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ARTICLE

Network enhancement as a general method
to denoise weighted biological networks
Bo Wang1, Armin Pourshafeie2, Marinka Zitnik1, Junjie Zhu3, Carlos D. Bustamante4,5,

Serafim Batzoglou1,6 & Jure Leskovec1,5

Networks are ubiquitous in biology where they encode connectivity patterns at all scales of

organization, from molecular to the biome. However, biological networks are noisy due to the

limitations of measurement technology and inherent natural variation, which can hamper

discovery of network patterns and dynamics. We propose Network Enhancement (NE), a

method for improving the signal-to-noise ratio of undirected, weighted networks. NE uses a

doubly stochastic matrix operator that induces sparsity and provides a closed-form solution

that increases spectral eigengap of the input network. As a result, NE removes weak edges,

enhances real connections, and leads to better downstream performance. Experiments show

that NE improves gene–function prediction by denoising tissue-specific interaction networks,

alleviates interpretation of noisy Hi-C contact maps from the human genome, and boosts

fine-grained identification accuracy of species. Our results indicate that NE is widely

applicable for denoising biological networks.

DOI: 10.1038/s41467-018-05469-x OPEN

1Department of Computer Science, Stanford University, 353 Serra Mall, Stanford 94305 CA, USA. 2Department of Physics, Stanford University, 382 Via

Pueblo Mall, Stanford 94305 CA, USA. 3Department of Electrical Engineering, Stanford University, 350 Serra Mall, Stanford 94305 CA, USA. 4Department

of Biomedical Data Science, Stanford University, 1265 Welch Road, Stanford 94305 CA, USA. 5Chan Zuckerberg Biohub, 499 Illinois St, San Francisco 94158

CA, USA. 6Present address: Illumina Inc, 499 Illinois Street, San Francisco 94158 CA, USA. These authors contributed equally: Bo Wang, Armin Pourshafeie,

Marinka Zitnik. Correspondence and requests for materials should be addressed to S.B. (email: serafim@cs.stanford.edu)

or to J.L. (email: jure@cs.stanford.edu)

NATURE COMMUNICATIONS |  (2018) 9:3108 | DOI: 10.1038/s41467-018-05469-x | www.nature.com/naturecommunications 1

12
3
4
5
6
7
8
9
0
()
:,;

mailto:serafim@cs.stanford.edu
mailto:jure@cs.stanford.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


N
etworks provide an elegant abstraction for expressing
fine-grained connectivity and dynamics of interactions in
complex biological systems1. In this representation, the

nodes indicate the components of the system. These nodes are
often connected by non-negative, (weighted-)edges, which indi-
cate the similarity between two components. For example, in
protein–protein interaction (PPI) networks, weighted edges cap-
ture the strength of physical interactions between proteins and
can be leveraged to detect functional modules2. However, accu-
rate experimental quantification of interaction strength is
challenging3,4. Technical and biological noise can lead to super-
ficially strong edges, implying spurious interactions; conversely,
dubiously weak edges can hide real, biologically important con-
nections4–6. Furthermore, corruption of experimentally derived
networks by noise can alter the entire structure of the network by
modifying the strength of edges within and amongst underlying
biological pathways. These modifications adversely impact the
performance of downstream analysis7. The challenge of noisy
interaction measurements is not unique to PPI networks and
plagues many different types of biological networks, such as Hi-
C8 and cell–cell interaction networks9.

To overcome this challenge, computational approaches have
been proposed for denoising networks. These methods operate by
replacing the original edge weights with weights obtained based
on a diffusion defined on the network10,11. However, these
methods are often not tested on different types of networks11, rely
on heuristics without providing explanations for why these

approaches work, and lack mathematical understanding of the
properties of the denoised networks10,11. Consequently, these
methods may not be effective on new applications derived from
emerging experimental biotechnology.

