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Abstract

Motion estimation has been shown to help significantly in the compression of video sequences. However,
since most motion estimation algorithms require a large amount of computation, it is undesirable to use
them in power constrained applications, such as battery operated wireless video terminals. This thesis
describes a novel motion estimation algorithm, termed network driven motion estimation, which reduces the
power dissipation of wireless video devices in a networked environment by exploiting the predictability of
object motion. Since the location of an object in the current frame can be predicted from its location in
previous frames, it is possible to optimally partition the motion estimation computation between battery
operated portable devices and high powered compute servers on the wired network. In network driven
motion estimation, a remote high powered resource at the base-station (or on the wired network), predicts
the motion vectors of the current frame from the motion vectors of the previous frames. The base-station
then sends these predicted motion vectors to a portable video encoder, where motion compensation proceeds
as usual. Network driven motion estimation adaptively adjusts the coding algorithm based on the amount
of motion in the sequence, using motion prediction to code portions of the video sequence which contain a
large amount of motion and conditional replenishment to code portions of the sequence which contain little
scene motion. This algorithm achieves a reduction in the number of operations performed at the encoder for
motion estimation by over two orders of magnitude while introducing minimal degradation to the decoded
video compared with full search encoder-based motion estimation.

Thesis Supervisor: Anantha P. Chandrakasan
Title: Assistant Professor
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Chapter 1

Introduction

As the use of multimedia devices becomes more prevalent, there is an increasing need to transmit video

over low bandwidth networks, such as wireless channels. Due to the large amount of data contained in video

signals, efficient compression techniques are extremely important. Conventional video systems use some form

of scene motion estimation/motion compensation at the encoder to achieve high compression ratios because

it is very effective in decorrelating successive frames. However, most motion estimation algorithms require

an extensive search to minimize a distortion metric, which is extremely computationally intensive (e.g., a

±16 pel full search motion estimation for 30 fps video requires over 65 thousand ops/pixel/second). The

high computational requirement of full search motion estimation makes it unsuitable for power constrained

portable video terminals, since the power dissipation of the circuit which implements an algorithm is directly

proportional to the amount of computation. Minimizing power dissipation is the key to maximizing battery

lifetime and thus should be one of the driving forces when designing motion estimation algorithms for portable

video devices.

1.1 Low Power Digital System Design

In the past, digital circuit design has been driven by a desire to increase clock speed and reduce chip

area at the expense of increasing power. Low power design techniques were used mainly to implement

low throughput applications, such as pacemakers, calculators, and wristwatches. However, advances in

integrated circuit technology, data compression, and networking have facilitated the wide-spread use of

high performance portable devices which integrate data, voice, and images, such as laptop computers and

personal communication devices. These devices are typically required to have minimum size and weight

while maintaining a fast clock speed. Power reduction techniques are used to minimize the size and weight

and extend the battery life of these portable devices.

Power reduction is achieved at all levels of system design, ranging from choosing the technology to

implement the circuit to deciding which algorithm to use to accomplish a given function [1, 2, 3]. For example,



algorithms that are highly parallelizeable and have low complexity (i.e., minimum number of computations)

are optimal for low power design. In addition, there are architectural and circuit level techniques, such

as voltage scaling, data encoding, and gated clocks, which reduce the average power of a digital system.

However, minimizing power in one level of system design is not independent from minimizing power in all

other levels. An algorithm which requires more computation than another may be optimal if, for example,

the more complex algorithm better exploits signal correlations or is highly parallelizeable. This shows that

a local increase in power can sometimes be advantageous by achieving a global decrease in average power.

Not only does low power design involve minimizing power simultaneously at all levels of the system, it

also requires many tradeoffs between performance (circuit speed), chip area, and power. It is important to

ensure that power reduction does not substantially reduce performance or increase circuit size beyond what is

acceptable. Every stage of the design process requires an optimization of these three parameters, rather than

just a minimization of power consumption. This performance-area-power tradeoff is the first of four major

design considerations for low power systems described in [2]. The second global consideration is the statistics

of the input stream. By exploiting correlations in the data stream or adapting the algorithm to meet the

changing statistics, power can be reduced. Avoiding waste is the third challenge of low power system design.

This can be achieved by removing unbalanced delays and glitching, powering down unused portions of the

circuit, using dedicated hardware, and minimizing the computational complexity of algorithms. The final

design goal is to exploit locality, which can reduce power expensive global communications and hence reduce

interconnect power.

1.1.1 Techniques for Reducing Power Dissipation

The average power P dissipated by a DSP algorithm is given by

P = NiCiVddfs (1.1)

where Ni is the number of operations of type i (addition, multiplication, storage, or bus access) performed

per sample, Ci is the capacitance switched per operation of type i, Vdd is the supply voltage, and f, is the

sample frequency. A main focus of low power design has been the reduction of the supply voltage, as this

results in a quadratic reduction in P. Reducing the supply voltage causes increased delays in the circuit,

so various architectural designs, such as parallelization and pipelining, must be used to keep a constant

throughput as the supply voltage is reduced. A variety of voltage scaling strategies which reduce the supply

voltage without any loss in performance (i.e., constant throughput) are described in [1]. The authors in

[4] describe an algorithmic approach to maintaining constant throughput using multirate signal processing

and parallelization. However, there comes a point beyond which lowering the supply voltage causes too

much delay in the circuit to be useful. For example, the techniques required to compensate for the delays

introduced by lowering the supply voltage may increase the chip size beyond what is acceptable. Hence, it

is also important to reduce the number of operations per sample, Ni, through architectural and algorithmic

optimizations.



1.1.2 Computation and Power

At the algorithmic level, the largest reduction in power is obtained by minimizing the total number of

operations per sample (Ni). These operations include addition, multiplication, storage, and bus access,

all of which consume power. The choice of algorithm is an important example of a high level low power

design decision. For example, many low power video coders use vector quantization (VQ) rather than the

discrete cosine transform (DCT) used in the MPEG standard since a VQ decoder simply requires a table

look-up [5, 6, 7).

Once the algorithm has been chosen, it may be possible to further reduce the number of computations

using:

* Mathematical transformations of equations, which involve exploiting mathematical equivalences by

rewriting equations in computationally simple forms

* Conversion of multiplications, which require a large amount of power, to low complexity shifts and

adds (i.e., computing with powers of two)

* Approximate signal processing algorithms, which trade off a small amount of accuracy for a large gain

in power reduction (e.g., filter order reduction)

At a system level, the computation can be optimally partitioned between the portable devices and the

high powered network servers to reduce the number of computations in the portable devices. An example of

this is the InfoPad terminal [1], which partitions the text/graphics functions such that the portable terminal

only performs display updates while a remote high powered server performs the computationally intensive

portions of the X-server functions. Network driven motion estimation, the topic of this thesis, uses a similar

non-conventional system level approach which exploits network resources to reduce the power consumption

of portable video devices.

Table 1.1 highlights the various low power design techniques. By employing these techniques, the power

dissipation of digital systems can be minimized.

1.2 Low Power Video Systems

It is very important to design power efficient circuits for portable devices, since this is the key to maximizing

battery lifetime. Motion estimation is a vital part of video compression, yet the computational complexity

of the full search motion estimation algorithm renders it unsuitable for power constrained video terminals.

While work has been done on algorithms which reduce the amount of computation required to perform

motion estimation (e.g., hierarchical search, 2D-logarithmic search), the computationally simple algorithms

can produce very inaccurate motion estimates whereas the more complex algorithms still require too much

power to be suitable for wireless video encoders.



Table 1.1: Low Power Design Techniques.

A standard method for reducing the temporal correlation without performing motion estimation is called

conditional replenishment. Conditional replenishment consists of representing each frame as the difference

between it and the previous frame. This method requires very little computation and does not require motion

vectors- the image is represented entirely by the difference image. However, conditional replenishment will

only be effective in reducing the temporal correlation if there is little or no motion in the image. If there is

a large amount of motion, performing conditional replenishment and sending the difference image may not

achieve an acceptable amount of compression of the original image.

Figure 1-1 shows an ultra low power wireless camera. The goals for the design of this system include long

battery lifetime as well as high video compression ratios. A novel motion estimation technique, called network

driven motion estimation, which transfers the motion estimation computation from the power constrained

video terminals to a high powered server on the network has been developed. This motion estimation method

produces very accurate motion vectors, which leads to high compression ratios, while minimizing the encoder

computation. A software test system which incorporates network driven motion estimation into the H.263

standard has been developed and is used to code various sequences. The results from these experiments

show that network driven motion estimation can achieve the power efficiency of conditional replenishment

and the bandwidth efficiency of encoder-based motion estimation.

Design Level Technique

Logic/Circuit Clock gating

Balance paths to reduce glitching

Use static circuit style

Minimize device count

Exploit signal correlations

Architecture Concurrency driven voltage scaling

Data encoding

Dedicated hardware

Power-down unused modules

Algorithm Reduce computational complexity

Chose parallelizeable algorithms

Mathematical transformations

Computing with powers of two

Filter order reduction

Approximate signal processing

System Computation partitioning



Figure 1-1: Ultra low power wireless camera.
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Chapter 2

Motion Estimation

Motion estimation (ME) followed by motion compensation is used to reduce the amount of temporal corre-

lation that exists in most video sequences. This is accomplished by determining, through motion estimation,

which portions of an image are related to the previous image. Once the motion of the sequence has been

estimated, the previous image can be motion compensated to produce a prediction of the current image.

If the motion estimates are relatively accurate, the error between the motion compensated previous image

and the original current image will be small. Thus only the description of the scene motion and the small

error between the motion compensated previous image and original current image need to be coded, rather

than the entire original current image. This achieves a dramatic decrease in the number of bits needed to

code each frame. Estimating scene motion can be done on a pixel level, a block level, or a global level. The

pel-recursive ME algorithms are very accurate, since the motion is estimated at each pixel in the image, but

these algorithms require a large amount of computation and are generally very complex. The block level

algorithms may not produce the correct motion estimate for all pixels, but in general the blocks are small

enough that the algorithms perform very well. Block-based ME has the added advantage that it is very

simple. However, block-based algorithms are computationally intense and do require that overhead motion

information be transmitted from the encoder to the decoder. Global ME algorithms require basically no

overhead in coding the motion information, since the motion of the entire image is represented by one vector.

However, these algorithms try to determine the "average" motion of the sequence which may result in a large

residual between the globally motion compensated image and the original image if there are objects moving

at different rates within the sequence. Whichever algorithm is used, motion estimation/motion compensation

reduces the correlation between successive frames to achieve dramatic compression of the video sequence.

2.1 Pel-Recursive Motion Estimation

Pel-recursive algorithms estimate scene motion by iteratively determining the displacement of each pixel

based on previous displacement estimates [8, 9, 10]. The motion estimate is updated for each pixel using the



previous pixel's motion estimate and an update function, which is based on the intensity of the pixels in the

current frame which have been transmitted before the current pixel as well as the pixels in the previous frame.

Once the pixel motion has been determined, the error between each displaced pixel and the corresponding

current pixel is computed to obtain a displaced frame difference (DFD). The update function is assumed

to converge quickly to an accurate estimate of the scene motion and hence force the DFD to be zero for

a large number of pixels. As the update function only requires the luminance values of causal pixels (i.e.,

pixels which have been transmitted before, both spatially and temporally, the current pixel), the decoder can

compute the update function and estimate the motion for each pixel without the use of motion information

transmitted from the encoder. Thus the encoder only transmits the DFD to the decoder.

The pel-recursive algorithms have the advantage of being able to adapt to the motion of different objects

within the image, since a new motion estimate is generated for each pixel. Another advantage of pel-recursive

algorithms is that they don't require the transmission of motion information, which saves bandwidth over

other motion estimation algorithms. However, these algorithms are very complex and require a large amount

of computation to update the motion estimate at each pixel. Since no motion information is transmitted

from the encoder to the decoder, both the encoder and the decoder must perform the motion update com-

putations. While reducing the bandwidth of the coded video, not transmitting motion information doubles

the computational intensity of the algorithm. Due to this severe complexity limitation, pel-recursive ME

algorithms are not used in power limited video coders.

2.2 Block-Based Motion Estimation

The MPEG standard [11, 121 employs block-based ME [13], as this is the simplest motion estimation al-

gorithm and most easily implemented in hardware. For this technique, each image is broken into 16 x 16

pixel blocks, called macroblocks. These macroblocks are small enough that there (generally) exists a good

match for each macroblock compared with the pixels from the previous frame. This best match is found

by comparing each macroblock of the current image to the pixels from the previous image within a certain

specified area, called a search window, as shown in Figure 2-1. The size of the search window depends on

the sampling rate of the video- typically, for 30 fps video, objects do not move more than ±16 pels from

one frame to the next so the search window w x h is set to 33 x 33 pixels'. The best match is the set of

pixels within the search window from the previous image which is closest, according to some error metric,

to the pixels of the macroblock. Common error metrics used in determining the best match are the mean

squared error (MSE) and the sum of absolute differences (SAD). If f(x, y, t) represents the luminance value

at position (x, y) at time t, the MSE between macroblock i at time t and time t - 1 is defined as

MSE(i) = ' E E [f(x,y,t) - f(x,y,t - 1)]2  (2.1)

yEMBi zEMBi

1
Occasionally a -15 to +16 pel search is used to make the search window size 32 x 32.



Current Image

Figure 2-1: Block-based motion estimation.

and the SAD is defined as

SAD(i) = E E If(x,y,t)-f(x,y,t- 1) (2.2)
yEMBi zEMBi

Since the SAD error metric requires no multiplications and does not significantly reduce the accuracy of the

motion prediction, it is the preferred error criterion.

A motion vector (MV), which specifies the location of the best match and hence the motion of the

macroblock, is generated for each macroblock in the image. In order to guarantee that the minimum error is

found, the SAD of every position within the search window needs to be computed. This exhaustive search

algorithm, called full search ME, determines the MV for macroblock i as follows

MVi = min Z Z If(x, yt) - f(x- mv,y-my, t - 1)1 (2.3)
{mv.E{-(,2 },mov E{- ,}} yEMBi xEMBi

where w is the width and h is the height of the search window. This algorithm guarantees that the MV for

each macroblock produces the minimum SAD of all the candidate macroblocks within the search window.

A motion compensated image is created by assembling all the best match macroblocks into an image.

This motion compensated image represents a prediction of the current image based on the previous image

and the motion of each macroblock. The original image is thus represented by the set of MVs (one for

each macroblock) and the motion compensated difference image, which is the residual between the original

current image and the motion compensated image. Typically, much less data is required to code the MVs

and the motion compensated difference image than is needed to code the original image, so compression

is achieved. In conventional video coding systems, such as the encoder shown in Figure 2-2, the encoder

performs this motion estimation and computes the motion compensated difference image. The motion

compensated difference image is coded using any type of video coder (e.g., DCT-based, subband, VQ). Both

the MVs and the coded video are sent to the decoder, which uses this information to reconstruct the original

image.



