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Abstract

We consider a model for monitoring the connectivity of a network subject to node or edge failures.
In particular, we are concerned with detectifigk)-failures. events in which an adversary deletes up
to k£ network elements (nodes or edges), after which there are two sets of Aaie$B, each at least
ane fraction of the network, that are disconnected from one another. We say thaDaodetodes is an
(¢, k)-detection set if, for anye, k)-failure of the network, some two nodes in are no longer able to
communicate; in this wayD “witnesses” any such failure. Recent results show that for any gigph
there is ar(e, k)-detection set of size bounded by a polynomiakiande, independent of the size 6f.

In this paper, we expose some relationships between bounds on detection sets and the edge-connectivity
A and node-connectivity of the underlying graph. Specifically, we show that detection set bounds can
be made considerably stronger when parameterized by these connectivity values. We show that for an
adversary that can delete edges, there is always a detection set of é}té log %) which can be found
by random sampling. Moreover, dn, \)-detection set of minimum size (which is at mdistcan be
computed in polynomial time. A crucial point is that these bounds are independent not just of the size of
G but also of the value ok.

Extending these bounds to node failures is much more challenging. The most technically difficult
result of this paper is that a random samplﬂﬁ% log %) nodes is a detection set for adversaries that
can delete a number of nodes uptathe node-connectivity.

For the case of edge-failures we use VC-dimension techniques and the cactus representation of all
minimum edge-cuts of a graph; for node failures, we develop a novel approach for working with the
much more complex set of all minimum node-cuts of a graph.
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1 Introduction

Monitoring network connectivity.  As links or nodes fail in a network, it is important to maintain infor-
mation about basic properties such as connectivity. For large, unstructured networks, this is often done by
recourse to sampling and other approximate measurements; performing such measurements in a robust and
accurate way is an active research topic (e.g. [4, 5, 19, 21, 20]). A general problem here is to minimize
the cost of network monitoring and measurement, in terms of communication, computation, and resource
usage.

Here we consider a model proposed by the first author for monitoring network connectivity [16]. We
are given a connected node gra@hon n nodes, and we want to detect “failure events” in which at most
k network elements (nodes or edges) are deleted, after which there are two sets ofireok8, each of
size > en, such that no node id has a path to any node . We will call such a pair of setseparated
and we will call such an event dn, k)-failure. (To reflect the fact that the node or edge failures can be
arbitrary, we will sometimes speak of them as being selected by an adversary.)

To detect such failures, we consider the strategy of placing “detectors” at a sibskthe nodes
of G. Now, if we find that two detectors are unable to communicate — either because there is no path
between them, or because one has been deleted — we can record a fault in the network. We would like
our setD to have the property thavheneveran (e, k)-failure occurs, some two detectors are unable to
communicate; we will refer to such a sBtas an(e, k)-detection setNote the nature of this conditior>
must detect all possiblg;, k)-failures, so we imagin® as being chosebeforethe adversary selects a set
of k network elements to delete. The emphasis in [16] was on finding a bound on the number of nodes that
must be randomly selected from a gra@hn order to obtain arfe, k)-detection set with high probability.
Improvements to these bounds were obtained by [7].

In this paper, we adopt a somewhat different approach to this issue, by exposing some interesting and
non-trivial connections between the size of the smallest detection set for a Grapkl the values of its
edge- and node-connectivity. (The edge-connectivitgzofienoted\(G), is the smallest number of edges
that must be deleted in order to disconn€ctThe node-connectivity off, denoted:(G), is the analogous
guantity for node deletions.) We show that stronger bounds on detection set size can be obtained if we
parameterize these bounds by the connectivity valuasd «; and for some cases, we use this relationship
with connectivity to provide the firgter-instanceguarantees for detection sets.

Because our results are different depending on whether the adversary is deleting edges or nodes, we
consider these two cases separately.

