacity. In other words: the higher the capacity, the lower the congestion.

The remainder of the paper is structured as follows: first we give a mathematical
formulation of the problem, then we prove some theoretical results about the
problem; finally we propose solution algorithms of a heuristic nature which will be
analyzed theoretically and tested numerically.

2. Mathematical formulation

Throughout this paper, the subscript ‘a’ will refer to a link of the network. Denote
set of nodes.

set of one-way links.

set of origins.

set of destinations.

k= (05 4ca: flow vector of commodity k (trips originating from origin k).

.= Y, vhk:  total flow on link a.
ke2

v=(0,)qca: total low vector.
z,: capacity of link a.
gu: trip demand between origin k € 2 and destination [ ¢ A.
In the remainder of the paper, we will call a set of flow vectors feasible if it satisfies

B2z

c c
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the following flow conservation and non-negativity constraints:

Z 8xil ifi:kEQ,

leA

VieN: Y vk— Y vk=<—gu ifie4, (3)

jeN jeN
0 otherwise,

vE=0.

Let @ be the set of multicommodity flow vectors satisfying (3). For the sake of
brevity we will write v € @ although, formally, we should write ("), € @. Let
S(v, z) be a vector-valued function giving the traversal times of all links as a function
of the total flow vector v and the capacity vector z=(z,),.4- It may be shown
(Smith [24], Dafermos [10]) that a feasible flow vector v™* constitutes a user
equilibrium for a given capacity vector z, if and only if it satisfies the following
variational inequality:

(v*—0v'NTS(v*, 2)<0, i=1,2,...,n, (4)

for all extremal flows v of .
Whenever the Jacobian matrix V,S(v, z) is symmetric for fixed z, (4) is equivalent
to solving the convex programming problem:

Min IS(t, z) dt (5)
ved :

where the line integral does not depend on the path of integration. The solution of
(5) may be efficiently found by using primal methods of feasible directions for
solving convex flow problems (see Nguyen [21], Leblanc [17], Daganzo [11],
Bertsekas and Gafni [5], Florian [14]).

Assumption 1. For z fixed, the function S(v, z) is continuously differentiable, positive
and strictly monotone for all nonnegative v.

Under Assumption 1, a solution to (4) exists and is unique (Aashtiani and
Magnanti [1]).
Using the previous notation, the bilevel program (2) may be written as:
Min 0"S(v, z)+g(z)

z=0
ved ‘ (6)
subjectto (v—v"")TS(v,z)<0, i=1,2,...,n,

where g(z) represents the capital investment and operating costs of building and
operating a network with capacities z.!

! Assuming a discount factor p >0, we have: g(z)=[p/(1+ p)lc(z)+m(z) where c(z) is the actual
cost of building the network and m(z) is the operating cost.
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Formulation (6) suggests a finitely convergent constraint accumulation algorithm
(see Marcotte [20]). This can be contrasted with a somewhat similar result (Corollary
2.1) in Blankenship and Falk [7]) where S(v)2 . S(t, z) dt is concave rather than
convex.

Assumption 2. The function g(z) is link-separable, i.e.,

g(z)= 3% g.(z,) with each function g, nonnegative
acA

increasing and continuously differentiable. Also: g(0)=0.

The bilevel problem (6) may be rewritten as:

Min v(z)"S(v(z), z) + g(z) (7)

z=0

where v(z) is the unique solution to variational inequality (4).

Some attempts have been made to solve (7) directly, using descent methods
(see [2]). Difficulties stem from the fact that the objective function, although
continuous, is not in general convex or differentiable as a function of the argument
z (Dafermos [9], Marcotte [19]). Also, each evaluation of the objective in (7)
requires the solution of a user equilibrium problem, which is prohibitive.

We will now introduce a related problem that is easier to solve and can be used
to provide both lower bounds and upper bounds on the true optimum.

A system-optimal problem is obtained by removing the variational constraint on
v; problem (6) then becomes:
Min F(v,z)=0v"S(v, z)+g(2). (8)
=
Let (v*, z*) and (7, Z) be the solutions to (6) and (8) respectively. Since v(z), the
user-optimum flow corresponding to capacity vector z, is a feasible solution for
problem (6), we have the following obvious relations:

F(3, )< F(v(z*), z¥) = F(v*, z*) < F(v(%), Z).

