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a b s t r a c t

This paper aims to understand better the innovation potential of a firm’s alliance network.
Here we analyze the role of an alliance network in terms of the technological distance
between partners, a firm’s network position (centrality) and total network density. We study
how these three elements of an alliance network, separately and in combination, affect
the ‘twin tasks’ in exploration, namely novelty creation on the one hand and its efficient
absorption on the other hand. For an empirical test, we study technology-based alliance
networks in the pharmaceutical, chemical and automotive industries. Our findings indi-
cate that successful exploration indeed seems to require a delicate balance between these
two exploration tasks. A second conclusion is that different network positions yield differ-
ent pay-offs in terms of the number of explorative patents. In other words, success rates for
exploration are not spread equally across firms. However, position alone does not tell the full
story. Our empirical findings clearly indicate that exploration success also depends on the
other two dimensions of embeddedness, namely technological distance and network den-
sity. The three elements of network embeddedness need to be considered jointly in order to
understand their complementary effects on both novelty creation and absorptive capacity.

© 2008 Published by Elsevier B.V.

1. Introduction

There is now increasing consensus in the academic liter-
ature that a firm’s embeddedness in a network of interfirm
relations matters for its economic and innovative perfor-
mance (Nooteboom, 1992; Hagedoorn, 1993; Powell et al.,
1996; Rowley et al., 2000; Ahuja, 2000a; Owen-Smith and
Powell, 2004). The empirical evidence has indicated that
this relationship between embeddedness and innovation
can be found in industries as diverse as chemicals (Ahuja,
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2000a), biotechnology (Baum et al., 2000; Powell et al.,
1996), semiconductors (Stuart, 1998), textiles (Uzzi, 1997),
personal computers (Hagedoorn and Duysters, 2002) and
banking (Zaheer and Bell, 2005). More recently, some stud-
ies have started to unravel this notion of embeddedness in
order to understand in what specific ways it contributes
to a firm’s innovation performance. Here, characteristics
of partners have been studied such as their degree of
innovativeness (Stuart, 1998) as well as the properties of
alliances such as the role of formal governance mecha-
nisms (Mowery et al., 1996), equity vs. non-equity alliances
(Rowley et al., 2000) or the role of repeated contacts (Wuyts
et al., 2005). Beyond the dyad level, studies at the network
level have shown that the properties of an alliance net-
work also affect innovation. Here it has been shown that
apart from the number of direct ties (Ahuja, 2000a; Shan
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et al., 1994) also a firm’s indirect ties (Ahuja, 2000b) and
the redundancy among these ties (Ahuja, 2000b; Baum et
al., 2000; McEvily and Zaheer, 1999) affect its innovation
performance.

In most of these studies an important function of
alliances is that they function as ‘pipelines’ through which
information and knowledge flows between firms (Owen-
Smith and Powell, 2004). This focus on the diffusion
potential of alliances may not be surprising as most
studies on the role of embeddedness have been assum-
ing conditions of relative environmental stability. Here,
embeddedness refers to routinisation and stabilization
of linkages among members as a result of a history of
exchanges and relations within a group or community
(Gulati, 1998). Under such structure-reinforcing conditions,
the role of embeddedness is increasingly well under-
stood (Gulati, 1998; Madhavan et al., 1998; Koka et al.,
2006). These conditions connect with March’s category of
exploitation (1991) in which environmental uncertainty
is rather limited and the focus is on the refinement and
extension of existing competences and technologies. The
rationale for teaming up with partners then is formed by
possibilities to obtain complementary know-how (Teece,
1986) and/or to speed up the R&D process in indus-
tries where time-to-market is crucial. Here, cooperation is
attractive as partners have a good understanding of the rel-
evant issues at hand and alliances enable a rapid diffusion of
knowledge among partners, enhancing the efficiency and
speed of cooperation (Gilsing, 2005).

In this strand of literature, an implicit underlying
assumption is that similarity of partners is beneficial for
learning and innovation. This follows from Cohen and
Levinthal’s (1990) influential notion of absorptive capac-
ity, where the idea that the extent to which firms can
learn from external knowledge may be largely dependent
upon the similarity of the partners’ knowledge bases. In
a similar vein, different studies have demonstrated that
learning potential declines with an increase in dissimilar-
ity of knowledge stocks (Hamel, 1991; Lane and Lubatkin,
1998; Mowery et al., 1996; Fleming and Sorenson, 2001).
So, for inter-organisational learning in exploitation, similar-
ity is attractive and distances in knowledge and cognition
(cognitive distance) constitute a liability.

This raises the question of how to understand the role
of network embeddedness in view of exploration that
can be characterized by breaking away from the estab-
lished way of doing things, with a focus on the discovery
and experimentation of new technologies (March, 1991;
Nooteboom, 2000). By its very nature, exploration is not
about efficiency of current activities, but rather forms
an uncertain process that deals with the search for new,
technology-based business opportunities (Rowley et al.,
2000; Nooteboom, 2000), requiring the production of new
insights and knowledge. This points to a different role of
a firm’s alliance network, namely its recombination poten-
tial for new knowledge creation rather than its function as a
channel for diffusion of existing information and knowledge
for exploitation. Existing literature has largely ignored this
role of alliances for novelty creation and is therefore unable
to explain the development of new knowledge and compe-
tencies (Hagedoorn et al., 2000; Phelps, 2005). In contrast

to exploitation, in this process of exploration partner sim-
ilarity is unattractive whereas cognitive distance between
partners forms an important asset.

The main aim of this paper is to develop an under-
standing of the role of a firm’s alliance network in view
of exploration. To do so, we will first consider this role of
cognitive distance between firms in order to understand
how far dissimilarity between partners is attractive in view
of exploration. Second, we combine such a cognitive view
with a social structural one. In this way we complement
the literature that has predominantly focused on the role
of economic and social factors regarding alliance forma-
tion and the role of network embeddedness (Gulati, 1998).
A cognition-based understanding of these processes, how-
ever, is still in its infancy (Moran, 2005).

Combining the role of cognitive and social structural fac-
tors may provide us with new insights into what constitutes
an optimal network structure for exploration. As we will
argue, for exploration firms are faced with a dual task. On
the one hand, they need to develop access to heterogeneous
sources of knowledge and in this way create a potential for
novel combinations. This requires an emphasis on diver-
sity and disintegrated network structures, which is related
to Burt’s argument (1992) stressing the benefits of access to
non-redundant contacts to obtain novel information (nov-
elty value).

On the other hand, firms need to make sure that such
novel knowledge, once accessed, is evaluated, and when
proven to be valuable is adequately absorbed. This process
favours more homogeneous network structures in view of
integrating the diverse inputs obtained from distant part-
ners (Hansen, 1999). This is more in line with Coleman’s
view (1988) stressing the benefits of redundant network
structures. Given these differences between the two tasks,
we claim that a firm’s network will impact differently on
each task. So, an important contribution of this paper is that
it investigates how far optimal embeddedness for novelty
creation may form a burden for absorptive capacity and vice
versa. In this way, we may shed new light on the ongoing
debate on the validity of the arguments by Burt, favour-
ing structural holes, versus those of Coleman, favouring
closure.

