
Washington University School of Medicine Washington University School of Medicine 

Digital Commons@Becker Digital Commons@Becker 

Open Access Publications 

2014 

Network dysfunction in Alzheimer's disease: refining the Network dysfunction in Alzheimer's disease: refining the 

disconnection hypothesis disconnection hypothesis 

Matthew R. Brier 
Washington University School of Medicine 

Jewell B. Thomas 
Washington University School of Medicine 

Beau M. Ances 
Washington University School of Medicine 

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs 

Recommended Citation Recommended Citation 
Brier, Matthew R.; Thomas, Jewell B.; and Ances, Beau M., ,"Network dysfunction in Alzheimer's disease: 
refining the disconnection hypothesis." Brain Connectivity. 4,5. 299-311. (2014). 
https://digitalcommons.wustl.edu/open_access_pubs/4695 

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been 
accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. 
For more information, please contact vanam@wustl.edu. 

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/open_access_pubs
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F4695&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:vanam@wustl.edu


REVIEW ARTICLE

Network Dysfunction in Alzheimer’s Disease:
Refining the Disconnection Hypothesis

Matthew R. Brier,1,2 Jewell B. Thomas,2 and Beau M. Ances2–6

Abstract

Much effort in recent years has focused on understanding the effects of Alzheimer’s disease (AD) on neural func-
tion. This effort has resulted in an enormous number of papers describing different facets of the functional de-
rangement seen in AD. A particularly important tool for these investigations has been resting-state functional
connectivity. Attempts to comprehensively synthesize resting-state functional connectivity results have focused
on the potential utility of functional connectivity as a biomarker for disease risk, disease staging, or prognosis.
While these are all appropriate uses of this technique, the purpose of this review is to examine how functional
connectivity disruptions inform our understanding of AD pathophysiology. Here, we examine the rationale and
methodological considerations behind functional connectivity studies and then provide a critical review of the
existing literature. In conclusion, we propose a hypothesis regarding the development and spread of functional
connectivity deficits seen in AD.

Key words: Alzheimer’s disease; brain networks; resting-state functional connectivity

Alzheimer’s disease (AD) is the most common form of
dementia (Blennow et al., 2006) and exhibits a deleteri-

ous effect on patients, caregivers, and families, resulting in
great social cost (Reitz et al., 2011). No curative treatment
exists, and attempts at symptomatic relief are only modestly
effective (Mangialasche et al., 2010). For this reason, AD
continues to be a major target of both clinical and basic re-
search. Our understanding of large-scale changes in neural
behavior due to AD has been fruitfully expanded through
the use of resting-state functional connectivity magnetic
resonance imaging (rs-fcMRI). Previous attempts at synthe-
sizing this rapidly growing literature have focused on charac-
terizing the nature and extent of network disruptions (Pievani
et al., 2011; Sorg et al., 2009; Tijms et al., 2013) and on eval-
uating the potential diagnostic utility of these techniques
(e.g., as a biomarker) (Gomez-Ramirez and Wu, 2014;
Hafkemeijer et al., 2012; Matthews et al., 2013; Roman and
Pascual, 2012). In this review, we argue that rs-fcMRI has
also informed our understanding of the pathogenesis and patho-
physiology of AD. To do this, we first place changes in func-
tional connectivity within context of the ‘‘disconnection
syndrome’’ model and show how this hypothesis motivates

the use of functional connectivity for the investigation of AD
pathophysiology. Then, we describe important methodolog-
ical issues relevant to the synthesis of rs-fcMRI results. This
is followed by a summary of the existing AD rs-fcMRI
literature. We conclude by proposing a revised model of
AD functional changes that seeks to explain these imaging
findings.

The Disconnection Syndromes

It was recognized early in the study of neurological dis-
ease that, in many cases, focal deficits observed during life
are correlated to focal lesions identified postmortem. This
led to the idea that specific cognitive functions are supported
by discrete neuroanatomic structures. Observations of more
complex deficits suggested that regions should coordinate
activity to perform more complex tasks (these regions can
be said to be ‘‘functionally connected’’). A ‘‘disconnection
event’’ (e.g., a stroke) disconnects one or more functional
areas from a task-associated ensemble of functionally con-
nected regions, resulting in a clinically observable ‘‘discon-
nection’’ syndrome (Geschwind, 1965). AD has been called

1Program in Neuroscience, Division of Biological and Biomedical Science, School of Medicine, Washington University in St. Louis,
St. Louis, Missouri.

Departments of 2Neurology and 3Radiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri.
4Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, Missouri.
5Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, Missouri.
6Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri.

BRAIN CONNECTIVITY
Volume 4, Number 5, 2014
ª Mary Ann Liebert, Inc.
DOI: 10.1089/brain.2014.0236

299



a disconnection syndrome in many studies (Delbeuck et al.,
2003; Stam et al., 2007; Wang et al., 2006), but the applicabil-
ity of that model has not been conclusively validated. For in-
stance, there is no single focal lesion in AD and it remains
unclear if and when disrupted regions become completely
non-functional as seen in many classic disconnection syn-
dromes. The principal limitation of previous approaches has
been that they were autopsy based, limiting our understanding
of the early disease process. Recently, many techniques for
assessing connectivity in vivo have been developed.

