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Network expansion of genetic associations 
defines a pleiotropy map of human  
cell biology

Inigo Barrio-Hernandez    1,2, Jeremy Schwartzentruber1,2,3, Anjali Shrivastava1,2, 
Noemi del-Toro1,2, Asier Gonzalez1,2, Qian Zhang3, Edward Mountjoy1,2, 
Daniel Suveges1,2, David Ochoa    1,2, Maya Ghoussaini    1,2, Glyn Bradley4, 
Henning Hermjakob    1,2, Sandra Orchard    1,2, Ian Dunham    1,2,3, 
Carl A. Anderson2,3, Pablo Porras1,2 & Pedro Beltrao    1,2,5 

Interacting proteins tend to have similar functions, influencing the same 
organismal traits. Interaction networks can be used to expand the list of 
candidate trait-associated genes from genome-wide association studies. 
Here, we performed network-based expansion of trait-associated genes 
for 1,002 human traits showing that this recovers known disease genes or 
drug targets. The similarity of network expansion scores identifies groups 
of traits likely to share an underlying genetic and biological process. We 
identified 73 pleiotropic gene modules linked to multiple traits, enriched 
in genes involved in processes such as protein ubiquitination and RNA 
processing. In contrast to gene deletion studies, pleiotropy as defined here 
captures specifically multicellular-related processes. We show examples of 
modules linked to human diseases enriched in genes with known pathogenic 
variants that can be used to map targets of approved drugs for repurposing. 
Finally, we illustrate the use of network expansion scores to study genes 
at inflammatory bowel disease genome-wide association study loci, and 
implicate inflammatory bowel disease-relevant genes with strong functional 
and genetic support.

Proteins that interact tend to take part in the same cellular func-
tions and be important for the same organismal traits1,2. Through 
a principle of guilt-by-association, it has been shown that mole
cular networks can be used to predict the function or disease rele
vance of human genes3–5. On the basis of this, protein interaction 
networks can augment genome-wide association studies (GWAS) 
by using GWAS-linked genes as seeds in a network to identify addi-
tional trait-associated genes6–9. It is well known that GWAS loci 
are enriched in genes encoding for approved drug targets10,11 and 
genes linked to a trait by network expansion are similarly enriched, 

even when excluding genes with direct genetic support12. This is an 
opportune time to revisit the application of network approaches to 
GWAS interpretation on the basis of recent large improvements in 
the human molecular networks available, single-nucleotide poly-
morphism (SNP) approaches to gene mapping and the extent of 
human traits/diseases mapped by GWAS. In particular, there have 
been substantial improvements in the identification of likely causal 
genes within GWAS loci using expression and protein quantitative trait 
loci analysis13,14, as well as integrative approaches based on machine  
learning11.
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gold standard genes that overlapped with GWAS-linked genes for 
the respective diseases. The network propagation score predicted 
disease-associated genes with an average area under the receiver oper-
ating characteristic (ROC) curve (AUC) >0.7 for the most stringent 
definition of disease-associated genes as well as known drug targets 
(Fig. 1e and example ROC curves in Supplementary Fig. 1). The per-
formance was higher than that observed with random permutation 
of the gold standard gene sets (Fig. 1e and Supplementary Fig. 2; true 
positive permutations), suggesting that it is not strongly biased by 
the placement of the gold standard genes within the network. We also 
tested the impact of changing the interaction network, either by using 
subsets of the network defined here or by using the previously defined 
composite PCNet network9 (Supplementary Fig. 3). Overall, the com-
bined network performed best with an accuracy similar to that of the 
larger PCNet (Supplementary Fig. 3).

In total, we obtained network propagation scores for 1,002 traits 
and gene modules for 906 traits (Supplementary Table 1).

Network propagation identifies related human traits
Identifying groups of traits likely to have a common genetic basis is of 
value because drugs used to treat one disease may also have effects in 
related diseases. Genetic sharing between human traits is often deter-
mined by correlation of SNP-level statistics from GWAS; however, this 
approach does not identify how the shared genetics corresponds to 
shared biological processes. In addition, many GWAS do not report 
the full summary statistics needed for such comparisons. By contrast, 
network propagation scores can be calculated from the set of candidate 
genes available for any GWAS. To benchmark trait–trait associations 
derived from network propagation, we used the similarity of annota-
tions from the Experimental Factor Ontology (EFO), which include 
aspects of disease type, anatomy and cell type among others. For exam-
ple, pairs of related neurological traits tend to share many annotation 
terms in the EFO. Using these annotations, we defined 796 pairs of 
traits that are functionally related and therefore likely to have a com-
mon genetic basis (Methods). An additional benchmark was obtained 
from trait-to-trait genetic correlations calculated from SNP-based 
analyses24–26. Using these benchmarks, we show that similarity in the 
network propagation scores can identify functionally and genetically 
related pairs of traits (Supplementary Fig. 4).

To explore trait–trait relationships on the basis of the similarity 
of their perturbed biological processes, we used the pairwise distance 
of network propagation scores to build a tree by hierarchical cluster-
ing (Fig. 2a), and defined 54 subgroups of traits. The traits tend to 
group according to functional similarity with 34 of 54 having an EFO 
term annotated to more than 50% of the traits in the group (Fig. 2a). In  
Fig. 2b we show examples of traits that are grouped together according 
to the network propagation scores. These include known relationships 
between immune-associated traits such as cellulitis or psoriasis and 
immunoglobulin G measurements; the relationship between skin 
neoplasms and skin pigmentation or eye color; or the clustering of 
cardiovascular diseases (acute coronary symptoms) with lipoprotein 
measurements and cholesterol.

