nature genetics

Article

https://doi.org/10.1038/s41588-023-01327-9

Network expansion of genetic associations
defines apleiotropy map ofhuman

cellbiology

Received: 19 July 2021

Accepted: 30 January 2023

Published online: 23 February 2023

W Check for updates

Inigo Barrio-Hernandez ®'?, Jeremy Schwartzentruber'?3, Anjali Shrivastava'?,
Noemi del-Toro"?, Asier Gonzalez'?, Qian Zhang?®, Edward Mountjoy'?,

Daniel Suveges'?, David Ochoa®'?, Maya Ghoussaini®'?, Glyn Bradley?,
Henning Hermjakob ®'?, Sandra Orchard ®'?, lan Dunham ®'23,

Carl A. Anderson?3, Pablo Porras"? & Pedro Beltrao ® '>°

Interacting proteins tend to have similar functions, influencing the same
organismal traits. Interaction networks can be used to expand the list of
candidate trait-associated genes from genome-wide association studies.
Here, we performed network-based expansion of trait-associated genes
for1,002 human traits showing that this recovers known disease genes or
drug targets. The similarity of network expansion scores identifies groups
of traits likely to share an underlying genetic and biological process. We
identified 73 pleiotropic gene modules linked to multiple traits, enriched
ingenesinvolvedin processes such as protein ubiquitination and RNA
processing. In contrast to gene deletion studies, pleiotropy as defined here

captures specifically multicellular-related processes. We show examples of
modules linked to human diseases enriched in genes with known pathogenic
variants that can be used to map targets of approved drugs for repurposing.
Finally, we illustrate the use of network expansion scores to study genes
atinflammatory bowel disease genome-wide association study loci, and
implicate inflammatory bowel disease-relevant genes with strong functional
and genetic support.

Proteins that interact tend to take part in the same cellular func-
tions and be important for the same organismal traits". Through
a principle of guilt-by-association, it has been shown that mole-
cular networks can be used to predict the function or disease rele-
vance of human genes®~. On the basis of this, protein interaction
networks can augment genome-wide association studies (GWAS)
by using GWAS-linked genes as seeds in a network to identify addi-
tional trait-associated genes®™. It is well known that GWAS loci
are enriched in genes encoding for approved drug targets'*" and
genes linked to a trait by network expansion are similarly enriched,

even when excluding genes with direct genetic support'®. This is an
opportune time to revisit the application of network approaches to
GWAS interpretation on the basis of recent large improvements in
the human molecular networks available, single-nucleotide poly-
morphism (SNP) approaches to gene mapping and the extent of
human traits/diseases mapped by GWAS. In particular, there have
been substantial improvements in the identification of likely causal
genes within GWAS loci using expression and protein quantitative trait
loci analysis™', as well as integrative approaches based on machine
learning".
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The genetic study of large numbers of diverse human traits also
opens the door to the study of pleiotropy, which occurs when asingle
genetic change affects multiple traits. Studying pleiotropy can helpin
thedrugdiscovery process by either increasing the number of potential
indications for a drug or avoiding unwanted side effects. Large-scale
investigations of the most pleiotropic cellular processes have relied
primarily on gene deletion studies. For example, yeast gene deletion
studies have revealed pleiotropic cellular processes that include endo-
cytosis, stress response and protein folding, amino acid biosynthesis
and global transcriptional regulation®. Identification of these highly
pleiotropic cellular systems highlights core conserved processes and
the complexinterconnections within cell biology. Human GWAS data
have been extensively used to quantify pleiotropy at the SNP level'* ™
and although this has shed light on the degree of pleiotropy and the
relationship between traits, it has not often led to identification of
the molecular mechanisms that underlie their common genetic basis.

Here, we augmented GWAS data for 1,002 traits by network expan-
sionwith the purpose of studying pleiotropic cellular processes at the
level of the human organism. This network expansion recovers known
disease genesnotassociated by GWAS, identifies groups of traitsunder
the influence of the same cellular processes and defines a pleiotropy
map of human cell biology. Finally, we illustrate the use of network
expansion scores to characterize inflammatory bowel disease (IBD)
genes at GWAS loci, and implicate IBD-relevant genes with strong
functional and genetic support.

Results

Systematic augmentation of GWAS with network propagation
Recent studies have shown that a comprehensive protein interaction
network is critical for network propagation efforts’. Here, we com-
bined the International Molecular Exchange physical protein interac-
tion dataset' from IntAct (protein-proteininteractions)*, Reactome
(pathways)? and SIGNOR (directed signaling pathways)*. To facilitate
re-use of these data (referred to as ‘OTAR interactome’) we have made
the dataavailable via aNeo4j Graph Database (ftp://ftp.ebi.ac.uk/pub/
databases/intact/various/ot_graphdb/current). The physical interac-
tions were combined with functional associations from the STRING
database (v.11)* to give a final network containing 571,917 edges
connecting 18,410 proteins (nodes) (Fig. 1a). GWAS trait associations
were mapped to genes using the locus-to-gene (L2G) score from Open
Targets Genetics, amachine learning approach thatintegrates features
such as SNP fine-mapping, gene distance and molecular quantitative
traitlocus (QTL) information to identify causal genes (Fig. 1b)". Genes
with L2G scores higher than 0.5 are expected to be causal for the respec-
tive trait association in 50% of cases.