Functional Connectivity

Resting-state functional connectivity offers one way to
assess the integrity of communication between two function-
ally related brain regions. Functional connectivity describes
the co-varying activity profiles of topographically dispersed
brain regions (Biswal et al., 1995). Compared with structural
connectivity (computed from white-matter tractography or
other methods), functional connectivity provides a dynamic
picture of brain activity (Keller et al., 2013). One might
predict that functional connectivity is determined by the pat-
tern of structural connections. However, only a fraction of
functional connectivity is explained by the underlying struc-
tural connectivity (Adachi et al., 2012). One method for
determining functional connectivity is the blood oxygen
level-dependent (BOLD) response, which is a proxy measure
for neural processing (Ogawa et al., 1993) [for a comprehen-
sive review, see Logothetis (2002)]. Functionally connected
regions can be organized into resting-state networks (RSNs)
(Fox and Raichle, 2007). RSNs are clusters of brain regions
that are highly functionally connected to each other but
less functionally connected to regions from other RSNs
(Lee et al., 2012). The advantages and disadvantages of rs-
fcMRI have been previously reviewed (Cabral et al., 2014;
Fox and Raichle, 2007; Raichle, 2011). The researcher can
use this technique to derive information about functional
connectivity between two brain regions, within a clustered
set of brain regions (e.g., an RSN) or across the entire brain.

Methodological Considerations

Despite the ease of rs-fcMRI acquisition, there are several
important methodological considerations in the analysis of
functional connectivity data that can impact the interpre-
tation of results. We briefly summarize the most important
issues before returning to our discussion of AD-related alter-
ations in functional connectivity.

Seed-based compared with independent component
analysis-based methods

Two principal methods are used for calculating functional
connectivity: seed-based analysis and independent compo-
nent analysis (ICA). Seed-based approaches depend on an
a priori definition of a set of regions of interest (ROI).
ICA derives network definitions in a data-driven fashion.
The results of these analytic approaches can then be used
in modeling approaches, notably graph theoretic measures
or related quantities. Each approach has strengths and weak-
nesses depending on the research question.

Seed-based analyses generally sample either a set of ROIs
distributed across the entire brain or a specific set of a priori

ROIs of experimental interest (Damoiseaux et al., 2006;
Shehzad et al., 2009). ROIs are generally either a simple geo-
metric shape (e.g., spherical) or based on anatomical seg-
mentation. The mean BOLD time series (or some other
representative quantity) is extracted from these ROIs, and
the correlation coefficient is calculated either between
ROIs or between a single ROI and every other voxel.
These measures can then be compared with an independent
variable (e.g., disease status). An important consideration
in the use of seed-based analyses is that the ROI set used
in the analysis captures the effect of interest, and the ROIs
are of an appropriate scale so as to not only reduce noise
but also avoid averaging across distinct signals. For example,
anatomically based ROI schemes often average across large
regions of the brain and thus reduce sampling error, but may
not respect functional divisions. Attempts at functional par-
cellation can create ROIs that are functionally distinct, but
may not average over a sufficiently large number of voxels
for identification of a stable time series.

In ICA (Beckmann et al., 2005; Calhoun et al., 2001), im-
aging data are arranged as a time-point by voxel matrix (or
the transpose) and decomposed into spatially or temporally
independent components. Components spatially matching
the known topography of an RSN are retained, and those
matching known sources of noise (e.g., ventricles) are dis-
carded. Noise components are identified based on their to-
pography (e.g., being focal in the ventricles or having a
rim near the skull) or on the properties of their time courses
(e.g., being highly correlated with movement or being white
noise). The number of components retained can influence
whether RSNs are evaluated as integrated wholes or sepa-
rated into component parts (e.g., anterior and posterior com-
ponents of the same network) (Damoiseaux et al., 2012).
This approach provides a factor score for each voxel with
this value compared against an independent variable. This
approach can result in a number of summary statistics such
as the goodness-of-fit metric (Greicius et al., 2004) or dual
regression (Beckmann et al., 2005).

Once functional connectivity is defined, it can be modeled
using higher-level mathematical models. A more recent
method that has been used in the AD literature is graph the-
ory (Bullmore and Sporns, 2009). In graph theory, the brain
is modeled as a collection of nodes (brain regions) and edges
(functional connections). This enables summary quantities to
be calculated that reflect the organization of the graph at the
global or local level. Further descriptions of these metrics are
given below.

Each approach has strengths and weaknesses that make
them more or less applicable to specific scientific problems.
A few of the more prominent and commonly discussed con-
siderations are summarized in Table 1. While these methods
are among the most popular, other analysis methods exist to
assess other aspects of the BOLD signal at rest, such as the
amplitude of low-frequency fluctuations (Liu et al., 2008;
Zou et al., 2008).

Subject movement

In the past several years, researchers have become keenly
aware of the dramatic effect of movement on functional connec-
tivity. The ‘‘movement artifact’’ is usually characterized as spu-
riously increased functional connectivity (particularly local)
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(Power et al., 2012; Van Dijk et al., 2012). This artifact is not
able to be removed using ordinary movement regression proce-
dures, necessitating the removal of movement-contaminated
frames (or volumes) from subject scans (Power et al., 2012).
The frame-removal process has been refined (Power et al.,
2013a), but a gold-standard approach has not yet been devel-
oped. Studies that do not account for this artifact or make an
effort to address it should be interpreted with caution, espe-
cially given that different movement profiles between study
groups have been shown to cause spurious group differences.