Here, we introduce network enhancement (NE), a diffusion-
based algorithm for network denoising that does not require
supervision or prior knowledge. NE takes as input a noisy,
undirected, weighted network, and outputs a network on the
same set of nodes but with a new set of edge weights (Fig. 1). The
main crux of NE is the observation that nodes connected through
paths with high-weight edges are more likely to have a direct,
high-weight edge between them12,13. Following this intuition, we
define a diffusion process that uses random walks of length three
or less and a form of regularized information flow to denoise the
input network (Fig. 1a and Methods). Intuitively, this diffusion
generates a network in which nodes with strong similarity/
interactions are connected by high-weight edges while nodes with
weak similarity/interactions are connected by low-weight edges
(Fig. 1b). Mathematically, this means that eigenvectors associated
with the input network are preserved while the eigengap is
increased. In particular, NE denoises the input by down-
weighting small eigenvalues more aggressively than large eigen-
values. This re-weighting is advantageous when the noise is
spread in the eigen-directions corresponding to small eigenva-
lues14. Furthermore, the increased eigengap of the enhanced
network is a highly appealing property as it leads to accurate
detection of modules/clusters15,16 and allows for higher-order
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Fig. 1 Overview of Network Enhancement (NE). a NE employs higher-order network structures to enhance a given weighted biological network. The

diffusion process in NE revises edge weights in the network based on interaction flow between any two nodes. Specifically, for any two nodes, NE updates

the weight of their edge by considering all paths of length three or less connecting those nodes. b The iterative process of NE. NE takes as input a weighted

network and the associated adjacency matrix (visualized as a heatmap). It then iteratively updates the network using the NE diffusion process, which is

guaranteed to converge. The diffusion defined by NE improves the input network by strengthening edges that are either close to other strong edges in the

network according to NE’s diffusion distance or are supported by many weak edges. On the other hand, NE weakens edges that are not supported by many

strong edges. Upon convergence, the enhanced network is a symmetric, doubly stochastic matrix (DSM) (Supplementary Note 3). This makes the

enhanced network well-suited for downstream computational analysis. Furthermore, enforcement of the DSM structure leads to more sparse networks

with lower noise levels
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network analysis12. Moreover, NE has an efficient and easy to
implement closed-form solution for the diffusion process, and
provides mathematical guarantees for this converged solution.
(Fig. 1b and Methods).

Results
Methods for network denoising. We have applied NE to three
challenging yet important problems in network biology. In each
experiment, we evaluate the network denoised by NE against the
same network denoised by alternative methods: network decon-
volution (ND)10 and diffusion state distance (DSD)11. For com-
pleteness, we also compare our results to a network reconstructed
from features learned by Mashup (MU)17. All three of these
methods use a diffusion process as a fundamental step in their
algorithms and have a closed-form solution at convergence. ND
solves an inverse diffusion process to remove the transitive edges,
and DSD uses a diffusion-based distance to transform the net-
work. While ND and DSD are denoising algorithms, MU is a
feature learning algorithm that learns low-dimensional repre-
sentations for nodes based on their steady-state topological
positions in the network. This representation can be used as input
to any subsequent prediction model. In particular, a denoised
network can be constructed by computing a similarity measure
using MU’s output features17.

NE improves human tissue networks for gene–function pre-
diction. Networks play a critical role in capturing molecular
aspects of precision medicine, particularly those related to
gene–function and functional implications of gene mutation18,19.
We test the utility of our denoising algorithm in improving gene
interaction networks from 22 human tissues assembled by Greene
et al.20. These networks capture gene interactions that are specific
to human tissues and cell lineages ranging from B lymphocyte to
skeletal muscle and the whole brain20,21. We predict the cellular
functions of genes specialized in different tissues based on the
networks obtained from different denoising algorithms.

Given a tissue and the associated tissue-specific gene interac-
tion network, we first denoise the network and then use a
network-based algorithm on the denoised edge weights to predict
gene functions in that tissue. We use standard weighted random
walks with restarts to propagate gene–function associations from
training nodes to the rest of the network22. We define a weighted
random walk starting from nodes representing known genes
associated with a given function. At each time step, the walk
moves from the current node to a neighboring node selected with
a probability that depends on the edge weights and has a small
probability of returning to the initial nodes22. The algorithm
scores each gene according to its visitation probability by the
random walk. Node scores returned by the algorithm are then
used to predict gene–function associations for genes in the test
set. Predictions are evaluated against experimentally validated
gene–function associations using a leave-one-out cross-validation
strategy.