This paper is structured as follows. In Section 2 we elab-
orate our theoretical argument and formulate a number of
hypotheses. Then, in Section 3, we present details about
the data, the specification of variables, and the estimation
method. In Section 4 we present our main findings. Finally,
in Section 5, we provide a discussion of the results, the main
conclusions and some indications for further research.

2. Theory and hypotheses

As argued above, the central focus of this paper is on the
role of a firm’s alliance network regarding the ‘twin tasks’
of on the one hand creating novel combinations, and on the
other hand the build-up of absorptive capacity for under-
standing such novel combinations. To understand its role,
we study a firm’s alliance network along three dimensions.
First, following Nooteboom et al. (2005), we consider the
role of cognitive distance among the firms making up such
an alliance network. Here, cognitive distance refers to the
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extent that firms differ in their technological knowledge
and expertise. Next we focus on the role of a firm’s posi-
tion in a network. As a third element of a firm’s alliance
network we study the role of network density. By consid-
ering cognitive distance as well as position and network
density we combine a cognitive view of a firm’s alliance
network with a social structural view. Whereas a cogni-
tive view elucidates the potential for recombination due
to distances in cognition between firms, a social structural
view highlights how technology-based alliances serve as
the mechanism for crossing such distances and accessing
(proximate and distant) partners. In this way, combining
the two perspectives provides a complementary theoreti-
cal foundation for understanding the role of a firm’s alliance
network in exploration.

2.1. Exploration

The distinction between exploration and exploitation
goes back to Holland (1975) and was later further devel-
oped by March (1991). Exploitation can be characterized
as a process of routinisation, which adds to the exist-
ing knowledge base and competence set of firms without
changing the nature of activities (March, 1991). This resem-
bles ‘local search’ in which firms search for new knowledge
that is less likely to conflict with their existing cognitive and
mental models (Nelson and Winter, 1982).1 They develop
more and more competence in their particular field, further
increasing the chance of immediate and positive returns.
Exploitation may therefore increase a firm’s innovative
performance due to returns from specialization, however
it may also lead to technological obsolescence and leave
firms locked out from new developments (March, 1991;
Sorensen and Stuart, 2000). To escape from this lock-in sit-
uation, firms need to engage in so-called exploration that
can be characterized by breaking with an existing dominant
design and shifting away from existing rules, norms, rou-
tines and activities, in search of novel combinations. Hence
exploration is not about efficiency of current activities and
cannot be planned for. It is an uncertain process that is
characterized by a constant search for new opportunities.2

Although the literature agrees on the fact that alliance
networks form an important instrument in this process
(Powell et al., 1996; Rowley et al., 2000), there is very lim-
ited empirical evidence of how they facilitate the creation
of new knowledge in this process of exploration.

An important issue here is that we take a firm’s per-
spective on exploration. In other words, in this paper
we will focus on the creation of technological knowl-
edge that is new to the firm. So, we consider knowledge
as novel and the activities to create such knowledge as
exploratory if they fall outside a firm’s existing knowledge
stock, even though they may have been in existence ear-

1 Underlying this is the idea of the relative inertia of firms, as advanced
by population ecology that firms are better at doing more of the same than
at adapting to change (Carroll and Hannan, 2000).

2 Exploration and exploitation are related and build on each other:
exploration develops into exploitation, and exploration emerges from
exploitation, in ways that go beyond the present paper (see for a further
discussion Nooteboom, 2000; Gilsing and Nooteboom, 2006).

Fig. 1. Novelty and absorptive capacity.

lier elsewhere. This clearly differs from exploration that
yields knowledge that is new to the industry or perhaps
even new to the world. These latter two form ‘newly
emerging’ and respectively ‘pioneering’ technologies, rep-
resenting (much) more radical types of exploration (Ahuja
and Lampert, 2001).

2.2. Role of technological distance

Regarding the role of cognitive distance, Nooteboom
(1999) proposed a model, which was tested by Wuyts et al.
(2005) and by Nooteboom et al. (2005). The key argument
in the model is that while larger distances in cognition have
a negative effect on absorptive capacity, they have a positive
effect on the potential for novelty creation. In first instance,
as cognitive distance increases, it has a positive effect on
learning by interaction because it yields opportunities for
novel combinations of complementary resources. However,
at a certain point cognitive distance becomes so large as to
preclude sufficient mutual understanding needed to utilize
those opportunities (see also Fig. 1).

Of course, a certain degree of mutual understanding is
needed for collaboration, and familiarity certainly breeds
trust (Gulati, 1995a), which facilitates successful collabo-
ration. However, too much familiarity may take out the
innovative steam from collaboration. The challenge then
is to find partners at sufficient cognitive distance to learn
something new, but not so distant as to preclude mutual
understanding.

In general, cognitive distance entails more than just
technological distance, although there is correlation
between technological distance and distance in other
functional disciplines such as marketing, production and
engineering. In this paper, we specify cognitive distance in
terms of technological distance, for two empirical reasons.
First, our measure of innovative success will be based on
patents, and there technological knowledge is more dom-
inant. A second, more pragmatic argument is that it is not
clear precisely how other dimensions of cognitive distance
should be measured (cf. Wuyts et al., 2005).
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The logic of the above argument can be reframed
in terms of technological distance: absorptive capacity
declines with technological distance, and novelty value
increases with it. For both effects of technological distance
the simplest effect would be linear, and this is hypothe-
sized until theoretical or empirical arguments emerge for a
more complicated effect. Seen in this way, innovative per-
formance by collaboration is hypothesized to arise from the
interaction (modelled as the mathematical product) of nov-
elty value and absorptive capacity. The basic idea here is
that there is an inverted-U shaped relationship. Mathemat-
ically:

AC = a0 − a1 · TD(a0, a1 > 0), (1)

and

NV = b0 + b1 · TD(b0, b1 > 0). (2)

where AC is the absorptive capacity, NV is the novelty value
and TD is the technological distance.

The innovation performance of collaboration in the dyad
(=IP) is defined as the product of the two linear effects:

IP = AC · NV (3)

Replacing AC and NV by the right-hand side of Eqs. (1) and
(2) yields:

IP = a0 · b0 + (a0 · b1 − b0 · a1)TD − a1 · b1 · TD2 (4)

Eq. (4) results in an inverse U-shaped effect if and only if:

a0 · b1 > b0 · a1 (5)

In sum, this leads to our first hypothesis as follows.

Hypothesis 1. Exploration is an inverse U-shaped func-
tion of technological distance.

2.3. Role of network position

Next to technological distance along any tie between
two actors, another complementary dimension of vari-
ety is the number and pattern of ties in a network.
Our purpose now is to add such network effects to the
effect of technological distance. In other words, we com-
bine effects from relational embeddedness (technological
distance) and structural embeddedness (network effects)
(Granovetter, 1985; Rowley et al., 2000).