For each GWAS, associated genes were used as seeds in the inter-
action network. Of 7,660 GWAS genes linked to at least one trait, 7,248
correspond to proteins present in the interaction network. We then
used the Personalized PageRank (PPR) algorithm to score all other
protein coding genes in the network where genes connected via short
paths to GWAS genes receive higher scores (Fig. 1c). Genes in the top
25% of network propagation scores were used toidentify gene modules,
fromwhichwe selected those significantly enriched for high network
propagation scores (Benjamini-Hochberg (BH)-adjusted P < 0.05 with
Kolmogorov-Smirnov test) and with at least two GWAS-linked genes
(Methods). We applied this approach to 1,002 traits (Supplementary
Table1) with GWAS inthe Open Targets Genetics portal that had at least
two genes mapped to the interactome. These GWAS were spread across
21therapeuticareas, and differed in the number of GWAS-linked genes
(median 6, range 2-763) (Fig. 1d).

To measure the capacity of the network expansion to recover
trait-associated genes, we defined a ‘gold standard’ set of disease-
associated genes (from https://diseases.jensenlab.org) that are known
drug targets for specific human diseases (from the ChEMBL data-
base, Methods). To avoid circularity in benchmarking, we excluded

gold standard genes that overlapped with GWAS-linked genes for
the respective diseases. The network propagation score predicted
disease-associated genes with anaverage area under the receiver oper-
ating characteristic (ROC) curve (AUC) >0.7 for the most stringent
definition of disease-associated genes as well as known drug targets
(Fig. 1e and example ROC curves in Supplementary Fig. 1). The per-
formance was higher than that observed with random permutation
of the gold standard gene sets (Fig. 1e and Supplementary Fig. 2; true
positive permutations), suggesting that it is not strongly biased by
the placement of the gold standard genes within the network. We also
tested theimpact of changing the interaction network, either by using
subsets of the network defined here or by using the previously defined
composite PCNet network’ (Supplementary Fig. 3). Overall, the com-
bined network performed best with an accuracy similar to that of the
larger PCNet (Supplementary Fig. 3).

Intotal, we obtained network propagation scores for 1,002 traits
and gene modules for 906 traits (Supplementary Table 1).

Network propagation identifies related human traits
Identifying groups of traits likely to have acommon genetic basis is of
value because drugs used to treat one disease may also have effectsin
related diseases. Genetic sharing between human traits is often deter-
mined by correlation of SNP-level statistics from GWAS; however, this
approach does not identify how the shared genetics corresponds to
shared biological processes. In addition, many GWAS do not report
the fullsummary statistics needed for such comparisons. By contrast,
network propagation scores canbe calculated from the set of candidate
genes available for any GWAS. To benchmark trait-trait associations
derived from network propagation, we used the similarity of annota-
tions from the Experimental Factor Ontology (EFO), which include
aspects of disease type, anatomy and cell type among others. For exam-
ple, pairs of related neurological traits tend to share many annotation
terms in the EFO. Using these annotations, we defined 796 pairs of
traits that are functionally related and therefore likely to have a com-
mon genetic basis (Methods). Anadditional benchmark was obtained
from trait-to-trait genetic correlations calculated from SNP-based
analyses®*?°, Using these benchmarks, we show that similarity in the
network propagation scores canidentify functionally and genetically
related pairs of traits (Supplementary Fig. 4).

To explore trait-trait relationships on the basis of the similarity
oftheir perturbed biological processes, we used the pairwise distance
of network propagation scores to build a tree by hierarchical cluster-
ing (Fig. 2a), and defined 54 subgroups of traits. The traits tend to
group according to functional similarity with 34 of 54 having an EFO
termannotated to more than 50% of the traits in the group (Fig.2a).In
Fig.2b we show examples of traits that are grouped together according
tothe network propagation scores. These include knownrelationships
between immune-associated traits such as cellulitis or psoriasis and
immunoglobulin G measurements; the relationship between skin
neoplasms and skin pigmentation or eye color; or the clustering of
cardiovascular diseases (acute coronary symptoms) with lipoprotein
measurements and cholesterol.

We obtained drug indications from the ChEMBL database for
the diseases in each cluster (Fig. 2a). This allows us to find clusters in
which drugs may be considered for repurposing, as well as groups of
traits in which drug development is most needed. Eighteen clusters
representing 64 traits contain no associated drug and represent less
well-explored areas of drug development. All trait clusters, genes and
corresponding drugs are available in Supplementary Table 1.

Pleiotropy of gene modules across human traits

We canstudy the pleiotropy of human cell biology by identifying which
genemodules tend to be associated with many human traits. This allows
us to understand how perturbations in specific aspects of cell biol-
ogy may have broad consequences across multiple traits. In total, we
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Fig.1|Implementation and benchmarking of network-based augmentation
of GWAS. a, Edge and node counts of the combined interactome and its
components. OTAR is the Open Targets combined physical proteininteraction
network thatis provided viaa Neo4j Graph Database. b, Graphic representation
of some L2G components: SNP-to-gene distance, data from QTLs and variant
effect predictions. The integration of information into the L2G score has been
described previously. ¢, Graphical representation of the network-based
approach: network propagation of the initial input, clustering using arandom
walker to find gene communities and scoring of modules using the distribution
of PageRank score. KS, Kolmogorov-Smirnov. d, Number of starting genes linked
to traits, grouped in therapeutic areas. In the violin plot, the red dots represent
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range. e, Benchmarking of the method, using as a starting signal genes from the
Open Targets Genetics portal witha L2G score >0.5. AUC values are calculated
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its gene-to-trait score (Methods), as well as clinical trials data from the ChREMBL
database (clinical phase Il or higher). We also re-calculated the AUC values and
determined Z-scores reflecting the deviation in AUCs relative to those observed
after randomization of the list of true positives (TPs). In the boxplots, the middle
lines represent the median, the limits of the box are quartiles1and 3 and the
whiskers represent 1.5x the interquartile range.