MVs

Figure 2-2: Conventional video encoder which uses motion estimation.

2.3 Global Motion Estimation

Global motion estimation (GME) is used to determine a single MV which best represents the dominant scene

motion. The previous image is motion compensated using this single vector to produce a globally motion

compensated image. Each image is represented using the global MV and the globally motion compensated

difference image, the residual between the original current image and the globally motion compensated

previous image. The advantage of using GME is that there is very little overhead required to code the motion

information, since it consists of only a single vector, and it is very well suited to representing the motion of

scenes with panning motion. However, for general scenes the globally motion compensated difference image

will typically have much higher energy than the block-based motion compensated difference image. As will

be shown in Section 4.1, this increase in energy in the globally motion compensated difference image can be

much greater than the savings in bandwidth achieved by representing the motion of the entire sequence by

one vector.

Appendix C contains detailed descriptions of two global motion estimation algorithms, the most common

MV algorithm and a GME method proposed by Tse and Baker [14]. For both these algorithms, global motion

estimation is performed at the encoder using the block-based motion estimates to determine the dominant

global motion of the image, and the global motion estimate and the globally motion compensated difference

image are sent to the decoder where the original image is reconstructed. Global motion estimation will

generally be suboptimal compared with block-based ME since the residual in global motion compensation

is typically much larger than the residual in block-based motion compensation. GME also requires more

computation than block-based ME, since the block-based estimates must be obtained before the global



parameters can be computed. Since nothing is gained in terms of coding efficiency by using GME alone, it

is often combined with local motion compensation to produce a 2-stage motion compensation scheme [14],

as shown in Figure 2-3. By combining global and local motion compensation, the global motion effects

can first be removed. The local MVs are then computed using the globally motion compensated previous

image. Since most of the local MVs will match the dominant scene motion, the size of most local MVs

will be reduced, thus improving the coding efficiency of the motion information. This algorithm requires

that the block-based MVs be calculated twice, once as the first step in GME, using the previous image, and

the second time to determine the local MVs using the globally motion compensated difference image. It is

therefore extremely computationally expensive to use this 2-stage global/local motion compensation.
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Figure 2-3: Combined global and local motion compensation.

2.4 Computational Complexity of Motion Estimation

Motion estimation followed by motion compensation is very effective in decorrelating successive frames.

However, motion estimation is extremely computationally intensive. The pel-recursive techniques require

the evaluation of a complex update function, both at the encoder and the decoder, for each pixel. For



full search block-based ME, every macroblock of the image must be compared to every location within the

search window. For each comparison, the SAD, which requires 2 addition operations (subtracting the pixel

values and adding this difference to the running sum) are performed for all 256 pixels in the macroblock.

For a search window of size w x h (e.g., 33 x 33 for a ±16 pel search) and 30 fps video, this requires 60wh

ops/pixel/second (e.g., 65,340 ops/pixel/second)2 .

Global motion estimation requires even more computation than block-based ME, since the block-based

motion estimates must be computed before the global motion estimate is determined. The combined

global/local motion estimation algorithm requires more than twice the computation of block-based ME

since two sets of local MVs must be computed for each macroblock.

Due to the very high computational requirement of these motion estimation algorithms, they are not

suitable for battery operated video systems.

2.5 Reduced Computation Motion Estimation Algorithms

Much work has been done on algorithms which reduce the computational intensity of block-based ME

from that of the full search algorithm described in Section 2.2. Many fast algorithms aim to reduce the

number of locations at which the SAD is computed. These algorithms operate under the assumption that

the SAD decreases monotonically towards the minimum value. However, this assumption is not always

true and these algorithms often get trapped in local minima. Thus algorithms which reduce the number

of searches for motion estimation, while decreasing the computation, typically produce less accurate MV

estimates which increases the bandwidth of the coded video compared with full search ME. Examples of

these algorithms include 2D-logarithmic search, three step search, modified conjugate direction search, and

hierarchical search [10, 15]. Other fast motion estimation algorithms rely on the correlation that typically

exists between MVs of spatially and temporally neighboring macroblocks. In one of the algorithms described

in [16], the MV field is reduced to essentially eliminate the search for half the MVs, and the algorithm

proposed in [17] estimates each MV from the MVs of the neighboring macroblocks. Finally, algorithms

such as the SEA [18] and spiral search use mathematical inequalities to reduce the computation while still

guaranteeing that the "true" MV is found.

2.5.1 2D-Logarithmic Search

The 2D-logarithmic search [10] begins by computing the SAD for 5 locations, the center of the search window

and the four locations a distance d from the center of the search window, as shown by the *'s in Figure 2-4.

If the minimum SAD location is the center point (point A in Figure 2-4) or the minimum SAD location is

near the search window boundary, the distance between the search points is decreased to 4 and the SAD

is computed for all points a distance of 2 away from this minimum SAD location. Otherwise, the SAD is

2
This calculation does not take into account the fact that edge macroblocks will have search windows of size less than w x h.



Figure 2-4: Example of a 2D-logarithmic motion vector search.

computed for all the locations a distance d from the minimum SAD location found in the first step. For

example, point A in Figure 2-4 is found to have the minimum SAD of the 5 * locations. Since this is the

center point, the distance is reduced to 4 for the second search. The x's show the location of the search

positions for the second search. This search produces point B as the location with minimum SAD, so the

third step computes the SAD of the locations specified by the *'s, which are all a distance d away from point

B. The result of this third search is that point C produces the minimum SAD. All locations a distance

from C, denoted by the o's, are used for the next search. The result of this fourth search shows that point

C still contains the minimum SAD, so the distance is reduced to 4 and the SAD of the points denoted by

the A's is computed. Point C still produces the minimum SAD, and since the distance cannot be reduced

any further, point C is the final position, which is locally optimum.

This algorithm requires a varying number of searches, depending on how close the local minimum is to the

center of the search window. In general, the 2D-logarithmic search will require at least 4 min(log2 ( -), log 2 (h))

(when the minimum SAD value is at the center of the search window) and on average 7 min(log2 (E), log 2 (h))

SAD computations. This is a large reduction in the number of searches compared with full search. However,

the tradeoff is that the MV found using the 2D-logarithmic search is often not the "true" MV, which causes

the energy in the motion compensated difference image to increase drastically.

2.5.2 Three Step Search

In the three step search algorithm [10], only three steps are taken and the SAD is evaluated at 8 positions

for each step (9 positions for the first step). The first step calculates the SAD for the center of the search

window and 8 surrounding points, separated from the center by a distance dj, as shown in Figure 2-5 by

the o's. For this example, the minimum SAD is found at point A. The second step calculates the SAD of 8

positions which are a distance d2 away from the location of the minimum SAD from step 1, where d2 is less



Figure 2-5: Example of a three step motion vector search.

than dl. In the example, the second step positions are indicated by the x's, and the minimum SAD of these

points is found to be at point B. The final step calculates the SAD of the locations a distance d3 < d2 away

from the current minimum SAD. The *'s in Figure 2-5 represent the search positions evaluated in the third

step. Point B is the location of the minimum SAD of all the locations in the third step, so this represents

the MV of this macroblock using the three step search.

The three step algorithm requires the evaluation of the SAD at 3 sets of 8 points, plus the center point.

This totals 25 SAD computations- a very large reduction in computation compared to full search, but, once

again, this algorithm trades off MV accuracy for the reduced computation.

2.5.3 Modified Conjugate Direction Search

The modified conjugate direction search [10] minimizes the SAD separately in the vertical and horizontal

directions. The first step determines the minimum SAD in the horizontal direction. This is done by com-

puting the SAD of the three horizontal locations in the center of the search window. The horizontal search

continues in whichever direction has the minimum SAD until a point with a SAD less than its two neighbors

is found. This is specified as the horizontal component of the MV. The search than determines the SAD of

the two vertical neighbors of the minimum horizontal SAD location. The search continues in the vertical

direction of minimum SAD until a point is found which has a SAD less than its two vertical neighbors.

This point is the vertical direction of the MV. Figure 2-6 shows an example of motion estimation using the

modified conjugate direction search. The initial three locations are indicated by the o's. The left position

contains the minimum SAD, so the search continues in the left direction, evaluating the point denoted by

the x; this position has a SAD less than the previous point, so the search continues. The point indicated

by the * has a SAD greater than the point denoted by the x, so the horizontal search is complete, since the

SAD of the location denoted by the x is smaller than the SAD of its two horizontal neighbors. The vertical

S= Step 1

T X = Step 2
* = Step 3
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Figure 2-6: Example of a modified conjugate direction vector search.

search continues in the same fashion to find the vertical component of the MV, indicated by the *, the point

which has the minimum SAD of its two vertical neighbors.

The conjugate direction search requires at least 5 SAD computations (the center location and the two

vertical and two horizontal search locations) and a maximum of [(2 + 1)(A + 1) + 1] SAD computations (if

the minimum SAD locations, both horizontally and vertically, are at the search window edges). This is a

very small number of computations. However, minimizing the SAD in the horizontal and vertical directions

separately can generally give very inaccurate MV estimates.

2.5.4 Hierarchical Motion Estimation

In the hierarchical ME algorithm [15], the image is lowpass filtered and subsampled, possibly several times,

to obtain coarser representations of the image. This can be represented by the pyramid structure shown in

Figure 2-7. Full search ME is performed using the highest pyramid level (level 2 in Figure 2-7) to obtain

a coarse estimate of the MV. This estimate is then refined using the images at all the lower levels of the

pyramid. This motion estimation algorithm reduces the computation by requiring a much smaller search

window for each of the full searches at the different pyramid levels. The search window is reduced to size

[w] x [ ], for each level n of the pyramid, where N is the total number of pyramid levels. For

example, if the initial search window is required to be size 33 x 33 and a 2 level pyramid is used (as in

Figure 2-7), a full search is performed using the 2nd level image with a search window of size 9 x 9. This MV

is then used as the center of the search at level 1, where the search window is reduced to size 5 x 5. Finally

the MV is refined using the original image (level 0) and a search window of size 3 x 3.

Hierarchical ME using a 2-level pyramid and a 33 x 33 search window requires 115 SAD computations.

N w h 33 33 33 33 33[ 33

22N-n22N-n=[1 ] + r r 1 + r 4 r 115 (2.4)
n=O



Level 2

Level 0

Figure 2-7: Image pyramid for 2 level hierarchical motion estimation.

Hierarchical ME requires much more computation than the methods described above. However, as long as

the initial MV estimate, determined in the top pyramid level, is accurate, hierarchical ME will produce much

more reliable MVs. The downside of using hierarchical ME is that if the initial MV estimate is inaccurate,

the algorithm gets trapped in local minimum and it is almost impossible to find the "true" MV at the lower

levels.

2.5.5 Motion Vector Correlation Algorithms

Typically, the pels of moving objects cover more than one macroblock. This implies that MVs of neighboring

macroblocks will tend to be correlated. Two algorithms which exploit this MV correlation are described here.

MV field subsampling, as described by Liu and Zaccarin in [16] is an algorithm which only computes

half the MVs for each frame. This algorithm finds the MVs for every other macroblock in the image, using

a full search algorithm. The MVs for the remaining macroblocks are found by determining which MV of

the four surrounding blocks produces the minimum SAD for the middle macroblock. An example of MV

field subsampling is shown in Figure 2-8. Motion vectors are computed for each of the shaded macroblocks,

and the MV for macroblock A is chosen from the MVs for macroblocks B, C, D, and E, whichever vector

produces the minimum SAD for macroblock A. Thus only 4 SAD computations are required to determine

half the MVs. Even though the "true" MV is only guaranteed for half the macroblocks, the results in [16]

show that this method works extremely well since neighboring macroblocks often have the same MV. The

computation for motion estimation using this algorithm reduces to slightly more than 50% of the full search

algorithm.

Another MV correlation algorithm, called the interblock correlation method and described in [17], exploits

not only the spatial but also the temporal correlation between macroblocks. This algorithm assumes that

the four most correlated macroblocks to a macroblock are its immediate temporal neighbor and its spatial

neighbors located at an angle of 450, 900, and 1800, as shown in Figure 2-9. These macroblocks are all

causal neighbors; when the algorithm is determining the MV for a macroblock, the vectors of the four
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Figure 2-8: Subsampling of the motion vector field.
:iiiiiiiii!iiii~ ! ii i •I _ I •: !i

•!i~ii~iii!i~iiii! !~ ii •ii!iiii fiiii!!!ii? • i :

", • -, , i ":Di•!i!! iii,!iiii•

iiiiii i-i i A!iiiiiiii iiiii .... ....... ...... ... . i ii i i i •i i i ii •

, ! ...... .

ii: :~iii .. ... .... .... .... . .

! ...... !ii•: ....•mp ingii:' ':'• i̧thii e m oiii ve to iifi~ i eld...... •iii!•~~i.....

1I*

Frame(t- 1) Frame(t)

Figure 2-9: Most correlated neighboring macroblocks.

causal neighboring macroblocks have already been found. The algorithm determines which of the four MVs

produces a "good" match, defined as a SAD value less than a given threshold. If any of the four candidate

MVs satisfy this criterion, it is chosen as the MV for the current macroblock. If not, the best MV of the

four (i.e., the one which produces the minimum SAD) is used as the location of the center of the search

window and a small search is conducted around this point to find the optimum MV. Computation is greatly

reduced using this algorithm since for some macroblocks, only four SAD calculations need to be performed.

This algorithm also has the advantage that only 2 bits of MV information need to be transmitted when the

chosen MV is one of the four neighboring MVs. As with all the previous algorithms, this algorithm does not

guarantee that the "true" MV is found and thus trades MV accuracy for minimization of motion estimation

computation.

r _I

·
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2.5.6 Mathematical Reduction Algorithms

Another set of fast motion estimation algorithms use mathematical inequalities to reduce the number of

computations in the full search algorithm. For example, the spiral search algorithm uses the fact that often

the minimum SAD is found near the center of the search window. Thus rather than computing the SAD

in a rasterscan order, as shown in Figure 2-10a, the spiral search method begins by computing the SAD

at the center of the search window and spiraling outwards, as shown in Figure 2-10b. Once the SAD of a

particular location is greater than the current minimum SAD value, that position is no longer a candidate

for the optimum location. Thus computation of the SAD ceases once the sum becomes greater than the

current minimum. The assumption for the spiral search algorithm is that if the minimum SAD (or a small

SAD value) is calculated initially, every other SAD calculation can be stopped early, as most will be greater

than this minimum after only a few pixel calculations.

Raster Scan Spiral Search

Figure 2-10: a. Raster-scan full search. b. Spiral search algorithm.