Unlike the local search process of exploitation (March,
1991), the search process in exploration is ‘recombinant’,
reflecting the idea that novelty arises as the result of
(re)combining and transforming existing and novel ele-
ments of knowledge into something radically new (Nelson
and Winter, 1982; Henderson and Clark, 1990; Tushman
and Rosenkopf, 1992; Ahuja and Lampert, 2001). Here, the
role of an alliance network is that it brings together a vari-
ety of skills and experience, which provides a potential
for the generation of Schumpeterian novel combinations
(Schumpeter, 1939). In this case, alliances do not serve as
channels for the diffusion of existing knowledge and com-
petencies but rather generate a recombination potential
in view of new knowledge creation. This recombination
potential originates from the fact that knowledge, values
and behaviour are more homogeneous within groups than

between groups, so that firms connected across groups
have more access to alternative ways of thinking, giving
them more options for creating new combinations (Burt,
2004).3 To effectuate this recombination potential of its
alliance network, firms should develop ties to companies
that are themselves not connected to a firm’s existing group
of partners. A tie will provide access to new informa-
tion and entrepreneurial opportunities to the extent that
it offers access to non-redundant sources of information
(Burt, 1992). Such a tie spans a structural hole. Structural
holes guarantee that the partnering companies on both
sides of the hole have access to different flows of informa-
tion (Hargadon and Sutton, 1997) and that the information
that comes from these mutually unconnected allies is non-
redundant. Note that here we are looking at whether or
not ties exist, across structural holes, apart from the tech-
nological distance involved in any tie. A key issue here
is that possibilities to create such non-redundant ties are
not equally spread across firms. A firm’s network position
importantly conditions the possibility to create alliances
to such non-redundant partners and benefit from these
accordingly. Central firms become better informed about
what is going on in the network. This increases possi-
bilities for central firms to initiate the formation of new
alliances (Gnyawali and Madhavan, 2001). Moreover, this
combination of timely access to important and novel infor-
mation and their higher status and power increases their
bargaining power (Gnyawali and Madhavan, 2001; Burt,
2004), which also improves possibilities to benefit more
from their alliances than less central firms. Following this,
we expect that central firms form attractive partners to ally
with, which enhances the likelihood that these central play-
ers, when engaging in exploration, will create alliances to
non-redundant partners and benefit from these alliances
accordingly. As a consequence, we anticipate that centrality
has a positive effect on the search for novel combina-
tions and hence on exploration, in particular on novelty
value.

However, searching through non-redundant ties comes
at a price and bears certain risks. A consequence of hav-
ing access to many non-redundant ties is that central firms
have to deal with a higher volume of more diverse infor-
mation that will arrive at faster rates when compared with
less central firms (Gnyawali and Madhavan, 2001). This
consumes time and resources that cannot be allocated
for absorbing and integrating the obtained novel insights.
Second, a sole focus on searching for novelty through non-
redundant ties may result in a random drift so that a firm’s
knowledge base changes continuously in different and
unrelated directions, making the accessed novel knowledge
difficult to absorb and integrate (Fleming and Sorenson,
2001; Ahuja and Katila, 2004). So, both from a search-costs
and a cognition point of view, too many non-redundant
ties will decrease the potential for novelty absorption. In
other words, centrality spurs the possibilities for novelty
creation but at high(er) levels it may impede the possibili-
ties for absorption of this novelty. Note that apart from the

3 “People who stand near the holes in a social structure are at a higher
risk of having good ideas” (Burt, 2004: 349).
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number of non-redundant ties one has, there is the issue of
technological distance along each tie.

Thus, we hypothesize that, next to effects of technologi-
cal distance, centrality has a positive effect on novelty value
(NV) and a negative effect on absorptive capacity (AC), and
by the same logic as for the effects of technological distance,
with innovative performance being a product of NV and
AC), this yields an inverse U-shaped effect on exploration.

Hypothesis 2. Exploration is an inverse-U shaped func-
tion of network centrality.

2.4. Role of network density

In contrast to the effects of centrality, we anticipate that
network density limits the potential for novelty creation
whereas it enhances the build-up of absorptive capacity.
As we will argue, both direct and indirect ties play a role
in building up absorptive capacity. Therefore we consider
the role of ‘global network density’, which considers both
types of ties as a property of the total network, rather than
the density of ties surrounding a specific node. As we will
argue, both direct and indirect ties play a role in building
up absorptive capacity.

Novel knowledge from a direct partner, especially at
a large technological distance, may not be readily under-
standable for a firm. If one is not able to understand novel
information from a given source adequately, one may need
another partner to complement one’s absorptive capacity
(Gilsing and Nooteboom, 2005). In other words, the extent
to which one’s partners are linked may help in dealing with
technological distance to any of them. More precisely, if A
remains linked to both B and C, even if there is also a link
between B and C, this may help A to understand C by com-
paring what A understands from C with what B understands
from C. This can matter especially when there is a large
technological distance between A and C. In other words,
even if a firm’s direct ties are known to be redundant for
access to sources of information, they may be needed both
to understand and to absorb knowledge accessed in the
other relation.

This is the case particularly when engaging in explo-
ration, where new and distant knowledge is accessed, and
dominant designs and standards may be lacking. Moreover,
the often tacit and experimental nature of exploration fur-
ther increases the difficulty of firms to recognize and value
the technology of potential partners when they are not con-
nected through a common alliance partner. In this way, not
only direct but also indirect ties can enhance the absorp-
tive capacity of the firm by acting as device for screening
and interpreting novel information on its potential rele-
vance and value (Leonard-Barton, 1984; Vanhaverbeke et
al., 2008). In addition, even if one does understand a given
source, one may not be able to judge the reliability of infor-
mation, so that, like researchers in gathering potentially
biased data, one may need a third party as a source for trian-
gulation (Gilsing and Nooteboom, 2005). In this way, firms
may be able to develop a richer understanding and a better
evaluation of the acquired novelty (Rowley et al., 2000).

In addition, a dense network of direct and indirect ties
also facilitates the build-up of trust, a reputation mech-

anism, and coalitions to constrain opportunism (Gulati,
1995a,b; Hagedoorn and Duysters, 2002). These are the
prime arguments for closure, introduced by Coleman
(1988). They apply especially to exploration in view of the
uncertainty surrounding it, which limits options for gover-
nance by formal contracts (Nooteboom, 1999, 2002).

Now, density and its potential for trust building enables
a proliferation of triangulation, as follows. First, it is useful
for neighbours of the focal firm to be mutually connected
for triangulation. Next, information from any neighbour is
richer and more reliable to the extent that the neighbour
also profits from triangulation among its neighbours.

So, density through direct ties and indirect ties plays
an important role with regard to assessing the reliability
of (technologically distant) sources of novelty as well as
understanding and evaluating these sources. In sum, we
propose that density enhances the absorptive capacity of
each individual firm in the network.

