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ABSTRACT In recent years, network embedding has attracted more and more attention due to its effec-

tiveness and convenience to compress the network structured data. In this paper, we propose a community-

based variational autoencoder (ComVAE)model to learn network embedding, which consists of a community

detection module and a deep learning module. In the proposed model, both community information and deep

learning techniques are utilized to learn low-dimensional vertex representations. First, community informa-

tion reveals an implicit relationship between vertices from a global view, which can be a supplement to local

information and help to improve the embedding quality. To obtain the community information, community

detection algorithms are utilized as a module and the modularization design makes the model more flexible.

Second, deep learning techniques can not only integrate and preserve the information from both local and

global views efficiently but also strengthen the robustness of vertex representations. To demonstrate the

performance of our model, extensive experiments are conducted in four downstream tasks, namely, network

reconstruction, node classification, link prediction, and visualization. The experimental results show that our

model outperforms the state-of-the-art approaches to real-world datasets.

INDEX TERMS Network embedding, community detection, variational autoencoder.

I. INTRODUCTION

With the development of information technology, more

and more network structured data has been generated and

recorded, e.g., protein-protein interaction networks, social

networks and citation networks. It is vital to mine latent and

valuable information from the networks [1]–[4]. However,

the sparsity of the traditional network representation makes

it difficult to generalize in statistical learning [5]. There-

fore, network embedding becomes a necessity for network

analysis, which can compress sparse and high-dimensional

representations into dense and low-dimensional embeddings

in an unsupervised manner [6]. In particular, learning a

discriminative embedding space can be helpful for various

applications [7], [8]. By maintaining certain characteristics
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of the original network, the embeddings can be applied to

downstream tasks such as network reconstruction [9], node

classification [10], [11], link prediction [12] and visualiza-

tion [13]. In other words, for better performance in various

downstream tasks, how to extract the most vital information

effectively from the original network is both a target and a

challenge for network embedding.

Many efforts have been made in developing network

embedding approaches in different ways. For example,

DeepWalk [5] and node2vec [14] utilize the randomwalk and

the skipgrammodel to embed the network. TADW [15] learns

representations of the network with rich text information

via matrix factorization. With outstanding performance in

a wide variety of research fields such as natural language

processing [16], [17] and computer vision [18], [19], neural

networks have also become popular in unsupervised feature

learning [20]. For network embedding, autoencoder [21] is
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FIGURE 1. An example to show the difference between the first-order proximity information and the community information. (a) From the
local view, the relationships between the target vertex 1 and its neighbors are treated equally; first-order proximity information. (b) From the
global view, the network can be divided into two communities. According to community information, the relationships between the target
vertex 1 and its neighbors in the same community can be treated as stronger ones.

used in SAE [22], SDNE [23] and MVC-DNE [24]. Gen-

erative adversarial network is utilized in ANE [25] and

GraphGAN [26].

Compared to the random walk models which are regarded

as learning representations for linear sequences, the deep

learning models are able to capture non-linear information

conveyed by the graph [27]. Compared to the matrix fac-

torization based algorithms, the computational complexity

of deep learning models mainly depends on the depth of

neural network, instead of the eigendecomposition or sin-

gular value decomposition of a matrix, which is time and

space consuming [28]. In other words, if we design the

neural network as shallow as possible under the premise of

ensuring performance, deep learning models will be more

efficient for less training time. Therefore, in this paper, deep

learning techniques are adopted due to its capability of cap-

turing the non-linear information in an effective and effi-

cient way. In particular, we use the conditional variational

autoencoder [29], [30] as a module to learn vertex repre-

sentations for three reasons. Firstly, compared to the tradi-

tional autoencoder, the sampling procedure of the variational

autoencoder leads to more robust outcomes. Secondly, it is

easier to train the variational autoencoder and tune the param-

eters, since it does not suffer from the problems such as mode

collapse. Thirdly, the conditional variational autoencoder can

integrate both local information and community information

in a unified module, which will be detailed below. Though

variational autoencoder has been utilized in [31] and [32] to

respectively embed attributed networks and networks with

multimodal contents, the proposed model is designed for

homogeneous networks without extra information and uti-

lizes variational autoencoder from a different perspective.

Among the existing network embedding algorithms, many

of them capture the proximity between vertices only from

a local view. For instance, LINE [33] only utilizes the

first-order and second-order proximity, while DNGR [27]

also utilizes the higher-order proximity at the same time.