The successive elimination algorithm, as proposed by Li and Salari in [18), uses mathematical inequalities

to reduce the number of positions within the search window for which the SAD needs to be calculated. In full

search ME, the SAD between the current macroblock and each candidate macroblock in the search window

is computed. However, the authors in [18] found that certain macroblocks should not even be considered

candidates, based on the sum norm of the current macroblock, R, and the sum norm of the candidate

macroblock, S(mv,, mvy). The sum norm is defined as the sum of the absolute value of all the pixel values

in the macroblock.

R= E Z If(x,y,t) (2.5)
yEMBi xEMBi

S(mvx,mvy) = E Z (f(x - mvX,y - mvy, t- 1)1 (2.6)

yEMBi xEMBi

By exploiting several mathematical inequalities, it was found that only candidate blocks with sum norm



satisfying

R - SADmi,n S(mvy, mv,) < R + SADmin (2.7)

can possibly produce a SAD lower than the current minimum, denoted here by SADmin. Since not all

blocks in the search window will satisfy Equation 2.7, this will greatly reduce the number of search positions,

particularly if the initial SAD is small. It may appear that this algorithm trades off the calculation of the

SAD of each candidate macroblock for the sum norm of the macroblocks. However, the authors in [18]

develop a fast algorithm to calculate the sum norm S(mve, mvy) which makes this SEA algorithm much

more efficient than the full search algorithm.

2.6 Motion Vector Prediction Algorithms

Motion vectors are highly correlated in time, which implies that the MVs for the current frame can be

predicted from the MVs of the previous frames. Not only is this is the idea behind motion vector prediction

algorithms, another class of motion estimation algorithms which are used to reduce the encoder computation,

but it is also the basis for network driven motion estimation, described in Chapter 3.

Kim and Kuo develop a motion vector prediction algorithm [19] based on the temporal statistics of MVs.

This motion estimation algorithm utilizes a search window with a variable size and location, where the

search window parameters are determined for each macroblock based on the MVs of the previous frames.

Once the search window has been determined, only a few locations within the search window are considered

as candidate macroblocks, rather than an exhaustive search of every location within the search window, in

order to further reduce the computation.

Assuming that objects move with relatively constant velocity, the current motion can be predicted based

on the previous motion of the object. The authors in [19] found that the MV which produces the minimum

SAD does not necessarily correspond to the "true" motion of the object. Instead, it is a noise corrupted

version of the true MV. Thus rather than just consider the MV which produces the minimum SAD, this

algorithm examines the M MVs which produce the M minimum SAD values. Assuming the true object

motion is determined (motion vector (mv,,mvy)) and the object is moving with constant velocity, the

difference in MVs from one frame to the next (for the same macroblock) should be very small.

6 = Imv (t) - mv (t - 1)1 + ImvY(t) - mvY(t - 1)1 0 (2.8)

The distribution for 6 is assumed to have a peak at 0 and decay as 6 becomes larger because the motion

vectors are continuous from one frame to the next. Thus the true MVs can be determined by finding the

MVs which produce the smallest 6. This is accomplished by finding the M locations with the smallest SAD

values using the macroblock at time (t - 1) and a search window in the frame at time (t - 2) and the M

locations with the smallest SAD values using the macroblock at time t and a search window in the frame at

time (t - 1), as shown in Figure 2-11, where M is equal to 4. These initial MV searches are performed using
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Figure 2-11: Determining the true object motion using the four minimum SAD motion vectors.

exhaustive search ME with a maximum size search window (wmax x hmax). The distance between all M 2

MVs is computed, and the pair with the smallest distance 6 min is selected. One of the MVs of this pair is

chosen as the MV for the macroblock at time t and the other is chosen as the center of the search window for

the macroblock in the frame at time (t + 1). The search window size is set based on the minimum distance

6min according to

w = h = Wmin + 26min (2.9)

where Wmin is the minimum size of the search window. Thus when the minimum distance between the MVs

of two consecutive frames is small, the search window for the next frame is greatly reduced, and when it

is large, the assumption is that the motion prediction is not very accurate and the search window size is

increased to find better MV estimates. A few key positions within the search window are evaluated for

the motion estimate of the macroblock at time (t + 1); the number of positions evaluated depends on the

size of the search window (and hence the size of 6 min). The M minimum SAD locations for this search

are compared with the M minimum SAD locations from the previous frame and the pair of MVs with the

minimum distance of all M
2 locations is chosen. The algorithm continues until 6

min is more than 9 pixels,

at which point the search window is reset to the original value (wmax x hmax) and the algorithm starts again

with full search ME.

The authors cite an average of 80% to 90% reduction in computation using this MV prediction algorithm

(with M = 4) rather than full search ME. However, they note that there is a bandwidth tradeoff since the

prediction residual is increased.

MV(t)

Search Window Center
for Frame(t+l)



2.7 Summary

Motion estimation is a necessary step in the coding of video sequences, but it is also the bottleneck in

real-time applications, since it requires an excessive amount of computation. Many fast algorithms, such

as the ones described above, reduce the amount of computation for motion estimation, but this is usually

at the expense of the accuracy of the MV estimates. Some very computationally simple algorithms were

described, but these methods can easily get trapped in local minima rather than finding the "true" MV.

Algorithms which exploit the spatial and temporal correlation between MVs produce more accurate MVs

but require substantially more computation than the simple ME algorithms. The set of fast algorithms

which use mathematical relations to reduce computation guarantee that the "true" MV is found, but they

do not guarantee that the computation will be reduced very much (or, in the worst case, at all). Table 2.1

summarizes these various fast motion estimation algorithms. This table shows that current motion estimation

algorithms which produce accurate MV estimates are very computationally intense. Thus they are unsuitable

for use in battery operated wireless video encoders. The following chapter describes network driven motion

estimation, an algorithm which rather than reducing the computational intensity of motion estimation, uses

remote high powered compute servers on the network to perform this costly task.

Table 2.1: Motion Estimation Algorithms (Search Window w x h, 33 x 33).

Algorithm Computation (ops/pixel) Accuracy

Full Search 2wh 1 Optimum

Spiral Search Variable, < 2wh < 1 Optimum

Successive Elimination Algorithm Variable, < 2wh < 1 Optimum

Predicted MV Algorithm 0.1(2wh) - 0.2(2wh) 0.1 - 0.2 Medium-High

Interblock Correlation Method Variable, < 2wh < 1 Medium

MV Field Subsampling wh + 4 0.5 Medium

N-Level Hierarchical ME 2 n=0 o -f--~ ] -r2--nh- 1 (N = 2) 0.1 Medium

2D-logarithmic Search > 8 min(log2 (1), log 2 ()) > 0.015 Medium

< 14 min(log 2( ),log2  )) < 0.026

3 Step Search 50 0.023 Low

Modified Conjugate Direction Search > 10 > 0.005 Low
_ 2[(f + 1) + ( + 1) + 1] < 0.032

Network Driven ME3 18 0.008 Medium-High

2
Network driven motion estimation will be discussed in Chapter 3





Chapter 3

Network Driven Motion Estimation

The previous chapters provided motivation for a low computation video encoder which achieves the high

compression rates that conventional video encoders can achieve using full search motion estimation. Many of

the fast motion estimation algorithms described in Section 2.5 either produce very inaccurate motion vectors,

which drastically increases the bandwidth of the coded videol, or they do not reduce the computation

substantially. This illustrates the tradeoff between coded video bandwidth and encoder computational

complexity when performing motion estimation at the encoder. However, if the motion estimation is removed

from the encoder and performed at a high powered resource on the network, the ill-effects of this tradeoff

can be minimized. This is the idea behind network driven motion estimation.

3.1 Networked Wireless Video Systems

A block diagram of a wireless video system in a networked (wired and wireless) environment is shown in

Figure 3-1. This system contains a battery-operated video encoder, which acquires, digitizes, and encodes a

video signal and transmits the coded video over a wireless link to a base-station. The base-station is connected

to a wired backbone and thus is linked to many high powered compute servers by a high bandwidth channel.

The base-station sends the coded video to a battery-operated wireless video decoder, which decodes and

displays the received images. In conventional wireless video systems, the motion estimation is performed at

the encoder, the coded video is sent to the base-station, and the base-station re-transmits the coded video

to the decoder. However, since there are often stringent power constraints in the encoder, simple motion

estimation algorithms must be used, which reduces the accuracy of the motion vectors and increases the

bandwidth of the coded video. Since the wireless channel is a relatively low bandwidth channel, the quality

of the decoded images may be highly degraded in order to reduce the bandwidth of the coded video.

1
Since RF transmit power is proportional to the number of bits transmitted, increasing the bandwidth of the coded video

also increases the power dissipation, which may defeat the purpose of using low computation motion estimation algorithms.
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Figure 3-1: Conventional video system in a networked environment.

3.2 Conditional Replenishment

A standard compression method which does not use motion estimation is called conditional replenishment

(CR). The idea behind CR is that only pixel values which have changed substantially from the previous

frame need to be transmitted. Thus only the difference between the current frame and the previous frame

is transmitted. This method requires minimal computation and does not require the use of motion vectors.

However, CR will only be effective in reducing the temporal correlation if there is little or no motion in

the image. If there is a large amount of motion, performing CR and sending the difference image may not

achieve any significant compression. Figure 3-2 shows two consecutive images of the "Bus" sequence and

the CR difference image. The CR difference image contains a substantial amount of perceptually relevant

information. Thus in order to obtain a high quality reconstructed image, the CR difference image must be

coded using a small quantization step size, which will cause the compression ratio to be very low.

The coding can be improved by implementing a small motion estimation search (±1 pel). This does not

require very much added complexity and it can be effective in reducing the bandwidth of the coded video.

However, most sequences contain much larger amounts of motion than +1 pel between frames. For these

scenes, CR or CR with one pel refinement will not be able to achieve acceptable compression ratios.

3.3 Motion Prediction

The motion of objects in natural scenes is mostly continuous from one frame to the next. Therefore, by

knowing the location of an object in all previous frames, it is possible to predict its location in the current

frame. For example, the location of any object which moves with a constant velocity, such as a moving

car, is predictable from two previous frames. Since most objects which do not move with constant velocity
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Figure 3-2: Bus Sequence. (a) Previous image. (b) Current image. (c) CR difference image.

accelerate very slowly across the span of a frame in 30 fps video, the constant velocity assumption is a

good approximation to the motion of all objects. Motion vectors represent the flow of motion from one

frame to the next, and are therefore very correlated in time. This makes it possible to roughly predict the

motion vectors of a frame from the motion vectors of the previous frames. The Kim and Kuo motion vector

prediction algorithm [19], described in Section 2.6, uses this predictability of the motion vectors to vary the

search window size and location in order to reduce the encoder computation for motion estimation. However,

the Kim and Kuo algorithm still requires that a substantial amount of computation be performed at the

encoder.

A majority of the computation for motion estimation can effectively be removed from the encoder by

exploiting a high powered remote compute server to perform motion prediction (MP). A resource on the

wired network with no power constraints (either at the base-station or a remote location) can estimate the

motion of the sequence based on previous decoded frames and use this information to predict the motion

vectors of the current frame. A simple yet very accurate method of predicting motion vectors is to have the

high powered server find the MVs of the previous reconstructed frame using full search ME (or an equivalent

method, such as SEA or spiral search, which guarantees that the MV which produces the minimum SAD

is found) and predict that the MVs of the current frame will be the same as the MVs of the previous

reconstructed frame. This is similar to the Kim and Kuo MV prediction algorithm, where M is 1 in this

case and the motion estimation is performed using the reconstructed images rather than the original images.

Kim and Kuo assert that noise will corrupt the determination of the "true" MV and hence they choose

the M minimum SAD values as candidate MVs. However, as shown in Figure 3-3, the average bit rate

to code various sequences using different values of M in the Kim and Kuo MV prediction algorithm, it is

actually slightly detrimental (i.e., increases the bandwidth) to include multiple candidates when searching

for the "true" MV. The lowest average bit rate is achieved when M = 1, which corresponds to selecting
the MV which achieves the minimum SAD as the "true" MV and as the predicted MV for the next frame.
Figure 3-4 shows the number of bits required to code each frame of the MPEG "Bus" sequence using a
constant quantization step size and both 1 and 4 candidate MVs. This plot shows that the number of bits
required to code each frame of the "Bus" sequence is slightly smaller using only 1 candidate MV. However,
the difference between using different number of candidate motion vectors (between 1 and 4 motion vectors)
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Figure 3-4: Bus Sequence. Bits per frame using 1 and 4 candidate MVs to predict the current MV.

is very small. For the sequences being used in these experiments, the motion vectors which produce the

minimum SAD values generally represent the "true" motion (or close to the "true" motion) of the sequences,

and including multiple candidate motion vectors actually introduces noise into the motion estimation. Thus

it is advantageous to use only 1 candidate MV for the MV prediction algorithm, which is the same as finding

the vector which produces the minimum SAD value.

The motion predictor at the high powered network server determines the MVs for each macroblock of the

previous reconstructed frame and uses these vectors as the predicted MVs (PMVs) for the current frame. The

base-station sends these PMVs to the encoder. However, these vectors are only approximations to the optimal

MVs of the current frame. Thus the encoder must perform a local search to improve the MV estimates.

The encoder performs motion compensation using these refined PMVs and codes the motion compensated

difference image. Both the coded video and the MV refinements are sent back to the base-station, and the

current image is reconstructed at the high powered server. The motion predictor can then determine the

MVs of the reconstructed current frame and use these vectors as the PMVs for the next frame. Employing

motion prediction at a high powered resource rather than motion estimation at the encoder greatly reduces
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the computational burden of the encoder. If the motion prediction is relatively accurate, the bandwidth of

the coded video will be greatly reduced compared to video coded using encoder motion estimation algorithms

of similar computational complexity.

3.4 Adaptive Coding

Motion prediction minimizes the tradeoff between encoder computation and coded video bandwidth by

optimally partitioning the motion estimation computation between portable devices and network resources.

However, when there is little or no scene motion, it is advantageous to use CR to code the image, rather than

predicting the motion (or lack of motion), since CR does not require the transmission of motion vectors.

Therefore, it is advantageous to adaptively switch between coding using motion prediction and CR in order

to obtain the maximum amount of compression for each frame. This method of reducing temporal correlation

using an optimal combination of CR and motion prediction is called network driven motion estimation.

The decision about which mode to use for a given frame is made at the base-station (or a remote server)

based on a comparison of the variance of the difference image and the variance of the motion compensated

difference image of the past frame. This metric is used because the variance of an image is a good measure

of the amount of activity in that image [20]. Since the amount of data needed to code each of the difference

images is proportional to the amount of activity in these images, the respective variances provide an efficient

means of determining which mode should be used. Figure 3-5 shows a plot of the motion compensated

difference image variance versus the bit rate required to code the frames of the "Bus" sequence (using a

constant quantization step size). This shows that there is a definite correlation between the variance of these

images and the number of bits required to code them.