When averaged over the four denoising algorithms and the 22
human tissues, the gene–function prediction improved by 12.0%
after denoising. Furthermore, we observed that all denoising
algorithms improved the average prediction performance (Fig. 2a
and Supplementary Note 1). These findings motivate the use of
denoised networks over original (raw) biological networks for
downstream predictive analytics. We further observed that
gene–function prediction performed consistently better in
combination with networks revised by NE than in combination
with networks revised by other algorithms. On average, NE
outperformed networks reconstructed by ND, DSD, and MU by
12.3%. In particular, NE resulted in an average of a 5.1%

performance gain over the second best-performing denoised
network (constructed by MU). Following Greene et al.20, we
further validated our NE approach by examining each enhanced
tissue network in turn and evaluating how well relevant tissue-
specific gene functions are connected in the network. The
expectation is that function-associated genes tend to interact
more frequently in tissues in which the function is active than in
other non-relevant tissues20. As a result, relevant functions are
expected to be more tightly connected in the tissue network than
functions specific to other tissues. For each NE-enhanced tissue
network, we ranked all functions by the edge density of function-
associated tissue subnetworks and examined top-ranked func-
tions. In the NE-enhanced blood plasma network, we found that
functions with the highest edge density were blood coagulation,
fibrin clot formation, and negative regulation of very-low-density
lipoprotein particle remodeling, all these functions are specific to
blood plasma tissue (Fig. 2b). This finding suggests that tissue
subnetworks associated with relevant functions tend to be more
connected in the tissue network than subnetworks of non-tissue-
specific functions. The most connected functions in the NE-
enhanced brain network were brain morphogenesis and forebrain
regionalization, which are both specific to brain tissue (Fig. 2b).
Examining edge density-based rankings of gene functions across
22 tissue networks, we found relevant functions consistently
placed at or near the top of the rankings, further indicating that
NE can improve the signal-to-noise ratio of tissue networks.

NE improves Hi-C networks for domain identification. The
recent discovery of numerous cis-regulatory elements away from
their target genes emphasizes the deep impact of 3D structure of
DNA on cell regulation and reproduction23–25. Chromosome
conformation capture (3C)-based technologies25 provide experi-
mental approaches for understanding the chromatin interactions
within DNA. Hi-C is a 3C-based technology that allows mea-
surement of pairwise chromatin interaction frequencies within a
cell population8,25. The Hi-C reads are grouped into bins based
on the genetic region they map to. The bin size determines the
measurement resolution.

Hi-C read data can be thought of as a network where genomic
regions are nodes and the normalized count of reads mapping to
two regions are the weighted edges. Network community
detection algorithms can be used on this Hi-C derived network
to identify clusters of regions that are close in 3D genomic
structure26. The detected megabase-scale communities corre-
spond to regions known as topological-associating domains
(TADs) and represent chromatin interaction neighborhoods26.
TADs tend to be enriched for regulatory features27,28 and are
hypothesized to specify elementary regulatory micro-
environments. Therefore, detection of these domains can be
important for analysis and interpretation of Hi-C data. The
limited number of Hi-C reads, hierarchical structure of TADs and
other technological challenges lead to noisy Hi-C networks, and
hamper accurate detection of TADs25.

To investigate the ability of NE in improving TAD detection,
we apply NE to a Hi-C dataset and analyze the performance of a
standard domain identification pipeline with and without a
network denoising step. For this experiment, we used 1 and 5 kb
resolution Hi-C data from all autosomes of the GM12878 cell
line8. Since true gold-standards for TAD regions are lacking, a
synthetic dataset was created by stitching together non-
overlapping clusters detected in the original work8. As a result,
the clusters stitched together can be used as a good proxy for the
true clusters (more details in Supplementary Note 1). Figure 3a
shows a heatmap of the raw Hi-C data for a portion of
chromosome 16.
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We applied two, off-the-shelf, community detection methods
(Louvian29 and MSCD30) to each Hi-C network and compared
the quality of the detected TADs with or without network
denoising. Visual inspection of the Hi-C contact matrix before
and after the Hi-C network is denoised using NE reveals an
enhancement of edges within each community and sharper
boundaries between communities (Fig. 3a). This improvement
is particularly clear for the 5 kb resolution data, where
communities that were visually undetectable in the raw data
become clear after denoising with NE. To quantify this
enhancement, the communities obtained from raw networks
and networks enhanced by NE or other denoising methods
were compared to the true cluster assignments. We used
normalized mutual information (NMI, Supplementary Note 2)
as a measure of shared information between the detected
communities and the true clusters. NMI ranges between 0 to 1,
where a higher value indicates higher concordance and 1
indicates an exact match between the detected communities