We obtained drug indications from the ChEMBL database for 
the diseases in each cluster (Fig. 2a). This allows us to find clusters in 
which drugs may be considered for repurposing, as well as groups of 
traits in which drug development is most needed. Eighteen clusters 
representing 64 traits contain no associated drug and represent less 
well-explored areas of drug development. All trait clusters, genes and 
corresponding drugs are available in Supplementary Table 1.

Pleiotropy of gene modules across human traits
We can study the pleiotropy of human cell biology by identifying which 
gene modules tend to be associated with many human traits. This allows 
us to understand how perturbations in specific aspects of cell biol-
ogy may have broad consequences across multiple traits. In total, we 

The genetic study of large numbers of diverse human traits also 
opens the door to the study of pleiotropy, which occurs when a single 
genetic change affects multiple traits. Studying pleiotropy can help in 
the drug discovery process by either increasing the number of potential 
indications for a drug or avoiding unwanted side effects. Large-scale 
investigations of the most pleiotropic cellular processes have relied 
primarily on gene deletion studies. For example, yeast gene deletion 
studies have revealed pleiotropic cellular processes that include endo-
cytosis, stress response and protein folding, amino acid biosynthesis 
and global transcriptional regulation15. Identification of these highly 
pleiotropic cellular systems highlights core conserved processes and 
the complex interconnections within cell biology. Human GWAS data 
have been extensively used to quantify pleiotropy at the SNP level16–18 
and although this has shed light on the degree of pleiotropy and the 
relationship between traits, it has not often led to identification of 
the molecular mechanisms that underlie their common genetic basis.

Here, we augmented GWAS data for 1,002 traits by network expan-
sion with the purpose of studying pleiotropic cellular processes at the 
level of the human organism. This network expansion recovers known 
disease genes not associated by GWAS, identifies groups of traits under 
the influence of the same cellular processes and defines a pleiotropy 
map of human cell biology. Finally, we illustrate the use of network 
expansion scores to characterize inflammatory bowel disease (IBD) 
genes at GWAS loci, and implicate IBD-relevant genes with strong 
functional and genetic support.

Results
Systematic augmentation of GWAS with network propagation
Recent studies have shown that a comprehensive protein interaction 
network is critical for network propagation efforts9. Here, we com-
bined the International Molecular Exchange physical protein interac-
tion dataset19 from IntAct (protein–protein interactions)20, Reactome 
(pathways)21 and SIGNOR (directed signaling pathways)22. To facilitate 
re-use of these data (referred to as ‘OTAR interactome’) we have made 
the data available via a Neo4j Graph Database (ftp://ftp.ebi.ac.uk/pub/
databases/intact/various/ot_graphdb/current). The physical interac-
tions were combined with functional associations from the STRING 
database (v.11)23 to give a final network containing 571,917 edges  
connecting 18,410 proteins (nodes) (Fig. 1a). GWAS trait associations 
were mapped to genes using the locus-to-gene (L2G) score from Open 
Targets Genetics, a machine learning approach that integrates features 
such as SNP fine-mapping, gene distance and molecular quantitative 
trait locus (QTL) information to identify causal genes (Fig. 1b)11. Genes 
with L2G scores higher than 0.5 are expected to be causal for the respec-
tive trait association in 50% of cases.

For each GWAS, associated genes were used as seeds in the inter-
action network. Of 7,660 GWAS genes linked to at least one trait, 7,248 
correspond to proteins present in the interaction network. We then 
used the Personalized PageRank (PPR) algorithm to score all other 
protein coding genes in the network where genes connected via short 
paths to GWAS genes receive higher scores (Fig. 1c). Genes in the top 
25% of network propagation scores were used to identify gene modules, 
from which we selected those significantly enriched for high network 
propagation scores (Benjamini–Hochberg (BH)-adjusted P < 0.05 with 
Kolmogorov–Smirnov test) and with at least two GWAS-linked genes 
(Methods). We applied this approach to 1,002 traits (Supplementary 
Table 1) with GWAS in the Open Targets Genetics portal that had at least 
two genes mapped to the interactome. These GWAS were spread across 
21 therapeutic areas, and differed in the number of GWAS-linked genes 
(median 6, range 2–763) (Fig. 1d).

To measure the capacity of the network expansion to recover 
trait-associated genes, we defined a ‘gold standard’ set of disease- 
associated genes (from https://diseases.jensenlab.org) that are known 
drug targets for specific human diseases (from the ChEMBL data-
base, Methods). To avoid circularity in benchmarking, we excluded 
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found 2,021 associations between gene modules and traits, of which 
886 (43.8%) are gene modules linked to a single trait and the remain-
ing can be collapsed to 73 gene modules linked to two or more traits  
(Fig. 3a, Supplementary Table 2 and Methods). The 73 modules associ-
ated with more than one trait did not have a significantly larger number 
of genes (P = 0.72, Kolmogorov–Smirnov test), whereas the traits linked 
with the 73 pleiotropic gene modules tend to have a higher number of 
significant initial GWAS seed genes (Supplementary Fig. 5). Therefore, 
traits with a larger number of linked loci are more likely to be associated 
with pleiotropic gene modules.