Detection sets for edge failures. We begin with adversaries that can delete ug tedges; as such, we
will be concerned with(e, k)-edge-failureswhich are(e, k)-failures in which only edges are deleted. It is
known that a random set 6](% log %) nodes is arte, k)-detection set for edge failures with high probability
[16], and that every graph contains & k)-detection set for edge failures of sié)i%) [7]; note that both
bounds are independent of the size of the gr@plit is not difficult to show that both bounds are tight, and
so there is no prospect of obtaining an improvement that applies to all graphs. However, it makes sense to
ask whether better bounds are possible in terms of natural parameters of thé&graph

An obvious parameter to consider here is the edge-connechyitydeed, there can be re, k)-edge-
failures inG if £k < A. Our first main result establishes thats indeed a natural way to parameterize the
problem; we show that every gragh has an(e, \)-detection set for edge failures of size at m§stNote
that there is no leading constant in this bound, and that it is independent not just of the &izmibalso
of the value of\. Extending this result, we show further that @n\)-detection set for edge failures of

!Following the publication of the conference version of this paper, further improvements have been obtained in [8].



minimumsize for a graplz can be computed in polynomial time. The algorithms used to establish these
results are based on the cactus representation of all minimum edge-¢uis,09].

Given that strong bounds are possible for detecting an adversary that can delete one minimum cut's
worth of edges, it is natural to ask what can be said about an adversary capable of deleting a number of
edges equal t& times the size of a minimum cut. We show that a random séi(é;ﬂog %) nodes is a
(kX €)-detection set for edge failures with high probability. This is essentially a factartiofies stronger
than the bounds of [7, 16], which did not take edge connectivity into account. Our proof of this result uses
a VC-dimension argument in the style of [16]; the bound on the VC-dimension is obtained using a result of
Mader [18, 10]. that extends results of Lovasz [17] and of Cherkasskij [3] on edge-disjoint paths in graphs.

Detection sets for node failures. We now consider adversaries that can delete Upriodes. By analogy
with our results for edge failures, we consider the size of detection sets in terms of the node-connectivity
Our main result here is that every gra@hwith = = O(e?n)) has an(e, x)-detection set for node failures of
sizeO(1); moreover, a random set 6f(1 log 1) nodes forms afe, «)-detection set for node failures with
high probability. Again, note that these bounds are independent not just of the gizaubvhlso of the value

of k. Extending our results to adversaries that delet@odes fork > 1 is a very interesting and apparently
difficult open question.

We note the distinction, raised by Gupta [13], betwstnngandweakdetection sets for node failures.

A strong detection seb has the property that, after afy, k)-node-failure, two nodes ab lie in different
connected components. A weak detection Béthas the property that, after any, k£ )-node-failure, two

nodes ofD lie in different connected components an element ofD has been deleted. Either of these
definitions arguably forms a plausible definition of network failure detection. Improving a bound of [16],
Fakcharoenphol showed that a random seﬂ)bif log k log %) nodes is a strong, k)-detection set for node
failures [7], and Gupta showed that every graph has a wegk)-detection set for node failures of size
O(%). As we note in Section 4, weak detection appears to be a more useful notion when the problem is
parameterized by node connectivity; in particular, our main result is about weak detection sets. Henceforth,
we will assume that all detection sets for node failures are weak unless otherwise specified.

Our analysis for node failures is significantly more complicated than for edge failures, and this is not
surprising; not only is no analogue of the cactus representation known for min-node-cuts, but this appears to
be intrinsic due to thet P-completeness of even counting the number of min-node-cuts [2]. Indeed, given
the lack of tractable representations for min-node-cuts, we believe that our analysis develops some useful
properties of their structure. We begin by constructing a detection set of minimum size for adversaries
that can deleteshredderg2, 15] — min-node-cuts whose deletion produces at least three components.
The construction of the detection set then proceeds by greedily isolating a maximal collection of relatively
balanced min-node-cuts that produce just two components, and whose “small sides” are disjoint; the small
side of each such cut is required to have at Iégstodes. We then show that by placing detectors so that one
lies on the small side of each of these cuts, there is no way for a min-node-cut producing two components
of size at leastn each to avoid being detected.

Further Discussion. A simple calculation based on Karger’s algorithm gives an upper bou@cd@tog n)
on a random sample of nodes that forms(ark\)-detection set for edge failurésHowever, our goal in
this paper is to find bounds that do not depend on the size of the graph.
Following [16], we can extend our results to a model in which the nodes of the netWwark partitioned
into two sets — a séftj of end nodesnd a set/; of internal nodesWe assume that we are only allowed to
place detectors at end nodes, and correspondingly are only interested in monitoring the connectivity of the

2Note that no such simple bound is available for the case of node-failures, which is yet another evidence of its difficulty.



end nodes. Specifically, we re-defife k)-failures as failures ok % network elements, after which two
disjoint subsets of};, each of size> €|V}, are separated from each other. We can show that the bounds
obtained above carry over to this more general setting; we omit further discussion of the generalization from
this version of the paper.