and the true clusters. The results across 22 autosomes indicate
that while denoising can improve the detection of communities,
not all denoising algorithms succeed in this task (Fig. 3b). For
both resolutions considered, NE performs the best with an
average NMI of 0.92 for 1 kb resolution and 0.94 for 5 kb
resolution, MU (the second best-performing method) achieves
an average NMI of 0.85 and 0.84, respectively, while ND and
DSD achieve lower average NMI than the raw data which has
NMI of 0.81 and 0.67, respectively. Furthermore, we note that
the performance of NE and MU remains high as the resolution
decreases from 1 to 5 kb, in contrast the ability of the other
pipelines in detecting the correct communities diminishes.
While MU maintains a good average performance at 5 kb
resolution, the standard deviation of NMI values after
denoising with MU increases from 0.037 in 1 kb data to 0.054
in 5 kb data due to relatively poor performances on a few
chromosomes. On the other hand, the NMI values for data
denoised with NE maintain a similar spread at both resolutions
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Fig. 2 Gene–function prediction using tissue-specific gene interaction networks. a We assessed the utility of original networks (RAW) and networks

denoised using MU, ND, DSD, and NE for tissue-specific gene–function prediction. Each bar indicates the performance of a network-based approach that

was applied to a raw or denoised gene interaction network in a particular tissue and then used to predict gene functions in that tissue. Prediction

performance is measured using the area under receiver operating characteristic curve (AUROC), where a high AUROC value indicates the approach

learned from the network to rank an actual association between a gene and a tissue-specific function higher than a random gene, tissue-specific function

pair. Error bars indicate performance variation across tissue-specific gene functions. Results are shown for eight human tissues, additional fourteen tissues

are considered in Supplementary Figs. 1, 2. b For blood plasma and brain tissues, we show gene interaction subnetworks centered on two blood plasma

gene functions and two brain gene functions with the highest edge density in NE-denoised data. Edge density for each gene function (with n associated

genes) was calculated as the sum of edge weights in the NE-denoised network divided by the total number of possible edges between genes associated

with that function (n × (n− 1)/2). The most interconnected gene functions in each tissue (shown in color, names of associated genes are emphasized), are

also relevant to that tissue
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(standard deviation 0.033 and 0.031, respectively). The better
average NMI and smaller spread indicates that NE can reliably
enhance the network and improve TAD detection.

NE improves fine-grained species identification. Fine-grained
species identification from images concerns querying objects
within the same subordinate category. Traditional image retrieval
works on high-level categories (e.g., finding all butterflies instead
of cats in a database given a query of a butterfly), while fine-
grained image retrieval aims to distinguish categories with subtle
differences (e.g., monarch butterfly versus peacock butterfly). One
major obstacle in fine-grained species identification is the high
similarity between subordinate categories. On one hand, two
subordinate categories share similar shapes and carry subtle color
difference in a small region; on the other hand, two subordinate

categories of close colors can only be well separated by texture.
Furthermore, viewpoint, scale variation, and occlusions among
objects all contribute to the difficulties in this task31. Due to these
challenges, similarity networks, which represent pairwise affinity
between images, can be very noisy and ineffective in retrieval of a
sample from the correct species for any query.