For these algorithms, the proximities only utilize local infor-

mation within a fixed number of hops from each vertex,

ignoring the information from a global view. To address this

problem, community information, which is obtained by ana-

lyzing the entire topological structure of the network [34], can

be regarded as global information for network embedding,

because communities are mainly detected via integrating

connection information throughout the whole network. For

example, the Fast Unfolding algorithm [35] merges commu-

nities via a greedy strategy globally. The Girvan-Newman

algorithm [36] utilizes the shortest path between every pair of

vertices to calculate betweenness in a global manner. Figure 1

illustrates the difference between the first-order proximity

information and the community information. What needs to

be emphasized is that we do not insist global information is

more useful than local information, but it will improve the

embedding quality if both of them can be integrated properly.

Recently, some efforts have been made in utilizing com-

munity structure for learning vertex representations, e.g.

M-NMF [37], GNE [38] and ANEM [39]. However, most of

them redesign the target function based on some community

metrics such as modularity [40], which makes them not flex-

ible enough for different networks. Therefore, the proposed

model directly utilizes the existing community detection

algorithms as a module for two reasons. Firstly, community

detection is a hot research topic and many effective algo-

rithms have been proposed. Secondly, the modularization

design makes it convenient to choose different community

detection algorithms for different networks in order to obtain

better performance, which makes the proposed model more

flexible.

According to the above discussion, in this paper,

we propose a community based variational autoencoder
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model (ComVAE) for network embedding, utilizing deep

learning techniques and taking community information as

a supplement to local information. Firstly, deep learning

techniques can not only integrate the information from both

local and global views efficiently, but also strengthen the

robustness of representations. Secondly, community infor-

mation reveals implicit relationship between vertices from a

global view, which can help to improve the embedding quality

as well as local information. To the best of our knowledge, it is

the first attempt to embed networks via a variational autoen-

coder which integrates both local information and community

information. Extensive experiments are conducted on two

types of real-world datasets to demonstrate the performance

of ComVAE via four downstream tasks, namely network

reconstruction, node classification, link prediction and visu-

alization. The experimental results confirm the effectiveness

of ComVAE and demonstrate the obvious improvements

brought by utilizing both community information and deep

learning techniques in our model.

The rest of this paper is organized as follows. In Section II

we formally illustrate the notations and definitions in this

work. In Section III we detail the proposed model ComVAE.

In Section IV we introduce how we conduct experiments and

show the experimental results. In Section V we conclude this

work.

II. NOTATIONS AND DEFINITIONS

In this section, we formally introduce notations and defini-

tions in this work. Given a network G = (V, E), where V =

{vi, i = 1, 2, . . . , n} is the set of n vertices and E = {ei,j} is the

set of edges, while ei,j = ej,i for undirected network. The goal

of network embedding is compressing the representation of

each vertex vi ∈ V from the original representation x ∈ R
|V |

into a new representation y ∈ R
d , where d ≪ |V|. Generally,

the adjacency matrix can be obtained from the network,

which is represented as A ∈ R
|V |×|V |. The task of network

embedding is to reduce dimension and learn a new represen-

tation matrix as Y ∈ R
|V |×d . In addition to dimension reduc-

tion, some proximity between vertices should be maintained

during the procedure of network embedding. In the proposed

model, both local information and community information

are expected to be preserved.

Definition 1 (Local Information): Given a network G, the

matrix X = A is denoted as local information because each

row vector x in X represents the first-order neighbor relation-

ship of each vertex. With local information, the relationship

between interconnected vertices is expected to be maintained

after network embedding.

Definition 2 (Community Information): Given a net-

work G, the community information matrix C ∈ R
|V |×k ,

where k is the number of communities, should be obtained

through community detection. Each row vector c in matrix C

represents the possibility of the corresponding vertex belong-

ing to each community. For non-overlapping community

detection, the vector c is a binary and normalized vector.

Community information can be regarded as one type of global

proximity throughout the network, which is a supplement to

local information.

III. THE PROPOSED MODEL

In this section, first of all, an overview of the proposed

model will be introduced. Then the reasons for selecting com-

munity detection algorithms will be explained. Afterwards,

the architecture of neural network will be described along

with analyzing its rationality for network embedding. Finally,

the entire model will be summarized.

A. OVERVIEW

The proposed model is designed for homogeneous network

embedding and contains two main modules, namely a com-

munity detection module and a deep learning module. The

community detection module is used to extract the com-

munity information from network via community detection

algorithms. The deep learning module can integrate both

local information and community information to learn vertex

embeddings. Therefore, the proposed model takes the net-

work data as input and outputs the corresponding embedding

result via these two modules.