The six most pleiotropic gene modules were linked to between 
56 and 110 traits in our study, and were enriched (Gene Ontology  

Biological Process (GOBP) enrichment with one-sided Fisher’s exact 
test, BH-adjusted P < 0.05) for genes involved in protein ubiqui
tination, extracellular matrix organization, RNA processing and  
G protein-coupled receptor (GPCR) signaling (Fig. 3b). Gene deletion 
studies in yeast have identified some of the same cellular processes as 
being highly pleiotropic15. Genes within pleiotropic modules linked to 
ten or more traits are enriched in genes that are ubiquitously expressed 
(fold enrichment = 1.42, P = 1.71 × 10−16, Fisher’s exact test, one-sided), 
have many deletion phenotypes (fold enrichment = 1.56, P = 1.71 × 10−30, 
Fisher’s exact test, one-sided) and higher numbers of genetic interac-
tion (Fisher’s exact test, one-sided P = 4.155 × 10−10). Targeting pleio-
tropic processes with drugs could, therefore, have broad application, 
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Fig. 1 | Implementation and benchmarking of network-based augmentation 
of GWAS. a, Edge and node counts of the combined interactome and its 
components. OTAR is the Open Targets combined physical protein interaction 
network that is provided via a Neo4j Graph Database. b, Graphic representation 
of some L2G components: SNP-to-gene distance, data from QTLs and variant 
effect predictions. The integration of information into the L2G score has been 
described previously11. c, Graphical representation of the network-based 
approach: network propagation of the initial input, clustering using a random 
walker to find gene communities and scoring of modules using the distribution 
of PageRank score. KS, Kolmogorov–Smirnov. d, Number of starting genes linked 
to traits, grouped in therapeutic areas. In the violin plot, the red dots represent 

the median, the limits of the thick line correspond to quartiles 1 and 3 (25% and 
75% of the distribution) and the limits of the thin line are 1.5× the interquartile 
range. e, Benchmarking of the method, using as a starting signal genes from the 
Open Targets Genetics portal with a L2G score >0.5. AUC values are calculated 
using as positive hits the DISEASE database, with increasing cutoff values for 
its gene-to-trait score (Methods), as well as clinical trials data from the ChEMBL 
database (clinical phase II or higher). We also re-calculated the AUC values and 
determined Z-scores reflecting the deviation in AUCs relative to those observed 
after randomization of the list of true positives (TPs). In the boxplots, the middle 
lines represent the median, the limits of the box are quartiles 1 and 3 and the 
whiskers represent 1.5× the interquartile range.
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but may also raise safety concerns. However, despite these enrich-
ments, there is no simple correlation between the number of traits 
linked to a gene module and the enrichment of ubiquitously expressed 
genes (Pearson’s r = 0.0793) or genes with many deletion phenotypes 
(Pearson’s r = −0.0345). This analysis allows us to connect gene deletion 
phenotypes with human traits (Supplementary Fig. 6). For example, a 
pleiotropic module linked to traits such as ‘autism spectrum disorder’ 
and ‘osteoarthritis’ has a high fraction of gene deletion phenotypes 
impacting on protein transport, and a module linked with Alzheimer’s 
disease, balding measurement and bone density has genes with a high 

fraction of gene deletion phenotypes associated with cellular senes-
cence (Supplementary Fig. 6).

We then related pleiotropy as defined by the module–trait asso-
ciations derived here with pleiotropy defined by CRISPR gene dele-
tion studies. For each Gene Ontology (GO) term, we calculated the 
enrichment in genes linked with many traits in our analysis with the 
enrichment in genes having many gene deletion phenotypes. GO 
terms specifically enriched in pleiotropic genes based on our defini-
tion are dominated by terms that relate to multicellularity, such as 
membrane signaling, cell-to-cell communication and cell migration 
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Fig. 3 | Multitrait gene module associations for studies of shared biological 
processes and drug-repurposing opportunities. a, Heatmap showing the 
overlap between gene modules across traits. Traits were clustered using 
hierarchical clustering (Methods) and subgroups were defined by a cutoff of 
0.6 average correlation coefficient. A module was considered the same across 
different traits when most genes are in common ( Jaccard index > 0.7). Significant 
trait–module relations are marked in yellow or pink, with yellow indicating 
modules overrepresented in one of the subgroups of traits (one-sided Fisher’s 
exact test, adjusted P < 0.05) and pink otherwise. The heatmap in the right-hand 
panel shows the number of genes in modules from each subgroup of traits that 
are drug targets (phase III or higher, ChEMBL database), linked with clinical 
variants (ClinVar database) or with mouse KO phenotypes (International Mouse 
Phenotyping Consortium database). b, Barplot showing the number of traits 
linked with the top six most pleiotropic gene modules. The GOBP description 

is based on the results of a GOBP enrichment test (Methods). c, Simplified 
heatmap of the clusters in a concerning bone-related and fasciitis traits. The 
represented network includes genes from the modules indicated in blue letters 
and the represented interactions have been filtered for visualization (Methods). 
Blue nodes, relevant mouse KO phenotypes; green nodes, diseases with clinical 
variants enriched in this gene module; red nodes, drugs in clinical trials. Genes 
linked to blue, green or yellow nodes have the linked mouse phenotypes, clinical 
variants in the linked disease or are targets of the linked drug. Genes that are 
the targets of drugs in clinical trials have yellow nodes. GWAS-linked genes 
(L2G score > 0.5) have borders colored in an orange to red gradient (count of 
GWAS-linked traits). d, Simplified heatmap of one the clusters in a concerning 
allergic reactions (node and edge color code are the same as in c). In this case, two 
modules were merged to build the interaction network in the right-hand panel. 
mRNA, messenger RNA; SRP, signal recognition particle.

http://www.nature.com/naturegenetics


Nature Genetics | Volume 55 | March 2023 | 389–398 394

Article https://doi.org/10.1038/s41588-023-01327-9

(Supplementary Fig. 7). For pleiotropy that is specifically found with 
CRISPR screens, we find terms related to essential processes such as 
cell cycle, ribosome biogenesis and RNA metabolism (Supplementary 
Fig. 7).