At this time, the movement confound is reduced using two
principal approaches: (1) regression of movement time series
and (2) removal of movement contaminated frames. It is
likely that these approaches do not remove the entire artifact
(see discussion of Global Signal Regression section).
Recently, a new artifact relevant to this process has been de-
scribed as follows. In many studies, the movement regressors
are extracted but not regressed from the BOLD signal until
after band-pass filtering. This can result in ‘‘spectral misspe-
cification,’’ where previously filtered frequencies are reintro-
duced into the signal, thereby reducing the effectiveness of
the general regression (Hallquist et al., 2013). While the effect
of this confound on group comparisons remains unknown,
this approach emphasizes the importance of considering the
unintended consequences of preprocessing procedures.

Global signal regression

As of this writing, the global signal regression (GSR) pre-
processing step is the most contentious analytic decision in
the processing of rs-fcMRI data. The global signal is simply
the BOLD time series averaged across all brain voxels, usu-
ally within a whole brain mask. This signal is then regressed
out as a signal of non-interest along with the movement pa-
rameters and biological signals considered noise [e.g.,
BOLD signal in the cerebral spinal fluid (CSF)]. This step
is beneficial because it reduces non-neural variance related
to residual movement, changes in pCO2, and other sources
while also removing widely shared neural variance (Fox
et al., 2005). After GSR, the remaining calculated correla-
tions are effectively first-order partial correlations account-
ing for widely shared variance (Hacker et al., 2013). A

necessary fact of this process is that the remaining correla-
tions have 0 mean and negative (anti-) correlations become
more prominent. This process has been criticized for creating
‘‘artificial’’ negative correlations (Murphy et al., 2009) that
are difficult to interpret (Yeo et al., 2011). However, GSR
is known to improve the spatial specificity of results (Fox
et al., 2009) and faithfully reproduces negative correlations
that exist in electrophysiology recorded on the brain surface
(Keller et al., 2013). Recent work has also demonstrated that
the GSR step reduces the dependency of rs-fcMRI on move-
ment, which is a strong argument for its inclusion in data pre-
processing (Power et al., 2013a). Notably, ICA approaches
can avoid this step entirely.

In part due to the controversial nature of GSR, several ap-
proaches have been developed in an attempt to achieve the
same noise reduction properties of GSR while avoiding po-
tential problems associated with this technique. Some of
these methods focus on removing the effects of physiologic
fluctuations (e.g., heart rate, respiration rate, and pCO2)
from the BOLD time series (Behzadi et al., 2007; Glover
et al., 2000). Importantly, these methods have shown that
negative correlations between RSNs can be recovered
even without GSR (Chai et al., 2012). This work motivates
future efforts that will investigate the contribution of neu-
ral and non-neural (artifactual) components to the global
BOLD signal.

Definition of RSNs

In what follows, we will focus on the brain organized by
RSNs; however, RSNs are not always clearly demarcated
and may have distinct subcomponents. This may result
from (1) methodological differences and (2) actual neurobi-
ology. With regard to the first, different approaches have
shown that RSN topographies are highly reproducible across
individuals but some differences may exist (Hacker et al.,
2013; Lee et al., 2012; Wig et al., 2013). This issue is dis-
cussed in a recent review (Wig et al., 2014). With regard
to the second, one of the earlier studies (Lee et al., 2012)
found that RSNs could be organized hierarchically in
which one RSN (e.g., the attention network) could be divided
into dorsal and ventral components. Further, several

Table 1. Comparison of Seed-Based and Independent Component Analysis-Based Methods

Seed based ICA based

A priori assumptions Experimental priors define ROI for functional
connectivity analysis

Data-driven algorithm isolates collections
of voxels with similar time series
without experimental priors

Statistics General linear models Dual regression
Identification of RSNs A priori assignment of seeds Component pattern matching
Analytic decisions Location of seeds, type of dependence measure

used, and preprocessing steps
Number of factors retained, identification

of nuisance signals, and preprocessing
steps

Key assumptions ROIs sufficiently sample the topography of the
effect of interest and are the appropriate
level of spatial resolution

RSNs or effects of interest are
decomposable into spatially and/or
temporally independent components

Definition of RSNs ROIs are either assigned to RSNs a priori or
are assigned through some clustering algorithm

Number of ICA components is specified
a priori, which can affect how networks
are divided or defined

ICA, independent component analysis; ROI, regions of interest; RSN, resting-state network.
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networks had left and right distinctions. This suggests that all
RSNs may not be unitary entities, but may require more com-
plicated definitions.

Now that we have described how functional connections
can be measured using resting-state functional connectivity,
we will explore how this information can be used to further
our understanding of AD pathophysiology.

AD Staging

The discussion of AD necessarily involves the definition
of terms with regard to the staging of the disease. Despite
recent attempts to standardize disease staging, the extant lit-
erature contains many different standards for staging preclin-
ical (presymptomatic) and clinical (symptomatic) AD. We
adopt the following for this review based on recently devel-
oped models ( Jack et al., 2010, 2013). First, the AD process
can be broadly divided into two stages (Fig. 1): preclinical
and clinical disease. During the preclinical period, pathol-
ogy accumulates in the absence of symptoms (Price et al.,
2009). This pathological accumulation can be detected
using positron emission tomography (PET) imaging of amy-
loid (Klunk et al., 2004) or biochemical analysis of the CSF
(Fagan and Holtzman, 2010). Preclinical AD can be further
subdivided (Sperling et al., 2011). Stage 0 was defined as
the absence of all detectable AD-related pathology. Stage 1
was defined as the presence of amyloid pathology. Stage 2
was defined as the presence of amyloid pathology and evi-
dence of neurodegeneration [i.e., evidence of tau pathology,
atrophy (e.g., hippocampus), or metabolic disruptions (e.g.,
fluorodeoxyglucose PET)]. Stage 3 was defined as mild
(but detectable) neurocognitive deficits in addition to the
presence of amyloid and neurodegenerative pathology. Indi-
viduals with stage 3 cognitive deficits are not sufficiently im-
paired to warrant a diagnosis of clinical AD. Clinical AD can
be staged using the Clinical Dementia Rating (CDR) (Mor-
ris, 1993). Using the CDR scheme, a CDR 0.5 often refers

to very mild cognitive impairment due to AD (Albert
et al., 2011; Morris et al., 2014). The CDR can assume val-
ues of 0.5, 1, 2, and 3 corresponding to increasing severity
of AD.