B. COMMUNITY DETECTION MODULE

As analyzed above, community information can reveal some

hidden relationship in network from a global view. To obtain

community information, community detection should be

executed. In our model, two classical and effective algo-

rithms, namely Label Propagation Algorithm (LPA) [41] and

Infomap [42], are applied as candidate community detection

modules.

1) Label Propagation Algorithm (LPA) [41]:

After allocating each vertex with a unique community

label as initialization, LPA merges community label of

each vertex through voting by neighbors until conver-

gence. Therefore, the community information propa-

gates globally from one-hop relationship to higher hop

relationship via label voting and community merging.

Besides, LPA is a nearly linear time algorithm to detect

communities. Due to its information propagating mode

and high efficiency, LPA is employed as one type

of community detection module and a model called

ComVAE (LPA) is constructed.

2) Infomap [42]:

Different from LPA, Infomap focuses on encoding

vertex sequences with the shortest length based on

information theory, and detects communities through

a deterministic greedy search strategy. To obtain ver-

tex sequences, random walk is used as a strategy to

collect higher-order information. Besides, the greedy

search strategy integrates information globally and

merges communities. Because randomwalk and greedy

search are popular strategies for obtaining commu-

nity information, Infomap is employed as another type

of community detection module and a model called

ComVAE (Infomap) is constructed.
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FIGURE 2. Architecture of the deep learning module in ComVAE. Local information x and community information c are
inputs of the module while y is the vertex representation learned after training. x̂ is the reconstructed vector of the original
data. z is the vector to be decoded, which is obtained by reparameterization. µx and σx can be respectively regarded as the
mean and the standard deviation of data distribution, while µc can be regarded as the mean of community information
distribution. ε is sampled from the normalized Gaussian distribution. In the encoder, there is always a dropout layer
following a full-connected layer. Other layers in the module are fully connected.

C. DEEP LEARNING MODULE

In this section, we introduce in detail the architecture of deep

learning module in ComVAE and explain how the conditional

variational autoencoder can integrate local information with

community information to learn vertex representations.

1) ARCHITECTURE

Deep learning module is the core part of our model, the archi-

tecture of which is shown in Figure 2.

In the module, most layers are fully connected in order to

extract information as much as possible from the input vector.

Therefore, for those full-connected layers, given an input

vector v, the corresponding output vector u can be calculated

as follows:

u = h(W v+ b) (1)

where W is the weight matrix, b is the bias vector and h(·) is

the activation function. Notice that the activation functions in

both encoder and decoder should be non-linear functions for

learning non-linear mappings from the original vertex space

to the embedding space.

In the encoder architecture, in order to avoid overfitting,

we add a dropout layer after every full-connected layer.

The dropout layer disables a portion of neurals randomly

in the training phase, which can strengthen the robustness of

the network embedding performance.

2) LOSS FUNCTION

Based on the variational autoencoder, the loss function in

this module consists of the reconstruction loss and the KL

divergence loss.

The reconstruction loss is generated by data compression

and recovery. In essence, the neural network of our deep

learning module is an autoencoder, which contains a recon-

struction procedure. Autoencoder is the architecture with an

encoder and a decoder. The encoder (fθ1 (·)) aims to compress

the original vector x into a low-dimensional representation,

while the decoder (gθ2 (·)) aims to generate a new vector x̂

with the same dimension as x from the low-dimensional

representation. In order to guarantee the close relationship

between interconnected vertices to be maintained in the low-

dimensional space, it is expected that the local information

in x should change as little as possible after dimension com-

pression and recovery. Aiming at minimizing the loss of local

information, the reconstruction loss used in our deep learning

module is:

Lossr = Loss(x, gθ2 (fθ1 (x)))

= Loss(x, x̂)

= −
1

|V|

|V |∑

i=1

[xi log x̂i + (1 − xi) log (1 − x̂i)], (2)

where |V| is the number of vertices, and the function Loss(·)

calculates the cross entropy between x and x̂.

The KL divergence loss is the particular loss of the varia-

tional autoencoder compared to the traditional autoencoder.

As shown in Figure 2, two layers denoted as µx and σx

can be regarded as the mean and the standard deviation of

data distribution respectively. The latent variable vector z

can be obtained by sampling from the Gaussian distribution

determined by µx and σx. To avoid the issue of the random-

ness from different sampling results, the model is expected
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to learn robust embedding representations with always rela-

tively small reconstruction loss. So this sampling procedure

can be regarded as another way to strengthen the robustness,

in addition to the dropout technique. For back propagation of

the sampling procedure, reparameterization trick is adopted.