found 2,021 associations between gene modules and traits, of which
886 (43.8%) are gene modules linked to a single trait and the remain-
ing can be collapsed to 73 gene modules linked to two or more traits
(Fig.3a, Supplementary Table 2 and Methods). The 73 modules associ-
ated withmore than one trait did not have asignificantly larger number
of genes (P=0.72, Kolmogorov-Smirnov test), whereas the traits linked
with the 73 pleiotropic gene modules tend to have a higher number of
significantinitial GWAS seed genes (Supplementary Fig. 5). Therefore,
traits with alarger number of linked loci are more likely to be associated
with pleiotropic gene modules.

The six most pleiotropic gene modules were linked to between
56 and 110 traits in our study, and were enriched (Gene Ontology

Biological Process (GOBP) enrichment with one-sided Fisher’s exact
test, BH-adjusted P < 0.05) for genes involved in protein ubiqui-
tination, extracellular matrix organization, RNA processing and
G protein-coupled receptor (GPCR) signaling (Fig. 3b). Gene deletion
studiesinyeast haveidentified some of the same cellular processes as
being highly pleiotropic”. Genes within pleiotropic modules linked to
tenor moretraits are enriched in genes that are ubiquitously expressed
(fold enrichment =1.42, P=1.71 x 107, Fisher’s exact test, one-sided),
have many deletion phenotypes (fold enrichment =1.56, P=1.71x 107,
Fisher’s exact test, one-sided) and higher numbers of geneticinterac-
tion (Fisher’s exact test, one-sided P=4.155 x 107'°). Targeting pleio-
tropic processes with drugs could, therefore, have broad application,
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but may also raise safety concerns. However, despite these enrich-
ments, there is no simple correlation between the number of traits
linked to agene module and the enrichment of ubiquitously expressed
genes (Pearson’s r = 0.0793) or genes with many deletion phenotypes
(Pearson’sr=-0.0345). This analysis allows us to connect gene deletion
phenotypes with humantraits (Supplementary Fig. 6). For example, a
pleiotropic module linked to traits such as ‘autism spectrum disorder’
and ‘osteoarthritis’ has a high fraction of gene deletion phenotypes
impacting on protein transport, and amodule linked with Alzheimer’s
disease, balding measurement and bone density has genes with a high

fraction of gene deletion phenotypes associated with cellular senes-
cence (Supplementary Fig. 6).

We thenrelated pleiotropy as defined by the module-trait asso-
ciations derived here with pleiotropy defined by CRISPR gene dele-
tion studies. For each Gene Ontology (GO) term, we calculated the
enrichment in genes linked with many traits in our analysis with the
enrichment in genes having many gene deletion phenotypes. GO
terms specifically enriched in pleiotropic genes based on our defini-
tion are dominated by terms that relate to multicellularity, such as
membrane signaling, cell-to-cell communication and cell migration
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Fig.3 | Multitrait gene module associations for studies of shared biological
processes and drug-repurposing opportunities. a, Heatmap showing the
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0.6 average correlation coefficient. A module was considered the same across
different traits when most genes are in common (Jaccard index > 0.7). Significant
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(Supplementary Fig. 7). For pleiotropy that is specifically found with
CRISPR screens, we find terms related to essential processes such as
cellcycle, ribosome biogenesis and RNA metabolism (Supplementary
Fig.7).

Foreach ofthe 73 pleiotropic gene modules, we highlighted those
that are overrepresented in each group of related traits (Fig. 3a and
Methods, one-sided Fisher’s exact test, BH-adjusted P < 0.05). To facili-
tate the study of cell biology and drug-repurposing opportunities we
annotated (Fig. 3a and Supplementary Table 2) the genes found in
overlapping modules for each of the clusters with data from: ChEMBL
(targetsof drugsin atleast phaselll clinical trials), ClinVar (genes linked
to clinical variants) and mouse knockout (KO) phenotypes (phenotypic
relevance and possible biological link). We explore a few examples of
these modulesin the following sections.