For each of the 73 pleiotropic gene modules, we highlighted those 
that are overrepresented in each group of related traits (Fig. 3a and 
Methods, one-sided Fisher’s exact test, BH-adjusted P < 0.05). To facili-
tate the study of cell biology and drug-repurposing opportunities we 
annotated (Fig. 3a and Supplementary Table 2) the genes found in 
overlapping modules for each of the clusters with data from: ChEMBL 
(targets of drugs in at least phase III clinical trials), ClinVar (genes linked 
to clinical variants) and mouse knockout (KO) phenotypes (phenotypic 
relevance and possible biological link). We explore a few examples of 
these modules in the following sections.

Shared mechanisms and drug-repurposing opportunities
We identified two groups of traits (bone and fasciitis related) that are 
predicted to have a common determining gene module (Fig. 3c and Sup-
plementary Table 3). This module is enriched in Wnt signaling genes, 
which have been previously linked to bone homeostasis27 and to differ-
ent types of fasciitis as well as Dupuytren’s contracture28. We collected 
genes harboring likely pathogenic variants from ClinVar (Methods), 
hereafter referred to as ClinVar variants. This gene module is enriched 
in genes harboring ClinVar variants from patients with tooth agenesis 
and bone-related diseases (osteoporosis and osteopenia). Several genes 
with ClinVar variants, such as LRP6, SOST, WNT1, WNT10A and WNT10B, 
are not linked to bone diseases via GWAS. Genetic manipulation of 
several genes within this module causes changes in bone density in 
mouse models29. In addition, this module contains the target (SOST) 
of Romosozumab, a drug proven effective to treat osteoporosis.

In a second example (Fig. 3d and Supplementary Table 3), we iden-
tified a group of ten respiratory (for example, asthma) and cutaneous 
(for example, eczema) immune-related diseases that share three gene 
modules: a highly pleiotropic module related to regulation of transcrip-
tion and proteasome, and two more specific modules related to pattern 
recognition receptor signaling and cytokine production with Janus 
kinase/signal transducer and activator of transcription ( JAK–STAT) 
involvement. These modules were significantly enriched (one-sided 
Fisher’s exact test, P < 0.05) in genes having likely pathogenic variants 
from patients with asthma. The two most specific gene modules were 
grouped and are shown in Fig. 3d highlighting several genes with known 
pathogenic variants not associated with these diseases via GWAS (for 
example, IRAK3, TNF, ALOX5, TBX21). IRAK3, encoding a protein pseu-
dokinase, is an example of a druggable gene not identified by GWAS for 
asthma, but with protein missense variants linked to this disease30, and 
mice model studies have implicated the regulation of IRAK3 in airway 
inflammation induced by interleukin-33 (IL-33)31. Although no drug 
for IRAK3 is used in the clinic, this analysis suggests it may serve as a 
relevant drug target for asthma and other related diseases.

We identified a total of 41 targets of 126 drugs targeting the genes 
in the module shown in Fig. 3d. To identify drugs that could have repur-
posing potential, we excluded those already targeting therapeutic 

areas that include the ten diseases linked to this gene module. This 
resulted in 18 drugs (Supplementary Table 3) targeting 5 genes includ-
ing: 14 drugs targeting PTGS2, used to treat primarily rheumatic disease 
and osteoarthritis; interferon alfacon1 or alfa-2B (targeting IFNAR1 
and IFNAR2), designed to counteract viral infections; galiximab and 
antibody for CD80 (phase III trials for lymphoma); and the antibody 
RA-18C3 targeting IL1A for colorectal cancer. These drugs may be suited 
to repurposing for respiratory or cutaneous autoimmune-related 
diseases. As an example, RA-18C3 has shown benefit in a small phase II 
trial for hidradenitis suppurativa (acne inversa)32.

Gene module analysis of related immune-mediated diseases
Traits related to the immune system are well represented in our analysis, 
falling into three different groups: one cluster containing systemic and 
organ-specific diseases; one cluster of immune cell measurements; 
and a third, more heterogeneous, cluster (Fig. 3a and Supplementary 
Table 2). In Fig. 4a we represent the first of these clusters, which can be 
further subdivided into a subgroup linking IBD, multiple sclerosis and 
systemic lupus erythematosus, and one linking celiac disease, vitiligo 
and other diseases. We found six gene modules that are specifically 
enriched with at least one of these two groups of traits, including gene 
modules related to GPCR signaling, neutrophil activation and inter-
feron signaling. Genes present in these modules show higher relative 
expression (Fig. 4a, right) in key immune tissues.

The six gene modules are shown in Fig. 4b with a connection 
between them when there is a significant gene-level overlap (Fig. 4b; 
Methods). For representation (Fig. 4c), we selected genes from modules 
linked with at least three immune-mediated diseases and kept a subset 
of interactions of high confidence (Methods). We found multiple genes 
with ClinVar variants from patients with primary immune deficiencies 
(for example, IRF9, IRF7, STAT1, STAT2) that are not GWAS-linked genes 
but are in their network vicinity, providing evidence of the importance 
of this gene module for these diseases.

To pinpoint drugs with repurposing potential, we excluded 
those targeting diseases in the same therapeutic areas as the 
immune-mediated group of diseases, identifying 49 drugs with 20 
targets. These include ulimorelin, an agonist of the ghrelin hormone 
secretagogue receptor GHSR used to treat gastrointestinal obstruc-
tion. Ghrelin hormone signaling has been studied in the context of 
age-related chronic inflammation33, psoriasis34 and IBD (reviewed in 
ref. 35) indicating a potential repurposing opportunity. The 49 drugs 
with repurposing potential are listed in Supplementary Table 3 with 
information on target genes and clinical trials.

Network-assisted candidate gene prioritization for IBD
Although the gene modules we have described can highlight biologi-
cal pathways shared between genetically related traits, identifying 
causal genes at individual GWAS loci is important for prioritizing 
therapeutic targets. Existing methods such as GRAIL36, DEPICT37 and 
MAGMA38 prioritize genes based on biological pathways but do not 
fully use genome-wide protein interaction networks, which can provide 
finer-grained information over GO terms.