Our work is similar in spirit to some of the work on vertex connectivity and augmentation thereof,
e.g. [14, 2, 15, 12]. The actual technical issues are quite different, however, since we are only interested
in balanced cuts. In general one could view our work here as integrating notions from edge- and node-
connectivity with the problem of balanced separators of graphs — two topics that have traditionally been
approached separately due to their great differences in tractability.

Notation. In this paper all graphs are assumed undirected; our standard notation for a graph(ig, F).
An edge(node)-cut is a séf of edges (nodes) such th@at\ X is disconnected.

A min-edge(node)-cut is an edge(node)-cut of minimum size. This size is also known as edge(node)-
connectivityand denoted by andx respectively. We will writemin-cutwhen it is clear whether we are
talking about edge-cuts or node-cuts. A set of noddigiht if it is a union of some (but not all) components
of a min-cut. A cutX is callede-balancedif there are two sets of vertices of sizeen that are disconnected
from one another it7 \ X. An e-balanced cut oK & edges(nodes) is called & k)-cut.

If sets X, Y have a non-empty intersection, we s&ymeetsY . To help clarify the notation in places,
we will sometimes writeX + Y to denote the union of disjoint sef§ andY, andX — Y to denote the
difference of setsY andY for whichY C X.

2 Detection sets for edge failures

In this section we present our results on edge failures. For edge failures that correspond to min-edge-cuts,
our algorithms are based on thactus representationf all min-cuts in a graph [6, 9]. We include a self-
contained review of the relevant definitions and facts. Our result for the general edge-failures proof uses a
VC-dimension argument in the style of [16]; the bound on the VC-dimension is obtained using a result of
Mader [18, 10] on edge-disjoint paths in graphs.

Throughout the section, all cuts are edge-cuts, and all detection sets are for edge failurebelatset
of nodes, representing the locations of our detectors. We saythHatectsa cut X if some pair of detectors
is separated iF \ X. We call D an (e, k)-detection seif it detects every(e, k)-edge-cut.

In Section 2.1 we review the cactus representation. Section 2.2 is on min-edge-cuts: we construct a
smalleste, \)-detection set and prove it has sige%. Section 2.3 is on general edge-failures: we prove that

a set ofO(% log %) randomly sampled nodes is &n k)-detection set with high probability.

2.1 Review: cactus representation

Edges will be viewed as cycles of length two; cycles of length 3 or more are qaibgbr. A cactusis a
connected graph such that any two of its cycles have at most one vertex in common. An arbitrary cactus
can be obtained starting from a cycle and recursively adding new cycles that share a single vertex with the
existing graph. In a cactus, some edges are contained in a properaydieddges and some aren’p@ath

edge$. Each cycle edge has capacgyand each path edge has capacity 1. It follows that min-cuts of a
cactus have capacity 1. We can characterize them as follows:

Fact 2.1 Consider a cactu§’. Then (a) each path edge is a min-cut, (b) any pair of cycle edges from the
same cycle is a min-cut, and (c) there are no other min-cuts.



Proof: Clearly any cut inT" has capacity at leagt For part (a), letuv be a path edge. If there exists a
uv-pathp not containing the edgev, thenp + wwv is a cycle, contradicting the definition of a path edge.
Thereforeu andv are separated i — uv. Souw is a cut inT’, hence a min-cut.

For part (b), leteq, e be cycle edges from the same cy€le e; + e splitsC into two arcs, call them
C1 andCs,. Suppose’; andCy are connected ifl' — e; — eo. Then there exist verticas € Ci, v € Cy
such that there is av-pathp that does not intersect witi except for the endpoints. L&’ be theuv-arc
of C that containg;. Thenp + C’ is a cycle inT that share$> 2 vertices withC, contradiction. S@’; and
Cy are not connected i — e; — eg. Thereforee; + e is a cut inT’, hence a min-cut.