Let us now turn to the arguments against dense net-
works. One argument entails that there are costs associated
with establishing and maintaining contacts and that by
shedding redundant ties, firms can create efficiency in their
network (Burt, 1992). However, in exploration such costs
of redundancy play a limited role as the key focus here is
on finding and absorbing novelty, making considerations of
efficiency less of an issue (Hagedoorn and Duysters, 2002;
Gilsing and Nooteboom, 2005).

The main argument against high density, however, is
that it inhibits the existence and the utilization of diver-
sity, and hence of novelty value. When knowledge is more
densely spread across firms in the network, the benefits of
direct ties and indirect ties in giving access to novelty will
decline, because ‘everyone knows what everyone knows’.
Firms are less likely to gain new or additional informa-
tion from their indirect ties, as the information that can be
obtained from them will be very similar to the knowledge
already obtained from its direct contacts. As a consequence,
the potential for creating novel combinations will diminish.

A dense network also increases the likelihood that
knowledge and information reaching the company through
its alliance network also reaches its partners. This may cre-
ate a risk of undesirable spillovers. Such diffusion of novelty
throughout the network can put limits on its appropria-
tion and make it less attractive for firms to search for such
novelty (Gilsing and Nooteboom, 2005).

A final argument against density is, as indicated before,
that it facilitates effective sanctions. As pointed out
by Coleman (1988), dense networks enable reputation
effects, and yield opportunities for coalitions to constrain
behaviour. This is useful for the governance of relational
risk, but may create strong behavioural pressures to con-
form rather than to be radically different (Kraatz, 1998).
Firms may also be pre-empted from entering into new,
more innovative relationships, as the implicit expectation
of loyalty to their existing partners and network may inhibit
them from allying with others (Buchko, 1994; Nooteboom,
1999; Duysters and Lemmens, 2003; Gulati et al., 2000).

In sum, density supports the build-up of shared absorp-
tive capacity but it may impede the possibilities for search
and novelty creation. These arguments lead to the following
hypothesis.
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Hypothesis 3. Exploration is an inverse-U shaped func-
tion of density.

2.5. Combined effects

The effects of technological distance (TD) (Hypothesis
1), betweenness centrality (BC) (Hypothesis 2) and network
density (D) (Hypothesis 3) apply simultaneously, and hence
there are interaction effects between them. Theoretically,
the inverse U-shaped effects result from opposite effects on
absorptive capacity (AC) and novelty value (NV), which are
multiplied in their effects on exploration performance, as
specified previously for the effect of technological distance.

In Hypothesis 1 we posited that technological distance
has a negative effect on absorptive capacity and a positive
effect on novelty value. In Hypothesis 2 we argued that cen-
trality has a negative effect on absorptive capacity and a
positive effect on novelty value. In Hypothesis 3 we assume
that network density has a positive effect on absorptive
capacity and a negative effect on novelty value.

For the combined effects, the full model then becomes:

AC = a0 − a1 · TD − a2 · BC + a3 · D (6)

NV = b0 + b1 · TD + b2 · BC − b3 · D,

a0, a1, a2, a3, b0, b1, b2, b3 > 0 (7)

Multiplying (6) and (7) provides the equation for explo-
ration performance (IP):

IP = AC · NV = (a0 · b1 − b0 · a1) · TD + (a0 · b2 − b0 · a2)

·BC + (b0 · a3 − a0 · b3) · D − a1 · b1 · TD2

−a2 · b2 · BC2−a3 · b3 · D2−(a1 · b2+a2 · b1)

·TD · BC + (a1 · b3 + a3 · b1) · TD · D

+ (a2 · b3 + a3 · b2) · BC · D (8)

where

a0 · b1 > b0 · a1, a0 · b2 > b0 · a2 and b0 · a3 > a0 · b3

This mathematical model can be interpreted in the fol-
lowing way. The interaction effect of two variables on
exploration is negative when they have an effect in the
same direction on novelty value or on absorptive capac-
ity. These yield alternative ways for achieving those effects
and here the variables can be considered as substitutes.
This applies to the interaction effect between technological
distance and betweenness centrality, which both enhance
novelty value while decreasing absorptive capacity. Thus,
such a combined increase in the potential for novelty value
with a decrease of the ability to absorb this novelty has
a negative net effect on exploration. Interaction effects
are positive when variables have opposite effects on nov-
elty value and on absorptive capacity. Here, the interacting
effects form complements. An increase in novelty value
is accompanied by an increase in the ability to absorb it.
This applies to the interaction effects between technologi-
cal distance and density as well as to the interaction effect
between betweenness centrality and density. In both cases,
an increase in novelty value, due to an increase of techno-
logical distance or an increase of centrality, is accompanied

by an increase in absorptive capacity due to an increase of
network density.

In other words, there are alternative strategies for
the maximization of exploration. High (low) technologi-
cal distance would need to be compensated by low (high)
betweenness centrality and/or high (low) density. High
(low) betweenness centrality would have to be compen-
sated by low (high) technological distance and/or high
(low) density. High (low) density would have to be com-
pensated by high (low) technological distance and/or high
(low) betweenness centrality.

In sum, this leads to our final three hypotheses as fol-
lows.

Hypothesis 4. The interaction between technological dis-
tance and betweenness centrality has a negative effect on
exploration.

Hypothesis 5. The interaction between technological dis-
tance and density has a positive effect on exploration.

Hypothesis 6. The interaction between betweenness cen-
trality and density has a positive effect on exploration.

3. Data and methods

3.1. Data

The sample set for this study consisted of panel data
on the alliance and patenting activities of 116 companies
in the chemicals, automotive and pharmaceutical indus-
tries. The reason for choosing these three industries is
that they share the importance of investing in R&D and
innovation, but that they also reveal profound differences
regarding some key characteristics such as the stage of
industry development (Walker et al., 1997), the importance
of exploration vis-à-vis exploitation (Rowley et al., 2000)
and the importance of product versus process innovations
(Tidd et al., 1997). Testing our hypotheses in different indus-
tries enables us to assess how far the role of a firm’s alliance
network for exploration and exploitation remains invari-
ant across industries, enhancing the generalization of the
results.

The focal firms that we study were observed over a 12-
year period, from 1986 until 1997. The panel is unbalanced
because of new start-ups and mergers and acquisitions.
The 116 companies were selected to include public com-
panies in these three industries that were also establishing
technology-based strategic alliances. Information on the
establishment of alliances is hard to obtain for small or
privately owned companies. Previous studies on interfirm
alliances also focused on leading companies in an industry
(Ahuja, 2000b; Gulati, 1995b).

In total, 994 alliances were established in the period
1986–1996 among these companies. Alliance data were
retrieved from the MERIT-CATI database, which contains
information on nearly 15 thousand cooperative technol-
ogy agreements and their ‘parent’ companies, covering the
period 1970–1996 (see Hagedoorn and Duysters, 2002, for
a further description). Combining financial data with the
CATI data on strategic alliances further reduced the final
sample to 85 companies and 762 alliances.
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Exploration, the dependent variable, is based on patent
counts. All patenting data were retrieved from the US Patent
Office Database for all the companies in the sample, also
those based outside the US. Working with US patents –
the largest patent market – is preferable to the use of sev-
eral national patent systems “. . .to maintain consistency,
reliability and comparability, as patenting systems across
nations differ in the application of standards, system of
granting patents, and value of protection granted” (Ahuja,
2000a, p. 434). Especially in industries where companies
operate on an international or global scale US patents may
be a good proxy for companies’ worldwide innovative per-
formance.