Fig. 4 | Gene module analysis of autoimmune diseases. a, Heatmap showing the 
overlap between gene modules across traits (color-coded as in Fig. 3a,c,d). The 
GOBP description is based on the results of a GOBP enrichment test (one-sided 
Fisher’s exact test, BH adjustment, Methods). The heatmap in the right-hand 
panel shows the gene set enrichment analysis carried out on the expression data 
from different tissues extracted from Human Protein Atlas (HPA) for the gene 
modules in blue (two-sided Kolmogorov–Smirnov test, Methods). After BH 
adjustment for multiple testing, the P value of the test was log transformed and 
given a positive value if the median distribution for the foreground was higher 
than the background and a negative value if it was lower. b, Shared modules as 
a network, nodes are gene modules associated with different immune-related 

traits colored blue or red for the two trait subgroups; edges represent a high 
degree of overlap at the gene level ( Jaccard index > 0.7). Gene modules linked to 
different traits are given in black circles. Gene modules are linked with the yellow 
node ‘ChEMBL-drugs’ when they contain targets for drugs in clinical trials (phases 
III and IV, ChEMBL); linked with green nodes when they are enriched in genes with 
clinical variants for a given disease; and linked with purple nodes when they are 
enriched for the corresponding KO phenotypes (one-sided Fisher’s exact test, 
adjusted P < 0.05). c, Network corresponding to genes found in gene modules 
enriched for Type I interferon (INF) signaling, phospholipase C-activating GPCR 
signaling, neutrophil activation (integrins) and protein kinase A (PKA) activity. 
Edge filtering, node and edge colors are the same as in Fig. 3c,d.
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Here, we use network propagation to prioritize genes at IBD 
GWAS loci, similar to our previous work on Alzheimer’s disease39. We 
used two alternative methods of defining seed genes for the network. 

First, we manually curated 37 genes with high confidence of being 
causally related to either Crohn’s disease or ulcerative colitis (Sup-
plementary Table 4) and second, we used the Open Targets L2G score 
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to automatically select 110 genes with L2G > 0.5 at established IBD 
loci40,41 (Methods and Supplementary Table 4). To obtain network 
propagation scores, we compared each gene’s score with 1,000 runs 
using the same number of randomly selected input genes, to give 
the PPR percentile value (Methods). We obtained unbiased network 
propagation values for each seed gene by excluding them one at a  
time (Methods).

The curated seed genes had far higher network scores than other 
genes within 200 kb (P = 7.4 × 10−6, one-tailed Wilcoxon rank sum test), 
indicating that most seed genes have close interactions with other seed 
genes (Fig. 5a). The same was true when considering seed genes exclu-
sively in the L2G gene set (Fig. 5b; P = 3 × 10−10, one-tailed Wilcoxon rank 
sum test), indicating that many of these are also strong IBD candidate 
genes. Finally, we examined the enrichment of low SNP P values within 
10 kb of genes having high network scores. This revealed a progressive 
enrichment of low P values near genes with higher network scores 
(Fig. 5c), which held for the large number of genes linked to SNPs not 
reaching the typical genome-wide significance threshold of 5 × 10−8 
for locus discovery.

Curated genes with strong network support include the drug tar-
gets TYK2, ICAM1 and ITGA4, and NOD2 and IL23R, which have missense 
variants implicating them as modulators of IBD42–44. A small number 
of curated genes had lower network support, which could be due to 
these genes affecting IBD via pathways distinct from the biological 

functions covered most well by the curated gene set. Across IBD loci 
without curated genes, our network scores rank 42 candidates as being 
more highly functionally connected than the remaining genes at the 
locus (Supplementary Table 4 and Methods). Although many of these 
were already strong IBD candidate genes, some have found strong 
support only recently. A clear example is the RIPK2 locus. Although 
OSGIN2 is nearest to IBD lead SNP rs7015630 (38 kb distal), it has no 
apparent functional links with IBD (network score 43%). By contrast, 
RIPK2 (108 kb distal, network score 99%) encodes for a mediator of 
inflammatory signaling via interaction with the bacterial sensor NOD2 
(ref. 45). Network information can also provide a comparison point for 
other evidence sources. At the DLD-SLC26A3 locus, there is moderate 
evidence of genetic colocalization between IBD and an expression 
quantitative trait loci (eQTL) for DLD in various tissues (Open Tar-
gets Genetics portal). However, DLD has no clear functional links with 
IBD and receives a low network score (14%). By contrast, SLC26A3 is 
a chloride anion transporter highly expressed in the human colon, 
with a high network score (98.4% in the L2G seed gene network), and 
its expression has been recently associated with clinical outcomes in 
ulcerative colitis46. IBD candidate genes that have high network scores 
but have not been well characterized in the context of IBD include 
PTPRC (a phosphatase required for T cell activation) and BTBD8, which  
is functionally connected to autophagy by the network analysis  
(via WIPI2 and ATG16L1).
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To study the pleiotropy of the curated and candidate genes  
we looked at the eight gene modules linked by our analysis to IBD 
(Supplementary Fig. 8). Of the 37 curated and 42 candidate genes, 35  
(14 curated and 21 candidate) are found within these modules. Inter-
estingly, we found that most of these genes are in modules that are 
only linked to IBD; in particular, a module that is enriched for genes 
related to receptor signaling via the JAK–STAT pathway (Supplementary  
Fig. 9). Conversely, the most pleiotropic modules linked to IBD have 
very few IBD candidate genes within them. As expected, these pleio-
tropic modules tend to be associated with traits that are related to the 
immune system, with the exception of the most pleiotropic module, 
which is enriched for genes related to protein ubiquitination (Sup-
plementary Fig. 8). This analysis suggests that the JAK–STAT-related 
module is likely to be the best source of novel candidate disease genes 
and drug targets that are more inclined to be specific to IBD.