Shared mechanisms and drug-repurposing opportunities
We identified two groups of traits (bone and fasciitis related) that are
predicted to have acommon determining gene module (Fig. 3cand Sup-
plementary Table 3). This module is enriched in Wnt signaling genes,
which have been previously linked to bone homeostasis® and to differ-
enttypes of fasciitis as well as Dupuytren’s contracture”. We collected
genes harboring likely pathogenic variants from ClinVar (Methods),
hereafter referred to as ClinVar variants. This gene moduleis enriched
ingenes harboring ClinVar variants from patients with tooth agenesis
andbone-related diseases (osteoporosis and osteopenia). Several genes
with ClinVar variants, suchas LRP6,SOST, WNT1, WNT10A and WNTIOB,
are not linked to bone diseases via GWAS. Genetic manipulation of
several genes within this module causes changes in bone density in
mouse models®. In addition, this module contains the target (SOST)
of Romosozumab, a drug proven effective to treat osteoporosis.
Inasecond example (Fig. 3d and Supplementary Table 3), we iden-
tified agroup of tenrespiratory (for example, asthma) and cutaneous
(for example, eczema) immune-related diseases that share three gene
modules: a highly pleiotropic module related to regulation of transcrip-
tionand proteasome, and two more specific modules related to pattern
recognition receptor signaling and cytokine production with Janus
kinase/signal transducer and activator of transcription (JAK-STAT)
involvement. These modules were significantly enriched (one-sided
Fisher’s exacttest, P < 0.05) in genes having likely pathogenic variants
from patients with asthma. The two most specific gene modules were
grouped and are shownin Fig. 3d highlighting several genes with known
pathogenic variants not associated with these diseases via GWAS (for
example, IRAK3, TNF, ALOXS, TBX21).IRAK3, encoding a protein pseu-
dokinase, is an example of adruggable gene notidentified by GWAS for
asthma, but with protein missense variants linked to this disease®®, and
mice model studies have implicated the regulation of IRAK3 in airway
inflammation induced by interleukin-33 (IL-33)*". Although no drug
for IRAK3 is used in the clinic, this analysis suggests it may serve as a
relevant drug target for asthma and other related diseases.
Weidentified atotal of 41 targets of 126 drugs targeting the genes
inthe module showninFig.3d. Toidentify drugs that could have repur-
posing potential, we excluded those already targeting therapeutic

areas that include the ten diseases linked to this gene module. This
resulted in18 drugs (Supplementary Table 3) targeting 5 genes includ-
ing:14 drugs targeting PTGS2, used to treat primarily rheumatic disease
and osteoarthritis; interferon alfaconl or alfa-2B (targeting IFNAR1
and IFNAR2), designed to counteract viral infections; galiximab and
antibody for CD80 (phase lll trials for lymphoma); and the antibody
RA-18C3targeting IL1A for colorectal cancer. These drugs may be suited
to repurposing for respiratory or cutaneous autoimmune-related
diseases. Asan example, RA-18C3 has shown benefitinasmall phasell
trial for hidradenitis suppurativa (acne inversa)*.

Gene module analysis of related immune-mediated diseases
Traitsrelated to theimmune system are well represented in our analysis,
fallinginto three different groups: one cluster containing systemic and
organ-specific diseases; one cluster of immune cell measurements;
and athird, more heterogeneous, cluster (Fig. 3a and Supplementary
Table 2).InFig.4awerepresent the first of these clusters, which canbe
further subdivided into asubgroup linking IBD, multiple sclerosis and
systemic lupus erythematosus, and one linking celiac disease, vitiligo
and other diseases. We found six gene modules that are specifically
enriched withatleast one of these two groups of traits, including gene
modules related to GPCR signaling, neutrophil activation and inter-
feronsignaling. Genes present in these modules show higher relative
expression (Fig. 4a, right) in key immune tissues.

The six gene modules are shown in Fig. 4b with a connection
between them when there is a significant gene-level overlap (Fig. 4b;
Methods). For representation (Fig. 4c), we selected genes frommodules
linked with at least threeimmune-mediated diseases and kept a subset
ofinteractions of high confidence (Methods). We found multiple genes
with ClinVar variants from patients with primary immune deficiencies
(forexample, IRF9, IRF7,STAT1,STAT2) that are not GWAS-linked genes
butareintheir network vicinity, providing evidence of theimportance
of this gene module for these diseases.

To pinpoint drugs with repurposing potential, we excluded
those targeting diseases in the same therapeutic areas as the
immune-mediated group of diseases, identifying 49 drugs with 20
targets. These include ulimorelin, an agonist of the ghrelin hormone
secretagogue receptor GHSR used to treat gastrointestinal obstruc-
tion. Ghrelin hormone signaling has been studied in the context of
age-related chronic inflammation?®, psoriasis®* and IBD (reviewed in
ref. ) indicating a potential repurposing opportunity. The 49 drugs
with repurposing potential are listed in Supplementary Table 3 with
information on target genes and clinical trials.

Network-assisted candidate gene prioritization for IBD
Although the gene modules we have described can highlight biologi-
cal pathways shared between genetically related traits, identifying
causal genes at individual GWAS loci is important for prioritizing
therapeutic targets. Existing methods such as GRAIL*, DEPICT* and
MAGMA?® prioritize genes based on biological pathways but do not
fully use genome-wide proteininteraction networks, which can provide
finer-grained information over GO terms.

Fig. 4| Gene module analysis of autoimmune diseases. a, Heatmap showing the
overlap between gene modules across traits (color-coded asin Fig. 3a,c,d). The
GOBP description is based on the results of a GOBP enrichment test (one-sided
Fisher’s exact test, BH adjustment, Methods). The heatmap in the right-hand
panel shows the gene set enrichment analysis carried out on the expression data
from different tissues extracted from Human Protein Atlas (HPA) for the gene
modules in blue (two-sided Kolmogorov-Smirnov test, Methods). After BH
adjustment for multiple testing, the Pvalue of the test was log transformed and
givena positive value if the median distribution for the foreground was higher
than the background and a negative value if it was lower. b, Shared modules as
anetwork, nodes are gene modules associated with different immune-related