For companies in the three sectors the financial data
were derived from a combination of Worldscope, Compus-
tat and data published in the companies’ annual reports.

3.2. Variables

3.2.1. Dependent variable
The different hypotheses test the effect of technological

distance, network position and overall network density on
the explorative innovation performance of companies in
the chemical, automotive and pharmaceutical industries.
To derive the dependent variable, technological profiles of
all focal companies were computed to find out whether
new patents in the year of observation could be categorized
as ‘explorative’. These technological profiles were created
by adding up the number of patents a firm received in
each patent class during the 5 years prior to the year of
observation. Different scholars have argued that a moving
window of 5 years is an appropriate timeframe for assess-
ing the technological impact of prior inventions (Podolny
and Stuart, 1995; Stuart and Podolny, 1996; Henderson
and Cockburn, 1996; Ahuja, 2000a). Studies of R&D depre-
ciation (Griliches, 1979, 1984) suggest that knowledge
capital depreciates sharply, losing most of its economic
value within 5 years. The USPTO classes were determined
at two-digit level, which resulted in approximately 400
classes.

From these technology profiles we can distinguish
between exploitative and explorative technology classes.
Classes in which a company receives a patent in the year
of observation but had not received a patent in the previ-
ous 5 years were considered ‘explorative’ patent classes.4

Since knowledge remains relatively new and unexplored
for a firm immediately after patenting, patent classes kept
their explorative ‘status’ for three consecutive years, par-
allel to Ahuja and Lampert’s (2001) concept of novel and
emerging technologies.5 All the classes in which a com-
pany had successfully applied for a patent the previous 5
years and successfully applied for a patent in the year of
observation were considered ‘exploitative’ patent classes.

4 We chose the year when the company filed for the patent rather than
the year when it was granted, because the innovation in the company
already has been realized when the company files for a patent.

5 In order to test the robustness of this measure, we also constructed a
‘exploration patents’ variable where explorative patents could keep this
status for 5 years instead of 3 years.

3.2.2. Explanatory variables
Technological distance, centrality and overall network

density are the three explanatory variables that have to
be operationalized. The first variable is based on USPTO
patent count data. The other two are calculated based
on the alliances that were established during the 5-year
period prior to the year of observation. This moving win-
dow approach is considered to be an appropriate timeframe
during which the existing alliance portfolio is likely to have
an influence on the current technological performance of a
firm (Kogut, 1988, 1989; Gulati, 1995b).

Technological distance: Technological distance was mea-
sured on the basis of CRTA, which is the Pearson correlation
index of the distribution across technological classes of the
revealed technological advantages (RTA) of each firm rel-
ative to the other sample firms. The RTA of a firm in a
particular technological field is given by the firm’s share
in that field of the US patents granted to all companies
in the study, relative to its overall share of all US patents
granted to these companies. The RTA index varies around
one, such that a value higher than one suggests that a firm
is comparatively specialized in the technology in question,
given its overall innovative performance. Positive values
of CRTA indicate similarity of the pattern of relative tech-
nological specialization of firms, as it appears from the
distribution of their patent activity across technological
fields. For each firm and each year, a profile was constructed
of its revealed technological advantage (RTA) in each patent
class.

A company’s RTA index in a patent class is defined as its
share of patents in that class (compared to all its alliance
partners) divided by its share in all patent classes. The
correlation coefficient was computed pairwise between
the RTA profile of the focal firm and that of each of its
alliance partners. The CRTA variable is then calculated as
the average of these correlations. The values for CRTA can
theoretically vary from −1 to 1. As positive (negative) values
indicate smaller (larger) technological distances, we chose
to transform this variable into a new one (‘Technological
distance’) with a minimum value of zero and a maximum of
hundred, where higher values indicate larger technological
distance.

The values for this variable in Table 2 indicate that
the average technological distance is 42.4 with a standard
deviation of 7.1. The maximum distance is 52.5 and the
minimum 4.8.

Overall network density: This explanatory variable is a
characteristic of the overall alliance network in a partic-
ular year for one of the three industries. This variable
is “calculated as the number of all ties occurring in the
matrix divided by the number of all possible ties” (Knoke
and Kuklinski, 1982). Table 2 shows that the networks are
sparse. The networks are calculated for each year and each
industry: the density ranges from 0.5% to 2.9%. The average
is 1.3%.

Network centrality: The second variable related to a
firm’s alliance network is its betweenness centrality.
Betweenness centrality measures the centrality of a focal
firm in a network, and is calculated as the fraction of short-
est paths between other companies that pass through the
focal firm. Betweenness is, in some sense, a measure of the
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Table 1
Definitions of dependent and independent variables

Variable name Variable description

Dependent variable
Explorative patents Number of patents a firm successfully filed for in year t within patent classes in which it has

not been active in the 5 years prior to the given year. The status of explorative patent’ is kept
for 3 years

Independent variables
Technological distance The average of the correlations between the focal firm’s technology profile and that of each of

its alliance partners. The variable is transformed; the values range from 0 to 100, with higher
values implying increasing distances between the technology portfolio of the focal firm and
that of its alliance partners

Network density The number of technological alliances in the network divided by all possible alliances between
the networking firms

Betweenness centrality The fraction of shortest paths of alliances between other companies that pass through the focal
firm. We standardized this measure to compare the values across different alliance networks;
values range from 0 to 100

Control variables
Age The number of years since a company was founded
Firm size (ln revenues) Natural logarithm of the total sales of the firm in t − 1 (×1000 Euro)
R&D intensity R&D expenditures in t − 1 divided by total sales in t − 1
Year Dummy variables for particular year, 1986–1997
Chemical company Dummy variable set to one if the firm is a chemical company (default = pharmaceutical

company)
Car manufacturer Dummy variable set to one if the firm is a car manufacturer (default = pharmaceutical

company)
Europe Dummy variable set to one if the firm is headquartered in Europe (default = Asian company)
US Dummy variable set to one if the firm is headquartered in the US (default = Asian company)

influence a focal firm has over the information through the
alliance network. In other words, it also forms a network-
wide (global) measure and takes direct and indirect ties into
account. This is important as this indicates how far a firm
can reach potentially all (including distant) parts of the net-
work. This provides us with an indication of the potential
for novel combinations that a firm may have.

We standardized this measure to compare betweenness
centralization of firms across different alliance networks –
different years and industries. In theory, standardized val-
ues can range from 0 to 100. Table 2 indicates that the values
for this variable range from 0 to 38. On average, firms have
a network position with a low value for betweenness cen-
trality, but there are a few companies that are in the midst
of the action.