Functional Connectivity in Preclinical AD

Preclinical AD is the period during which histopathology
accumulates in the absence of overt clinical symptoms.
While it is true by definition that there are no overt symptoms
present during this phase, it is unclear if and to what extent
there is neural dysfunction at this stage. According to most
models ( Jack et al., 2013), the earliest detectable change in
the AD brain is the presence of amyloid pathology. Based
on this, several investigations have focused on evaluating
whether cognitively normal individuals who have amyloid
pathology have different functional connectivity compared
with those without pathology.

The default mode network (DMN) is a constellation of
brain regions of particular importance in AD, because there
is a considerable, though not complete, correspondence be-
tween end-stage amyloid deposition and DMN topography
(Buckner et al., 2005). The DMN is most active at rest,
when the brain is in its ‘‘default’’ state (Raichle et al.,
2001). The structural and functional anatomy of the DMN,
as well as a discussion about its relevance to cognition and
disease, is reviewed extensively elsewhere (Buckner et al.,
2008; Raichle and Snyder, 2007). Cognitively normal older
adults with evidence of amyloid deposition (as detected by
amyloid imaging or as inferred from CSF levels of Ab42)
have decreased functional connectivity in the DMN com-
pared with those without amyloid deposition (Sheline
et al., 2010b). Recent work has detected a linear relationship
between amyloid burden and functional connectivity de-
rangement (Hedden et al., 2009). However, some regions
outside the DMN (particularly frontal regions) demonstrate
increased functional connectivity in amyloid-positive pa-
tients (Mormino et al., 2011). These increases have been at-
tributed to compensation, but it is also possible that they
represent excitotoxicity related to amyloid pathology early
in the disease process. Finally, these findings have been gen-
eralized by showing that changes in functional connectivity
are focused on disrupting ‘‘hub’’ regions that are particularly
important for functionally connecting many brain regions
(Drzezga et al., 2011). This collection of studies has a strong
and common theme: amyloid deposition results in disruption
of DMN functional connectivity. Thus, it is likely that amy-
loid deposition is sufficient for the disruption of at least some
of the brain’s large-scale coordination.

One criticism of this approach is that amyloid deposition
can be seen in other diseases and not all individuals with am-
yloid deposition develop symptomatic AD before death.
Work in dominantly inherited AD helps address some of
these concerns. Individuals with mutations in one of three
genes (PSEN1, PSEN2, and APP) will develop AD at a
young age with 100% penetrance and almost no anticipation.
Thus, researchers can investigate the relationship between
amyloid deposition and functional connectivity in individu-
als who will certainly develop AD (due to their mutation sta-
tus) but are unlikely (as a function of their young age) to have
other neurodegenerative conditions. Mutation carriers who
were years away from expected age of symptom onset but

FIG. 1. Schematic of Alzheimer’s disease (AD) staging.
Progression of AD is modeled in terms of amyloid abnormal-
ities [measured via cerebrospinal fluid or PiB positron emis-
sion tomography (PET)], neurodegeneration (tau pathology
or hippocampal atrophy), and cognitive dysfunction (mea-
sured by neuropsychological testing or clinical exam). The or-
dering of these biomarkers is based on prominent models in
the field ( Jack et al., 2010, 2013). Two classification schemes
[Clinical Dementia Rating (CDR) and NIA] are incorporated
here. The CDR indexes the presence or absence of dementia
and scales its severity. The NIA criteria stage the presence
of pathology in the absence of overt clinical symptoms. The
absence of any of these three biomarkers is termed ‘‘healthy
aging.’’ NIA1–3 is termed ‘‘preclinical AD’’ and CDR > 0 is
termed ‘‘clinical AD.’’ PiB, Pittsburgh compound B.
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who already had amyloid deposition (Bateman et al., 2012)
were noted to have decreased functional connectivity in the
DMN either before (Chhatwal et al., 2013) or concurrent
with (Thomas et al., 2013) symptom onset, confirming the
previous results in sporadic AD. Together, this represents
strong evidence that amyloid deposition results in functional
connectivity deficits in the DMN that are related to AD.

Amyloid is only one component of AD pathology: both
amyloid and tau pathology are needed for AD symptoms to
develop. While amyloid imaging has facilitated the direct
comparison of amyloid topography and functional connec-
tivity, tau-imaging agents have been unavailable until re-
cently (Chien et al., 2013; Fodero-Tavoletti et al., 2011;
Maruyama et al., 2013; Small et al., 2006). Thus, studies in-
vestigating the relationship between tau and functional con-
nectivity have been limited to CSF-derived measures that
have no topography. Investigations of this relationship
have found that CSF amyloid and tau independently contrib-
ute to disruption between the posterior cingulate cortex
(PCC) and the medial temporal lobe (Wang et al., 2013b).
This strongly suggests that the two pathologies contribute
uniquely to this dysfunction. Interestingly, the PCC is a
prominent location for amyloid pathology (Braak and
Braak, 1991), and the medial temporal lobe is an epicenter
of tau pathology (Braak et al., 2011). An additional investi-
gation found that the amyloid/tau ratio was correlated with
functional connectivity in the PCC (Li et al., 2013). Before
these studies, it was unknown whether the observed amyloid
effect was due to amyloid alone or whether it was due to the
combination of amyloid and tau pathologies. In fact, both
contribute independently to observed functional connectiv-
ity deficits. Together, these studies demonstrate that both
amyloid and tau levels are related to changes in functional
connectivity.