Assumption 3. The function S(v, z) is link-separable and has the form: S(v, z) =
(Sa(v./2a))acn, Where S, are positive, increasing, continuously differentiable and
convex functions. By convention we set S,(v,/z,) =0 whenever v, =z, =0.

Under Assumption 3, the function v™ - S(v, z) can easily be shown to be convex.
Furthermore, if the function g is convex, then it follows that (8) is a convex
programming problem in the variables v and z.
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It can be further simplified (Los [18], Marcotte [20]) by first performing the
minimization with respect to the z,-variables, for each link-flow v, fixed:

Min vasa(ﬁ“—) +24(2,) ©)
z,=0 Za

whose unique solution will be denoted z,(v,). This yields the problem:
Min X vaSa< e >+ga(zu(va))- (10)
ved acA Za(Ua)

This last formulation is that of a standard convex flow assignment problem.

3. Linear or concave objective

When the cost function g is linear, both the system-optimum and user-optimum
problem possess interesting properties. We first recall a result of Los [18]:

Proposition 3. If Assumptions 1, 2, 3 hold and the cost function g is linear, i.e.,
g.(z,) =1z, Vac A, then the objective function in problem (10) is linear.

Proof. Replacing g.(z,) by l,z, in (9) we obtain the one dimensional minimization
problems:

Min vas,,(&> +1z, (11)

2,20 ”

By differentiating with respect to z, we obtain the necessary and sufficient
condition for a minimum:

<&>zs;<9‘—’) =1, (12)
Za Z,

Let u, be the unique solution to the equation x>S’,(x)=1,. Then u, is positive
and assigns a value to the ratio v,/z,, including the case where v, =z, =0.?
Replacing z, by v,/u, in the objective (11) yields:

Flo.)= 3 (2+8.00))o.

acA a

which is linear in v. O

Proposition 3 shows that the system-optimum problem (11) can be solved by
performing shortest path calculations.

The next proposition states that, under slightly more restrictive assumptions, the
system-optimum and user-optimum problems are equivalent, regardless of the
topology of the maximal network or the values of the entries of the trip matrix.

% This will also be true of all heuristics considered in this paper.
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Assumption 4. The cost function is linear and each of its components is proportional
to the corresponding arc length and capacity, i.e.,

ga(za) = ldaza

where d, represents the physical length of arc a, and [ is a constant.

Assumption 4 implies that the investment and maintenance costs are homogeneous
throughout the network.

Assumption 5. The link traversal times are nonnegative and homogeneous
throughout the network and proportional to the arc lengths, i.e.,

S,,<&> = dao(&) for some function o.

Z, Z,

Proposition 4. Under Assumptions 1, 2, 3, 4 and 5, the solution(s) to the system-
optimum problem (8) is feasible and thus optimal for the user-optimal problem (6).

Proof. Under the above assumptions, the system-optimum problem is

Min ¥ u,,daa<ﬁ> +1d,z, (13)
ved acA a
z=0

At the optimum one must have:

v\ (v
() ~(2) -
z, z,
Let u be the unique solution to the equation
x’o'(x)=1
We have: z, = v,/ u. After substitution in (13) we get:
. 1
Min Y d.| o(u)+—1iv,
ved acA u

which is equivalent to:

Min Y d.v,. (14)
ved acA
Let v* be a (not necessarily unique) optimal solution to (14), and let z* = v*/u.
We must prove that v™ is the user equilibrium corresponding to the capacity vector
z*, i.e. that v* satisfies the variational inequality:
‘ v¥
¥ (vf—uﬁ;’)daa(—*)so, i=1,2,...n (15)
z

acA a
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v* being solution of (14), we have:

Y (v¥-0v)d, =<0, i=1,2,...n.

acA

Multiplying by the constant o(v%/z¥) = o(u), we get the desired result. [

In general however, when Assumptions 4 and 5 are not satisfied, characterization
of the optimal solution for the user-optimum problem (6) is difficult. The next
proposition gives a property possessed by at least one solution flow vector v*.

Proposition 5. If g is linear and assumptions 1, 2, 3 hold, there exists a solution vector
(v*, z*) to (6) for which v* is an extremal flow, i.e., v*=v"" for a certain index i.