Furthermore, we included the interaction terms in the
analyses because the hypotheses predict that technologi-
cal distance, network density and betweenness centrality
interact. Therefore, we standardize these three variables
prior to calculating their interaction terms, in order to
avoid unnecessary multicollinearity (Aiken and West, 1991;
Rothaermel and Deeds, 2004).

3.2.3. Control variables
Other variables can of course also affect the explorative

innovation performance of these firms. We included three
types of dummy variables. A first indicates where the com-
pany is headquartered geographically. Following the Triad
concept of the world economy, a company can be head-
quartered in North America, Asia or Europe (Ohmae, 1985).
Firms that are headquartered in different countries may dif-
fer in their propensity to patent. Annual dummy variables
were included to capture changes over time in the propen-
sity of companies to patent their innovations. Finally, we

included a dummy variable to indicate whether a com-
pany is a car manufacturer or chemical firm (default is the
pharmaceutical industry).

Furthermore, we included three organizational vari-
ables as controls.6 The first is the age of the company. Older
firms, with their accumulated experience, are expected to
be better at exploitation, and younger firms, with lower
stakes and habituation in old technologies, better at explo-
ration. Hence, we expect a negative sign for the coefficient
of this variable.

The natural logarithm of ‘corporate revenues’ – a proxy
for firm size – was included as a control variable. Firm
size is expected to enhance exploitative learning (Acs and
Audretsch, 1991). Large firms have the financial means
and vast technological and other resources to invest heav-
ily in R&D. However, they usually experience problems
in diversifying into new technological areas inhibiting
experimentation and favouring specialization along exist-
ing technological trajectories (Levinthal and March, 1993;
March, 1991; Ahuja and Lampert, 2001). As a result, large
firms are disadvantaged with respect to exploring new
technological fields and will innovate proportionally less
than smaller firms in new technological areas (Nooteboom,
1991; Nooteboom and Vossen, 1995).

R&D intensity (R&D expenditures as a percentage of
sales) is expected to have a positive impact on exploration:
firms that invest heavily in R&D will have a higher rate
of innovation assuming that there exists a positive cor-
relation between technological input and output (Pakes
and Griliches, 1984). R&D investments also play a role in

6 Those variables were calculated for the year prior to the year of obser-
vation.
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the ability of companies to recognise, value and assimi-
late external knowledge. Absorptive capacity is crucial to
acquire and integrate external knowledge, especially when
the knowledge is tacit. Firms conduct R&D to be more
able to use the technology of other companies (Cohen and
Levinthal, 1990; Kim, 1998; Mowery and Oxley, 1995).

3.3. Model estimation

The dependent variable is a count variable and only
takes nonnegative integer values—i.e. the number of
patents a firm filed for in a particular year in patent classes
in which it has not issued patents during the past 5 years.
A Poisson regression approach provides a natural baseline
model for such data (Hausman et al., 1984; Henderson and
Cockburn, 1996). Since we use pooled cross-section data
with several observations on the same firms at different
points in time, we modelled the data using a random-
effects Poisson estimation.7

The basic Poisson model for event count data can be
written as follows:

Pr(Yit = yit) = exp(−�t)�yit
it

yit!
(10)

where the parameter �it represents the mean and the vari-
ance of the event count and yit the observed count variable.
It is furthermore assumed that:

�it = ˇ′xit . (11)

with xit being a vector of independent variables.
The above specification assumes that the mean and

variance of the event count are equal. However, for
pooled cross-section count data the variance often exceeds
the mean. This overdispersion is particularly relevant in
the case of unobserved heterogeneity.8 The presence of
overdispersion does not bias the regression coefficients but
the computed standard errors in the Poisson regression are
understated, resulting in an overestimation of the statistical
significance of the coefficients. Therefore, a random-effects
Poisson estimator used: it does not assume within-firm
observational independence for the purpose of computing
standard errors. For the random-effects Poisson estimator
Eq. (2) is changed into:

�it = ˇ′xit + ui (12)

where ui is a random effect for the ith firm and reflects the
firm-specific heterogeneity.

Unobserved heterogeneity may be the result of differ-
ences between companies in their innovation-generating
capabilities, and as a consequence in their propensity or
ability to patent. Such unobserved heterogeneity, if present
and not controlled for, can lead to overdispersion in the data

7 We used a Hausman specification test (1978) to determine the choice
between a random- and a fixed-effects model. This test was not significant,
indicating that a random-effects model is consistent and efficient for this
analysis.

8 Other papers within the same context as ours have also used the Pois-
son random-effects such as Ahuja (2000a)—where he also studies the role
of alliances within a context of technological inventions and considers a
patent count as the DV. Ta
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Table 3
Determinants of the patent rate of firms in explorative patent classes, 1986–1997

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Explanatory variables
Technological distance 0.0631** (0.0282) 0.0441** (0.0208) 0.0634** (0.0291)
(Technological

distance)2
−0.0634** (0.0147) −0.0537*** (0.0152) −0.0412*** (0.0156)

Network density 0.1671*** (0.0308) 0.1877*** (0.0328) 0.1791*** (0.0331)
(Network density)2 −0.1028*** (0.0132) −0.1087*** (0.0134) −0.1208*** (0.0142)
Betweeness centrality 0.1258*** (0.0312) 0.1160*** (0.0376) 0.1209*** (0.0329)
(Betweenness

centrality)2
−0.0119* (0.0070) −0.0158** (0.0074) −0.0214** (0.0086)

(Technological distance)
* (betweenness
centrality)

−0.0828*** (0.0282)

(Technological distance)
* (density)

0.0293 (0.0191)

(Betweeness
centrality)* (density)

0.0299** (0.0128)

Control variables
Firm size (ln sales) 0.4351*** (0.0459) 0.4269*** (0.0460) 0.4036*** (0.0459) 0.4113*** (0.0458) 0.3745*** (0.0462) 0.3676*** (0.0465)
R&D-intensity 1.1634*** (0.2452) 1.1325*** (0.2452) 1.0815*** (0.2467) 1.0779*** (0.2489) 0.9860*** (0.2472) 0.9430*** (0.2486)
Age −0.0014 (0.0025) −0.0015 (0.0025) −0.0020 (0.0025) −0.0015 (0.0024) −0.0021 (0.0024) −0.0027 (0.0024)
Car manufacturer −0.8821*** (0.3001) −0.8841*** (0.2980) −0.9476*** (0.3014) −0.8271*** (0.2904) −0.9402*** (0.2939) −0.9208*** (0.2972)
Chemical industry −0.5303** (0.2705) −0.5570** (0.2698) −0.5387** (0.2700) −0.4364* (0.2648) −0.4907* (0.2665) −0.5205* (0.2680)
Europe 0.4352 (0.2891) 0.3836 (0.2874) 0.3946 (0.2887) 0.3066 (0.2812) 0.2318 (0.2826) 0.2865 (0.2856)
Asia 0.0698 (0.2658) 0.0185 (0.2652) 0.0878 (0.2671) 0.0355 (0.2588) 0.0137 (0.2617) 0.0711 (0.2651)
Year dummy variablesa Included Included Included Included Included Included
Constant −1.4792*** (0.5025) −1.321*** (0.5043) -0.8121 (0.5131) −1.2808** (0.4959) -0.4438 (0.5145) −0.3302 (0.5200)
Alpha 0.9890***b (0.1457) 0.9935*** (0.1445) 0.9989*** (0.1445) 0.9359*** (0.1389) 0.9572*** (0.1403) 0.9773*** (0.1431)
Number of firms 85 85 85 85 85 85
Number of firms-years 762 762 762 762 762 762
Log-Likelihood −3009.4 −2989.0 −2979.0 −2998.3 −2959.4 −2951.6
Likelihood ratio test