For part (c), supposg is a min-cut ofT" that is neither a path edge nor a pair of cycle edges from the
same cycle. Since the capacityXfis < 1, it consists of one or two cycle edges. So there is a (proper) cycle
C such thatX contains exactly one edge € C. SinceX is a min-cut, it must separateandv. However,
they are connected by — uwv. Contradiction. O

In a cactus, nodes of degree one will be calleglves nodes of degree two that are contained in a cycle
will be calledcycle nodesand all other nodes will be callditanch nodes

Fact 2.2 Letwv be a branch node of a cactdBs. Then the cycles that containare pairwise disconnected in
T —wv.

Proof: Let C, C’ be cycles that contain. Let uv, u’v be edges irC, C’, resp. Suppose andu’ are
connected irl” — v, i.e. there is aw/’-pathp not containingy. Thenp + uv + vu’ is a cycle that shares 2
vertices withC' (andC"), contradiction. S& andC’ are disconnected ifi — v. O

Consider a branch nodeof a cactusrl’. It connects two or more cycles. By Fact 2.2, the removal of
splitsT" into two or more connected componenisgqomponents Eachv-componentX is tight: for some
cycle C containingu, it is obtained by removing the edge(s)@fthat are adjacent to.

Fact 2.3 Suppose is a tight set in cactud’, v is a branch node. Then:
(a) if v € S thensS contains at least one-component.
(c) ifv € S thenS is contained in av-component.
(c) for anyv-componentX of T', eitherX ¢ S,orSCc X,orX CcV —S,orV -5 C X.
Proof: For part (a), letS be a component of a min-cét. By Fact 2.1C' is contained in a cycle, so
C C T[X + v] for somev-componentX . Therefore ifY" is any othew-component thel” + v is connected
inT\ C.Y c S follows sincev € S andS is connected if" \ C.
For part (a), supposg& meets twa-components then they are connecte’in v (via S), contradiction.
For part (c), suppos& meets boths andV — S. Then by part (b) i € S thenV — S C X, else we
haveS C X. O

Let G be a weighted graph om vertices. Acactus-pairof G is a pair(7', =) whereT is a cactus, and
7 is a mapping fron¥/(G) to V(T') such that ifM is a tight set inl" thenw—!(M) is a tight set inG. For
each tight sef\/ of T say that(T, 7) representghe min-cutC' of G' such thatr—! (M) is aC-component.
A cactus representatioof G is a cactus-pair o7 that represents all min-cuts 6f. Dinits et al. [6] proved
that every capacitated graph has a cactus representation aP&ige Further results show that a cactus
representation of siz€(n) can be efficiently constructed. See the introduction of [9] for discussion.

2.2 Detection sets for min-edge-cuts

Here we are only interested #balanced min-cuts, and so the cactus representation is too general for our
purposes. This motivates the following definitions.



Definition 2.4 Let ane-cactus-paibe a cactus-pair that represents albalanced min-cuts. Let aftcactus
be the cactus in such cactus-pair (if the mapping is clear). A suBset vertices of a cactus ibeavyif
|7=1(S)| > en. Call a cactus-pairreducedf everyv-component is heavy.

A reducede-cactus-pair can be efficiently computed from a standard cactus representation by consecu-
tively applying the following reduction.

Lemma 2.5 Supposd is ane-cactus,v is a branch nodeX is av-componentthat is not heavy. L&t be

T with X contracted intov. ThenT” is also ane-cactus.

Proof: For each-balanced min-cu€' of G there is a min-cu€’ of T that represents it. By Fact 2.3c there
is a componen§ of C’ such thatX ¢ S or S ¢ X. SinceS is heavy andX isn't, it must be the case that
X is a proper subset &f. Thenv € S, soC’ is a min-cut inT”, too. Thereford” representg’. O

Let G be a capacitated graph. LEF, 7) be a reduced-cactus-pair ofZ. We will characterizée, \)-
detection sets of minimum size in termsTof

Let asubcyclebe a set of consecutive cycle nodes of a (proper) cycle. i@onsider the non-degenerate
case when there is at least one branch node. Then the weight )| of each leaf and each subcycle is at
most(1 — ¢)n. Let acanonical subcactube a set of nodes @f that contains each leaf, has an element in
every heavy subcycle, and contains no branch nodesDLet V (G) be a set of detectors (not necessarily
an (e, \)-detection set). Say is T-canonicalif (D) is a canonical subcactus, and at most one detector is
mapped to each node @f. The following two lemmas show that any smallést))-detection set is in fact
a smallesf’-canonical set.