Proof. We make the change of variable:

This is equivalent to using the congestion levels on the links of the maximal
network as the primary decision variables. The user-optimum problem (6) then
becomes:

. lava
Min F(v, k)= Y v,S.(k,)+ "

k=0 acA a

(16)
subject to ve{argmin Y waSa(ka)}.

we acA

Let (v*, k™) be a solution to the above problem (16). Since & is convex and may
be assumed bounded without loss of generality, we can express v* as a convex
combination of extremal points of @:

v*=Y A0, A>0, YA =1,

iel iel

where I is a subset of (1,2,..., n). Now, v* is feasible for (16) and must therefore
be a minimum for the expression

L waSa(k?),

acA
ie.,

LY A0S (k= T waSa(kE) Vwed,

acAicl acA
T A X vlS(kD= L waSu(KE) Ywed.
iel acA acA

The A; being positive, we conclude that

Y 0P8 (k¥)y< Y w,S.(k*) Vwed Viel

acA acA
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and the vs are feasible for (6), with k = k*. Now

F(v*, k*)= ¥ (2 Aiv?)(sa(ki‘wr%)

acA \iel

=Y )\,.I: D ug")<sa(kj)+%)] Z.EI NF (0 k*).

iel acA

Thus F(v'”, k*)= F(v*, k*) for all i in I by the optimality of (v*, k*), and the
v'’s are optimal. This completes the proof. [

Corollary 6. If g is concave and Assumptions 1, 2, 3 hold, there exists an optimal
solution (v*, z*) to (6) where v* is an extremal flow of .

Proof. Using the notations in the proof of Proposition 5 we prove, following the
same line of reasoning, the feasibility of the extremal flows v'” for problem (6). Also,

(i)
F(o*, k%)= % {[z (Aivzf))sa(kt)}ga(%)}

acA iel
implies
. 0!
F(v*, k*)B[Z AL vi’)Sa(k’i‘)]+[Z A2 ga< ‘;)] (17)
iel acA iel acA ka

by concavity of g,.
Therefore

(
F(v*, k*)= ¥ Ai[ ) vS)Sa(ki‘)+ga(v“ )} =% MF(0, k)

iel acA k): iel
Now (v*, k*) optimal implies that
F(v'?, k*)= F(v*, k*) foralliinI

and the v'”’s are optimal for (6). O

Corollary 7. If g is strictly concave and Assumptions 1, 2,3 hold, any solution (v*, z*)
to (6) is such that v* is an extremal point of ®.

Proof. In the preceding proof, the inequality (17) is strict® unless I is composed of
a single element i*, and

A= 1, v¥*= U(i*). O

3 We rule out the rather uninteresting case where all v%’s are zero for some origin k.
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The last two corollaries are interesting because they do not rest in any way on the
concavity (or strict concavity) of the objective function F(v, z). They can be con-
trasted with the results of Bialas and Karwan [6] pertaining to the linear bilevel
programming problem. Actually, F may be nonconcave even with the S,’s convex
and the g,’s concave.

Proposition 5 and its two corollaries, although providing a partial characterization
of the optimal solution, cannot be used directly to design a search algorithm. There
still remains the problem of optimally allocating an extremal flow v to the network
asociated with the capacity vector z.

4. Heuristic procedures

The formulation (6) suggests (see Marcotte [20]) the use of a restriction procedure
for solving problem (6). Unfortunately the resulting restricted subproblems are
nonconvex.

In this section we propose four heuristic procedures whose theoretical and
numerical behavior will be analyzed in the next two sections. In the remainder of
the paper the congestion functions will be of the BPR-type, i.c.,

U, Vg P . ..
SA\—1=a,+B.— with p positive, (18)
z

a a

and the cost functions will be power functions: g,(z,) =1Lz, with m>0, thus
satisfying Assumptions 1, 2 and 3 previously stated.

One heuristic (namely H3) relies on these particular functional forms. The others
can be readily applied to the general case.

4.1. Heuristic HO

This heuristic determines a feasible suboptimal solution (v(Z), z), where Z is the
vector of capacities on the network that are optimal in the system-optimal problem
(8), and v(Z) is the used equilibrium flow vector corresponding to the network
having 7 as its capacity vector. That is, we let (5, Z) be solution of the system-optimum
problem (8) and let (v(Z), Z) be the feasible suboptimal solution.

In view of the difficulty of solving the user-optimum problem, this procedure has
been proposed, among others, by Dantzig et al. [12].