traits colored blue or red for the two trait subgroups; edges represent a high
degree of overlap at the gene level (Jaccard index > 0.7). Gene modules linked to
different traits are given in black circles. Gene modules are linked with the yellow
node ‘ChEMBL-drugs’ when they contain targets for drugsin clinical trials (phases
[ITand IV, ChEMBL); linked with green nodes when they are enriched in genes with
clinical variants for a given disease; and linked with purple nodes when they are
enriched for the corresponding KO phenotypes (one-sided Fisher’s exact test,
adjusted P< 0.05). ¢, Network corresponding to genes found in gene modules
enriched for Typelinterferon (INF) signaling, phospholipase C-activating GPCR
signaling, neutrophil activation (integrins) and protein kinase A (PKA) activity.
Edge filtering, node and edge colors are the same as in Fig. 3¢c,d.
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First, we manually curated 37 genes with high confidence of being
causally related to either Crohn’s disease or ulcerative colitis (Sup-
plementary Table 4) and second, we used the Open Targets L2G score

Here, we use network propagation to prioritize genes at IBD
GWAS loci, similar to our previous work on Alzheimer’s disease®. We
used two alternative methods of defining seed genes for the network.
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Fig. 5| AnIBD-specific network is enriched for likely causal genes. a, Curated
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network evidence as complementary to typical locus features. In the boxplots,
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genes with low P-value SNPs within 10 kb are enriched for high PPR percentile
(one-sided Fisher’s exact test). Data are presented as the mean + s.d.

to automatically select 110 genes with L2G > 0.5 at established IBD
loci*®* (Methods and Supplementary Table 4). To obtain network
propagation scores, we compared each gene’s score with 1,000 runs
using the same number of randomly selected input genes, to give
the PPR percentile value (Methods). We obtained unbiased network
propagation values for each seed gene by excluding them one at a
time (Methods).

The curated seed genes had far higher network scores than other
geneswithin200 kb (P=7.4 x 107%, one-tailed Wilcoxon rank sum test),
indicating that most seed genes have close interactions with other seed
genes (Fig. 5a). The same was true when considering seed genes exclu-
sivelyinthe L2G gene set (Fig. 5b; P=3 x 107°, one-tailed Wilcoxon rank
sum test), indicating that many of these are also strong IBD candidate
genes. Finally, we examined the enrichment of low SNP Pvalues within
10 kb of genes having high network scores. This revealed a progressive
enrichment of low P values near genes with higher network scores
(Fig. 5c), which held for the large number of genes linked to SNPs not
reaching the typical genome-wide significance threshold of 5 x 1078
forlocus discovery.

Curated genes with strong network supportinclude the drug tar-
gets TYK2, ICAM1 and ITGA4,and NOD2 and IL23R, which have missense
variants implicating them as modulators of IBD**"**, A small number
of curated genes had lower network support, which could be due to
these genes affecting IBD via pathways distinct from the biological

functions covered most well by the curated gene set. Across IBD loci
without curated genes, our network scores rank 42 candidates as being
more highly functionally connected than the remaining genes at the
locus (Supplementary Table 4 and Methods). Although many of these
were already strong IBD candidate genes, some have found strong
support only recently. A clear example is the RIPK2 locus. Although
OSGIN2is nearest to IBD lead SNP rs7015630 (38 kb distal), it has no
apparent functional links with IBD (network score 43%). By contrast,
RIPK2 (108 kb distal, network score 99%) encodes for a mediator of
inflammatory signaling viainteraction with the bacterial sensor NOD2
(ref.*). Network information can also provide acomparison point for
other evidence sources. At the DLD-SLC26A3 locus, there is moderate
evidence of genetic colocalization between IBD and an expression
quantitative trait loci (eQTL) for DLD in various tissues (Open Tar-
gets Genetics portal). However, DLD has no clear functional links with
IBD and receives a low network score (14%). By contrast, SLC26A3 is
a chloride anion transporter highly expressed in the human colon,
with a high network score (98.4% in the L2G seed gene network), and
its expression has been recently associated with clinical outcomes in
ulcerative colitis*’. IBD candidate genes that have high network scores
but have not been well characterized in the context of IBD include
PTPRC (aphosphataserequired for T cell activation) and BTBDS, which
is functionally connected to autophagy by the network analysis
(viaWIPI2and ATGI6LI).
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To study the pleiotropy of the curated and candidate genes
we looked at the eight gene modules linked by our analysis to IBD
(Supplementary Fig. 8). Of the 37 curated and 42 candidate genes, 35
(14 curated and 21 candidate) are found within these modules. Inter-
estingly, we found that most of these genes are in modules that are
only linked to IBD; in particular, a module that is enriched for genes
related toreceptor signaling viathe JAK-STAT pathway (Supplementary
Fig. 9). Conversely, the most pleiotropic modules linked to IBD have
very few IBD candidate genes within them. As expected, these pleio-
tropic modules tend tobe associated with traits that are related to the
immune system, with the exception of the most pleiotropic module,
which is enriched for genes related to protein ubiquitination (Sup-
plementary Fig. 8). This analysis suggests that the JAK-STAT-related
moduleislikely to be the best source of novel candidate disease genes
and drug targets that are more inclined to be specific to IBD.