100

Ee so

60

40

Variance of MC Difference Image

Figure 3-5: Bus Sequence. Bit rate required to code each frame versus the variance of that frame.



3.5 Network Driven Motion Estimation Algorithm

Network driven motion estimation essentially eliminates the encoder computational burden for motion esti-

mation, since the encoder only needs to compute a local search to refine the PMVs. Figure 3-6 shows a block

diagram of a video coder which uses NDME. This video system is almost identical to the conventional video

coder shown in Figure 3-1 except it contains a low bandwidth reverse-channel wireless link and the encoder

has both a transmitter and a receiver. Both the motion prediction and the decision of which coding mode to

use (CR or MP) are performed at a remote high powered server. The base-station sends the encoder (through

the reverse-channel wireless link) either a signal to use the zero motion vector for each macroblock, when the

system is operating in the CR mode, or the PMVs, when the system is operating in the MP mode. In either

case, the encoder performs a local search centered around the specified motion vectors (either predicted or

zero) to find the locally optimum MVs and does motion compensation using these refined MVs. Figure 3-7

shows the average number of bits required to code each frame (using a constant quantization step size) of the

standard MPEG sequences "Bus", "Flower", "Tennis", and "Suzie" as well as the sequences "Horse" and

"Gym" (obtained using an Accom digital video recorder, as described in Appendix D) versus the number

of pels used to refine the PMVs (i.e., k pels translates into a (2k + 1) x (2k + 1) pixel search window and

60 x (2k + 1)2 ops/pixel/second). This plot shows that there is a large decrease in the average number of

bits required to code each frame when the PMVs are refined by ±1 pel compared with no PMV refinement.

However, increasing the search beyond ±1 pel drastically increases the amount of encoder computation re-

quired for the refinement search but does not reduce the data bandwidth significantly. The PMV refinement

search is therefore set to ±1 pel, as this requires only 540 ops/pixel/second and represents the best tradeoff

between reducing encoder computation and reducing the data bandwidth.

Remote
CrvreS

Video Camera/Encoder Mpress ed Video Base-station

Video Decoder/Display

Figure 3-6: Video system which uses NDME.
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Figure 3-7: Average number of bits per frame versus the number of pixels used in the PMV refinement
search.

The encoder transmits the vector refinements and compressed video back to the base-station through

the forward channel wireless link, and the base-station transmits the full MVs (the refined PMVs) and the

compressed video to the decoder. A high powered server at the base-station (or a remote server) reconstructs

the image using the compressed video received from the encoder and performs motion estimation using the

current decoded image and the previous decoded image to find the MVs for the reconstructed current frame.

Since there are no power constraints, the high powered server uses a spiral search method in order to

determine the optimal MVs, which become the predicted MVs for the next frame. The high powered server

also determines which mode to use to code the next frame by comparing the variance of the difference image

and motion compensated difference image of the reconstructed current frame. The base-station then sends

the encoder either a signal to code the next frame using CR or the PMVs for the next frame, and the entire

coding process begins again.

3.5.1 Determining Coding Modes

The first frame of a sequence is intra-coded, and the second frame is coded using CR, since the system has no

previous frames from which to predict the sequence motion. After these initial frames, the variance metric

described above determines which mode is used to code each frame. However, since no PMVs need to be

transmitted when the system is operating in the CR mode, this mode is slightly preferenced over MP when

there is little scene motion. Similarly, in order to keep the modes relatively consistent from frame to frame,

the current mode is preferenced over switching modes. This results in thresholding the difference between

the two variances, as shown in Figure 3-82. This method of deciding the system mode continues until a

scene change. Since network motion prediction breaks down at a scene change (which is unpredictable), the

2
T1 was empirically chosen to be 50 and T2 was empirically chosen to be 0. Thus whenever the variance of the difference

image is less than the variance of the MC difference image, the system codes the next frame using CR.
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Figure 3-8: Algorithm for determining NDME system mode.

encoder is required to have a simple mechanism for detecting scene changes. For example, whenever the

variance of the motion compensated difference image is greater than a threshold, the encoder determines

that a scene change has occurred. When a scene change has been detected, the encoder must force an intra

coded frame, and the entire network driven motion estimation process begins again, as shown in Figure 3-9.

MP MP MP Intra CR CR
Figure 3-9: Example sequence showing the coding modes for network driven motion estimation. All coding

modes are set by a high powered network server except the intra mode, which must be determined at the

encoder.

3.5.2 Network Driven Motion Estimation Accuracy

The advantage of using NDME rather than CR can be seen in Figure 3-10, the percentage of motion vectors

from the NDME system that are close to the true motion vectors as compared with the percentage of motion

vectors from the CR system (1 pel refined (0,0) motion vectors) that are close to the true motion vectors

for the "Bus" sequence. There are substantially more motion vectors from the NDME system than from the

CR system that are the same as the true motion vectors. Figure 3-10 also shows the percentage of unrefined
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Figure 3-10: Bus Sequence. Distance between 1. CR MVs 2. NDME MVs 3. unrefined PMVs and true

MVs.

predicted motion vectors that are close to the true motion vectors. This shows that using unrefined predicted

motion vectors produces more accurate vectors than using CR with one pel refinement. However, this also

shows the advantage of a ±1 pel refinement of the predicted motion vectors, as this increases the motion

vector accuracy by over 15%3. Figure 3-11 also shows the relatively high accuracy of NDME. Figure 3-11a

shows the CR with one pel refinement difference image for the two frames of the "Bus" sequence shown

in Figure 3-2. There is minimal difference between the CR difference image (shown in Figure 3-2) and the

CR with one pel refinement difference image shown here. This is because the motion of the "Bus" sequence

is much greater than 1 pixel per frame. However, the motion compensated difference image using NDME,

shown in Figure 3-11b for the same two frames, contains substantially less perceptually relevant information

than the two CR difference images (Figures 3-11a and 3-2c). The motion compensated difference image using

encoder-based full search ME is shown in Figure 3-11c. NDME will achieve almost as much compression

of the image as full search ME, since both motion compensated difference images have roughly the same

amount of energy. Thus the bandwidth of the NDME coded image will be much less than the bandwidth of

the CR coded image but not much more than the bandwidth of the image coded using encoder-based motion

estimation.

3.5.3 Video Coders

This NDME system uses the same video encoder as the conventional encoder shown in Figure 2-2 except the

NDME system encoder motion estimation is limited to a ±1 pel search centered around either the PMVs

received from the base-station or the zero MV, and the NDME video decoder is the same as a conventional

decoder. Thus NDME can be used with any type of video coder which is in a networked environment and

3
Similar histograms for the sequences "Flower", "Tennis", "Suzie", "Horse", and "Gym" are shown in Appendix B. Note that

the NDME MVs for sequences such as "Suzie" which do not contain much motion are similar to the CR with 1 pel refinement
MVs because many of the frames are coded using the CR mode rather than the MP mode.
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Figure 3-11: Bus Sequence. (a) CR with one pel refinement difference image. (b) NDME predicted motion

compensated difference image. (c) Encoder based motion estimation motion compensated difference image.

has access to high powered compute servers. The total data bandwidth when the system is operating in

the MP mode includes the PMVs being sent from the base-station to the encoder, the corrections to the

PMVs being sent back to the base-station, and the compressed video. When the system is operating in the

CR mode, the total data bandwidth includes the MV refinements and the compressed video. If the motion

prediction algorithm is relatively accurate, the data bandwidth to code each frame using NDME will be close

to the bandwidth to code each frame using encoder-based full search ME and much less than the bandwidth

to code each frame using CR.

3.6 Network Driven Motion Estimation Constraints

The NDME algorithm requires that predicted motion vectors be sent from the base-station to the encoder.

This necessitates a reverse-channel which is capable of transmitting this information. For an image of size

W x H, there are ( H) macroblocks in the image, and a MV is generated for each macroblock. For a search

window of size w x h, log2 w bits are needed to represent the x-component of the PMV and log2 h bits are

needed to represent the y-component of the PMV. Thus the total number of bits to code the PMVs is

bitspm = (log2 + log2h) W H (3.1)
16 16

For 30 fps video, the reverse-channel bandwidth (assuming no coding) must be 30bitspmv, bits/sec. For CIF

images (W = 352 x H = 240) and a search window of size w = 33 x h = 33, the PMVs require a bandwidth of

99 kbits/sec. However, motion vectors of neighboring macroblocks are highly correlated, since often objects

are large and cover multiple macroblocks. Thus techniques such as differential coding followed by Huffman

coding can substantially reduce the number of bits required to code the PMVs (typically coding can reduce

the bit rate to about half of the uncoded rate).

Not only must the reverse-channel have enough bandwidth to send the PMVs, it must also be a very low

latency channel. In order for a NDME system to operate in real time, the following steps must be performed

in the time span of a single frame:

* High powered compute server on the network determines PMVs and selects coding mode (MP or CR)



9 Base-station transmits PMVs or CR signal through reverse-channel to the encoder

* Encoder refines PMVs or (0,0) vector and codes video using refined MVs

* Coded video and vector refinements sent back to the base-station

This requires that both the forward and the reverse wireless channels have very low latency and the high

powered compute server has a very high clock frequency. However, as will be shown in Chapter 5, if these

constraints can be met, NDME can reduce the encoder power consumption by over two orders of magnitude

compared with full search motion estimation while retaining the bandwidth efficiency of encoder-based

motion estimation.





Chapter 4

Network Driven Motion Estimation

Test System

The goal of NDME is to reduce encoder computation as much as possible while keeping the bandwidth of

the coded video to a minimum. These are usually conflicting goals, since most coding algorithms require

extensive amounts of computation. NDME can achieve encoder computation reduction without a large

increase in coded video bandwidth by removing the computationally intense part of the coding procedure,

the ±16 pel search for motion estimation, from the encoder and performing it at a high powered resource

on the wired network. It is sometimes desirable to slightly increase the bandwidth of the coded video to

achieve a further reduction in encoder power and/or a reduction in the reverse-channel bandwidth. Two

methods for accomplishing this were tested: reducing the number of MVs per frame and using the original

previous image (rather than the decoded previous image) to perform motion vector refinement and motion

compensation at the encoder. These algorithms and the effects they have on the bandwidth of the coded

video and encoder computation are discussed in Sections 4.1 and 4.2.

Other algorithms that were developed for the NDME test system include an algorithm to detect scene

changes and a rate control module for constant bit rate coding. These algorithms, along with the algorithms

to implement NDME, were incorporated into the H.263 video coding standard to create the NDME test

system, and a software simulator of this test system was written using the C programming language. A

description of the NDME test system, as well as pseudo-code describing these algorithms, is presented in

Sections 4.3 - 4.5.

4.1 Image Segmentation

A video system which employs NDME requires a reverse-channel with enough bandwidth to transmit the

predicted MVs from the base-station to the encoder. As shown in Section 3.6, this requires a bandwidth of



99 kbits/s for CIF images (assuming no coding). However, if the number of MVs per image was reduced,

this bandwidth could be substantially reduced. For example, if only one MV was computed for each frame

(i.e., global motion estimation), the total number of bits to represent the PMVs for each frame would be

bitspmvs = (log2 w + log2 h) x 1 (4.1)

For a search window of size 33 x 33, bitspmvs = 10, which, for 30 fps video, is a bit rate of 0.3 kbits/s.

This represents a huge savings in the reverse channel bandwidth. However, typically the motion of an image

cannot be described very accurately by a single vector, and the bandwidth of the coded motion compensated

difference image will be very high. Similarly, the image can be segmented into n regions, as shown in

Figure 4-1, where a single motion vector represents the motion in each segment of the image. The total

number of bits to represent the PMVs when there are n MVs per image is

bitspm,,, = (log2w + log2h) x n (4.2)

The reverse-channel bandwidth therefore increases linearly with the number of MVs per frame.

Two different methods were used to determine the global motion vector for each segment, the most

common motion vector (MCMV) algorithm and a global motion estimation algorithm proposed by Tse and

Baker in [14]. Both of these algorithms use the local (block-based) MVs to obtain the global motion vector

for each segment'. Block-based ME is first performed at the decoder to determine the best MV for each

macroblock, and the MVs which correspond to the macroblocks in a segment are used to determine the global

MV for that segment. It was found that the Tse and Baker algorithm didn't perform substantially better

than the MCMV algorithm but did require extensive amounts of extra computation. Thus the experiments

were run using the MCMV algorithm to determine the global MV for each segment.

By reducing the number of MVs in each image, the reverse-channel bandwidth is decreased. However,

the total data bandwidth, which includes the PMVs, the refinements to the PMVs, and the coded video,

actually increases by using fewer MVs per frame. Figure 4-2 shows the number of bits required to code each

Figure 4-1: Image segmentation to obtain 1, 4, 16, and 64 MVs per image.

1
See Appendix C for detailed descriptions of these algorithms.
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Figure 4-2: Bus Sequence. Bits per frame using different numbers of MVs per frame.

frame of the "Bus" sequence (using a constant quantization step size) for different numbers of segments per

frame. The minimum total number of bits is achieved when there is a MV generated for each 16 x 16 pixel

macroblock (i.e., 330 MVs per frame, since the images in the "Bus" sequence are size 352 x 240 pixels).

The bandwidth for the frames coded using 64 MVs per frame is close to this minimum for this sequence,

but the bandwidth for the frames coded using 16 MVs per frame, 4 MVs per frame, and 1 MV per frame

are greater than the minimum by as much as 25 kbits/frame. Thus reducing the number of MVs per frame

reduces the reverse-channel bandwidth at the expense of a larger increase in the forward-channel bandwidth.

Since reducing the number of MVs per frame does not decrease the encoder computation and adds a slight

increase in total computation to determine the best MV per segment, there is no advantage in using fewer

MVs, unless the reverse channel can only support a small number of bits. The NDME algorithm therefore

computes one MV for each 16 x 16 macroblock of the image.

4.2 Motion Estimation/Motion Compensation Using Original Pre-

vious Image

One possible method of further reducing encoder computation is to compute the MV refinements and perform

motion compensation using the original previous image rather than the reconstructed previous image. By

using the original previous image, the encoder does not need to decode each coded image and thus saves



some computation. However, the decoder only has access to the previous reconstructed image. Motion

compensating the original previous image will further increase the error of the reconstructed image at the

decoder. It may also increase the bandwidth of the coded video because the motion prediction is based on

reconstructed images and the predicted MVs will be more accurate using the previous reconstructed frame

rather than the previous original frame.