4.2, Heuristic H2

This procedure has been applied by Tan et al. [26] to the Traffic Signals Setting
Problem. One iteration of the algorithm consists of solving sequentially an optimiz-
ation problem involving the capacity variables, with the flow variables fixed, and a
user-optimized equiibrium problem corresponding to this new capacity vector. After
several iterations of this process, one hopes that convergence toward a ‘good’ solution
will be obtained.
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Algorithm H2
Step 1 (Initialization). Choose any positive capacity vector Z.
Step 2. Solve the equilibrium problem (equilibrium phase)

v, ¢
Min Y j sa<_—> dr (19)
ved acA JO Zq

whose solution is o.
Step 3. Solve (optimization phase)

Min ¥ vS(j—) +ga(z0) (20)

z=0 acA a

whose solution is z*; set 7« z*,
If |z—z*| < &, STOP; otherwise return to step 2. A

The optimization phase at step 3 simply consists of finding the roots of the
equations:

2
(ﬁ) s;(ﬁ) —gi(z.), acA.
Zq Zq

It is shown in Marcotte [19, 20] that heuristic H2 actually solves the following
convex optimization problem:

Da t
Min Y J Sa<—) dt (21)
ved acA JO Za(t)
where z,(v,) is solution of (20).
Under our assumptions about the functional form of S, and g, we have:

1/(m+p)
Za(va) = <fn_b;“> . U(a"ﬂ)/("“")., (22)

4.3. Heuristic H3

The idea consists of finding a capacity vector for which the system-optimal flow
vector ¥ is an equilibrium flow.

Putting the value of z,(v,) given by expression (22) into the objective F(v, z) we
find

ved acA

pedargmin Y v\ a,+dp,m /R (23)
g

where

A m/(m+p) la p/(m+p) R mla p/(p+m)
T N -TE -

p m
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In order that the solution be an equilibrium, it must satisfy the variational
inequality

> (va—ug))(aa+ﬂa(lz)ﬁ>p)$0, i=1,...,n. (24)

acA a

Now, (24) corresponds to the mathematical program:

Min 2 J':a [a"w“(;a:t))p] df (25)

where {,(v,) is a function giving the desired value of z,, and depends on the
corresponding link-flow v,. The problems defined by (23) and (25) will possess
identical solutions if:

Ya . P

for all v,=0.
This identity is realized if we take

. ) P+1 ( 1 >1/P(pﬁa) 1/(p+m)
_ _ () (PE. 26
a(v,)=b,v, withn otm and b, e L, (26)

Thus the solution vector (&, b,0%)4c 4 is feasible for (6).

4.4. Heuristic HS

Heuristics H2 and H3 can be viewed as particular instances of a general heuristic
procedure which consists of solving a convex network optimization problem in v
and z whose solution satisfies the variational constraints (6). Indeed, consider the
parameterized problem:

Min J(v,z)2 ¥ Jva[aa+ﬁa<z—t> ]dt+§alaza'”. (27)
v,z acA JO a

There exists a vector £ =(£,),c4 such that the optimal solution to (27) is optimal
for (6). However the choice of such an optimal ¢ is of the same degree of difficulty
as solving the original bilevel problem. The rational behind heuristic HS is to set
all £&,’s to.some predétermined value ¢, yielding the following convex mathematical
programming problem:

. Ba {v.\* m
Min Y v, ag+——|— + &Lz, (28)
07 geA pt1l\z,

This corresponds to minimizing the weighted sum of user-perceived travelling times
and of the investment and maintenance costs of the network.
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If £ is set to the value 1/(p+1), then the optimal solution to (28) consists of an
equilibrium flow vector ¢ associated with a capacity vector 7 satisfying the system-
optimal relation (22). Since this corresponds to the characterization of the solutions
obtained from heuristic H2, it can be concluded that heuristic H2 is subsumed by
heuristic HS. Similarly, it is easily shown that heuristic H3 corresponds to setting
£ to the value p+1.

5. Worst-case analysis of the heuristics

In this section we develop upper bounds on the ratio of the values of heuristic
and exact solutions. The analysis does not depend on the network structure.

Definition
Cost of heuristic solution F(v(z™), "
R? (H)=Sup - u. =»ou ( (*)* )
o5, Cost of optimal solution .5, F(v* z¥)
NA N,A

where z*' is the capacity vector obtained from heuristic H (H=HO0, H2, H3 or H5).*
5.1. Heuristic HO
Proposition 8. lim,.. R{(HO0)=2.
Proof. Consider the network of Figure 1.
We set
Six)=p,  Si(x)=Sy(x)=5(1+x"),

gi(x)=0, g (x)=gs(x)=1px.