Discussion

Weidentified gene modules associated with 906 human traits, taking
advantage of the increased coverage of human interactome map-
ping and novel tools for SNP-to-gene mapping". As seen in other
studies’, network expansion can retrieve previously known disease
genes not identified by GWAS, including those not in GWAS loci but
that may modulate the same biological processes. Even when exclud-
ing genes with direct genetic support, such interacting genes are
enriched for successful drug targets™. Genes identified by network
expansion will not have information on the direction of effect and
additional work and interpretation are needed to gain insights into
the direction of impact of modulating such genes. Although there
are several algorithms to perform network propagation, recent
studies have shown that they tend to perform similarly* and the net-
work used has a stronger impact on performance’. For this reason,
improvements in mapping coverage and computational or experi-
mental approachesto deriving tissue- or cell-type-specific networks®
could have a large impact on the future effectiveness of network
expansion.

We showed examples of disease-linked gene modules that were
alsoenrichedingenes carrying clinical variants for the same or related
diseases. In many cases, genes with clinical variants did not overlap
with the GWAS-linked genes, which is likely due to a lower frequency
of clinical variants. Testing for burden of loss-of-function variants
within selected gene sets is an approach used to study the impact of
low-frequency variants***’ and we suggest that the gene modules iden-
tified here could be ideally suited for this purpose. The gene modules
identified here relate to specific aspects of cell biology with different
human traits. Analysis of mouse phenotypes and ClinVar variants
provided additional evidence for some of the identified relationships.
Additional experimental work, in particular with appropriate models
(for example, organoids, mouse models), is needed to follow up on
some of the derived associations. Beyond identifying gene modules,
our GWAS-based network approach can also be used to prioritize
disease genes atindividual loci by their role within specific biological
processes, as we showed for IBD.

The most pleiotropic gene modules share some aspects of cell
biology that have been defined as highly pleiotropic in gene deletion
studies of yeast®. Gene modules linked with different traits could
provide opportunities for drug repurposing or cross-disease drug
development. However, targeting pleiotropic processes could raise
safety concerns. We find that these modules are enriched for genes that
areubiquitously expressed, and have many gene deletion phenotypes
and ahigher number of geneticinteractions. However, we do not find a
simple correlation between the number of traits associated with a gene
module and these metrics. This may suggest that some highly pleio-
tropic processes may be safe to target or that metrics such as CRISPR
deletion phenotypes and ubiquitous expression may be insufficient
tojudge drug target safety.

Comparing the pleiotropy of cellular processes as defined by
module-trait associations with that defined by gene deletion studies
suggests that, although there are some similarities, gene deletion
studies tend to miss pleiotropy that relates to cell-to-cell communi-
cation. This is not surprising given that CRISPR screens in cell lines
typically assay for phenotypes measured in single cells. Conversely,
our trait-to-module analysis tends to miss pleiotropy that is highly
essential to cells. We suggest that (some of) these essential cellular
processes may be lethal if genetically perturbed, and therefore associ-
ated variants are not observed in human populations and not seen in
genetic association studies.

Interestingly, traits that are linked with highly pleiotropic gene
modules tend to have a larger number of starting GWAS seed genes,
which usually have larger sample sizes. This suggests that the larger
the number of locilinked to atrait, and likely greater sample sizes, the
higher the chances that this trait will be genetically linked to highly
pleiotropicbiological processes. Althoughit has been suggested that
the heritability of complex traitsis broadly spread along the genome'®,
our analysis indicates that, across a large number of traits, this herit-
ability overlaps in anonrandom fashion.

Insummary, network expansion of GWAS is a powerful tool for the
identification of genes and cellular processes linked to human traits,
and application in multitrait analysis can reveal pleiotropy of human
biological pathways at the level of the organism, as well as highlight
new opportunities for drug development and repurposing.
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Methods

Human interactome, GWAS traits and linked genes analyzed
We created acomprehensive humaninteractome, merging aninterac-
tome developed for the Open Targets (www.opentargets.org) project
(version from November 2019), with STRING v.11.0. The Open Tar-
gets Interactome network was constructed during this project and
contains human data only, including physical interaction data from
IntAct, causality associations from SIGNOR and binarized pathway
reactionrelationships from Reactome. More details about the network
construction can be found in the Supplementary Information and at
https://platform-docs.opentargets.org/target/molecular-interactions.
STRING functional interactions were human only and selected to have a
STRING edge score >0.75. Allidentifiers were mapped to Ensembl gene
identifiers and, after removing duplicated edges and self-loops, the
final network contained 18,410 nodes and 571,917 edges.

Network propagation of GWAS-linked genes

From a total of 1,221 traits, we selected 1,002 mapped to EFO terms
(www.ebi.ac.uk/efo/) included in the Open Targets genetic portal,
with at least two genes mapped to our interactome with a L2G score
of 0.5 or above (defined as seed nodes). The network-based approach
was run individually for each trait, with each protein having a weight
corresponding to the L2G score (between 0.5 and 1.0). The input was
diffused through the interactome using the PPR algorithm included
in the R package igraph (v.1.2.4.2). To generate the modules, we
selected nodes witha PPRranking score greater than the third quartile
(Q3, 75%) and performed walktrap clustering (igraph v.1.2.4.2). When
the number of nodes in one module was >300, we repeated the clus-
tering inside this community until all resulting clusters were <300
genes. To define gene modules as significantly associated with a trait,
we used a Kolmogorov-Smirnov test to determine whether ranks
(based on PPR) of genesinamodule were greater than the background
ranks of all the nodes considered for the walktrap clustering. We
tested only modules with at least ten genes and where two or more
of them were seed genes (L2G > 0.5), and we corrected the resulting
Pvalues for multiple testing using BH adjustment. On the basis of this,
we identified a total of 2,021 associations between a gene module
and atrait.