Call S C V heawyif |S| > en, andbalancedif both S andV \ S are heavy. Calb’ C V(T balanced
if 771(5") is balanced. For each balanced tight Sedf G let 7/(S) be a (balanced) tight s&t' of T such
thatS = m=1(9").

Lemma 2.6 Any smalleste, \)-detection set i§-canonical.
Proof: Let D be a smalleste, \)-detection set. Call elements of detectors We need to show that (1) at
most one detector is mapped to each nod& of2) there is a detector mapped to each leaf and each heavy
subcycle off", (3) and no detectors are mapped to branch nod&s akt us prove these three statements in
order.

(1) Suppose two detectois, d> map to a node of T'. To obtain a contradiction it suffices to show an
(e, A)-detection set smaller thal. We claim thatD — d; is also an(e, \)-detection set. Suppose not. Then
there is a balanced tight s&tof G that containsD — d;. Obviouslyd; ¢ S. LetS’ = «/(S). Sinced, € S,
v=m(dy) € S’, sod; € S, too, a contradiction.

(2) There is a detector mapped to each heavy tight s&t, @ particular, to each leaf and each heavy
subcycle.

(3) Suppose a detectdris mapped to a branch nodeof T'. By analogy with (1), we claim thab — d
is also an(e, \)-detection set. For suppose not. Then- d is disjoint with some balanced tight s&t Let
S" = #/(S). SinceD is an (e, A)-detection setd € S, sov € S’. Therefore by Fact 2.38’ contains
somev-components”. SinceT is reducedS” is heavy, so there is a detector mapped to itSSmntains a
detector other thad, a contradiction. O

Lemma 2.7 AnyT-canonical set is arfe, \)-detection set.

Proof: SupposeD C V andw (D) meets each leaf and each heavy subcycl&.ofWe need to prove that
7w (D) meets each heavy tight set’Bf To show this we claim that any heavy tight $ebf 7" contains a leaf
or a heavy subcycle.



Figure 1: Ane-cactus with detectors. Branch nodes are denotedshydetectors by . In the central

cycle, there are three subcycles between the branch nodes. The smallest of them is not heavy, hence does
not contain a detector. The other two are big enough so that they need two detectors each. Each of the three
smaller cycles is heavy (even without its branch node), since otherwise it would have been contracted.

We’'ll use induction on the size &f. The base case corresponds taSathat consists of one vertex, say
v. By Fact 2.3a cannot be a branch node. So eitheis a leaf or it is a heavy subcycle consisting of a
single cycle node.

For the induction step, note that§fcontains a branch nodethen by Fact 2.3& contains some (heavy)
v-componentss’, to which the induction hypothesis applies.Sifdoes not contain any branch nodes, then
it lies within a single cycle, s& is a (heavy) subcycle. The claim follows. O

Theorem 2.8 A smallest(e, \)-detection set is of size at molat There is a polynomial-time algorithm to
construct it.

Proof: Let (T, 7) be a reduced-cactus-pair ofG. We have seen that smallgst \)-detection sets are
(mapped to) smallest canonical subcactiofTherefore it suffices to compute a smallest canonical subcac-
tus of T'.

Let .S be a subset of a proper cydleéin 7. Call S a C-detection set ifS does not contain any branch
nodes, and every heavy subcycle @fcontains an element of. By definition, if there are no heavy
subcycles inC' then an empty set is @-detection set. Obviously, a subsetTfis a canonical subcactus
iff it is a union of leaves ofl" and (disjoint)C-detection sets, one for each proper cyclélof Therefore
to compute a smallest canonical subcactug’ d@f suffices to construct a smalleStdetection set for each
proper cycleC of T

The construction is as follows. Assumifigconsists of more than one cycl€, contains one or more
branch nodes. Assuming contains cycle nodes, pick any branch negéollowed by a cycle node. Start
with v. In the iterative step, start with a cycle node and move clockwise alotifj a heavy subcycle is
detected (call this subcychkelectedl or a branch node is reached. Start a new step with the next cycle node.
Stop whenw,, is reached. Lef be the set of the last nodes (clockwise) of selected subcycles.