Table 4.1 shows the average bit rate to code the sequences "Bus", "Flower", "Tennis", "Horse", and

"Gym" using a constant quantization step size and both the original previous image and the reconstructed

image for the MV refinement and motion compensation. This table shows that, as predicted, the average

bit rate is lower using the reconstructed previous image rather than the original previous image for MV

refinement and motion compensation. However, the differences are very small. Thus it would be acceptable to

use the original previous images in the encoder in order to obtain a further reduction in encoder computation

when coding the images at these bit rates. However, if the bit rate is reduced and the motion compensated

difference image needs to be compressed using a large quantization step size, the reconstructed image may be

very different from the original image. In this situation, it is much more desirable to use the reconstructed

previous image rather than the original previous image to keep the bandwidth of the coded video to a

minimum (since the predicted MVs are determined using reconstructed images) and improve the quality of

the reconstructed images. Similarly, errors in the reconstructed image will propagate when motion estimation

and motion compensation are performed using the original previous image. Thus the NDME test system

uses the reconstructed previous image for MV refinement and motion compensation.

Table 4.1: Average bit rate using a constant quantization step size and either the original previous image or

the reconstructed previous image for MV refinement and motion compensation.

Original Previous Image Reconstructed Previous Image

Sequence Name Bit Rate (kbits/sec) Bit Rate (kbits/sec)

Bus 1590 1570

Flower 1870 1830

Tennis 700 690

Horse 710 660

Gym 710 690



4.3 Detecting Scene Changes

Section 3.5.1 described the need for a simple mechanism at the encoder for detecting scene changes. Frames

which occur after a scene change cannot be predicted from frames which come before a scene change, so the

encoder must determine that a scene change has occurred and begin the NDME algorithm from an initial

intra coded frame. The scene detection algorithm employed in the NDME test system uses the variance of

the motion compensated difference image to determine whether or not a scene change has occurred. If this

variance is greater than a threshold, the encoder detects a scene change and sends an intra coded frame to the

decoder. A good threshold was empirically found to be 500. Using this threshold, the two scene changes in

the "Tennis" sequence are detected and no false scene changes are found in any of the other sequences when

coding with encoder-based ME and NDME. However, when coding the sequences using CR, the variance

of the difference image is often over 500, even if there is no scene change, because CR does not model the

scene motion and can produce difference images with very high variances. This causes many false scene

detections in CR coded video. To avoid this, the scene change detection threshold is set to 1000 for images

coded using CR. However, with the threshold set this high, the scene changes in the "Tennis" sequence are

not detected. Figure 4-3 shows the variances of the predicted motion compensated difference images and the

CR difference images for the "Tennis" sequence. This shows that there is a huge increase in the variance of

the predicted motion compensated difference image when the scene changes occur (frame 89 and frame 148)

yet there is almost no perceptible change in the CR difference image when the scene change occurs. This is

because NDME attempts to determine the scene motion. Once a scene change occurs, the motion prediction

is not valid and the variance of the motion compensated difference image using the predicted motion vectors

is very high. CR, on the other hand, does not give a good prediction of the current image when there is

any substantial scene motion and can produce difference images which have very high variances regardless

of whether or not there is a scene change. Thus another advantage of using NDME over CR is that scene

changes are much easier to detect using NDME.
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Figure 4-3: Tennis Sequence. Variance of CR and PMC difference images.



4.4 Constant Bit Rate Coding

In order to see the effects of these different coding algorithms on image quality, the sequences were coded

using a constant bit rate and a varying quantization step size. The H.263 coding standard specifies a rate

control module which sets the quantization step size at each macroblock row to meet the desired bit rate.

However, if an image uses more than the allocated number of bits, there will be too few bits for the next

image and the rate control module decides that the next few frames must be skipped in order to keep the

overall bitrate of the sequence constant. This means that the rate control uses both spatial and temporal

quantization in order to obtain a constant bit rate stream. Because the H.263 rate control can drop an

unspecified number of frames at any point, it is not suitable for a system which uses NDME, since motion

prediction relies on the fact that there is a constant sampling rate between the frames. The predicted motion

vectors are intended for the next frame and will not be accurate if they are used two frames into the future

rather than for the next frame. Thus the NDME system needs a rate control which maintains a constant bit

rate and a constant frame rate.

The rate control used in the NDME test system determines the ideal number of bits to use to code each

frame. For example, if the bit rate B is set to 1 Mbps and there are 30 fps, the desired bit rate per frame,

Bf, is

B 106
Bf = = =33,330 b/frame (4.3)fs 30

The quantizer is set so that approximately B1 bits will be used to code the current frame2 . However, this

will not be exact and the coder will actually require B 1 bits to code frame 1. This leaves a total of B - B1

bits to code the remainder of the frames in that group (i.e., the remaining 29 frames). Thus the desired

number of bits per frame for the remaining frames is

B - B1Bf = (4.4)
fs -1

In general, the desired number of bits per frame for the nth frame (n < f,) is given by

Bi - = B (4.5)
fs - (n-1)

If too many bits are used to code the (n - 1)st frame, the quantizer step size is increased and the nth frame

is quantized more coarsely to ensure that fewer bits are needed to code the image. If any of the frames use

so many bits that the number of bits remaining for the rest of the group of images becomes negative, the

quantization step size is set to 31 (the maximum value) for the remainder of the images in the group. Once

the last frame in the group (i.e., frame 30) has been coded, the number of bits remaining increases by B.

If there are still bits remaining from the last group, these get added to B and the next group of 30 frames

can use more bits. If, on the other hand, the last group used more than the allotted B bits, the excess is

subtracted from B and the next group of 30 frames must use fewer bits.

Chapter 5 and Appendix B shows images coded using this rate control module.

2
See the MPEG standard [11] for information about setting the quantization step size given the desired number of bits for

the frame.



4.5 Test System Code

Network driven motion estimation was incorporated into a C software video coder which produces H.263

bit streams. This coder was written by Karl Olav Lillevold from Telenor R&D. Table 4.2 highlights the

input options for running this video coder. The H.263 coder is DCT-based, which means that each image

to be coded (i.e., the motion compensated difference image or conditional replenishment difference image)

is transformed using a 2 dimensional discrete cosine transform (DCT) and the DCT coefficients are then

quantized and coded using a Huffman coder. The quantization is either constant for every coefficient, when

the coder is operating in the constant quantization step size mode, or it is variable and set according to

the rate control module described in Section 4.4. The first image is always intra coded. This means that

the original image is transformed using the DCT and the DCT coefficients are quantized and encoded. The

following frames are all coded using some form of motion estimation, which is chosen by the user (option

-c). The coder can use encoder-based ME (-c 0), which uses a full search method to determine the MVs;

predicted ME (-c 1), which predicts the MVs for every frame; CR (-c 2), which uses 1 pel refinement of the

(0,0) MV for each macroblock; and NDME (-c 3), which adaptively switches between coding the frames using

motion prediction and CR. For each of the motion estimation methods, MVs are found for each 16 x 16 pixel

macroblock and the image is motion compensated using these motion vectors. The motion compensated

difference image is then transformed using the DCT and the DCT coefficients are encoded. Typically much

Table 4.2: Parameters for the H.263 (with NDME extension) video coder.

Option Description Default Value

-a <n> start frame number 0

-b <n> end frame number 0

-c <n> (0...3) ME mode: 0=EBME, 1=PME, 2=CR, 3=NDME 3

-s <n> (0...16) integer pel search window size 16

-q <n> (0...31) quantization step size (QP) 10

-r <n> bitrate in bits/s (constant bitrate) variable bitrate (constant QP)

-f <n> frame rate in frames/s (constant bitrate coding) 30 Hz

-i <filename> original sequence name -wendi/elwood/images/bus/bus

-o <filename> reconstructed frames ./out.recon

-B <filename> filename for bit stream ./stream.263

-w write out difference image file to stream ./diff N/A

-h print help message N/A



more data is required for the first intra coded frame than for the remaining frames in the sequence because

the different motion estimation/motion compensation methods remove the temporal correlation between

frames and achieve substantial amounts of compression. A detailed description of the H.263 coding standard

and this particular H.263 software coder can be found on-line at

http://www.fou.telenor.no/brukere/DVC/h263-wht/

Several functions were added to this encoder to provide NDME capability as well as to implement the scene

change detector, rate control module, and various coding functionalities.

4.5.1 Find True/Predicted Motion Vectors

The high-powered server is required to find the optimum MVs for each reconstructed frame and transmit

them to the encoder as the predicted MVs for the next frame. These MVs are found using the full search

algorithm illustrated here in pseudo-code.

cur = read_reconstructedimage(frameno);

prev = read-reconstructedimage(frameno-1);

search = 16;

for (mby = 0; mby < numberMB-rows; mby++)

for (mbx = 0; mbx < numberMB-cols; mbx++) {

x = MB_SIZE*mbx;

y = MBSIZE*mby;

macroblock = GetBlock(cur, x, y, x+MBSIZE, y+MBSIZE);

searcharea = GetBlock(prev, x-search, y-search, x+search+MBSIZE, y+search+MBSIZE);

min_error = INTMAX;

for (j = -search; j <= search; j++)

for (i = -search; i <= search; i++) {

error = ComputeSAD(macroblock, search_area(i, j))

if (error < minerror) {

min_error = error;

pos_x = i;

posy = j;

}

}

MV_x(mbx,mby,frame_no) = posx;

MVy(mbx,mby,frame_no) = pos.y;



This algorithm computes the SAD value of every candidate macroblock in the search window, which requires

over 65,000 operations/pixel/second. However, for NDME this computation is being performed at a high-

powered server on the wired network, where computational complexity is not a constraining factor. Thus

the MV which produces the minimum error of all possible vectors is chosen as the MV for each macroblock.

4.5.2 Determine Coding Mode

Once the MVs for the current reconstructed frame have been found, they become the predicted MVs for the

next frame. The base-station either sends these predicted MVs to the encoder or sends the encoder a signal

to use CR, based on the variance of the motion compensated difference images. The following pseudo-code

shows how the high powered server determines the coding mode.

cur = readreconstructed_image(frameno);

prey = readreconstructedimage(frameno-1);

diff = abs(cur - prev);

dvar = ComputeVar(diff);

mcimage = FindMCImage(prev, PMV(frameno));

mcdiff = abs(cur - mcimage);

mcvar = ComputeVar(mcdiff);

if (prevjmode == CR)

if (mcvar < dvar - PREFCRMODE - PREFACTIVEMODE)

codingmode = MP;

else

codingmode = CR;

else

/* prevymode is motion prediction (MP) */

if (mcvar - PREFACTIVE_MODE < dvar - PREFCR_MODE)

coding-mode = MP;

else

codingmode = CR;

if (codingmode == MP) {

/* set the predicted motion vectors for the next frame */

for (mby = 0; mby < numberMB_rows; mby++)

for (mbx = 0; mbx < numberMBcols; mbx++) {

PMV_x(mbx,mby,frame_no+1) = MV_x(mbx,mby,frame_no);



PMV-y(mbx,mby,frameno+1) = MVy(mbx,mby,frameno);

}

SendEncoderPMVs (PMV(frame_no+l));

} else

SendEncoderCRSignal();

The coding mode is determined based on the variance of the motion compensated difference image and

the variance of the conditional replenishment difference image. If there is motion in the image, the motion

compensated difference image variance will be much lower than the conditional replenishment difference

image variance. The assumption is that the next frame will exhibit similar motion to the current frame and

thus the motion of the current frame can determine which mode should be used to code the next frame.

However, since MVs do not need to be sent to the encoder when the mode is set to CR, this mode is slightly

preferenced over the MP mode in order to save bandwidth in the reverse channel. Similarly, in order to

keep the coding modes consistent from frame to frame, the previous mode is preferenced over switching

modes. Good values for these parameters were empirically determined to be PREFACTIVEMODE = 25

and PREFCRMODE = 25. Thus the variance of the motion compensated difference image must be at

least 50 larger than the variance of the difference image in order to change the coding mode from CR to

MP. However, the coding mode will be changed from MP to CR once the variance of the difference image

is less than the variance of the motion compensated difference image. Once the mode has been determined,

the correct information is transmitted to the encoder.

If the coding mode is set to MP, the predicted MVs must be sent to the encoder. In order to minimize

the bandwidth of this transmission, these vectors are coded using a differential coding method followed

by a Huffman code. The differential method is based on the fact that spatially neighboring macroblocks

typically have similar motion vectors, as discussed in Section 2.5.5. Since the Huffman coder assigns shorter

codewords to smaller vector lengths, ideally the encoded values should be as small as possible. Neighboring

macroblocks have similar MVs, so this minimization can be achieved by sending the difference between the

MV of the current macroblock and the MV of a neighboring macroblock. The method used in this coder

chooses the closest MV from one of the causal neighbors shown in Figure 4-4, since these are the most

spatially correlated causal macroblocks to the center macroblock. The chosen MV for the differential coding

of the current macroblock is the one which has the average value of the three candidate MVs. For example,

the chosen MV for the differential coding of macroblock A is computed according to

Cx(A) = MVx(1) + MVx(2) + MV,(3) - max(MV,(1),MV,(2),MV.(3))

- min(MV1(1),MVx(2),MVx(3)) (4.6)

C,(A) = MV,(1) + MV,(2) + MV,(3) - max(MV,(1), MVy(2), MV,(3))

- min(MV,1(1),MV,(2),MV,(3)) (4.7)
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Figure 4-4: Most correlated neighboring macroblocks.

Since the MVs for macroblocks 1, 2, and 3 are known while the MV for macroblock A is being decoded, no

further information needs to be transmitted to determine C(A). The MV with the median value is chosen as

C(A) because it is most likely to be the closest of the three MVs to the MV of A. Thus, rather than coding

the value for the MV of A, the difference between C(A) and MV(A) is coded. This value should be small

for most motion vectors and thus a short codeword will be used to describe this difference. Table A.1 shows

the Huffman code used to represent the difference between MV(A) and C(A). Since MVs can have values

from -16 to +16 (±16 pel search window), the difference between two motion vectors can have a value from

-32 to +32. The Huffman coder assigns the appropriate codeword to this difference using Table A.1, and

these coded differentials are sent as the compressed predicted MVs from the base-station to the encoder3 .