These studies suggest that during the preclinical phase of
AD, significant dysfunction accumulates in the DMN. This is
evidence for neural dysfunction during a period when there
are no overt cognitive symptoms. Questions remain as to
how this dysfunction begins, how it impacts other networks,
and how this dysfunction is related to the development of
cognitive symptoms.

Functional Connectivity in Those at Genetic Risk of AD

Individuals may be genetically predisposed to develop
AD. The most potent risk factor for AD (apart from monoge-
netic causative mutations, discussed earlier) is the ApoE e4
allele (Roses, 1996). This is associated with a 4- to 12-fold
increase in lifetime disease risk. Carriers of this allele
show decreased DMN functional connectivity similar to
that seen in preclinical AD in the absence of detectable pa-
thology (Sheline et al., 2010a). Interestingly, increased func-
tional connectivity is seen in frontal regions of the salience
network in ApoE carriers (Machulda et al., 2011). This has
led some to hypothesize early compensation or disinhibition
(Seeley, 2012). Both the Sheline and Machulda studies in-
vestigated older adults; however similar results have also
been seen in younger carriers with e4 the allele (Filippini
et al., 2009). These results suggest an effect of the e4 allele
on brain function across the lifespan. Finally, while the
ApoE effect is certainly the strongest risk factor, additional
genetic risk factors exist. Many of these genetic risk factors

are not described explicitly, but can be captured through in-
vestigating the family history of AD. The presence of a fam-
ily history of AD is associated with decreased DMN
functional connectivity. In fact, this effect is independent
of ApoE status, suggesting a unique contribution of addi-
tional genetic risk factors (Wang et al., 2012). Together,
these results suggest that an increased genetic risk of AD is
sufficient to disrupt brain function in the brain networks
commonly impacted by AD.

Default-Mode Dysfunction in Symptomatic AD

Functional connectivity studies in preclinical AD have fo-
cused on the DMN primarily because changes were observed
in this network in the mild-moderate (Greicius et al., 2004)
and very mild AD (Sorg et al., 2007) populations. These find-
ings in clinical AD were particularly compelling, because the
topography of the DMN was seen to have a relatively similar
overlap with the patterns of amyloid deposition, glucose
hypometabolism, and memory network dysfunction seen in
symptomatic AD (Buckner et al., 2005).

After these studies established the link between DMN dys-
function and AD, researchers next worked to establish
whether dysfunction in the DMN was binary or parametric
in disease severity. Two studies investigated this question
and both found that DMN functional connectivity decreased
parametrically with disease severity (Brier et al., 2012;
Zhang et al., 2010). Other studies focusing on functional con-
nectivity using the PCC (a component of the DMN) as a seed
found similar results, but some studies also observed in-
creased positive functional connectivity from regions in the
DMN to regions outside the DMN, primarily in frontal
areas (Zhang et al., 2009). Other studies using the hippocam-
pus (HC) as a seed (another component of the DMN) found
that the HC becomes disconnected from the rest of the brain
(Allen et al., 2007; Wang et al., 2006) early in the symptom-
atic disease process. Early symptomatic AD has been shown
to particularly affect connections between the PCC and HC
(Zhou et al., 2008). Together, these data suggest that DMN
dysfunction develops progressively throughout the course
of AD with a particular predilection for the connections be-
tween the PCC, HC, and the rest of the DMN.

While the DMN is a prominent and strongly connected
network, it can be subdivided into two or three sub-networks.
Investigators have used this fractionation to study the ef-
fects of AD with more spatial specificity. For example,
while the posterior components of the DMN show loss in
functional connectivity with AD, the anterior components
show higher functional connectivity early in the disease
( Jones et al., 2011). These results conflict with the prevailing
evidence, suggesting that DMN functional connectivity de-
clines in AD. Interestingly, a longitudinal study demonstrated
increases within the anterior DMN early in disease. However,
with disease progression, these anterior DMN areas had re-
duced functional connectivity in later-stage AD (Damoiseaux
et al., 2012). This may suggest that observed increases are
transient and its relevance to pathophysiology remains un-
clear. Patterns of changes are not entirely unitary in the poste-
rior portions of the DMN either: different parts of the PCC
have demonstrated differential functional connectivity disrup-
tion with AD (Xia et al., 2014). Taken together, these data sug-
gest that while DMN dysfunction is a hallmark of AD, DMN
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dysfunction does not develop all at once and has spatiotempo-
ral dynamics with regard to symptom severity.

Throughout the course of AD, from the preclinical to clin-
ical stage, DMN dysfunction accumulates and functional
connectivity between many DMN member regions is re-
duced. The exact sequence of regional disconnection in the
DMN is unclear, but it appears that DMN regions do not dis-
connect simultaneously. The few studies that have tried to
understand the sequence of changes suggest that dysfunction
begins in the posterior regions, then affects the HC, and fi-
nally disrupts functional connections among the anterior as-
pects of the DMN. Notably, several of the earlier referenced
studies indicated dysfunction outside the DMN (Sorg et al.,
2007), which is the focus of the next few sections.