We test our method on the Leeds butterfly fine-grained species
image dataset32. Leeds Butterfly dataset contains 832 butterflies in
10 different classes with each class containing between 55 and 100
images32. We use two different common encoding methods
(Fisher Vector (FV) and Vector of Linearly Aggregated
Descriptors (VLAD) with dense SIFT; Supplementary Note 1)
to generate two different vectorizations of each image. These two
encoding methods describe the content of the images differently
and therefore capture different information about the images.
Each method can generate a similarity network in which nodes
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Fig. 3 Domain identification in Hi-C genomic interaction networks. a Heatmap of Hi-C contact matrix for a portion of chromosome 16. For 1 kb resolution

data denoised with NE and clustered using Louvain community detection (Supplementary Note 1) chromosome 16 (visualized) has the median normalized

mutual information (NMI) and was chosen as a fair representation of the overall performance. The top two heatmaps show the contact matrices for

original (raw) data and the bottom heatmaps represent the contact matrices for data after application of NE. The images on the left correspond to data with

1 kb resolution (i.e., the bin-size is a 1 kb region) and the right images correspond to the same section at 5 kb resolution. The red lines indicate the borders

for each domain as detailed in Supplementary Note 1. In each case, the network is consisted of genomic windows of length 1 kb (left) or 5 kb (right) as

nodes, and normalized number of reads mapped to each region as the edge weights. The data was truncated for visualization purposes. b NMI for clusters

detected. For each algorithm, the left side of the violin plot corresponds to Louvain community detection algorithm and the right side corresponds to MSCD

algorithm. Each dot indicates the performance on a single autosome (the distance of the dots from the central vertical axis is dictated by a random jitter for

visualization purposes). While for raw data and data preprocessed with DSD and ND the overall NMI decreases as resolution decreases, for NE and MU

the performance remains high. MU maintains good overall performance with lower resolution, however, the spread of the NMI increases indicating that the

consistency of performance has decreased compared to NE where the spread remains the same

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05469-x ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3108 | DOI: 10.1038/s41467-018-05469-x | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


represent images and edge weights indicate similarity between
pairs of images. The inner product of these two similarity
networks is used as a single input network to a network denoising
algorithm.

Visual inspection indicates that NE is able to greatly improve
the overall similarity network for fine-grain identification
(Fig. 4a). While both encodings partially separate the species,
before applying NE, all the images are tangled together without a
clear clustering. On the other hand, the resulting similarity
network after applying NE clearly shows 10 clusters correspond-
ing to different butterfly species (Fig. 4a). More specifically, given
a query, the original input networks fail to capture the true
affinities between the query butterfly and its most similar
retrievals, while NE is able to correct the affinities and more
reliably output the correct retrievals (Fig. 4b).

To quantify the improvements due to NE in the task of species
identification, we use identification accuracy, a standard metric
which quantifies the average numbers of correct retrievals given
any query of interests (Supplementary Note 2). A detailed
comparison between NE and other alternatives by examining
identification accuracy of the final network with respect to
different number of top retrievals demonstrates NE’s ability in

improving the original noisy networks (Fig. 4b). For example,
when considering top 40 retrievals, NE can improve the raw
network by 18.6% (more than 10% better than other alternatives).
Further, NE generates the most significant improvement in
performance (41% over the raw network and more than 25% over
the second best alternative), when examining the top 80 retrieved
images.

Current denoising methods suffer from high sensitivity to the
hyper-parameters when constructing the input similarity net-
works, e.g., the variance used in Gaussian kernel (Supplementary
Note 1). However, our model is more robust to the choice of
hyper-parameters (Supplementary Fig. 3). This robustness is due
to the strict structure enforced by the preservation of symmetry
and DSM structure during the diffusion process (see Supplemen-
tary Note 3).

Discussion
We proposed NE as a general method to denoise-weighted
undirected networks. NE implements a dynamic diffusion process
that uses both local and global network structures to construct a
denoised network from its noisy version. The core of our
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approach is a symmetric, positive semi-definite, doubly stochastic
matrix, which is a theoretically justified replacement for the
commonly used row-normalized transition matrix33. We showed
that NE’s diffusion model preserves the eigenvectors and
increases the eigengap of this matrix for large eigenvalues. This
finding provides insight into the mechanism of NE’s diffusion
and explains its ability to improve network quality15,16. In
addition to increasing the eigengap, NE disproportionately trims
small eigenvalues. This property can be contrasted with the
principal component analysis (PCA) where the eigenspectrum is
truncated at a particular threshold. Through extensive experi-
mentation, we show that NE can flexibly fit into important net-
work analytic pipelines in biology and that its theoretical
properties enable substantial improvements in the performance of
downstream network analyses.