4.5.3 Refine Motion Vectors

Once the encoder receives the predicted motion vectors (or the signal to use CR to code the image), it

performs a local search to refine the motion estimates. When the MP mode is used to code the image, this

refinement is centered around the predicted MVs, and when the CR mode is used, the refinement is centered

around the zero MV. In either case, a ±1 pel search is conducted to find the local optimum MV.

if(codingmode == CR)

MV = Zero;

else

MV = PMV(frameno+1);

cur = read_originaljimage(frameno+1);

prey = readreconstructed_image(frameno);

sxy = 1;

3
The smaller values are represented with shorter codewords because they have the highest probability of occurring due to

the differential coding and the correlation of neighboring motion vectors.
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for (mby = 0; mby < number_MBrows; mby++)

for (mbx = 0; mbx < numberMB_cols; mbx++) {

x = MBSIZE*mbx;

y = MBSIZE*mby;

mvx = MV_x(mbx,mby);

mvy = MV_y(mbx,mby);

macroblock = GetBlock(cur, x, y, x+MB_SIZE, y+MB_SIZE);

search_area = GetBlock(prev, x-mvx-sxy, y-mvy-sxy, x-mvx+sxy+MB_SIZE, y-mvy+sxy+MB_SIZE);

min-error = INTMAX;

for (j = -search; j < search; j++)

for (i = -search; i < search; i++) {

error = ComputeSAD (macroblock, searcharea(i, j))

if (error < minerror) {

minerror = error;

pos_x = i;

posy = j;

}

refinex(mbx,mby) = pos-x;

refine_y(mbx,mby) = posy;

MV_x(mbx,mby) += posx;

MVy(mbx,mby) += posy;

The motion vectors MV(mbx,mby) are used to perform motion compensation. However, only the vector

refinements need to be transmitted to the base-station since the base-station already knows the predicted

MVs. The refinements will either be 0, 1, or -1, so they are directly Huffman coded rather than using a

differential coder before the Huffman coder, since differential coding would increase rather than compress the

values (i.e., differential coding produces numbers from -2 through 2, all of which are equally likely, whereas

the refinement values are only from -1 through 1). The Huffman table used to code the MV refinements is

shown in Table A.2. The maximum number of bits required to code each refinement vector is 4 (2 bits for

the x-component and 2 bits for the y-component). However, many of the refinements will be zero (which

only requires 1 bit to code) and thus some compression will be achieved.



4.5.4 Check for Scene Change

Before the encoder transforms and codes the motion compensated difference image (using the refined MVs),

it checks to determine if a scene change has occurred. This is done by computing the variance of the motion

compensated difference image and comparing it to a pre-defined threshold. If the variance is above this

threshold, a scene change has occurred and the encoder transforms and quantizes the original image rather

than the motion compensated difference image. The entire coding process begins again when a scene change

occurs (i.e., an intra-coded frame followed by a CR coded frame followed by either MP coding or CR coding,

determined by the base-station). The following pseudo-code shows the method for detecting scene changes.

cur = readoriginalimage(frameno+1);

prey = readreconstructedimage(frameno);

mcimage = FindMCImage(prey, MV);

mcdiff = abs(cur - mcimage);

mcvar = ComputeVar(mcdiff);

if (mcvar > scene.changethresh) {

scenechange = 1;

codingmode = INTRA;

}

If a scene change is detected, the image is intra coded. Otherwise, the motion compensated difference image

is transformed and quantized, using the H.263 encoder, and the quantized DCT coefficients are encoded

using a Huffman coder as specified by the H.263 standard. The coded video and the MV refinements are

sent to the base-station, where the image is reconstructed and the algorithm begins again by determining

the MVs of this new reconstructed frame and sending them as the predicted MVs of the next frame.





Chapter 5

Experimental Results

To test the effectiveness of NDME, several experiments were run using 150 frames of the standard sequences

"Bus", "Flower", "Tennis" (all 352 x 240 pels), and "Suzie" (176 x 144 pels), as well as 150 frames of

the sequences "Horse" and "Gym" (both 352 x 240 pels) obtained using an Accom digital video recorder.

In the uncoded images, there are 8 bits/pixel to represent the luminance (255 luminance values) and 2

bits/pixel to represent each component of the chrominance, since the chrominance is subsampled vertically

and horizontally. Thus for the 352 x 240 pel images, the total bit rate for the uncoded video is

BUC = (352 x 240) pixels x 12 bits/pixel x 30 fps = 30 Mbps (5.1)

and for the 176 x 144 pel images, the total bit rate for the uncoded video is

Buc = (176 x 144) pixels x 12 bits/pixel x 30 fps = 9 Mbps (5.2)

This is an enormous amount of data, which needs to be greatly compressed in order to be sent over bandwidth-

constrained channels. There are two methods of performing this compression- constant quantization and

constant bit rate. Sequences coded using a constant quantization step size will have roughly the same SNR

of the reconstructed images but the bit rate will vary depending on the coding method. Similarly, sequences

coded using a constant bit rate will have the same bit rate but the reconstructed image quality (and hence

SNR) will vary depending on the coding method. The goal is to obtain a minimum bit rate for the sequences

coded using constant quantization and a maximum SNR for the sequences coded using constant bit rate.

5.1 Constant Quantization Step Size

Each of these sequences was coded at a constant quantization step size (MPEG QP = 10) using NDME,

encoder-based ME (EBME), and CR with 1 pel refinement. For all three coding methods, motion vectors

were obtained at full pel accuracy and there was one motion vector generated for each macroblock. The

average number of bits required to code each of the sequences using the different coding methods is shown



Table 5.1: Average number of kilobits per frame with fixed quantization step size.

Sequence Encoder-Based Network Driven Conditional

Name Motion Estimation Motion Estimation Replenishment

Bus 58.6 (xl) 62.8 (x1.07) 98.1 (xl.67)

Flower 70.5 (xl) 73.2 (x1.04) 112.8 (x1.60)

Tennis 22.8 (xl) 27.6 (x1.21) 34.0 (x1.49)

Suzie 2.4 (xl) 2.6 (x1.08) 2.7 (xl.13)

Horse 23.5 (xl) 26.5 (x1.13) 46.9 (x2.00)

Gym 23.3 (xl) 27.7 (x1.19) 38.8 (xl.66)

Average 33.5 (xl) 36.7 (x1.10) 55.6 (x1.66)

in Table 5.11. These results show that coding with NDME requires only a 10% higher average bit rate than

coding with ideal encoder-based ME and achieves over a 33% decrease in average bit rate compared to coding

with CR. Since the encoder performs the same computation for CR and NDME, this savings in bandwidth

does not come at the expense of an increase in encoder power.

As described in Section 3.4, the decision about which mode to use to code the current frame is based

on the variances of the CR and predicted motion compensated (PMC) difference images of the previous

reconstructed frame. Figure 5-1a shows these variances for the "Bus" sequence. After the initial frames,

which must be coded using intra-coding/CR, the variance of the PMC difference image is substantially lower

than the variance of the CR difference image and the NDME system codes the remainder of the sequence

using MP. Figure 5-1b shows the number of bits required to code each frame of the "Bus" sequence at a

constant QP. The bit rate per frame of the NDME system coding algorithm is, on average, only 2.5-5 kbits

worse than the ideal encoder-based ME system and 25-50 kbits better than the CR system. By coding this

sequence with NDME rather than CR, the bandwidth decreases by as much as 50% with no increase in

encoder power dissipation.

Similar results were obtained for both the "Flower" and "Horse" sequences, shown in Figures 5-2 and

5-3. Both these sequences contain large amounts of scene motion and are well suited for motion prediction.

After the initial frames, the variance of the predicted motion compensated difference image is much less than

the variance of the conditional replenishment difference image, so NDME determines that the remainder of

these sequences is coded using MP. Figures 5-2b and 5-3b show the effectiveness of NDME in compressing

1
For encoder-based ME, this number includes the coded MVs as well as the coded motion compensated difference image;

for NDME, this number includes the coded predicted MVs (sent from the base-station to the encoder) and the MV refinements

and the coded motion compensated difference image (sent from the encoder to the base-station); for CR with 1 pel refinement,

this number includes the zero-vector refinements and the coded motion compensated difference image.
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these images. For the "Flower" sequence, the compression ratio for NDME is almost exactly the same as

the compression ratio for encoder-based ME and much greater than the compression ratio for CR. NDME

requires 0-5 kbits more per frame than encoder-based ME and 25-50 kbits less per frame than CR. For the

"Horse" sequence, NDME requires 2.5-5 kbits more per frame than encoder-based ME and 20-60 kbits less

per frame than CR. These sequences illustrate the dramatic improvements in coding obtained using NDME

rather than CR.

Comparatively, the "Tennis", "Suzie", and "Gym" sequences have much less motion. This can be seen

by comparing the variances of the CR and PMC difference images, shown in Figure 5-4a for the "Tennis"

sequence. For the first few frames, the variance of the predicted motion compensated difference image is

very similar to the variance of the CR difference image. In this case, the NDME system preferences using

the CR mode since no motion vectors need to be transmitted to the encoder. Scene motion begins around

frame 25, which can be seen by the large increase in the variance of the CR difference image. At this point,

it is advantageous to code the images using MP, so the NDME system switches to this mode. Around frame

90 there is a scene change and the encoder automatically sends an intra frame and forces the system into

the CR mode. The remainder of the sequence has little motion, so the system remains in the CR mode. By

adaptively switching between CR and MP, the NDME system is able to obtain bit rates as low as the CR

system for frames with little or no motion and substantially lower than the bit rates from the CR system

for frames with large amounts of motion. Figure 5-4b shows the number of bits required to code each frame

of the "Tennis" sequence. Only the middle frames of the sequence are coded using MP; for these frames,

the NDME system codes the images using approximately 5-10 kbits more than the ideal encoder-based ME

system and 15-25 kbits fewer than the CR system.

Similar results were obtained for the "Suzie" and "Gym" sequences, shown in Figures 5-5 and 5-6. For

the "Suzie" sequence, there is little motion in the beginning and the NDME system codes these initial frames

using CR. As the scene motion increases, the system switches to MP, and when scene motion dies out, the

system once again codes the frames using MP. The "Gym" sequence is coded using CR for the beginning

segment, which contains little scene motion. The system switches from MP to CR followed again by MP

depending on which mode will produce the most compression. This sequence shows the ability of the system

to adaptively switch coding modes in order to obtain the greatest possible amount of compression for each

frame.

5.2 Constant Bit Rate

The sequences were also coded with a constant bit rate (using the rate control module described in Section 4.4)

to see the effects of these different coding algorithms on reconstructed image quality. Each of these sequences

was coded at a constant bit rate using NDME, encoder-based ME, and CR with 1 pel refinement. For all

three coding methods, motion vectors were obtained at full pel accuracy and there was one motion vector

generated for each macroblock. Table 5.2 shows the average SNR of the reconstructed images using the
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Table 5.2: Average SNR of reconstructed images and average quantization step size for constant bit rate
coding.

Sequence Bit Rate Encoder-Based Network Driven Conditional
Name (Compression Ratio) Motion Estimation Motion Estimation Replenishment

SNR (dB) QP SNR (dB) QP SNR (dB) QP

Bus 1 Mbps (30:1) 25.6 16.4 24.6 18.0 22.0 24.9

Flower 1 Mbps (30:1) 23.9 19.2 23.3 20.2 20.3 29.0

Tennis 500 kbps (60:1) 29.8 12.8 28.7 14.6 26.0 18.2

Suzie 100 kbps (90:1) 32.3 8.7 32.7 9.5 32.3 9.8

Horse 500 kbps (60:1) 29.1 13.2 27.6 15.0 25.0 21.3

Gym 500 kbps (60:1) 29.5 13.7 27.6 16.7 25.9 20.3

Average 600 kbps (45:1) 28.4 14.0 27.4 15.7 25.3 20.6

three different coding methods for the 30fps sequences "Bus", "Flower", "Tennis", "Suzie", "Horse", and

"Gym" and a constant bit rate (specified in the table)2 . This table also shows the average quantization

step size, which is related to the SNR of the reconstructed images. If the image to be coded (i.e., the

motion compensated difference image) contains a large amount of information, the quantization step size

will need to be increased in order to keep the bit rate constant for each image (or group of images). When

the images are quantized coarsely, which occurs when the quantization step size is large, the reconstructed

images show the quantization effects and produce low SNR values. Table 5.2 shows that the images coded

using conditional replenishment have an average quantization step size of 20.6, which is approximately 25%

larger than the average quantization step size when the sequences are coded using NDME, and the average

quantization step size for NDME is increased by only 11% over the average quantization step size for encoder-

based ME. Similarly, the average SNR for the sequences coded using CR is approximately 8% lower than

the average SNR for the sequences coded using NDME, which is approximately 3% lower than the SNR

for the sequences coded using encoder-based ME. These numbers show a quantitative measurement of the

improvement in reconstructed image quality obtained using NDME rather than CR and the relatively small

degradation in reconstructed image quality obtained using NDME rather than encoder-based ME. Thus

there is very little image quality loss in order to realize the substantial encoder power reduction obtained

using NDME rather than encoder-based ME.

2
Different sequences are coding using different bit rates in order to best illustrate the quantization effects. For example,

the simpler sequences, such as "Horse", require a lower average bit rate to make the quantization effects visible. Similarly, the

images in the "Suzie" sequence are half the size of the images in the other sequences so this sequence requires a much lower bit

rate than the other sequences.



These results can also be seen in Figures 5-7 to 5-12. Figure 5-7a shows the variance of the difference

image and the predicted motion compensated difference image used to determine the coding mode for the

"Bus" sequence coded at a constant bit rate of 1 Mbps. The variance of the predicted motion compensated

difference image is substantially lower than the variance of the difference image for all frames following the

initial startup frames. Thus the entire sequence (except the initial frames) is coded using motion prediction.

Figure 5-7b shows the SNR for each reconstructed frame of this sequence. The SNR per frame of the

reconstructed frames coded using NDME is approximately 1.5 to 3 dB higher than the SNR per frame of

the reconstructed frames coded using CR and approximately 0.5 to 1.5 dB lower than the SNR per frame of

the reconstructed frames coded using encoder-based ME. Thus NDME achieves a large improvement in the

SNR of the reconstructed frames compared with CR for the "Bus" sequence.

The "Flower" sequence shows an even more dramatic improvement in SNR using NDME rather than CR

(Figure 5-8). Once again, the variance of the predicted motion compensated difference image is much less

than the variance of the difference image for all frames after the initial startup frames, and the sequence is

coded using motion prediction. For this sequence, there is a 2.5 to 4 dB gain in SNR using NDME rather

than CR and only a 0.5 to 1 dB loss in SNR using NDME rather than encoder-based ME. The "Horse"

sequence (Figure 5-9) is also coded using MP for all frames. For this sequence, there is between 2 and

4 dB gain in SNR using NDME rather than CR and a 1 to 2 dB loss in SNR using NDME rather than

encoder-based ME. Thus the reconstructed image quality will be greatly improved by using NDME rather

than CR for these sequences.