Obviously S is a C-detection set.S is a smallest such set by the following observation. £ebe a
C-detection set. Let € C be a branch node or an element%f Letv’ be the next node clockwise. L&Y
be the smallest heavy subcycle starting withif it exists. Letw be the last node of”. ThenC’ contains
at least one element ¢f. The observationis tha&’ — C’ + w is aC-detection set with the same or smaller
number of elements. Consecutively applying this observation, we can tranSfams' without increasing
the number of detectors.

Our construction puts one detector into each ledf'@nd each selected subcycle. Since leavées afe
heavy and selected subcycles are heavy and disjoint, our construction covers at vagght with each
detector. Since the total weight of (nodes df)s n, the total number of detectors is at mést O

2.3 Smaller detection sets for edge failures

A setS of nodes is:-edge-separabliéthere exists a seéf of < k edges such that is a union of components
of G\ Z. Let F be the family of allk-edge-separable sets. We say that V is shatteredoy F if for all

7



B C A there exists ai’ ¢ F such thatB = AN F'. TheVC-dimensiorof F is defined to be the maximum
cardinality of a subset df that is shattered by

In [16], it was shown that one can connect the VC-dimengiai F with (¢, k)-detection sets via the
notion of ane-net which is a set that meets eaghe F of size> en. Specifically, a theorem by [1] says
that a set of)(2log L + L log ) randomly sampled nodes is amet for 7 with probability at least — 6.3
Moreover, it is easy to show [16] that amet for F is an(e, k)-detection set.

In [16], it was shown that the VC-dimension &fis at most2k + 1, yielding a bound oD(% log %) on
the size of ar(e, k)-detection set. In this section, we strengthen the VC-dimension boutfd torO(%).
Thereforem we obtain the following theorem.

Theorem 2.9 A set ofO(% log %) randomly sampled nodes is dn k)-detection set with high probability.

We now turn to the new bound on the VC-dimension; to prove it, we will use the following theorem by
Mader [18] on edge-disjoint paths between elements of a given set of vertice® et subset oV of
sizer. Letd(R) be the number of edges leaviiy Let¢(R) be the number of componer@sof G — R for
whichd(C) is odd. Let ank-pathbe a path connecting distinct elementgf

Theorem 2.10[18] The maximal number of edge-disjoifitpaths is3 min(3>" d(V;) — ¢(UV;)), where the
minimum is taken over all collections of disjoint subsets of verticgd’, . . ., V. such thatV; N R| = 1.

Corollary 2.11 There are)(r\) edge-disjointk-paths.
Proof: Consider a collection of disjoint subsets of vertidés Vs, ..., V, such that|V; N R| = 1. Let
d=>d(V;),q = q(UV;). By the above theorem it suffices to prove that ¢ = Q(r\).

Note thatd > r\ sinced(V;) > A. LetC, ...C, be the componentS' of G — UV; such thatd(C) is
odd. All edges exiting each; are touV;. Sod > d(UV;) > > d(C;) > g\. If r > gthend—q > rA—q >
r(A—=1). If r < gthend — ¢ > g\ —q > r(A—1). Thereforel — g = Q(r\). O

The following is a well-known application of the probabilistic method.

Lemma 2.12 Let (R, F') be a multi-graph onR. Then there exists a partition @t into setsR;, Rs such
that there are at leas}|F'| edges betweeR; and R».

Lemma 2.13 The VC-dimension of is O(£).
Proof: Let R be a subset o¥ of sizer. By Cor. 2.11 there exists a famify of 2(rc) edge-disjointR-
paths. Let(R, F') be a multi-graph o such that there is a 1-1 correspondence betweepaths inP
and edgesw € F. By Lemma 2.12 there exists a partition Bfinto setsR;, Rs such that (in the original
graph) there ar€(r)\) edge-disjoint paths betwed®, andR,. We can choose = @(f) so that there is
guaranteed to be a famify’ of (at least)k + 1 edge-disjoint paths betwed®, and R,.

We claim thatR cannot be shattered I3§. Suppose not. Then there exigfsc F suchthatX "R = R;.
X is a union of components of some ctof k or less edges? is disjoint with (at least) one pathe P’.
The ends op are in the same’-component, so either they are bothXn or both not inX. In both cases
this contradictsX N R = R;. Thus, the claim is proved, and it follows that the VC-dimensiorfois
r=0(%). O

3Both [16] and [7] used a slightly weaker theorem, with a corresponding bouﬁkﬂfeéﬂog % + %log %).