Discussion
We identified gene modules associated with 906 human traits, taking 
advantage of the increased coverage of human interactome map-
ping and novel tools for SNP-to-gene mapping11. As seen in other 
studies9, network expansion can retrieve previously known disease 
genes not identified by GWAS, including those not in GWAS loci but 
that may modulate the same biological processes. Even when exclud-
ing genes with direct genetic support, such interacting genes are 
enriched for successful drug targets12. Genes identified by network 
expansion will not have information on the direction of effect and 
additional work and interpretation are needed to gain insights into 
the direction of impact of modulating such genes. Although there 
are several algorithms to perform network propagation, recent 
studies have shown that they tend to perform similarly47 and the net-
work used has a stronger impact on performance9. For this reason, 
improvements in mapping coverage and computational or experi-
mental approaches to deriving tissue- or cell-type-specific networks8 
could have a large impact on the future effectiveness of network  
expansion.

We showed examples of disease-linked gene modules that were 
also enriched in genes carrying clinical variants for the same or related 
diseases. In many cases, genes with clinical variants did not overlap 
with the GWAS-linked genes, which is likely due to a lower frequency 
of clinical variants. Testing for burden of loss-of-function variants 
within selected gene sets is an approach used to study the impact of 
low-frequency variants48,49 and we suggest that the gene modules iden-
tified here could be ideally suited for this purpose. The gene modules 
identified here relate to specific aspects of cell biology with different 
human traits. Analysis of mouse phenotypes and ClinVar variants 
provided additional evidence for some of the identified relationships. 
Additional experimental work, in particular with appropriate models 
(for example, organoids, mouse models), is needed to follow up on 
some of the derived associations. Beyond identifying gene modules, 
our GWAS-based network approach can also be used to prioritize 
disease genes at individual loci by their role within specific biological 
processes, as we showed for IBD.

The most pleiotropic gene modules share some aspects of cell 
biology that have been defined as highly pleiotropic in gene deletion 
studies of yeast15. Gene modules linked with different traits could 
provide opportunities for drug repurposing or cross-disease drug 
development. However, targeting pleiotropic processes could raise 
safety concerns. We find that these modules are enriched for genes that 
are ubiquitously expressed, and have many gene deletion phenotypes 
and a higher number of genetic interactions. However, we do not find a 
simple correlation between the number of traits associated with a gene 
module and these metrics. This may suggest that some highly pleio-
tropic processes may be safe to target or that metrics such as CRISPR 
deletion phenotypes and ubiquitous expression may be insufficient 
to judge drug target safety.

Comparing the pleiotropy of cellular processes as defined by 
module–trait associations with that defined by gene deletion studies 
suggests that, although there are some similarities, gene deletion 
studies tend to miss pleiotropy that relates to cell-to-cell communi-
cation. This is not surprising given that CRISPR screens in cell lines 
typically assay for phenotypes measured in single cells. Conversely, 
our trait-to-module analysis tends to miss pleiotropy that is highly 
essential to cells. We suggest that (some of) these essential cellular 
processes may be lethal if genetically perturbed, and therefore associ-
ated variants are not observed in human populations and not seen in 
genetic association studies.

Interestingly, traits that are linked with highly pleiotropic gene 
modules tend to have a larger number of starting GWAS seed genes, 
which usually have larger sample sizes. This suggests that the larger 
the number of loci linked to a trait, and likely greater sample sizes, the 
higher the chances that this trait will be genetically linked to highly 
pleiotropic biological processes. Although it has been suggested that 
the heritability of complex traits is broadly spread along the genome16, 
our analysis indicates that, across a large number of traits, this herit-
ability overlaps in a nonrandom fashion.

In summary, network expansion of GWAS is a powerful tool for the 
identification of genes and cellular processes linked to human traits, 
and application in multitrait analysis can reveal pleiotropy of human 
biological pathways at the level of the organism, as well as highlight 
new opportunities for drug development and repurposing.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41588-023-01327-9.
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Methods
Human interactome, GWAS traits and linked genes analyzed
We created a comprehensive human interactome, merging an interac-
tome developed for the Open Targets (www.opentargets.org) project 
(version from November 2019), with STRING v.11.0. The Open Tar-
gets Interactome network was constructed during this project and 
contains human data only, including physical interaction data from 
IntAct, causality associations from SIGNOR and binarized pathway 
reaction relationships from Reactome. More details about the network 
construction can be found in the Supplementary Information and at 
https://platform-docs.opentargets.org/target/molecular-interactions. 
STRING functional interactions were human only and selected to have a 
STRING edge score ≥0.75. All identifiers were mapped to Ensembl gene 
identifiers and, after removing duplicated edges and self-loops, the 
final network contained 18,410 nodes and 571,917 edges.

Network propagation of GWAS-linked genes
From a total of 1,221 traits, we selected 1,002 mapped to EFO terms 
(www.ebi.ac.uk/efo/) included in the Open Targets genetic portal, 
with at least two genes mapped to our interactome with a L2G score 
of 0.5 or above (defined as seed nodes). The network-based approach 
was run individually for each trait, with each protein having a weight 
corresponding to the L2G score (between 0.5 and 1.0). The input was 
diffused through the interactome using the PPR algorithm included 
in the R package igraph (v.1.2.4.2). To generate the modules, we 
selected nodes with a PPR ranking score greater than the third quartile  
(Q3, 75%) and performed walktrap clustering (igraph v.1.2.4.2). When 
the number of nodes in one module was >300, we repeated the clus-
tering inside this community until all resulting clusters were <300 
genes. To define gene modules as significantly associated with a trait, 
we used a Kolmogorov–Smirnov test to determine whether ranks 
(based on PPR) of genes in a module were greater than the background 
ranks of all the nodes considered for the walktrap clustering. We 
tested only modules with at least ten genes and where two or more 
of them were seed genes (L2G > 0.5), and we corrected the resulting  
P values for multiple testing using BH adjustment. On the basis of this, 
we identified a total of 2,021 associations between a gene module  
and a trait.