The "Tennis", "Suzie", and "Gym" sequences show the advantage of switching between CR and MP

when there is little or no scene motion. The beginning 25 frames of the "Tennis" sequence have very little

motion, so the NDME system codes these frames using CR. Scene motion begins around frame 26, as is

shown by the large increase in the variance of the difference image in Figure 5-10a. For these frames, the

NDME system uses the MP mode. There is a scene change at Frame 89. This is detected by the encoder,

which forces an intra-coded frame followed by a frame coded using CR. Since there is very little motion

after the scene change, the NDME system remains in the CR mode. Figure 5-10b shows the SNR of the

reconstructed images coded using NDME, CR, and encoder-based ME. The SNR of the NDME-coded frames

is as much as 7 dB higher then the SNR of the corresponding frame coded using CR. This is because the CR

system cannot detect the scene change, since the variance of the difference image at the scene change is not

much greater than the variance of the difference images before the scene change. This is another advantage

of using NDME rather than CR and is described in detail in Section 4.3. Since the CR system does not

detect the scene change, it does not begin the new scene with an intra-coded frame. This causes the SNR of

the reconstructed frames using NDME to be much higher than the SNR of the reconstructed frames using

CR. However, even before the scene change, the SNR of the NDME system is approximately 2.5 dB higher

than the SNR of the CR system for the frames coded using MP.

The "Suzie" sequence shows much less improvement in SNR using NDME rather than CR (Figure 5-
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11). Only the middle few frames are coded using motion prediction, and for these frames, the increase in

SNR is only about 1.5 dB over the frames coded using CR and about 1.5 to 3 dB worse than the frames

coded using encoder-based ME. However, as will be shown in Section 5.2.1, the image quality of the frames

coded using MP is much better than the image quality of the frames coded using CR and not much worse

than the image quality of the frames coded using encoder-based ME. Thus the SNR does not necessarily

accurately describe the degree of improvement in reconstructed image quality. The "Gym" sequence, shown

in Figure 5-12, is coded using CR for the beginning frames of the sequence and MP for the images after

scene motion begins (around frame 25). There is a large range of SNR improvement using NDME rather

than CR for this sequence, from as little as 1 dB to as much as 4 dB. Similarly, the SNR of frames coded

using NDME is between 1 dB and 4 dB lower than the frames coded using encoder-based ME.

5.2.1 Reconstructed Images

Sample reconstructed frames from the "Tennis" sequence are shown in Figure 5-13. These images show the

relatively small degradation in image quality obtained by using NDME rather than encoder-based ME and

the large improvement in image quality obtained by using NDME rather than CR for this frame. Sample

reconstructed frames from each of the other sequences are shown in Appendix B (Figures B-6 to B-10).

The quantization effects are even more apparent when the images are viewed in motion. The background

appears to jump around as a result of the large quantization of the images coded using CR, whereas these

quantization effects are not as apparent in the sequences coded using NDME. The video tape included with

this thesis shows these sequences in motion.
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Figure 5-13: Tennis sequence coded with constant bit rate. (a) Encoder-based ME, SNR = 27.3 dB (b)
Network driven ME, SNR = 25.4 dB (c) Conditional replenishment, SNR = 22.3 dB
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Chapter 6

Conclusion

Video is becoming an integral part of many portable devices, such as wireless cameras, personal communi-

cation devices, and video cellular phones. Due to the massive amount of data contained in video signals and

the limited bandwidth of the wireless channel, compression techniques for these applications are extremely

important. However, most algorithms which produce substantial compression are computationally intense.

For portable video devices, this computational complexity translates into a shorter battery lifetime. If, on

the other hand, computationally simple compression algorithms are used, there may not be an acceptable

amount of compression of the video signal. This translates into using a larger quantization step size in

order to compress the data to fit into the limited bandwidth of the channel, which causes the quality of the

decoded images to be degraded. This illustrates the tradeoff between encoder computation and amount of

compression when motion estimation is performed at the video encoder.

This tradeoff is minimized in network driven motion estimation because the -16 pel motion estimation

search is removed from the encoder and performed at a high powered server on the network. Figure 6-1

shows a flow graph of the entire network driven motion estimation algorithm. The base-station (or a remote

high powered server on the wired network) performs the computationally intense search for each frame's

predicted motion vectors, whereas the encoder only performs a local search to refine the predicted motion

vectors. Thus the encoder search window has w = 3 and h = 3 (1 pel refinement), which requires only

2wh = 18 ops/pixel. Comparing this with the number of ops/pixel of the various motion estimation algo-

rithms outlined in Table 2.1 shows that network driven motion estimation requires many fewer computations

compared with most of these motion estimation algorithms. In addition, the results shown in Chapter 5

illustrate that network driven motion estimation produces fairly to highly accurate motion vectors. Full

search motion estimation has a search window of size 33 x 33 and requires 2wh = 2178 ops/pixel. Thus

network driven motion estimation reduces the encoder computation by a factor of 120 compared with full

search motion estimation, which represents a power reduction of over two orders of magnitude. The results

of the experiments show that network driven motion estimation can obtain this substantial reduction in

encoder power with only a small increase in data bandwidth. Alternatively, the network driven motion
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Figure 6-1: Flow graph showing the network driven motion estimation algorithm.

estimation system uses the same amount of power as the CR system while obtaining a significant decrease

in data bandwidth. By transferring the majority of the computation required for motion estimation from

the power limited portable video terminals to a high powered system on the network, network driven motion

estimation can produce low bandwidth coded video using minimal power consumption.

6.1 Future Work

All the results in this thesis compared NDME to full search encoder-based ME and CR with one pel refine-

ment. It would be interesting to see how NDME compares to some of the fast motion estimation algorithms

described in Section 2.5. A full comparison showing bandwidth of the coded video versus amount of com-

putation for the motion estimation algorithm would give designers of wireless video systems a better idea of

II · · D · 1



which algorithm is appropriate for the particular application. For example, one of the fast motion estimation

algorithms may require extra computation or may not produce as high compression ratios as NDME but

does not require a low latency reverse link between the base-station and the encoder and may thus be prefer-

able to NDME. Determining a complete set of advantages and disadvantages for different motion estimation

algorithms will allow the designer to choose the optimum algorithm given the application constraints.

In Section 4.1, it was found that increasing the number of motion vectors per image actually decreases the

total bit rate of the system. To complete this experiment, the number of motion vectors per image should be

increased beyond one motion vector per macroblock to four motion vectors per macroblock (or 1320 motion

vectors per image for the CIF images). This is the same as using block motion estimation, which is part

of the MPEG standard (where there are 4 blocks per macroblock). If the total bit rate decreases using one

motion vector per block, this may be preferable. However, this quadruples the reverse channel bandwidth,

because four times as many predicted motion vectors need to be sent from the base-station to the encoder.

This may be prohibitive for certain systems, especially if there is not a significant gain in total bandwidth

by using one motion vector per block rather than one motion vector per macroblock.

The relationship between frame variance and bit rate described in Section 3.4 needs to be explored

further. By finding out how these two parameters are related (or if, in fact, there is not a relationship

between them), the algorithm which determines the coding mode can be optimized, rather than using the

empirical results based on a few test sequences. Similarly, the scene change detector can be optimized by

studying the relationship between variance and scene content. Rather than using the absolute value of

the variance of the motion compensated image to determine if a scene change has occurred, the difference

between this variance and the variance of the previous motion compensated difference image might be more

suitable, since the variance rises sharply when a scene change occurs. Perhaps an entirely different scene

change detector algorithm might be more accurate or use less encoder computation.

Section 4.4 stated that NDME requires a constant sampling rate between frames. However, a system

could be designed to use the H.263 rate control, which performs temporal quantization and drops frames

when the allocated bit rate gets too low, if the encoder can let the base-station know how many frames

will be dropped. The base-station can then either extrapolate the predicted motion vectors for the specified

number of frames, or it can compute new predicted motion vectors using the frames that are at the specified

number of frames in the past to predict the next frame's motion vectors.

By optimizing these algorithms, the NDME system may produce even better results than the ones

discussed in Chapter 5. Comparing the bit rate (or the SNR of the reconstructed images) of sequences coded

using network driven motion estimation with sequences coded using some of the fast motion estimation

algorithms in addition to full search motion estimation and conditional replenishment will confirm that

network driven motion estimation is a desirable algorithm for performing motion estimation in battery-

operated portable video devices.





Appendix A

Tables

Table A.1: Huffman table used to compress the predicted motion vector values.

Value Codeword Value I Codeword
0 1

1 010 -1 011

2 0010 -2 0011

3 00010 -3 000111

4 0000110 -4 0000111

5 00001010 -5 00001011

6 00001000 -6 00001001

7 00000110 -7 00000111

8 00010110 -8 00010111

9 0000010100 -9 0000010101

10 0000010010 -10 0000010011

11 00000100010 -11 00000100011

12 00000100000 -12 00000100001

13 00000011110 -13 00000011111

14 00000011100 -14 00000011101

15 00000011010 -15 00000011011

16 00000011000 -16 00000011001

17 00000010110 -17 00000010111

18 00000010100 -18 00000010101

19 00000010010 -19 00000010011

20 00000010000 -20 00000010001

21 00000001110 -21 00000001111

22 00000001100 -22 00000001101

23 00000001010 -23 00000001011

24 00000001000 -24 00000001001

25 000000001110 -25 000000001111

26 000000001100 -26 000000001101

27 000000001010 -27 000000001011

28 000000001000 -28 000000001001

29 000000000110 -29 000000000111

30 000000000100 -30 000000000101

31 0000000000110 -31 0000000000111

32 0000000000100 -32 0000000000101



Table A.2: Huffman table used to compress the

Value Codeword Value

0 1

1 01 -1

motion vector refinement values.

I Codeword

w I00I 1I~
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Appendix B

Figures
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Figure B-6: Bus sequence coded with constant bit rate. (a) Encoder-based ME, SNR = 27.3 dB (b) Networkdriven ME, SNR = 26.6 dB (c) Conditional replenishment, SNR= 22.9 dB
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Figure B-7: Flower sequence coded with constant bit rate. (a) Encoder-based ME, SNR = 25.1 dB (b)
Network driven ME, SNR = 24.7 dB (c) Conditional replenishment, SNR = 21.2 dB
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Figure B-8: Suzie sequence coded with constant bit rate. (a) Encoder-based ME, SNR = 32.4 dB (b)
Network driven ME, SNR = 30.2 dB (c) Conditional replenishment, SNR= 27.5 dB
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Figure B-9: Horse sequence coded with constant bit rate. (a) Encoder-based ME, SNR = 29.9 dB (b)

Network driven ME, SNR = 28.0 dB (c) Conditional replenishment, SNR = 25.5 dB

86



Figure B-10: Gym sequence coded with constant bit rate. (a) Encoder-based ME, SNR = 30.8 dB (b)Network driven ME, SNR = 28.2 dB (c) Conditional replenishment, SNR = 25.0 dB
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Appendix C

Global Motion Estimation Algorithms

C.1 The Most Common Motion Vector Algorithm

The MCMV algorithm is a method of global motion estimation that determines which local MV is used most
often and chooses this vector as the global motion vector. This global motion estimation method assures
that the maximum number of macroblocks will achieve their minimum SAD value.

N

MV9lobal = max(y[(MVi == g9iv) ? 1 : 0 ]) (C.1)

where MVi is the local MV for the i t h macroblock and N is the total number of macroblocks in the image.
This method will achieve good compression only if the majority of MVs are the same, since it may produce
very high energy residuals for macroblocks whose MVs do not match the global MV.

C.2 The Tse and Baker Global Motion Estimation Algorithm

The Tse and Baker global motion estimation algorithm [14] models the global motion as a combination of
pan (translational movement) and zoom (change of focal length). This algorithm assumes that the global
motion is the dominant motion in the scene and the motion of local objects is uncorrelated noise. The global
motion parameters (Pz, p., and f,) are estimated from the local MVs (MAVi). The local motion of a pixel
can be described by

Ui = 0, + M i (C.2)

where 0i is the location of the pixel in the current frame and U' is the location of the pixel in the previous
frame. Using the global motion parameters, the pixel motion is described by

U,=fzl+p (C.3)

where Ui is an estimate of the globally motion compensated location of the pixel in the previous frame. The
estimated global displacement vectors are given by

MVi = Ui - U = (f - 1)ji' + F (C.4)

The goal of this algorithm is to obtain the maximum number of matches between the estimated global

displacement vectors MVi and the "true" local MVs MVi. This is accomplished by minimizing the 12 norm
of the MV displacement error

E = 1 I1-ifV - MlYiV2  (C.5)
i



The authors in [14] show that this minimization results in the following solutions for the global zoom and
pan parameters

fZ= (C.6)

1 Z1 E-(C7)

i i

where (., .) denotes inner product, and N is the number of macroblocks used in the parameter estimation. The

initial estimates use the local MVs from all the macroblocks in the image. Since local motion which differs

from the global motion estimate may reduce the accuracy of the global motion parameters, the algorithm

can be iterated to refine the estimates. For each iteration, only macroblocks whose local MVs match the

current global motion estimates are used in determining the new parameter values. The same minimization

procedure (Equations C.6 and C.7) is used for each refinement, with the exception that the summations

are only over the macroblocks which have local motion consistent with the current estimate of the global

motion. While this method does not guarantee that the global motion will be optimal for the maximum

number of macroblocks, it does assure that the global motion estimate is close to the maximum number

of local motion estimates. Thus, even though the minimum SAD for individual macroblocks may not be

achieved, the overall SAD of the image should be minimized.



Appendix D

Running the NDME System Using

Images From the Accom

D.1 Acquisition of Video Material

The video sequences "Horse" and "Gym" were obtained by transferring video from a VCR tape to a digital

video recorder (the Accom digital recorder). The video is stored in the Accom memory and can be transferred

to a workstation using the rcp command. For example, the following C-shell script will retrieve 150 frames

from the Accom memory starting at memory location 100 and store them on the workstation in YUV 4:2:2

format as horse.xxx.yuvl:

#! /bin/csh -f

# Read input arguments

set file = horse

@ start = 0

@ end = 149
@ accomframe = 100

0 cur = $start

while ($cur <= $end)

if ($cur < 10) then

set c=00$cur

else if ($cur < 100) then

set c=0$cur

else

set c=$cur

endif

# transferring frame $accomframe from the accom to $file.$c.yuv

rcp accom:$accomframe $file.$c.yuv

0 cur++

0 accom_frame++

end

The images horse.xxx.yuv are size 720 x 486 pixels and have the following representation, where each chromi-
nance value (U and V) and luminance value (Y) is represented with a byte of data:

1
xxx represents a three digit number from 000 to 149.