Network Disruptions Beyond the DMN

While dysfunction in the DMN is a prominent feature
of AD at all stages, functional connectivity changes are not
limited to the DMN. Using a high-dimensional seed-based
analysis method, it was found that many brain regions dem-
onstrate disrupted (both increased and decreased) functional
connectivity in AD (Wang et al., 2007). It was later clarified
using RSN classifications that AD is associated with de-
creased DMN functional connectivity but increased func-
tional connectivity in a set of regions is known as the
salience network (Zhou et al., 2010). The salience network
is anchored in the dorsal anterior cingulate and consists pri-
marily of frontal and parietal regions. Observed salience
network increases are interesting, because they oppose the
widely established theme that pathologic processes tend to

result in decreased functional connectivity. In a cross-
sectional study, our group has replicated this observation
of increased functional connectivity in the salience network,
though we showed the increase to be transient (Brier et al.,
2012) (similar to the observed transience of anterior DMN
increases discussed in the previous section); that is, the sa-
lience network (and certain anterior portions of the DMN)
shows increased functional connectivity early in AD but
then reduced functional connectivity later in the disease.

Brier et al. (2012) also showed that very mild and mild to
moderate AD are associated with decreased functional con-
nectivity in several other RSNs. Specifically, at the very
mild AD stage, we observed increased salience network
functional connectivity, and no change in the dorsal attention
network, but we observed decreased functional connectivity
in the DMN, executive control, and sensori-motor networks.
At the mild-moderate AD stage, all networks showed de-
creased functional connectivity (Brier et al., 2012). This re-
sult was interesting, because many of the implicated brain
regions manifested functional disruption even though they
have not traditionally been implicated in studies of end-
stage AD histopathology (see Fig. 2 discussed next). The
mechanism by which the functional disruption ‘‘out runs’’
the histopathology remains unclear. One suggestion is
based on the observation that not only are ‘‘within network’’
functional connections affected by AD, but also selected
‘‘between network’’ functional connections are disrupted
(Brier et al., 2012). It is possible that network dysfunction
spreads between networks along diseased connections
through propagation of disordered communication (e.g.,
Hebbian dynamics) (Saper et al., 1987). This idea has its

FIG. 2. Summary maps of the extent and magnitude of amyloid and tau deposition and functional connectivity disruption
parametric on disease severity. In both amyloid and tau columns, color indicates intensity of deposition as previously de-
scribed (Braak and Braak, 1991; Thal et al., 2002). Amyloid patterns in preclinical AD are based on longitudinal PiB
PET studies (Okello et al., 2009; Villemagne et al., 2011). Since tau imaging data do not currently exist (i.e., no longitudinal
follow up in pathological studies), it is impossible to determine the topography in patients who would eventually develop
clinical AD, so that each data point is omitted. Clinicopathological correlation for amyloid (Braak and Braak, 1991) and
tau (Nelson et al., 2009) is based on previous studies. Functional connectivity can either be increased (pink/purple) or de-
creased (green-grey). No formalization for intensity of functional connectivity deficits exists, so colors indicate number of
consecutive disease stages in which greater abnormalities are detected. For example, if FC in a particular region decreases
in two consecutive AD stages, the value would be�2. This attempts to synthesize the entire literature but is particularly based
on Zhou et al. (2010), Brier et al. (2012), Wang et al. (2013b). These effects are compared with age-matched controls. While
aging alone is associated with some change in functional connectivity (Andrews-Hanna et al., 2007), observed changes due to
AD are above and beyond changes typically associated with aging. Note: The hippocampus (HC) is shown in a box labeled
‘‘HC,’’ because it is not visible on these surface projections. FC, functional connectivity.
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basis in the prion literature (de Calignon et al., 2012; Frost
et al., 2009), which is summarized in a recent review (Kauf-
man and Diamond, 2013). The convergence of these results
has led to the proposal that AD and other neurodegenerative
conditions derive their pathological severity from their abil-
ity to exploit network dynamics (Seeley et al., 2009; Zhou
et al., 2012). This focus on network dynamics has led to a
new way of modeling the functional connections of the brain.

Application of ‘‘Network Science’’
to Functional Connectivity

The previous sections have dealt with functional connec-
tivity between pairs of brain regions or sets of brain regions.
Recent studies have begun to model the dynamics of the en-
tire brain network simultaneously. The mathematical field of
graph theory enables the investigation of whole-network
properties by modeling the brain as a collection of
‘‘nodes’’ (ROIs) and ‘‘edges’’ (functional connectivity rela-
tionships between ROIs). Graph models may be more sensi-
tive to subtle changes in brain function, because they enable
aggregate network changes to be characterized with simple
measures. The ability to measure global changes is not with-
out cost, however, and graph theory measures may obscure
focal changes between particular ROIs.