Benchmarking the capacity to predict disease-associated 
genes from the network expansion
To benchmark both the predictive power of the ranking score resulting 
from the PPR and the genetic portal data when compared with a GWAS 
catalog (https://www.ebi.ac.uk/gwas/; based on gene proximity), we 
computed ROC curves using as true positives the genes linked to dis-
eases from the Jensen lab DISEASE database (diseases.jensenlab.org). 
This database provides a score measuring this association; benchmark-
ing was done using five different score thresholds (DIS0, all genes; DIS1, 
score >25%; DIS2, score >50%; DIS3, score >75%; and DIS4, maximum 
value for the score). We calculated the ROC curves and the area under 
the ROC curve (AUC) for traits with at least ten true positives. Also, we 
randomized both nodes in the network (keeping the degree distribu-
tion) as well as the true positives 1,000 times each. We then calculated 
the AUC values and the subsequent Z-scores. As an extra benchmark, 
we used the clinical trial data contained in ChEMBL (https://www.ebi.
ac.uk/chembl/), considering as true positives drug targets tested for 
a certain disease at clinical phase II or higher.

Trait–trait relationships defined by the similarity of the 
network propagation
We calculated the Manhattan distance between the 1,002 traits using 
the full PPR ranking score, followed by hierarchical clustering, result-
ing in 54 clusters (height distance = 1). To further characterize the trait 
clusters, we selected those having at least five traits, obtained their 
EFO ancestry and calculated their frequency per cluster. The highest 

frequency per cluster is used to define nine groups color-coded in  
Fig. 2a. To complement the description of clusters belonging to 
the most general group ‘measurement’ and ‘material property’, we 
extracted EFO ancestry terms using manually assigned terms from the 
EFO ancestry with a lower frequency (Fig. 2a). The ChEMBL database 
(https://www.ebi.ac.uk/chembl/) was used to calculate the counts of 
both drugs and drug targets for each of the trait clusters, using infor-
mation for drugs in clinical trials phases III and IV. To further illustrate 
the validity of this approach, we selected three trait clusters (Fig. 2b) 
as examples of valid trait-to-trait relations.

Multitrait gene module analysis
Significant modules identified for each trait (described above) were 
compared across traits by measuring the overlap in genes using 
the Jaccard index. Gene modules with a Jaccard index ≥0.70 were 
considered common across two traits. From the 2,021 pairs of gene 
module–trait associations, 886 are unique to a single trait and the 
remainder can be collapsed (that is, considered highly overlapping 
or the same gene module). This results in 73 gene modules that are 
enriched in network propagation signals for two or more traits. To 
identify subgroups of related traits, we clustered those linked to 
the 73 multitrait modules on the basis of the Manhattan distance 
of their full PPR ranking score (as above) using hierarchical clus-
tering. Subgroups were defined with a height cutoff of 0.7 and we 
identified gene modules that were more specific to each subgroup 
of traits using a one-sided Fisher’s exact test and BH multiple testing 
correction. We retained trait subgroups with at least three traits 
and a significant presence of at least one group of overlapping  
modules.

Relating pleiotropy from GWAS module with gene expression 
and deletion phenotypes
We used the BioGRID Open Repository of CRISPR Screens (ORCS, 
v.1.1.11, https://orcs.thebiogrid.org/), which contains 1,342 studies 
measuring the impact of gene deletions on viability and other cellular 
measurements, including cell-cycle progression, response to different 
stresses, transport and others. On the basis of these CRISPR screens, we 
defined as pleiotropic those genes that had a cell-based phenotype in 
more than half of the screens. We defined genes likely to be expressed 
in many tissues as those having an expression level above the median 
for a given tissue in more than half of the tissues in the Human Protein 
Atlas (https://www.proteinatlas.org/). To compare the enrichment of 
genes defined as highly pleiotropic in our analysis with those defined 
by CRISP studies, we performed an enrichment analysis for each GOBP 
term using a Gene Set Enrichment Analysis test (cluster profiler pack-
age, v.4.2.2).