We see many opportunities to improve upon the foundational
concept of NE in future work. First, in some cases, a small subset
of high confidence nodes may be available. For example, genomic
regions in the Hi-C contact maps can be augmented using data
obtained from 3C technology or a small number of species can be
identified by a domain expert and used together with network
data as input to a denoising methodology. Extending NE to take
advantage of the small amount of accurately labeled data might
further extend our ability to denoise networks. Second, although
we showed the utility of NE for denoising several types of
weighted networks, there are other network types worth explor-
ing, such as multimodal networks involving multiomic mea-
surements of cancer patients. Finally, incorporating NE’s
diffusion process into other network analytic pipelines can
potentially improve performance. For example, MU17 learns
vector representations for nodes based on a steady state of a
traditional random walk with restart, and replacing MU’s diffu-
sion process with the rescaled steady state of NE might be a
promising future direction.

Methods
Problem definition and doubly stochastic matrix property. Let G= (E, V, W) be
a weighted network where V denotes the set of nodes in the network (with Vj j= n),
E represents the edges of G, and W contains the weights on the edges. The goal of
NE is to generate a network G*

= (E*, V, W*) that provides a better representation
of the underlying module membership than the original network G. For the ana-
lysis below, we let W represent a symmetric, non-negative matrix.

Diffusion-based models often rely on the row-normalized transition probability
matrix P=D−1W, where D is a diagonal matrix whose entries are Di,i=

Pn
j¼1 Wi;j .

However, transition probability matrix P defined in this way is generally
asymmetric and does not induce a directly usable node-node similarity metric.
Additionally, most diffusion-based models lack spectral analysis of the denoised
model. To construct our diffusion process and provide a theoretical analysis of our
model, we propose to use a symmetric, doubly stochastic matrix (DSM). Given a
matrix M 2 R

n ´ n , M is said to be DSM if:

1. Mi;j � 0 i; j 2 f1; 2; ¼ ; ng,
2.

P

i Mi;j ¼
P

j Mi;j ¼ 1:

The second condition above is equivalent to 1= (1, 1, …, 1)T and 1T being a
right and left eigenvector of M with eigenvalue 1. In fact, 1 is the greatest
eigenvalue for all DSM matrices (see the remark following the definition of DSM in
the Supplementary Notes). Overall, the DSM property imposes a strict constraint
on the scale of the node similarities and provides a scale-free matrix that is well-
suited for subsequent analyses.

Network enhancement. Given a matrix of edge weights W representing the
pairwise weights between all the nodes, we construct another localized network
T 2 R

n ´ n on the same set of nodes to capture local structures of the input net-
work. Denote the set of K-nearest neighbors (KNN) of the i-th node (including the
node i) as N i . We use these nearest neighbors to measure local affinity. Then the
corresponding localized network T can be constructed from the original weighted
network using the following two steps:

Pi;j  
Wi;j

P

k2N i
Wi;k

I j2N if g; T i;j  
X

n

k¼1

Pi;kPj;k
P

n

v¼1
Pv;k

;
ð1Þ

where If�g is the indicator function. We can verify that T is a symmetric DSM by
directly checking the conditions of the definition (Supplementary Note 3). T
encodes the local structures of the original network with the intuition that local
neighbors (highly similar pairs of nodes) are more reliable than remote ones, and
local structures can be propagated to non-local nodes through a diffusion process
on the network. Motivated by the updates introduced in Zhou et al.34, we define
our diffusion process using T as follows:

Wtþ1 ¼ αT ´Wt ´ T þ ð1� αÞT ð2Þ

where α is a regularization parameter and t represents the iteration step. The value
ofW0 can be initialized to be the input matrixW. Equation (2) shows that diffusion
process in NE is defined by random walks of length three or less and a form of
regularized information flow. There are three main reasons for restricting the
influence of random walks to at most third-order neighbors in the network: (1) for
most nodes third-order neighborhood spans the extent of almost the entire bio-
logical network, making neighborhoods of order beyond three not very informative
of individual nodes35,36, (2) currently there is little information about the extent of
influence of a node (i.e., a biological entity, such as gene) on the activity (e.g.,
expression level) of its neighbor that is more than three hops away37, and (3) recent
studies have empirically demonstrated that network features extracted based on
three-hop neighborhoods contain the most useful information for predictive
modeling38,39.