Therefore, the distribution of p(z|x) is N (µx, σx
2). According

to the assumption of the variational autoencoder, the distri-

bution of p(z) is N (0, I). To make these two distributions as

close as possible, the KL divergence loss is:

Losskl′ = KL(p(z|x)||p(z))

= KL(N (µx, σx
2)||N (0, I))

=
1

2

d∑

i=1

(µx
2
i + σx

2
i − log σx

2
i − 1), (3)

where KL(·) is the KL divergence for measuring difference

between two distributions and d is the dimension of embed-

ding representation.

To utilize community information in the deep learning

module, a layer is added to train the vector µc with the same

dimension as µx, which is regarded as the mean of com-

munity information distribution. Similar to the case of local

information, vertices with similar community information

are expected to be embedded nearly in the low-dimensional

space. Thus, the distribution of p(z) is assumed to follow dif-

ferent Gaussian distributions according to different commu-

nity information, by which the community information can

be considered in the loss function. The new KL divergence

loss is designed as follows:

Losskl = KL(N (µx, σx
2)||N (µc, I))

=
1

2

d∑

i=1

[(µx − µc)
2
i + σx

2
i − log σx

2
i − 1], (4)

where KL(·) and d have the same meanings as Eq. (3).

Combining the reconstruction loss and the KL loss,

the total loss we need to minimize is:

Losstotal = Lossr + Losskl . (5)

After the training phase, instead of taking the vector z as the

generation result of the traditional variational autoencoder,

the vector µx is taken as the embedding representation y for

two reasons. Firstly, µx directly interacts with µc, reflecting

on the KL divergence loss function, which can preserve the

influence of community information in the embedded vertex

representations. Secondly, after training the model, µx can

generate a stable embedding result with the fixed parameters

and weights of the neural network, avoiding the randomness

brought by the sampling procedure.

D. MODEL SUMMARY

As described above, our ComVAE model consists of a

community detection module and a deep learning module.

In ComVAE, we first obtain local information from network

and community information by community detection. Then,

we utilize both local information and community information

simultaneously to train the deep learning module, obtaining

embedding representation of every vertex in the network.

As a conclusion, the ComVAE model is effective due to the

utilization of deep learning techniques and information from

different views, robust due to the dropout and sampling tech-

niques, efficient due to the relatively shallow layers with good

performance, which will be confirmed in the experiments.

IV. EXPERIMENT

In this section, four downstream tasks, namely network

reconstruction, node classification, link prediction and visu-

alization, are conducted as extensive experiments to verify

the performance of ComVAE, compared with other state-of-

the-art models. The code of our model is publicly available at

https://github.com/PP8818/ComVAE.

A. EXPERIMENTAL SETTINGS

1) DATASETS

In experiments, eight real-world networks in two major types

with different scales are used in different downstream tasks.

• Type I: WebKB.1 The WebKB networks consist of sub-

networks from four universities, including Texas with

187 vertices, Cornell with 195 vertices, Wisconsin with

265 vertices and Washington with 230 vertices. Each

subnetwork is taken as an independent dataset.

• Type II: Social Networks.2 The datasets are the Face-

book networks formed by users from four universities,

including Amherst41 with 2235 vertices, Hamilton46

with 2314 vertices, Mich67 with 3748 vertices and

Rochester38 with 4563 vertices [43]. Each subnetwork

is taken as an independent dataset.

2) COMPARING MODELS

Because ComVAE is designed for homogeneous network,

other types of network such as attributed network and multi-

view network are not suitable for our proposed model. For

evaluating the performance of ComVAE, five state-of-the-art

algorithms designed for homogeneous network are adopted

as comparing models in the following downstream tasks. For

classical models, DeepWalk [5] utilizes random walk and

skipgram model to learn vertex embeddings. Node2vec [14]

improves DeepWalk through adding two parameters p and q

in random walk procedure, which can control the tendency

of walking following breath-first searching or depth-first

searching. LINE [33] combines the first-order and second-

order proximity in embedding representations. Because com-

munity information is taken as the global information in

our model, M-NMF [37], aiming at preserving community

structures during network embedding, is selected as another

comparing model. Due to the deep learning techniques used

in our model, SDNE [23] is also adopted as a representa-

tive model, which utilizes the first-order and second-order

proximity to train an autoencoder.