Gene module annotations and enrichment analysis
The gene KD mouse phenotypes were extracted from the International 
Mouse Phenotyping Consortium (https://www.mousephenotype.
org/) and the clinical variants were extracted from the ClinVar data-
base (National Center for Biotechnology Information (NCBI), https://
www.ncbi.nlm.nih.gov/clinvar/). For the enrichment of genes from 
clinical variants, diseases were grouped into larger categories. For the  
enrichment of genes from clinical variants referred to in Figs. 3c,d 
and 4b,c, we downloaded data from ClinVar (NCBI), filtered out  
all benign associations and grouped the phenotypes into higher 
categories as follows: tooth agenesis (tooth agenesis, selective tooth 
agenesis 4, 7 and 8); bone-related diseases (sclerosteosis 1, osteo
arthritis, osteopetrosis, osteoporosis, osteogenesis imperfecta and 
osteopenia); asthma (asthma and nasal polyps, susceptibility to 
asthma and asthma-related traits, diminished response to leukotriene 
treatment in asthma, asthma and aspirine intolerance); autoimmune 
condition (familial cold autoinflammatory syndromes); immunode-
ficiency (immunodeficiency due to a defect in MAPBP-interacting 
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protein, hepatic veno-occlusive disease with immunodeficiency, 
immunodeficiency-centromeric instability-facial anomalies syn-
drome 1, immunodeficiency 31a, 31C, 32a, 32b, 38, 39, 44 and 45, immu-
nodeficiency X-linked, with magnesium defect, Epstein–Barr virus 
infection, and neoplasia, combined immunodeficiency, severe T cell 
immunodeficiency and immunodeficiency 65 with susceptibility to 
viral infections); lymphocyte syndrome (bare lymphocyte syndrome 
types 1 and 2); arthritis (rheumatoid arthritis and juvenile arthritis); 
Kabuki syndrome (Kabuki syndrome 1 and 2); thrombocytopenia 
(thrombocytopenia, dyserythropoietic anemia with thrombocyto-
penia, GATA-1-related thrombocytopenia with dyserythropoiesis, 
X-linked thrombocytopenia without dyserythropoietic anemia, 
thrombocytopenia with platelet dysfunction, hemolysis, imbal-
anced globin synthesis, radioulnar synostosis with amegakaryocytic 
thrombocytopenia 2 and macrothrombocytopenia); anemia (anemia, 
dyserythropoietic anemia with thrombocytopenia, aplastic anemia, 
CD59-mediated hemolytic anemia with or without immune-mediated 
polyneuropathy and Diamond–Blackfan anemia); and Aicardi–Gou-
tieres syndrome (Aicardi–Goutieres syndrome 4, 6 and 7).

IBD network analyses for fine-mapping
To identify robust IBD-associated loci, we extracted loci defined in the 
Open Targets Genetics portal (genetics.opentargets.org) for two IBD 
GWAS40,41. Because each GWAS may identify different lead variants, 
we merged loci defined by lead variants within 200 kb of each other. 
We extracted the L2G score reported for all genes at each locus, and 
for merged loci we took the average L2G score for each gene across 
the loci. We curated 37 high-confidence IBD genes on the basis of the 
presence of fine-mapped deleterious coding variants, genes whose 
protein products are the targets of approved IBD drugs and the litera-
ture. We defined additional seed gene sets by selecting the top gene 
at each locus that had an L2G score >0.5. We ran network propaga-
tion as described in the Results section of the main text. However, 
to obtain unbiased scores for seed genes themselves, we left each 
seed gene out of the input in turn, and ran network propagation to 
obtain a score based on the remaining N − 1 seed genes. To compute 
the PPR percentile for seed genes, we used the PPR percentile from 
the single network propagation run in which that seed gene was 
excluded from the input. For all other genes, we used the median PPR 
percentile across N seed gene runs. The plots in Fig. 5 are based on PPR 
percentiles from the curated seed gene network. To assess the enrich-
ment of low P value SNPs near high network genes (Fig. 5c), we first 
determined for each gene the minimum P value among SNPs within 
10 kb of the gene’s footprint based on IBD GWAS summary statistics 
from de Lange et al.41. We used Fisher’s exact test to determine the 
odds ratio for genes with a high network score (in each defined bin) 
having a low minimum SNP P value, relative to genes with low network 
scores (PPR percentile <50).

PPR percentiles discussed in the text are the average for each gene 
across the curated and L2G > 0.5 networks. We identified IBD candidate 
genes that stand out on the basis of their network score (Supplementary 
Table 4) by selecting all locus genes that had an average PPR percentile 
>90 and L2G > 0.1, and where no other gene at the same locus had PPR 
percentile >80 and L2G > 0.1.

Statistics and reproducibility
Data collection and analysis were not blind to the conditions of the 
experiments. Sample sizes (n) are indicated in the figure or figure 
caption when appropriate. No statistical method was used to predeter-
mine sample size, but where appropriate sample size was considered 
in statistical tests. No data were excluded from the analyses and the 
experiments were not randomized.

Ethics statement
No ethical approval was required for this work.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this 
published article (and its Supplementary Information files). Publicly 
available repositories can be accessed as follows: OTAR interactome 
(ftp://ftp.ebi.ac.uk/pub/databases/intact/various/ot_graphdb/cur-
rent), STRING v.11.0 (https://string-db.org/), Open Targets Genetics 
portal (g), Mouse KO phenotypes (IMPC, https://www.mousepheno-
type.org/), ClinVar (NCBI, https://www.ncbi.nlm.nih.gov/clinvar/), 
BioGRID Open Repository of CRISPR Screens (ORCS, v.1.1.11, https://
orcs.thebiogrid.org/), BiGRID v.4.4.202 for protein and genetic inter-
actions (https://thebiogrid.org/), Human Protein Atlas (https://www.
proteinatlas.org/), DISEASE database (https://diseases.jensenlab.org) 
and ChEMBL (https://www.ebi.ac.uk/chembl/).

Code availability
The network-based method and all subsequent analysis was per-
formed using R software (v.4.0.2) as described in the Methods, com-
bined with the following packages: igraph (v.1.2.4.2, for Personalized 
PageRank and walktrap clustering), pROC (v.1.16.2, for ROC curves 
and AUCs calculations when applicable), clusterprofiler (v.4.2.2, for 
GOBP enrichment analysis in the description of the modules as well 
as GSEA test), pheatmap (v.1.0.12, for heatmap calculations when 
applicable), ggplot2 (v.3.3.2 for Fig. 5), vioplot (v.0.3.5 for violin plots) 
viridis (v.0.3.0) and RColorBrewer (v.1.1.2) both for color palette gen-
eration. The R functions used to perform the network expansion 
(Propagation using PPR and community detection to define gene 
modules) are publicly available in Zenodo (https://doi.org/10.5281/ 
zenodo.7575743).
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