Since links 2 and 3 play similar roles, we can replace them by a fictitious link 4
that must carry a flow of at least p units, and with congestion and cost functions
given by

Six)=1+x",  gix)=px.

link 1

g =1
link 2 /link'3 3

Fig. 1. Worst-case network for heuristic HO.

4 Heuristics H1 and H4, based on nonconvex network optimization programs, are analyzed in {20].
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The system-optimum problem is

p2
Min po,+ 04[1 + <ﬂ) ] + pz4.

ved 24
zz=0

The optimal z, must satisfy

pz+l
2f Va _
P <Z4) P

and the problem becomes

1\ 7> (P*+2) s R
Min Pvl+v4[1 +<;) +p PV +1)].

ved

The optimal solution is

5,=1, 5i=p, Zy= P/ D),
The cost of this solution is F(B, Z) = p”+O(p), where lim,_. O(p)/p <.

Now the equilibrium is not reached since travel time on link 4 is less than the
corresponding travel time on link 1. A fraction of travellers will therefore switch
from link 1 to link 4, until travel times on both links are equal to p. This equilibrium
occurs before v, gets to zero, since we have:

2

o+ 1\7 p+1 I3 '
1+ =1+ W > p for p sufficiently large.

The cost of this solution is
F(v(2),Z) =2p°+0O(p).

The optimal solution consists of slightly increasing the capacity on arc 4 to allow
for all (p+1) travellers; the corresponding cost is

F(v*, z*)=p*+0(p)

Thus lim,_ F(v(Z), )/ F(v*, z¥*)=2. O
5.2. Heuristic H2
Proposition 9. RI(H2)=p+1.

Proof. For m=1 and S,(x) = «a, + B,x", problem (21) takes the form

1 p/(p+1}
Min Y va[aa+3a< ) ] (29)

ved acA pBa
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Let & be solution of (29) and %, = z,(5) = (pBa/ L) "V d,. We have

F@& 5= ﬁa[aa+ﬂa<i’})p]+zaza

acA Zg

la p/(p+1)
- 6a[aa+<p+1>ﬁa< ) ]
acA pIBa

1 p/(p+1)
<(p+1) 3 @[aawa( ) ]
acA p.Ba

p/(p+1)
s(p+1)a§Aﬁa[aa+ﬁa(p’,§a) }=<p+1>F<a,z>

where ¥ is solution of the system-optimum problem.
Finally,

F(6,2)<(p+1)F(p, )< (p+1)F(v*, z*).

This proves that RY(H2)= p+1. To prove the reverse inequality, consider the
network of Figure 2.

path 1
origin destination

path 2

Fig. 2. Worst-case network for heuristic H2.

Path 1 is composed of n identical arcs for which a, = 8, =1and I, =p(1/n)**"?,
Path 2 comprises a unique arc with a, =8, =1 and I, =p(n—1)""/".
One unit of flow must travel from the origin to the destination.
Heuristic H2 yields the path flows:
61 = Oa 52 = 1)
with total cost
F(0,Z)=n(p+1)-p.
The optimal solution consists in routing all the flow on path 1, with cost:
F(v*, z%)=n+p+1.
Therefore
. F(5,z) . n(p+l)—-p
lim ————= —=

= +1.
nooo F(0¥, 2%) b n+p+1 p D

5.3. Heuristic H3

Proposition 10

+1
m(p )Jr p

Ro{H3)= m+p (m+p)(p+1)™*¥
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Proof. Let (4, Z) be the solution given by heuristic H3. From (26) we find its cost:

e = +1 . +p \""].

F(ﬁ, 2): Z ﬁa{aa‘*'l:r—n(p—lda*'la(B_'M) :Ibﬁ(m—l)/(pﬂn)}
acA p+m d, m(p+1)

The error is maximum when all «, are zero, which yields:

m(p+1)+[ m+p ]’"“’ Ba'l
m(p+1)] aor

R? (H3)=Su
(H13) Ba,lI: m+p

_mlp+1) p
m+p (m+p)(p+1)™F’

|

For m=1 we get

p
=Pt 1=R{(H2).