1http://linqs.cs.umd.edu/projects/projects/lbc/
2https://escience.rpi.edu/data/DA/fb100/

VOLUME 7, 2019 25327



W. Shi et al.: Network Embedding via ComVAE

TABLE 1. Dimension of encoding layers.

3) PARAMETER SETTINGS

In the experiments, the code of all the comparing mod-

els is obtained from the open source website Github.3 The

embedding dimension of the four datasets in WebKB is set

as 32, while the dimension of the other four datasets in

Social Networks is set as 64. For the intermediate layers of

deep learning based models including ComVAE and SDNE,

the neural numbers in encoding layers are not intentionally

selected and just set as some common numbers, which is

listed in Table 1. According to the conventional design of

autoencoder, the neural number of every decoding layer is

set the same as that of the corresponding encoding layer.

To train the ComVAE model, after selecting community

detection method, inputting network data and tuning param-

eters, the vertex embeddings can be obtained as output.

The detailed settings of other parameters are listed as

follows:

• ComVAE.With different community detectionmodules,

ComVAE(Infomap) and ComVAE(LPA) are respec-

tively evaluated in experiments. In these two models,

Sigmoid is set as the activation function in the last

decoding layer while ReLU is the activation function in

other layers. The standard deviation of Gaussian distri-

bution in the sampling procedure is set as 1. Besides,

the dropout rate is set as 0.1 and early stopping is also

adopted in order to avoid overfitting.

• DeepWalk.4 The parameters walk length, window size

and walk number are set as 40, 5 and 10 respectively.

• node2vec.5 The parameters walk length, window size

and walk number are set as 80, 10 and 10 respectively.

Because parameters p and q control the tendencies of

random walker, we select different values and construct

two comparing models, namely node2vec(p0.5q1) and

node2vec(p1q0.5), to test the performance.

• LINE.6 The parameter order is set as 3, which means

both the first-order proximity and the second-order prox-

imity are taken into consideration.

• M-NMF.7 The parameters α, β and λ are set as 1, 1 and

109 respectively. To construct the community indicator

matrix and community representation matrix used in

M-NMF, the parameter k is set as the real number of

communities in each dataset.

3https://github.com
4https://github.com/phanein/deepwalk
5https://github.com/thunlp/OpenNE
6https://github.com/thunlp/OpenNE
7https://github.com/AnryYang/M-NMF

• SDNE.8 The parameters α, γ and reg in the loss function

are set as 100, 1 and 1 respectively.

B. NETWORK RECONSTRUCTION

After network embedding, the embedded vertex represen-

tations can be regarded as some discrete points in the

embedding space. An intuitive way to test the performance

is reconstructing a network based on these discrete points,

so as to investigate the similarity between the reconstructed

network and the original network. To measure the similarity

between networks, connectivity between vertices is a key

consideration. In other words, if the connectivity can be pre-

cisely predicted based on the vertex embeddings, the original

network can be well reconstructed.

To predict the connectivity, a Logistic Regression classifier

is trained, which can judge whether a link exists between a

vertex pair. Given a concatenated vertex embedding pair as

input feature, connected vertex pairs in the original network

are used as positive instances, while the same number of dis-

connected ones are randomly sampled as negative instances.

For each type of instances, 60% vertex pairs are selected as

the training set and the remaining ones are the testing set.

AUC [44] is utilized to evaluate the prediction performance.

The results are shown in Table 2 and Table 3, where the best

performance of each dataset among all models is represented

in bold. From the results, one of the ComVAEmodels obtains

the highest AUC on seven out of the eight datasets, while the

AUC values obtained byM-NMF and SDNE are also not bad.

Based on the results, the analysis can be drawn as follows.

Firstly, network reconstruction aims to measure how well the

first-order proximity is maintained after network embedding.

Though all the compared models take the first-order proxim-

ity into account, from the results, deep learning based models

such as ComVAE and SDNE are able to extract and preserve

the proximity information more precisely. Secondly, if com-

munity information is considered in models such as ComVAE

and M-NMF, a vertex can be embedded closer to some group

of embedded vertices which have close relationship with it in

the original network, resulting in more accurate relationship

prediction after network embedding and hence higher AUC in

this task. Therefore, the ComVAE models can perform well

and show the effectiveness on network reconstruction.

C. NODE CLASSIFICATION

After obtaining the embedded vertex representations, node

classification is a common downstream task to evaluate the

performance of network embedding, via allocating labels for

vertices in the original network and measuring the accuracy.