Benchmarking the capacity to predict disease-associated
genes from the network expansion

Tobenchmarkboththe predictive power of the ranking score resulting
fromthe PPRand the genetic portal datawhen compared with a GWAS
catalog (https://www.ebi.ac.uk/gwas/; based on gene proximity), we
computed ROC curves using as true positives the genes linked to dis-
eases fromtheJensenlab DISEASE database (diseases.jensenlab.org).
This database provides ascore measuring this association; benchmark-
ing was done using five different score thresholds (DISO, allgenes; DIS1,
score >25%; DIS2, score >50%; DIS3, score >75%; and DIS4, maximum
value for the score). We calculated the ROC curves and the area under
the ROC curve (AUC) for traits with at least ten true positives. Also, we
randomized both nodes in the network (keeping the degree distribu-
tion) aswell as the true positives 1,000 times each. We then calculated
the AUC values and the subsequent Z-scores. As an extra benchmark,
we used the clinical trial data contained in ChREMBL (https://www.ebi.
ac.uk/chembl/), considering as true positives drug targets tested for
acertain disease at clinical phase Il or higher.

Trait-trait relationships defined by the similarity of the
network propagation

We calculated the Manhattan distance between the 1,002 traits using
the full PPR ranking score, followed by hierarchical clustering, result-
ingin 54 clusters (height distance =1). To further characterize the trait
clusters, we selected those having at least five traits, obtained their
EFO ancestry and calculated their frequency per cluster. The highest

frequency per cluster is used to define nine groups color-coded in
Fig. 2a. To complement the description of clusters belonging to
the most general group ‘measurement’ and ‘material property’, we
extracted EFO ancestry terms using manually assigned terms from the
EFO ancestry with a lower frequency (Fig. 2a). The ChEMBL database
(https://www.ebi.ac.uk/chembl/) was used to calculate the counts of
both drugs and drug targets for each of the trait clusters, using infor-
mation for drugsinclinical trials phases Illand IV. To further illustrate
the validity of this approach, we selected three trait clusters (Fig. 2b)
as examples of valid trait-to-trait relations.

Multitrait gene module analysis

Significant modulesidentified for each trait (described above) were
compared across traits by measuring the overlap in genes using
the Jaccard index. Gene modules with aJaccard index >0.70 were
considered common across two traits. From the 2,021 pairs of gene
module-trait associations, 886 are unique to a single trait and the
remainder can be collapsed (that is, considered highly overlapping
or the same gene module). This results in 73 gene modules that are
enriched in network propagation signals for two or more traits. To
identify subgroups of related traits, we clustered those linked to
the 73 multitrait modules on the basis of the Manhattan distance
of their full PPR ranking score (as above) using hierarchical clus-
tering. Subgroups were defined with a height cutoff of 0.7 and we
identified gene modules that were more specific to each subgroup
oftraits using a one-sided Fisher’s exact test and BH multiple testing
correction. We retained trait subgroups with at least three traits
and a significant presence of at least one group of overlapping
modules.

Relating pleiotropy from GWAS module with gene expression
and deletion phenotypes

We used the BioGRID Open Repository of CRISPR Screens (ORCS,
v.1.1.11, https://orcs.thebiogrid.org/), which contains 1,342 studies
measuring the impact of gene deletions on viability and other cellular
measurements, including cell-cycle progression, response to different
stresses, transportand others. On the basis of these CRISPR screens, we
defined as pleiotropic those genes that had a cell-based phenotypein
more than half of the screens. We defined genes likely to be expressed
in many tissues as those having an expression level above the median
for agiventissue in more than half of the tissues in the Human Protein
Atlas (https://www.proteinatlas.org/). To compare the enrichment of
genes defined as highly pleiotropicin our analysis with those defined
by CRISP studies, we performed an enrichment analysis for each GOBP
term using a Gene Set Enrichment Analysis test (cluster profiler pack-
age,v.4.2.2).

Gene module annotations and enrichment analysis

The gene KD mouse phenotypes were extracted from the International
Mouse Phenotyping Consortium (https://www.mousephenotype.
org/) and the clinical variants were extracted from the ClinVar data-
base (National Center for Biotechnology Information (NCBI), https://
www.ncbi.nlm.nih.gov/clinvar/). For the enrichment of genes from
clinical variants, diseases were grouped into larger categories. For the
enrichment of genes from clinical variants referred to in Figs. 3¢,d
and 4b,c, we downloaded data from ClinVar (NCBI), filtered out
all benign associations and grouped the phenotypes into higher
categories as follows: tooth agenesis (tooth agenesis, selective tooth
agenesis 4, 7 and 8); bone-related diseases (sclerosteosis 1, osteo-
arthritis, osteopetrosis, osteoporosis, osteogenesis imperfectaand
osteopenia); asthma (asthma and nasal polyps, susceptibility to
asthmaand asthma-related traits, diminished response to leukotriene
treatmentin asthma, asthma and aspirine intolerance); autoimmune
condition (familial cold autoinflammatory syndromes); immunode-
ficiency (immunodeficiency due to a defect in MAPBP-interacting
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protein, hepatic veno-occlusive disease with immunodeficiency,
immunodeficiency-centromeric instability-facial anomalies syn-
dromel, immunodeficiency 31a, 31C, 32a,32b, 38,39, 44 and 45, immu-
nodeficiency X-linked, with magnesium defect, Epstein-Barr virus
infection, and neoplasia, combined immunodeficiency, severe T cell
immunodeficiency and immunodeficiency 65 with susceptibility to
viralinfections); lymphocyte syndrome (bare lymphocyte syndrome
types1and 2); arthritis (rheumatoid arthritis and juvenile arthritis);
Kabuki syndrome (Kabuki syndrome 1 and 2); thrombocytopenia
(thrombocytopenia, dyserythropoietic anemia with thrombocyto-
penia, GATA-1-related thrombocytopenia with dyserythropoiesis,
X-linked thrombocytopenia without dyserythropoietic anemia,
thrombocytopenia with platelet dysfunction, hemolysis, imbal-
anced globin synthesis, radioulnar synostosis with amegakaryocytic
thrombocytopenia2 and macrothrombocytopenia); anemia (anemia,
dyserythropoietic anemia with thrombocytopenia, aplastic anemia,
CD59-mediated hemolytic anemia with or withoutimmune-mediated
polyneuropathy and Diamond-Blackfan anemia); and Aicardi-Gou-
tieres syndrome (Aicardi-Goutieres syndrome 4, 6 and 7).