RI(H3)=1+(p+1)

Corollary 11. lim,, om0 R5(H3) =1 and limp-~ RI(H3)=2.
Proof. The proof is straightforward. [

The first statement of Corollary 11 indicates that, in the important particular case
where the investment costs are strongly concave (economies of scale exist), the
solutions to the user-optimized and system-optimized problems will be almost
similar. Concavity of the g,’s leads however to a concave optimization problem for
which no efficient solution procedures exist yet. The limit case m =0 corresponds
to the discrete network design problem (without congestion) and has been treated
extensively in the literature: Magnanti and Wong [28], Hoang [16], Dionne [13], etc.

5.4. Heuristic HS
The following lemma will be used to find bounds for R{(HS).

Lemma 12. Let a =(a,).c4 and B =(B,)aca be two arc length vectors of non-negative
numbers and k> 0. Let:

ﬁe{argmin F(v)é(cH—B)Tv}, (30)
Ee{argminﬁ(v)é(a+kB)TU}. (31)

Then we have

F(% 1
Sup =(li =Max{k,;}.

Proof. Suppose k is greater than 1 and consider a network with two parallel arcs
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linking an origin and a destination. Let & = (n, 1), 8 = (0, n—1—3) for n large. We
have: =(0, 1) since

1
a1+[¥1:n>1+n—1—;=a2+ﬂ2.

Also: §=(1,0) since
1
a1+kﬁ1=n<1+k(n—1——> = a,+ kB,
n

for n sufficiently large. Hence

ﬁ(ﬁ)_1+k(n—1—1/n) sk
I::(ﬁ)_ n n—)oor
implies
F(5)
Sup =——=k
a,B,g F(?)
But

F(3) < kF(0)< kF (%) < kF(5) always holds, and

F(D)
Sup ==k
o F(D)
Therefore
F(%)
Sup =——=k%
Den F(9)

If k is less than 1 we replace problem (31) by the equivalent problem: Min, ¢ (a/k+
B)"v. Reasoning exactly as before, exchanging the roles of « and B, we find

Su ﬁ(ﬁ)—l
S EG) K

Removing the condition on k yields the desired result. [

Proposition 13

P gp/(pﬂ) p 2
1+ < RY(HS5) <= [1+ ] .
gp+1) (p+ D)V VL g(p+1)

Proof. After substituting z, by its value in the objective of (27) and setting m to 1,
we get the problem:

|: §p<p+1) TN ! p/(p+1)
Min V| g +—————=(p+1)BY"" (—a) :l 32
e agA (p+1)1/(p+1)(17 B p (32)
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The real cost of the solution v to (27) is:

(NP
v
mexmr=zlﬁ{%+ﬂ{j%)]+W?

acA

where 28 =[pB./(p+1)¢&,,]V " V¥, for all a in A. After replacing z© by its
value we obtain

F(U(é)’ Z(f)) — Z vgf)l:aa +%1_(§p/(p+l)(p + 1)p/(p+1)
p

acA

14
TG 7 (p*D | €a (33)
3 (p+1)
with

l p/(p+1}
ea=(p+ 1)32””*”(‘“) :
p
Applying Lemma 12 to expressions (32) and (33) we get:

RY(HS) ;—1——[511/0”1)(1, +1)P/(P+D
pt1

N P (p+pVeTD
f(l/(pﬂ)(p-i-l)l/(pﬂ) fp/(p*-l)

1 p) p
=——(p+1+E}=1+ 1.
p+1<p £ §(p+1)>

This proves the first inequality. Now consider the system-optimal cost function,
obtained after replacing z by its value:

F(o,z(v)) = ¥ va(aatel). \ (34)

acA

Applying again Lemma 12 to (32) and (34), the second inequality will hold if the

quantity
3 fp/ (p+1) ( p )
7O =\ e+

is greater or equal to 1. Letting p/(p+1)=.¢g we have

® =G (1)

The minimum value of (&) is obtained when g¢? '+ q(qg—1)¢* >=00ré=1—¢q
and

d@zm—w“%vqfo+;§ﬁ

l—q(_l_i):(

=(1-q) "=

-9 (- =1 D
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Corollary 14. For { =1 we have 2<lim, ., Rf (H5) =4.