Two particularly common network measures that have been
used in the AD literature are clustering coefficient (a measure
of how well a node can pass information among nodes with
which it is connected) and path length (how far apart on aver-
age a given node is from all other nodes of the brain network).
Graphs that are highly clustered but have a relatively low path
length are said to be ‘‘small-world’’ and have the advantage of
being efficiently connected while maintaining a few long-
range (and thus expensive) connections (Watts and Strogatz,
1998). Functional connectivity in normal humans was shown
to exhibit small world character (Salvador et al., 2005), and
it was hypothesized that this organizational property was re-
quired for normal cognition. A recent review (Tijms et al.,
2013) described several studies that explored disruptions in
this small-world organization in preclinical and clinical AD
(Brier et al., 2014; Ciftci, 2011; Sanz-Arigita et al., 2010;
Supekar et al., 2008; Wang et al., 2013a). While results in
these studies varied, each described AD-associated disruptions
in whole-brain small-world organization. These results give
further evidence that AD disrupts network organization at a
whole brain level, not just in specific systems.

An important consequence of small-world organization is
that some nodes are very highly connected while others are
sparsely connected. These highly connected regions are
called ‘‘hubs’’ and are of particular importance in a network.
It was shown very early on in the study of AD that hubs may
be of particular importance in disease pathogenesis (Buckner
et al., 2009). As the field has progressed, the definition of hub
regions has been challenged and refined (Power et al.,
2013b), but their theoretical importance remains. In fact, a
recent study showed that while whole brain network organi-
zation was disrupted in preclinical AD, hub dysfunction was
only detectable once symptoms were present (Brier et al.,
2014). This suggests that the integrity of hub function is crit-
ical to the generation of normal cognition.

While some debate exists over the applicability of graph
measures to functional connectivity data (Power et al.,

2013b), graph techniques hold great promise for understand-
ing network-centric pathophysiological processes. Graph
theory approaches, whether investigating small-world char-
acteristics (clustering coefficient, path length) or node impor-
tance (‘‘hubness’’), will continue to assist researchers in
establishing how RSNs degrade with pathology and how
other yet-unaffected brain regions adapt. Graph theory provi-
des a computational framework in which to model these
brain changes and generate new hypotheses.

Summary of Current Literature

Based on this review of the extant literature, there are sev-
eral summary points that motivate further discussion. Dys-
function begins in the DMN, a set of regions that partially
overlaps with amyloid deposition. It is likely that the amy-
loid deposition plays a causative role in DMN dysfunction
(Bero et al., 2011, 2012). The timing of this dysfunction is
still debated, but it certainly begins during the preclinical pe-
riod. During the early stage of the clinical disease period,
DMN dysfunction becomes more pronounced and, notably,
this dysfunction spreads to other networks and even impacts
the connections between networks. The key observation is
that if one compares the topography of network dysfunction
to the topography of amyloid and tau pathology, one finds
that the network dysfunction is not spatially coterminous
with amyloid or tau pathology (Fig. 2). That is to say,
there are regions with functional connectivity disruptions
which are not strongly affected by amyloid or tau, and
there are regions that are strongly affected by amyloid and
tau where functional connectivity disruptions are not promi-
nent. In what follows, we reconcile this observation with the
original ‘‘disconnection syndrome’’ hypothesis.

A Network Model of AD Pathophysiology

The field initially adopted functional connectivity meth-
ods based on the hypothesis that changes in brain connectiv-
ity may be associated with the cognitive changes seen in AD.
It had been previously thought that AD might follow a ‘‘dis-
connection’’ model of disease (Delbeuck et al., 2003). The
disconnection model considers disconnection to be a fully re-
solved event: in a ‘‘disconnection event,’’ disease causes a
lesion to an area, leading to a reduction in communication
between two brain regions, thus removing the neural com-
munication required for healthy cognitive functioning.

To interpret AD pathology through this model, it had been
posited that amyloid and/or tau cause a toxic milieu that dis-
connects previously connected brain regions and causes ob-
served memory deficits. Functional connectivity was
adopted as a method to quantify the extent of disconnection.
Established relationships between losses in functional con-
nectivity and cognitive symptoms (Duchek et al., 2013) pro-
vide strong evidence in support of this model. However, two
observations discussed in this review suggest that the discon-
nection model needs to be adapted to better fit our under-
standing of actual AD pathophysiology.

First, in AD, brain regions are affected progressively. This
means that pathology accumulates and dysfunction develops
gradually over time. Individual brain regions are not sum-
marily removed from the network in a single insult, but in-
stead gradually deteriorate as pathology accumulates over
years. Throughout the span of an AD individual’s disease
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course, regions remain in a semi-functional state of increas-
ingly impaired function. This enables the diseased region to
interact with the still-intact parts of the network. It is, there-
fore, plausible that this diseased region can propagate dys-
function through its interactions with other healthy regions,
through a process similar to Hebbian dynamics.

The second observation is that many functional systems
largely distinct from sites of pathological accumulation
also become impaired. In any AD disease stage, the topogra-
phy of functional connectivity deficits cannot be fully
explained by the topography of amyloid and tau pathology.
Indeed, functional changes are more expansive. However,
the topography of these unexplained functional changes is
highly correlated with known RSNs (Brier et al., 2012).
Given the topography, we hypothesize that this is not by
chance. Rather, disordered inputs coming from nodes af-
fected by tau/amyloid impact and disrupt previously unaf-
fected nodes in multiple other brain networks. Regions that
receive disordered inputs themselves develop disordered out-
puts and then spread disorder recursively along other func-
tional connectivity relationships to other healthy regions.