+----+----+----+----+----+----+----+-------

I U I Y IV I Y IU I Y I V I Y I
+----+----+----+----+----+----+----+-------

I U I Y IV I Y IU I Y I V I Y I
+----+----+----+----+----+----+----+-------

I U I Y IV IY IU I Y I V I Y I
+----+----+----+----+----+----+----+-------

IU I Y V iY I U lY I VI Y I
+----+----+----+----+----+----+----+-------

I I I I I I I I I

Thus there are twice as many Y components as U and V components (due to the 4:2:2 subsampling of the
chrominance). In order to obtain images suitable as input to the NDME video system, these image files
must be parsed into three separate files, horse.xxx.Y, horse.xxx.U, and horse.xxx.V, the size of the image
must be reduced (for the "Horse" and "Gym" sequences, the images were reduced to 352 x 240 pixels), and
the chrominance must be further subsampled to produce YUV in the 4:1:1 format. The following C code
will produce the correct size and format images:

#include <stdio.h>

#include <stdlib.h>

void dumpimage(unsigned char *image, char filename[255], int totpels,

int totlines, int pels, int lines)

{
unsigned char tempchar;

int row,col,i;

unsigned char *out;

FILE *outFile;

int ppels, plines;

outFile = fopen(filename,"w");

out = image;

ppels = (int) (tot_pels / pels);

plines = (int) (tot_lines / lines);

/* subsampling the image to the appropriate size */

for (row = 0; row < lines; row++) {

for (col = 0; col < pels; col++) {

tempchar = (char) (*out++);

fwrite(&temp_char,1,1,outFile);

for (i = 1; i < ppels; i++)

temp_char = (char) (*out++);

}
for (col = 0; col < totpels - pels*ppels; col++)

tempchar = (char) (*out++);

for (i = 1; i < plines; i++)

for (col = 0; col < tot_pels; col++)

tempchar = (char) (*out++);

}

fclose(outFile);

return;

}



void SeperateImage(FILE *inFile, char *outfile, int frm_no, int totpels,

int totlines, int pels, int lines)

{
unsigned char temp_char;

int row, col, i;

char fname [256);

unsigned char *lum, *cr, *cb;

unsigned char *y, *u, *v;

lum = (unsigned char *)malloc(sizeof(unsigned char)*totpels*tot_lines);
cr = (unsigned char *)malloc(sizeof(unsigned char)*tot_pels*totlines/4);
cb = (unsigned char *)malloc(sizeof(unsigned char)*totpels*totlines/4);

/* Separate luminance and chrominance */
y = lum; u = cr; v = cb;

for (row = 0; row < tot_lines; row+=2) {
for (col = 0; col < tot.pels; col+=2) {
fread(&temp.char,1,1,inFile);
*u++ = (int) tempchar;

fread(&tempchar,1,1,inFile);

*y++ = (int) temp-char;
fread(&temp-char,1,1,inFile);
*v++ = (int) temp_char;

fread(&temp-char,1,1,inFile);

*y++ = (int) tempchar;
}
for (col = 0; col < totpels; col+=2) {

fread(&temp.char,1,1,inFile);

fread(&temp-char,1,1,inFile);

*y++ = (int) tempchar;
fread(&temp_char,1,1,inFile);

fread(&tempchar,1,1,inFile);

sy++ = (int) temp_char;

}
}
sprintf(fname, "%s.%03d.Y", outfile, frmno);

dumpimage(lum,fname,totpels,totlines,pels,l ines);

sprintf(fname, "%s.%03d.U", outfile, frm-no);

dumpimage(cr,fname,tot-pels/2,totlines/2,pels/2,lines/2);

sprintf(fname, "%s.%03d.V", outfile, frm no);

dumpimage(cb,fname,totpels/2,totlines/2,pels/2,lines/2);

free(lum); free(cr); free(cb);

return;

main (int argc,char *argv[])

{
int start, end, i;

int pels, lines;

int tot_lines, totpels;

char *outfile;



FILE *inFile;

argc--;

argv++;

if(argc != 5) {

printf ("USAGE: parse2_color pels lines image filename number\n");

exit (0);

}

/* size of images to be input to NDME video system */

pels = atoi(*argv++);

lines = atoi(*argv++);

/* size of the images from the accom */

tot_pels = 720;

totlines = 486;

if (!(inFile = fopen(*argv++,"r"))) {
printf("ERROR: Can't open image file for reading\n");

exit(0);

}
outfile = *argv++;

i = atoi(*argv++);
SeperateImage(inFile, outfile, i, tot_pels, totlines, pels, lines);

fclose(inFile);

Running this program on the image horse.xxx.yuv produces the files horse.xxx.Y, horse.xxx.U, and horse.xxx.V,
where horse.xxx.Y represents the luminance component of the image and is the specified size (i.e., 352 x 240),
and horse.xxx.U and horse.xxx.V represent the chrominance components of the image and are I the size of

the luminance image (i.e., 176 x 120).

D.2 Running the NDME Test System

Once the images are in the correct format, they can be compressed using the H.263 encoder with NDME

extension. The name of the encoder is tmn, and in order to run the tmn program, the correct directories must

be set. The directory "mvs" must be created to hold the motion vectors from the reconstructed previous

frame; the directory "pred" must be created to hold the predicted motion vectors2 ; and the directory "refine"

must be created to hold the refined PMVs. For every frame, there is a file added to each directory. For

example, for frame 50 a file is written into the directory mvs (mv.050) which contains the motion vectors for

the reconstructed frame 50; a file is written into the directory pred (pred.050) which contains the PMVs for

frame 50 (the MVs for the reconstructed frame 49); and a file is written into the directory refine (rmv.050)

which contains the refined PMVs for frame 50. An output file, which contains the reconstructed image, is

also created for each image, and the compressed bits for the frame are added to the bit stream file. For

example, the tmn program is run as follows:

tmn -a 0 -b 149 -i horse -B horse.stream -o horse.recon -c 3 >log.horse

This produces the compressed bit stream horse.stream and the output images horse.recon.xxx.Y, horse.recon.xxx.U,

and horse.recon.xxx.V for all images from 0 to 149. All the statistics for each image, such as the number of

bits per image, the SNR of each image, the variance of the motion compensated image, etc., as well as the

total statistics for the sequence are stored in the file log.horse; this file is therefore very useful in obtaining

results about the coding method.

2
Note that for the motion vector prediction method used in the NDME system, the predicted motion vectors of the current

frame are the same as the motion vectors of the reconstructed previous frame.



D.3 Decoding NDME Test System Bit Streams

There is a decoder for the H.263 bit stream which is run as follows:

tmndecode -oO horse.stream horse.recon. %03d. yuv

The -oO option saves the reconstructed images in files called horse.recon.xxx.Y, horse.recon.xxx.U, and
horse.recon.xxx.V, which represent the YUV 4:1:1 format The other output options are -ol, which is SIF
format, -o2, which is TGA format, -o3, which is PPM format, -o4, which displays the images as a movie
using X11, and -05, which is YUV concatenated into one file.

D.4 Displaying Video Material

Once the reconstructed images are created, they can be viewed in real time using the Accom. However, the
images must be converted to the RGB format and either upsampled to 720 x 486 pixels or filtered to include
a black border which will make the size of the image 720 x 486. The images can be converted from YUV to
RGB using the following C code:

#include <stdio.h>

#include <stdlib.h>

FILE *inFile;

FILE *outFile;

int pels, lines;

unsigned char *loadimage(int width, int height)

{
unsigned char temp-char;

int i, row, col;

unsigned char *image;

unsigned char *res;

image = (unsigned char *)malloc(sizeof (unsigned char)*width*height);
res = image;

for (row = 0; row < height; row++)

for (col = 0; col < width; col++) {

fread(&temp_char,1,1,inFile);

if (feof(inFile)) {

printf("ERROR: too few pixels\n");

exit (0);

}
*res++ = temp_char;

}
fread(&tempchar,1,1,inFile);

if (f eof(inFile) == 0) {

printf ("ERROR: too many pixels\n");

exit (0);

}

return (image);

}

void dumpimage(unsigned char *image, int cols, int rows) {
unsigned char temp-char;



int i,row,col;

fprintf (outFile,"P6\n %d %d 255\n",cols,rows);

for (row = 0; row < rows; row++)

for (col = 0; col < cols; col++)

for (i = 0; i < 3; i++) {

temp-char = (unsigned char) *image++;

fwrite(&temp_char,1,1,outFile);

}

unsigned char *upsample(unsigned char *tmpimage) {

int i, j;
unsigned char *new;

new = (unsigned char *)malloc(sizeof(unsigned char)*pels*lines);

for (i=O; i<lines/2; i++)

for (j=O; j<pels/2; j++) {

new[(2*i)*pels + 2*j] = tmpimage[i*pels/2 + j];

new[(2*i)*pels + 2*j+1] = (tmpimage[i*pels/2 + j]+tmpimage[i*pels/2 + j+1])/2;

new[(2*i+l)*pels + 2*j] = (tmp image[i*pels/2 + j]+tmpimage[(i+1)*pels/2 + j])/2;
new[(2*i+l)*pels + 2*j+1] = (new[(2*i+l)*pels + 2*j]+new[(2*i)*pels + 2*j+1])/2;

}
return (new);

unsigned char quant(float value) {

int qval;

qval = (value < 0.5 ? (unsigned char) 0 :

value > 254.5 ? (unsigned char) 255 :

(unsigned char) (int) (value + 0.5));

return(qval);

}

unsigned char *convert(unsigned char *lum, unsigned char *cr, unsigned char *cb)

int i, j, num;

unsigned char *new;

int yvalue, uvalue, vvalue;

float rvalue, gvalue, bvalue;

new = (unsigned char *)malloc(sizeof(unsigned char)*3*pels*lines);

for (i = 0; i < lines; i++)

for (j = 0; j < pels; j++) {

num = j + i*pels;

yvalue = lum[num];

uvalue = cr[num] - 128;

vvalue = cb[num] - 128;

rvalue = yvalue + 1.4020*vvalue;

gvalue = yvalue - 0.3441*uvalue - 0.7141*vvalue;

bvalue = yvalue + 1.7720*uvalue;



new 3*num] = quant(gvalue);
new[3*num+1] = quant(rvalue);
new[3*num+2] = quant(bvalue);

}

return(new);

I

main (int argc,char *argv[]) {

int frmnum, i;
unsigned char *newimage;

char *filenamel, *outfile;

char imagename 256];

unsigned char *lum, *cr, *cb, *tmp-image;

argc--;

argv++;

if(argc != 5) {
printf("Usage: <yuv2rgb imagename outfile frm_num pels lines>\n");

exit(0);

}
filenamel = *argv++;

outfile = *argv++;

frmnum = atoi(*argv++);

pels = atoi(*argv++);

lines = atoi(*argv++);

sprintf(imagename, "%s.%03d.Y", filenamel, frmnum);

if (!(inFile = fopen(imagename,"r"))) {

printf("ERROR: Can't open %s for reading.\n", imagename);

exit(0);

I
lum = loadimage(pels,lines);

fclose(inFile);

sprintf(imagename, "%s.%03d.U", filenamel, frm.num);

if (!(inFile = fopen(imagename,"r"))) {

printf("ERROR: Can't open Xs for reading.\n", imagename);
exit(0);

I
tmpimage = loadimage(pels/2,lines/2);

cr = upsample(tmpimage);

fclose(inFile);

sprintf(imagename, "%s.%03d.V", filenamel, frm.num);

if (!(inFile = fopen(imagename,"r"))) {
printf("ERROR: Can't open %s for reading.\n", imagename);

exit(0);

I
tmp-image = loadimage(pels/2,lines/2);

cb = upsample(tmp-image);
fclose(inFile);

new-image = convert(lum,cr,cb);



sprintf(imagename, "%s", outfile);

outFile = fopen(imagename,"w");

dumpimage(new.image, pels, lines);

fclose(outFile);

free(lum); free(cr); free(cb);

free(tmpimage); free(new_image);

return;

}

This program produces an RGB image of size pels x lines, which needs to be converted into a 720 x 486

pixel image. This accomplished by the following C code:

#include <stdio.h>

#include <stdlib.h>

FILE *inFile;

FILE *outFile;

unsigned char *image;

int pels, lines;

unsigned char *loadimage()

unsigned char tempchar;

int i, row, col;

unsigned char *image;

unsigned char *res;

fscanf(inFile, "P6 %d .d 255", &pels, &lines);

image = (unsigned char *)malloc(sizeof(unsigned char)*3*pels*lines);

res = image;

fread(&temp.char,1,1,inFile);

for (row = 0; row < lines; row++)

for (col = 0; col < pels; col++)

for (i = 0; i < 3; i++) {

fread(&temp.char,1,1,inFile);

if (feof(inFile)) {
printf("ERROR: too few pixels\n");

exit(0);

}
*res++ = temp_char;

fread(&temp.char, 11,inFile);

if (feof(inFile) == 0) {

printf("ERROR: too many pixels\n");

exit(0);

return(image);

void dumpimage(unsigned char *image, int cols, int rows) {

unsigned char temp_char;

int i,row,col;

fprintf(outFile, "P6\n %d %d 255\n",cols,rows);

fwrite(image, rows*cols*3, 1, outFile);



unsigned char *add_black(unsigned char *image) {

int i, row, col;

unsigned char *new;

unsigned char *res;

int tb, Ir, lr2;

new = (unsigned char *)malloc(sizeof(unsigned char)*3*720*486);

res = new;

tb = (486 - lines) / 2;

Ir = (720 - pels) / 2;

for (row = 0; row < tb; row ++)

for (col = 0; col < 720; col++)

for (i = 0; i < 3; i++)

*res++ = (unsigned char) 0;

for (row = 0; row < lines; row++) {

for (col = 0; col < Ir; col++)

for (i = 0; i < 3; i++)

*res++ = (unsigned char) 0;

for (col = 0; col < pels; col++)

for (i = 0; i < 3; i++)

*res++ = *image++;

for (col = 0; col < Ir; col++)

for (i = 0; i < 3; i++)

*res++ = (unsigned char) 0;

}
for (row = 0; row < tb; row++)

for (col = 0; col < 720; col++)

for (i=O; i<3; i++)

*res++ = (unsigned char) 0;

return(new);

}

main (int argc,char *argv[]) {

unsigned char *new_image;

char *filenamel, *outfile;

char imagename[256];

argc--;

argv++;

if(argc != 4) {

printf("Usage: <increase2_720x486 imagename outfile pels lines>\n");

exit(0);

}
filenamel = *argv++;

outfile = *argv++;

pels = atoi(*argv++);

lines = atoi(*argv++);

sprintf(imagename, "%s.mv", filenamel);

if (!(inFile = fopen(imagename,"r"))) {

printf("ERROR: Can't open %s for reading.\n", imagename);
exit(0);



}
image = loadimage();

fclose(inFile);

new_image = addblack(image);

sprintf (imagename, "%s.rgb", outfile);

outFile = fopen(imagename,"w");

dumpimage(newimage, 720, 486);

fclose(outFile);

free (image); free(newimage);

return;

}

Once the RGB image is the correct size (horse.720x486.rgb), it can be transferred to the Accom (location
500 in this example) using:

rcp horse.720x486.rgb accom:500.rgb

After all the frames of the sequence have been loaded to the Accom, the sequence can be viewed at any

speed desired, it can be looped, played backwards, sections can be played separately, and the sequence can
be recorded onto a VCR tape.
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