Proof. Replace £ by 1 in Proposition 13; we have

. p . 1 r \
Im 1+——==2 d lim 1+ =4,
poot pt+1 an p1—>oo(p+1)1/(”+l)( p+1>

In order to obtain strong bounds for heuristic H5, we can choose ¢ = £(p) such
as to minimize the term U(&)=o(£)(1+p/&(p+1)). We make the change of
variable: p/(p+1)=q, and we rewrite:

2

U(§)=(1-q>‘q§q(1+§> .
We want to minimize the term V(£) = £9(1+ g/ £)* = £9+2q¢9 '+ ¢°£97% with respect
to the variable &

The minimum value is obtained at the positive zero of the derivative:

V(&) =q¢" (£ +2(q—1)é+4q(g—2)).

Thus
p

=2—q=2——
¢ 1 p+1

Remarks. For £=1/(p+1) (heuristic H2), we have o(§)=1 and R{(H2) =p+1,
which corresponds to the statement of Proposition 9.

For £=p+1 (heuristic H3) we have R{(HS5)=1+p/(p+1)* and equality holds
for p=1. For p less or equal to 1, it provides a valid upper bound; for p greater
than 1 it is not valid any more, but the upper bound is much too large, being O(p).
In general the upper bound on R{(HS5) will be quite pessimistic.

Following the same line of reasoning, it is possible to derive bounds for R%,(HS5).
The proof requires the equivalent of Lemma 12 for nonlinear cost functions and is
technical. Furthermore the upper bounds tend to be loose.

6. Computational results

The numerical tests have been performed on a network taken from Steenbrink
[25] and reproduced in Figure 3. It is characterized by a large number of paths
between pairs of nodes, and these paths share many common arcs. The first data
set utilizes Steenbrink’s congestion functions. The second data set utilizes a much
denser trip matrix; parameters have been chosen in such a way as to induce high
congestion levels, hoping that there would be significant differences between the
system-optimum and user-optimum solutions. However, in one instance the H2-
solution was actually better than the system-optimal solution! This result can be
explained by numerical inaccuracies arising while solving convex flow problems.
These were solved using a modification by Florian [ 14] of the Frank-Wolfe procedure
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4 2
1
9 nodes
6 1 8 Z 1 36 one-way links
3
' \
5 "3

Fig. 3. Steenbrink’s network: 9 nodes, 36 links.

requiring more computer memory, but with much better convergence properties.
Furher details on these tests may be found in Marcotte [20].

Tables 1 and 2 give the ratios of the heuristic objective to the system-optimal
objective, for data sets 1 and 2 respectively.

In the first experience with data set 1, the values of the HO and H2 solutions are
identical, although the flows and capacities are quite different. This suggests the
existence of distinct optima.

Table 1

Numerical results with first data set

p m HO H2 H3 H5(¢=1)
1 1 1 1.003 1.003 1.080 1.023
2 1 2 1.002 1.001 1.202 1.025
3 1 3 1.018 1.034 1.270 1.038
4 2 1 1.000 1.000 1.202 1.082
5 2 2 1.002 1.001 1.583 1.134
6 4 1 1.000 1.000 1.379 1.216
7 4 2 1.000 0.999* 1.953 1.358

* Due to imperfect convergence.

Table 2

Numerical results with second data set

14 m HO H2 H3 H5(¢£=1)
1 1 1 1.000 1.019 1.193 1.068
2 1 2 1.002 1.005 1.367 1.046
3 2 1 1.003 1.006 1.320 1.139
4 2 2 1.001 1.003 1.627 1.146
5 4 1 1.002 1.007 1.449 1.256
6 4 2 1.000 1.001 1.936 1.350
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Solutions given by heuristic HO are consistently the best, and so close to the
system-optimum value, that they are, to all extent, optimal. This good performance
of HO has been previously reported in Los [18]. One should note finally that, unlike
heuristics H3 and HS5, the quality of the HO and H2 solutions does not seem to be
much influenced by various of the parameters p and m.

8. Conclusion

In this paper we have conducted a fairly extensive study of a particular kind of
continuous, nonlinear network design problem, which can be modelled as a bilevel
programming problem. Although there is not much hope of developing exact solution
algorithms for large or even medium-size networks, the numerical experiments tend
to show that heuristics HO and H2 yield near-optimal solutions. _

Theoretical attempts have been made to locally improve on the solution obtained
from HO, based on cutting-plane ideas derived from the nonconvex formulation
(6). This resulted in two algorithms, H1 and H4, that have been described and
analyzed in [20]. However the overall complexity of these algorithms more than
offsets the slight improvements they could bring to the suboptimal solutions provided
by either HO or H2.
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