To further explore Eq. (2) we can write the update rule for each entry:

Wtþ1

� �

i;j
¼ α

X

k2N i

X

l2N j

T i;k Wtð Þk;lT l;j þ ð1� αÞT i;j: ð3Þ

It can be seen from Eq. (3) that the updated network comes from similarity/
interaction flow only through the neighbors of each data point. The parameter α
adds strengths to self-similarities, i.e., a node is always most similar to itself. One
key property that differentiates our method from typical diffusion methods is that
in the proposed diffusion process defined in Eq. (2), for each iteration t, Wt

remains a symmetric DSM. Furthermore,Wt converges to a non-trivial equilibrium
network which is a symmetric DSM as well (Supplementary Note 3). Therefore, NE
constructs an undirected network that preserves the symmetry and DSM property
of the original network. Through extensive experimentation we show that NE
improves the similarity between related nodes and the performance of downstream
methods such as community detection algorithms.

The main theoretical insight into the operation of NE is that the proposed
diffusion process does not change eigenvectors of the initial DSM while mapping
eigenvalues via a non-linear function (Supplementary Note 3). Let eigen-pair (λ0,
v0) denote the eigen-pair of the initial symmetric DSM, T 0 . Then, the diffusion
process defined in Eq. (2) does not change the eigenvectors, and the final converged

graph has eigen-pair (fα(λ0), v0), where fα(x)=
ð1�αÞx
1�αx2 . This property shows that, the

diffusion process using a symmetric, DSM is a non-linear operator on the spectrum
of the eigenvalues of the original network. This results has a number of
consequences. Practically, it provides us with a closed-form expression for the
converged network. Theoretically, it hints at how this diffusion process effects the
eigenspectrum and improves the network for subsequent analyses. (1) If the
original eigenvalue is either 0 or 1, the diffusion process preserves this eigenvalue.
This implies that, like other diffusion processes, NE does not connect disconnected
components. (2) NE increases the gap between large eigenvalues of the original
network and reduces the gap between small eigenvalues of this matrix. Larger
eigengap is associated with better network community detection and higher-order
network analysis12,15,16. (3) The diffusion process always decreases the eigenvalues,
which follows from: ð1� αÞλ0= 1� αλ

2
0

� �

≤ λ0, where smaller eigenvalues get
reduced at a higher rate. This observation can be interpreted in relation to PCA
where the eigenspectrum below a user determined threshold value is ignored. PCA
has many attractive theoretical properties, especially for dimensionality reduction.
In fact, MU17, a feature learning method whose output is also a denoised version of
the original network, can be fit by computing the PCA decomposition on the
stationary state of the network. MU aims to learn a low-dimensional representation
of nodes in the network which makes PCA a natural choice. However, a smoothed-
out version of the PCA is more attractive for network denoising because denoising
is typically used as a preprocessing step for downstream prediction tasks, and thus
robustness to selection of a threshold value for the eigenspectrum is desirable.

These findings shed light on why the proposed algorithm (NE) enhances the
robustness of the diffused network compared to the input network (Supplementary
Note 3). In some contexts, we may need the output to remain a network of the
same scale as the input network. This requirement can be satisfied by first
recording the degree matrix of the input network and eventually mapping the
denoised output of the algorithm back to the original scale by a symmetric matrix
multiplication. We summarize our NE algorithm along with this optional degree-
mapping step in Supplementary Note 3.

Code availability. The project website can be found at: http://snap.stanford.edu/ne.
Source code of the NE method is available for download from the project website.
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Data availability. All relevant data are public and available from the authors of the
original publications. The project website can be found at: http://snap.stanford.edu/
ne. The website contains preprocessed data used in the paper together with raw and
enhanced networks.
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