IBD network analyses for fine-mapping

Toidentify robust IBD-associated loci, we extracted loci defined in the
Open Targets Genetics portal (genetics.opentargets.org) for two IBD
GWAS***, Because each GWAS may identify different lead variants,
we merged loci defined by lead variants within 200 kb of each other.
We extracted the L2G score reported for all genes at each locus, and
for merged loci we took the average L2G score for each gene across
theloci. We curated 37 high-confidence IBD genes on the basis of the
presence of fine-mapped deleterious coding variants, genes whose
protein products are the targets of approved IBD drugs and the litera-
ture. We defined additional seed gene sets by selecting the top gene
at each locus that had an L2G score >0.5. We ran network propaga-
tion as described in the Results section of the main text. However,
to obtain unbiased scores for seed genes themselves, we left each
seed gene out of the input in turn, and ran network propagation to
obtain a score based on the remaining N - 1seed genes. To compute
the PPR percentile for seed genes, we used the PPR percentile from
the single network propagation run in which that seed gene was
excluded fromtheinput. For all other genes, we used the median PPR
percentile across Nseed gene runs. The plotsin Fig. 5are based on PPR
percentiles from the curated seed gene network. To assess the enrich-
ment of low P value SNPs near high network genes (Fig. 5c), we first
determined for each gene the minimum P value among SNPs within
10 kb of the gene’s footprint based on IBD GWAS summary statistics
from de Lange et al.*’. We used Fisher’s exact test to determine the
odds ratio for genes with a high network score (in each defined bin)
having alow minimum SNP Pvalue, relative to genes with low network
scores (PPR percentile <50).

PPR percentiles discussed inthe text are the average for each gene
across the curated and L2G > 0.5 networks. We identified IBD candidate
genes thatstand out onthebasis of their network score (Supplementary
Table 4) by selecting all locus genes that had an average PPR percentile
>90and L2G > 0.1, and where no other gene at the same locus had PPR
percentile>80and L2G > 0.1.

Statistics and reproducibility

Data collection and analysis were not blind to the conditions of the
experiments. Sample sizes (n) are indicated in the figure or figure
captionwhenappropriate. No statistical method was used to predeter-
mine sample size, but where appropriate sample size was considered
in statistical tests. No data were excluded from the analyses and the
experiments were not randomized.

Ethics statement
No ethical approval was required for this work.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data generated or analyzed during this study are included in this
published article (and its Supplementary Information files). Publicly
availablerepositories canbe accessed as follows: OTAR interactome
(ftp://ftp.ebi.ac.uk/pub/databases/intact/various/ot_graphdb/cur-
rent), STRING v.11.0 (https://string-db.org/), Open Targets Genetics
portal (g), Mouse KO phenotypes (IMPC, https://www.mousepheno-
type.org/), Clinvar (NCBI, https://www.ncbi.nlm.nih.gov/clinvar/),
BioGRID Open Repository of CRISPR Screens (ORCS, v.1.1.11, https://
orcs.thebiogrid.org/), BIGRID v.4.4.202 for protein and geneticinter-
actions (https://thebiogrid.org/), Human Protein Atlas (https://www.
proteinatlas.org/), DISEASE database (https://diseases.jensenlab.org)
and ChEMBL (https://www.ebi.ac.uk/chembl/).

Code availability

The network-based method and all subsequent analysis was per-
formed using R software (v.4.0.2) as described in the Methods, com-
bined with the following packages: igraph (v.1.2.4.2, for Personalized
PageRank and walktrap clustering), pROC (v.1.16.2, for ROC curves
and AUCs calculations when applicable), clusterprofiler (v.4.2.2, for
GOBP enrichment analysis in the description of the modules as well
as GSEA test), pheatmap (v.1.0.12, for heatmap calculations when
applicable), ggplot2 (v.3.3.2 for Fig. 5), vioplot (v.0.3.5 for violin plots)
viridis (v.0.3.0) and RColorBrewer (v.1.1.2) both for color palette gen-
eration. The R functions used to perform the network expansion
(Propagation using PPR and community detection to define gene
modules) are publicly available in Zenodo (https://doi.org/10.5281/
zenodo.7575743).
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