(d.f.)c
40.8*** 60.8*** 22.2*** 100.0*** 15.6***

d.f. (2) (2) (2) (6) (3)

Notes: Standard error between parentheses: *p < 0.10; **p < 0.05; ***p < 0.01.
a Year dummy variables are included in the regressions but the coefficients and standard errors are not reported in the table.
b Likelihood-ratio test of alpha = 0.
c Likelihood-ratio test: model 2–5 vs. models 1 and 6 vs. model 5.
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or serial correlation. Differences in patenting behaviour
between companies or between different years are cap-
tured by including dummy variables in the model. First,
the propensity to patent may be partly determined by the
nationality of the companies or the industry to which they
belong. Similarly, we introduced annual dummy variables
to account for changes over time: they may capture the
ever-growing importance of intellectual capital or changing
macroeconomic conditions.

4. Results

Table 1 represents the description of the different vari-
ables. Table 2 provides the descriptive statistics and the
correlations between the variables for the 762 observations
in the sample. Although the sample represents the promi-
nent firms in the three sectors, there is quite some variance
in most of the key variables.

Table 3 represents the results of the regression anal-
ysis using random-effects Poisson estimations to explain
explorative innovation performance of the firms in our
sample. The estimated alpha coefficient is positive and
significant. This indicates that important firm-level unob-
served effects are present in the data and that a panel
estimator is preferred above a pooled Poisson estimator.
We focus on the full model (model 6) but also provide
the basic model with only control variables (model 1) and
models that include only one explanatory variable (models
2–4), and a model including the three explanatory variables
but without the interaction terms (model 5), to show that
the coefficients are robust over the different models and
that multicollinearity is not a particular problem in these
regressions.

Models 2, 3 and 4 introduce respectively technologi-
cal distance, network density and betweenness centrality
as explanatory variables. The likelihood ratio tests indi-
cate that the three models have more explanatory power
than model 1. In model 2, the coefficients for the linear and
quadratic term of the technological distance variable have
the expected sign and are significant. This result corrobo-
rates Hypothesis 1.

Model 3 introduces the betweenness centrality of each
focal firm and the overall network density as independent
variables. Hypothesis 2, claiming an inverse U-shaped rela-
tion between the betweenness centrality and exploration
is also corroborated. According to Hypothesis 3 we expect
that exploration is also an inverse-U shaped function of net-
work density. The positive sign for the linear term and the
negative sign for the quadratic term indicate that we also
find evidence for Hypothesis 3. The corroboration of the
first three hypotheses also holds when the three explana-
tory variables are simultaneously introduced in model 5.

Model 6 introduces the pairwise interaction terms
between the three explanatory variables to test Hypotheses
4–6. We expect a negative interaction effect between tech-
nological distance and betweenness centrality (Hypothesis
4), a positive interaction effect between technological
distance and density (Hypothesis 5), and a positive inter-
action effect between betweenness centrality and density
(Hypothesis 6). As Table 3 shows, the signs of these three
interaction terms are correct but the coefficient for the

interaction term between technological distance and net-
work density is not significant. As a result, Hypotheses 4 and
6 are confirmed but there is no confirmation for Hypothesis
5. The likelihood ratio test indicates that model 6 compared
to model 5 has more explanatory power. In other words, the
introduction of the three interaction terms is important in
explaining firms’ exploratory innovation performance.

There are also some interesting conclusions to draw
from the control variables in Table 3. First, the coefficients
are stable over all the models, indicating the robustness of
the results. Next, there are significant differences between
the three industries (chemical industry, car manufactur-
ing and pharmaceutical industry) in their propensity to
get involved in explorative innovation. The country of ori-
gin of the different companies plays no role in explaining
exploratory innovation.

Size has a positive and significant effect on the rate
of innovation when firms are exploring new technological
areas. Since this explanatory variable is in log form, its coef-
ficient in the Poisson specification can be interpreted as the
elasticity between firm size and the dependent variable.
The coefficient is substantially smaller than one suggest-
ing – ceteris paribus – that the frequency of patenting
increases with firm size but less than proportionately. As
a result, small firms are more innovative than larger firms
when they explore new technologies. This is in line with
the results of previous research on the relation between
firm size and R&D (Nooteboom and Vossen, 1995), and with
research showing that new and more radical inventions are
likely to originate within SMEs rather than in large firms
(Leifer et al., 2000; Utterback, 1994; Christensen, 1997).
This finding is also in line with the organizational learning
literature: large established organizations have difficul-
ties in diversifying into new technological areas, inhibiting
experimentation and favouring specialization along exist-
ing technological trajectories (Levinthal and March, 1993;
March, 1991; Ahuja and Lampert, 2001).

As expected, R&D intensity has a positive and significant
effect on the innovation rate of the companies in the sam-
ple. The age of the firm has a negative but non-significant
effect on exploratory patents. This result suggests that
established companies that had time to develop capabil-
ities in particular technological fields do not necessarily
have a competitive advantage over new entrants in the
exploration of new technological fields. By contrast, the
negative coefficient for age indicates that newly established
firms might have a slight advantage in exploring new tech-
nological fields (although the evidence is inconclusive as
the coefficient is not statistically significant), in line with
previous research on the role of new firms in the creation
of new technologies (Methe et al., 1997).

5. Discussion and conclusions

The joint impact of the three explanatory variables is
best understood and consistent with the theoretical analy-
sis (as specified in formulae 6–8), if we take all variables in
model 6 – linear, quadratic and interaction terms – simulta-
neously into consideration. To keep the analysis tractable,
we start from the observation that firms can control or
influence relations only with their direct partners and have
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Fig. 2. Explorative innovation performance at mean level of network den-
sity.

virtually no possibilities to do so beyond their ego-network
(Bae and Gargiulo, 2003). Therefore, it seems reasonable
to consider global density as an exogenous variable for
the innovating firms. That leaves them with two variables
for dealing with their alliance network when engaging in
exploration endeavours, namely their network position and
the technological distance with their partners.

Consider Fig. 2 that represents the joint effect of tech-
nological distance and network centrality, keeping network
density constant at the mean level.