Thus, we propose modifications to the original model (Fig.
3). For reasons that are not entirely clear, amyloid and tau pa-
thology develop progressively in a restricted set of brain re-
gions, inducing neural dysfunction in these regions. At this
point, two processes occur in parallel (but not necessarily in-
dependently). First, amyloid and tau pathology spread
through a fairly well-described network of regions (Braak
and Braak, 1991). This induces direct neural dysfunction in
those regions to which pathology spreads. This causes
some degree of disconnection, but notably not absolute dis-
connection (i.e., the affected brain regions are not immedi-
ately completely destroyed). As described earlier, neither
the initial hit nor the network spread of pathology fully ac-
count for all observed dysfunction and changes in functional
connectivity.

To account for those unexplained disruptions, we propose
a second process. The directly affected brain regions con-
tinue to send and receive input, but in a disrupted manner.
Thus, their outputs are disrupted. These regions send disor-
dered information to regions they typically communicate
with in health (namely, within a RSN) and over time, they
cause dysfunction in additional regions (notably, these addi-
tionally affected regions are now able to spread disordered
communications further throughout the brain). Gradually,
dysfunction also spreads between RSNs, but at a slower
rate. These two processes progress in this way, leading to ac-
cumulation of histopathology in a restricted set of anatomical
regions and functional disruptions in broadly distributed and
topographically distinct functional networks. Of course,
these processes sometimes converge and interact, which
may further accelerate brain degradation.

While this model is highly speculative, we offer the fol-
lowing evidence in support of its plausibility. First, RSNs
tend to become dysfunctional together (Brier et al., 2012).
This would suggest that highly connected regions tend to be-
have as a group, which is consistent with a process that is de-
pendent on the density of functional connectivity in that
group. In our model, regions that are highly connected will
cause dysfunction to rapidly spread among them. Second,
we note that several studies have identified disrupted func-
tional connectivity between RSNs; that is, between a region

in one RSN and another region in a different RSN (Brier
et al., 2012; Wang et al., 2007). Anecdotally, many of
these between-RSN disruptions are between networks af-
fected early in the disease (e.g., DMN) and networks affected
later (e.g., dorsal attention). This preliminary evidence is
consistent with the model, but direct tests of this hypothesis
should be performed. Specifically, longitudinal analyses of
data sets currently being acquired could test the hypothesis
of predictable disease spread based on current disease status.
In addition, new analysis techniques that increase spatial
specificity and relate those changes to underlying histopa-
thology will shed new light on how AD develops and
spreads.

Our proposed model is similar to others in the literature,
but has important differences. The model we describe here
adapts the disconnection hypothesis and employs Hebbian
theory. This model does not make strong statements about
the progression of histopathology in the form of amyloid
or tau, though those dynamics are consistent with a network
spread of pathology (Kaufman and Diamond, 2013). One

FIG. 3. Network models of brain function in AD. (A) A
sample of a potential brain network containing four distinct
functional regions (A–D). Region A receives inputs from
other parts of the brain not depicted (large arrow) and pro-
jects to regions B and C (small arrows), which also receive
inputs from other brain regions not depicted (large arrows).
Brain regions (B and C) then project to region D (small ar-
rows), which also receives inputs from other parts of the
brain (large arrows). Each of these brain regions is healthy
(denoted by green color) and the connections are intact
(solid black lines for arrows). (B) Disconnection model. In
this model, a pathological insult (lightning bolt) affects a sin-
gle brain region (region A) that is completely destroyed (red
color). The connections from region A to regions B and C are
rendered non-functional (dotted line). In this model, the in-
sult to region A is a fully resolved event and region A no lon-
ger contributes to the network. Regions B and C still receive
inputs from the rest of the brain and communicate with re-
gion D. The observable deficits are strictly related to region
A and do not progress. (C) In the proposed model, a similar
insult occurs in region A; however, the region is not rendered
completely silent (partial green color) and continues to com-
municate with regions (B and C) in a disrupted way, leading
to induction of dysfunction in regions (B and C). In addition,
it is known that histopathology can spread along physical
connections (blue star). These two processes may overlap
and may be additive (e.g., region B). The newly affected re-
gions then provide disrupted output to region D.
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model of particular interest is the ‘‘nexopathy’’ model of
disease progression (Warren et al., 2012b). In this model,
it is proposed that molecular disease factors interact with
the properties of brain networks (e.g., RSNs) to produce
disease. Importantly, this model proposes that ‘‘[t]he rapid-
ity of network breakdown might depend on the relative pro-
portion of connection types [long range vs. local] affected
by the pathological process’’ (Warren et al., 2013). The
present model concurs with this approach and extends it
by suggesting that the disruption of the network itself
may further exacerbate the spread of dysfunction. The ex-
tent to which each model is accurate should be tested in
future studies.

A significant challenge facing all models of AD develop-
ment, progression, and treatment is the existence of distinct
phenotypic variations, including posterior cortical atrophy,
logopenic primary progressive aphasia, and frontal AD
(Warren et al., 2012a). These distinct phenotypes are associ-
ated with potentially distinct functional connectivity profiles
(Lehmann et al., 2013). Future work should explicitly ac-
count for phenotypic variation in order to accurately charac-
terize disease progression and to avoid obscuring interesting
phenomena through averaging.

Conclusions and Future Directions

Here, we reviewed the existing functional connectivity
literature and proposed a new model to account for the
many observations made. These results highlight the need
for additional work investigating functional connectivity
changes across the disease spectrum. The existing literature
and our model of disease spread highlight the need for net-
work-centric approaches to understanding AD as well as for
the development of metrics that enable more focal evalua-
tion of single region dysfunction. Future projects combin-
ing those approaches with a new understanding of AD
pathological processes may provide valuable insights into
how AD originates, how it spreads, and how it disrupts
the human brain.
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