In the experiment, the LIBLINEAR [45] package is utilized

to train the classifiers. For each dataset, different portions of

vertices are randomly selected as the training set and the rest

vertices are the testing set, while the training portions vary

from 10% to 90% with 10% interval. Due to the page limit,

only the results on datasets in Social Networks in terms of

8https://github.com/suanrong/SDNE
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TABLE 2. Network reconstruction results on WebKB in terms of AUC.

TABLE 3. Network reconstruction results on Social Networks in terms of AUC.

TABLE 4. Node classification results on Amherst41 in terms of accuracy.

TABLE 5. Node classification results on Hamilton46 in terms of accuracy.

TABLE 6. Node classification results on Mich67 in terms of accuracy.

accuracy are presented in Table 4-7, where the best perfor-

mance of each training rate among all models is represented

in bold.

From the results in Table 4-7, our proposed mod-

els obtain the highest accuracy in most cases (88.9%),

which demonstrates the effectiveness of ComVAE on

node classification. Especially, one of our ComVAE models

performs the best under any training rate on the Mich67 and

Rochester38 datasets. By conducting community detection

based on the original network, some implicit relationship can

be revealed from a global view and similar vertices tend to be

divided into the same community. Because the community
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TABLE 7. Node classification results on Rochester38 in terms of accuracy.

FIGURE 3. Link prediction results on Social Networks in terms of AUC.

information is preserved well via deep learning techniques

during the network embedding procedure, the embedded ver-

tices are more discriminative and hence suitable for classifi-

cation, which helps to improve the accuracy in most cases.

Therefore, the proposed ComVAE models perform better in

the node classification task.

D. LINK PREDICTION

Link prediction is another common downstream task to eval-

uate the performance of network embedding. Similar to net-

work reconstruction, they are both connectivity prediction

tasks. However, link prediction aims to predict nonexistent

links which are about to generate. To obtain the ground-

truth, some ratios of links are randomly removed from the

original network and the new networks are embedded by

models. Specifically, the removed links ratios are respectively

set as 0.2, 0.4, 0.6 and 0.8, resulting in four new networks

for each dataset. In addition, the removed links are used as

the corresponding testing set. To guarantee the connectivity

of new networks after links removed, only datasets in Social

Networks are selected in this experiment. Besides, we adopt

the same method introduced in Section IV-B to train the clas-

sifier and predict the links. AUC is still used as the evaluation

criterion in this task.

From the link prediction results shown in Figure 3, two

conclusions can be drawn as follows. Firstly, the AUC values

obtained by M-NMF, SDNE and ComVAE are always higher

than those obtained by other models, which indicates the
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FIGURE 4. Visualization results on the Washington dataset.

considerations of community information and deep learning

techniques are helpful in improving the performance in the

link prediction task. Secondly, the AUC values obtained by

two ComVAE models are close to each other and outper-

form other models in most cases, which demonstrates the

robustness of ComVAE and the further performance improve-

ments achieved by integrating both of the two aforementioned

considerations.

E. VISUALIZATION

Visualization is another intuitive way to demonstrate the

quality of network embedding. In this downstream task,

t-SNE [46] is used to map vertex representations into a

2D space and then the points in the 2D space are visual-

ized. By taking the Washington dataset as an example, the

visualization results are shown in Figure 4.

In the Washington dataset, there are five communities

with different colors. From the results, the embeddings of

no model can be visualized with highly cohesive in the

same community and highly distinguishable between dif-

ferent communities. For this phenomenon, the main reason

is considered as the information loss during transformation

from vertex embedding space to 2D space. To compare the

visualization results among models, we mainly focus on

the two largest communities colored by yellow and purple.

In the visualization results of M-NMF and ComVAE, the yel-

low points are mainly distributed in the upper left corner

while the purple points are mainly in the lower right cor-

ner, compared with the irregular color distributions of other

models. Therefore, the huge role of preserving community

information in the embedded representations emerges again.

More precisely, with the greater spacing and clearer boundary

between yellow and purple points, the ComVAE(LPA) model

outperforms other models in this task.

V. CONCLUSION

In this paper, we have proposed a community based varia-

tional autoencoder model for network embedding. The pro-

posed model not only utilizes the deep learning techniques,

but also integrates local information with community infor-

mation. Extensive experiments have been conducted on two

types of real-world datasets in four downstream tasks. The

experimental results have confirmed the superiority of our

proposed models over several state-of-the-art models.
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