As the figure shows, a (highly) central position in the
network yields ample potential for a high exploration per-
formance, if one works with partners at a very limited
technological distance, and when supported by ‘sufficient’
density (mean level). However, if working from such a
central position with partners that operate at a large(r)
technological distance, performance drops rapidly. The
interpretation of this finding may be as follows. Being
highly central implies a higher chance of being faced with
different kinds of knowledge and information (Burt, 1992).
This is beneficial for novelty value but also creates a need
to understand and integrate potentially unrelated infor-
mation. Therefore, being a highly central player requires
exploration at small technological distances in order to be
able to absorb knowledge from all parts of the network.
The price for not doing so is a sharp decrease in one’s inno-
vation performance. Also note that the highest impact on
explorative innovation performance is found for firms with
a central position especially at a very small technological
distance.

In contrast, a highly peripheral position (at very low or
minimal BC) is a liability as it shows a much lower perfor-
mance compared to more central positions, although such
positions initially show an increase in innovation perfor-
mance when technological distance increases. Moreover,
being at the periphery can be advantageous at very high
levels of technological distance, where more central firms
perform comparatively less well. Being at the periphery
generally implies that one is outside the immediate sight of
dominant and more central players. Because of this, selec-
tion forces to comply with dominant designs and existing

Fig. 3. Explorative innovation performance at mean level of technological
distance.

systems of production, organization, technical standards
and so on, may be somewhat less stringent. Hence, deviat-
ing from such prevailing ‘industry recipes’ (Spender, 1989)
becomes easier (Gilsing and Nooteboom, 2005). As a con-
sequence, firms at the periphery may enjoy more freedom
to experiment with partners at a high technological dis-
tance. It might be that this strategy yields more radical
innovations with potentially more technological and eco-
nomic value. However, the way we measure our dependent
variable (based on patent counts) does not take this into
account, an issue we come back to when discussing limita-
tions and possibilities for future research.

Still, firms also need to consider the degree of over-
all density and how it conditions their choices regarding
position and technological distance respectively. Consider
therefore Fig. 3, showing the relation between density and
betweenness centrality while keeping technological dis-
tance at its mean value.

Here we see that the effect of density on innovation
performance has a similar, curvilinear effect for both cen-
tral and peripheral positions. In other words, irrespective of
one’s position, high density inhibits the existence and uti-
lization of diversity, and hence of novelty value, while at low
levels it does not support absorption sufficiently. We also
find the highest impact on explorative innovation perfor-
mance at intermediate levels of betweenness centrality (at
least when technological distance is kept at the mean level).
However, a closer look at Fig. 3 reveals that high levels of
network density in combination with high levels of central-
ity also offer a fairly high impact on exploration. In short,
we can say that at average technological distances, central
companies in (fairly) dense networks have an advantaged
position to develop explorative innovations.

Following our findings, we can conclude that our key
argument is confirmed, claiming that successful explo-
ration requires a delicate balance between the ‘twin tasks’
of novelty creation on the one hand and its efficient absorp-
tion on the other hand. We found that highly central
firms enjoy the strongest improvements of their explo-
rative innovation performance and this effect declines
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steadily when centrality decreases, or alternatively when
technological distance increases. Peripheral positions show
the least performance, although such positions can be
attractive when cooperating with partners at a very large
technological distance. In other words, success rates for
exploration are not spread equally across network posi-
tions.

However, position alone does not tell the full story. Our
empirical findings clearly indicate that exploration success
also depends on the two other dimensions of embedded-
ness, namely technological distance and network density.
Therefore, an important conclusion is that the three ele-
ments of network embeddedness need to be considered
jointly in order to understand their complementary effects
on both novelty creation and absorptive capacity. This is
an important finding and contributes to the literature in
several ways.

One is that it contrasts with the tradition in the literature
on alliances and interfirm networks with its bias towards
to the role of position (Powell et al., 2005). The message as
conveyed from this study is that for exploration the value
of a position depends on the technological distance from
others and on the degree of network density.

A second contribution is that the social network liter-
ature specifically considers ‘social distance’ between any
two nodes (here firms) in the network, in terms of the
number of links on the shortest path between them. Here
we have added technological distance between any two
firms. This has enabled us to go beyond the dominant
focus on partners’ similarity and to understand the pos-
itive role of technological distance in exploration. Such a
cognition-based view has been largely ignored by the lit-
erature with its main focus on the role of economic and
social factors regarding alliance formation and the role of
network embeddedness (Gulati, 1998; Phelps, 2005).

It also contributes to the literature on learning and
innovation that stresses the recombination potential aris-
ing from distances in cognition (Nelson and Winter, 1982;
Nooteboom, 2000; Malerba, 2004), but leaves unexplained
what are the associated social structural implications.
Moreover, considering the role of global density enables
one to go beyond the dyadic level, as has been mostly stud-
ied in the literature (Salancik, 1995; Gulati, 1998; Powell et
al., 2005). The focus on dyads reflects an undersocialized
view of alliances and ignores how far positive effects of a
central or peripheral position can be mitigated or ampli-
fied by the entire structure. We found that this structure, in
terms of its density, indeed plays an important role and
conditions the potential benefits of different degrees of
centrality for exploration. Both for central and peripheral
positions an intermediate degree of density seems to be
most effective. In contrast, high levels of density may inhibit
the existence and utilization of diversity, and hence of nov-
elty value, while at low levels it does not support absorption
sufficiently.

This points to an interesting new insight that sheds a dif-
ferent light on the validity of the arguments of Burt versus
Coleman. Success in exploration requires a dual empha-
sis on the benefits of non-redundant contacts for potential
novel combinations as well as on network density for inte-
grating the diverse inputs obtained from such contacts. In

other words, it seems that both views convey some truth
and may be seen as complements instead of opposites
as stressed in the literature (Hansen, 1999; McEvily and
Zaheer, 1999; Rowley et al., 2000; Ahuja, 2000b).

Limitations of this study, which may provide directions
for future research, are as follows. One is that we have stud-
ied exploration that is new to the firm. In other words,
we cannot substantiate our claims and findings beyond
this relatively moderate degree of exploration. It therefore
seems useful in future studies to consider more radical
degrees of exploration such as the discovery of ‘newly
emerging’ technologies (new to the industry) or ‘pioneer-
ing’ technologies (new to the world), respectively (Ahuja
and Lampert, 2001). For these kinds of exploration one
needs partners at presumably (much) larger technological
distances than considered here and we anticipate that this
will have major implications for the role of both between-
ness centrality and density.

A second limitation relates to our dependent variable.
We have counted the number of explorative patents for
each firm and in this way have treated all patents equally. Of
course, patents differ in technological and economic value,
and taking this into account would definitely enrich future
work in this field. Weighing patents based on the number
of citations that they receive seems a straightforward way
to do this (Ahuja and Lampert, 2001). Such an approach
would also enable studying the validity of our conjecture
that peripheral firms have better possibilities for more rad-
ical exploration when compared with central firms. A final
limitation is that we did not consider the effect of ‘tie
strength’ on exploration. Different types of alliances can be
weighted according to the ‘strength’ of the relationship as
some authors have done (see Contractor and Lorange, 1988;
Gulati, 1995b; Nohria and Garcia-Pont, 1991). This would
require additional research regarding which alliance type is
more instrumental for the exploration of new technologies.
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