3 Detection sets for node failures

The main theorem of this section (Theorem 3.6) is thatfox. O(e2n) a set ofO(2log 1) randomly
sampled nodes is a weék ~)-detection set with high probability. We rely on a special casesiiredders,
which is a corollary of our result ostrongdetection thereof (Theorem 3.1). We also present a partial result
(Theorem 3.15) on extending strong detection setg-&hrredders to those for genefal x)-cuts.

Before we proceed, let's review the definitions. In this section all cuts are node-cuts, all detection sets
are for node failures. A cukX is calledtwo-wayif G \ X has exactly two connected components, called
the sidesof X. A shredderis a min-cut with three or more components. Ashredderis ane-balanced
shredder. A seD of nodesstrongly detects cutX if some pair of detectors is separateddn\, X. If D
either meets or strongly deteck§, say D weaklydetectsX. D detects (is a detection set for) a family of
cuts if it detects every cut in the family.

The rest of this section is organized as follows. In Section 3.1 we show how to find a strong detection
sets fore-shredders. In Section 3.2 we use shredders to get a detection set for twebai@nced min-cuts.

In Section 3.3 we combine these two results and obtain the main theorem. Finally, in Section 3.4 we present
our partial result on strong detection sets.

3.1 Strong detection sets for shredders

It is a well-known fact that there can be exponentially many min-cuts. Furthermoregeuatingmin-cuts
is #P-complete [2]. However, there can be o6lyn) shredders [15], with a polynomial-time enumeration
algorithm [2]. We start by stating the main result of this subsection.

Theorem 3.1 Suppose: < en. Then a set o@(% log 61—5) randomly sampled nodes is a strong detection set
for e-shredders with probability at leadt— . Moreover, asmallesistrong detection set farshredders has
size< % and can be constructed in polynomial time.

Before we prove this theorem we need to establish some basic facts about min-cuts. Fof theut
connected components 6f\ X are also called-componentsLet.S, T be min-cuts. Say mesheq if S
meets at least tw@'-components. By [2, Lemma 4.3(1)]. meshed” thenT meets everys-component.
Thus meshing is a symmetric relation.9fmeshed” (andT meshesS), the two cuts areneshing ElseS
andT arenon-meshing

Lemma 3.2 ([2], Lemma 4.3(2))f min-cutsS andT" are meshing, then there is a componénof eitherS
or T such thatQ) contains¥ — S — T

Corollary 3.3 If k < en then any twa:-shredders are non-meshing.

Lemma 3.4 Let S andT be non-meshing shredders. L&tbe theS-component that meefE. ThenC
contains allT-components but one, call &'. Moreover,C’ containsV — S — C, i.e. all S-components
other thanC.

Proof: Pick anyv € S — T. By minimality of S, v has edges to eactrcomponent (else§ — v is a cut).
Thus,V — S — C + {v} is connected. Sinc& c SUC,V —T — Cis connected, and hence lies in a
T-component”’. So all othefI'-components are contained@andV — S -C cV -T-CcC'. O

For a family F of e-shredders, we call a component of a shreddefaneadif it meets at least one
shredder inF. Now, suppose we have dn k)-detection set for shredders, afds ane-shredder with an
F-headH. Then there exist& € F that meetdd; so by Lemma 3.4 contains alll’-components but one,
and hence contains a detector. This gives the following lemma.



Lemma 3.5 Let F be a family ofe-shredders, withx < en, and letS be ane-shredder with anF-headH .
Then any detection set fof meetsH.

Proof of Theorem 3.1:Let F; be the family of alle-shredders. Start wittf = Fy. While there exists an
e-shreddelS € F with two or moreF-heads, delet§ from F. Let 77 be the resulting family of shredders.
By Lemma 3.5 any strong detection set §6y is a strong detection set fof.

LetS € F;. LettheheadH of S be the (singley;-head ofS. Let thetail of S belV” —S— H. Note that
by Lemma 3.4 for anys, T' € F; the tail of S is contained in the head @f (and vice versa). In particular,
tails are pairwise disjoint. Since each head contains someone else’s tail Dacdetodes is a detection
set for 71 iff D meets the tail of eacli € F;. Therefore, a smallest detection set §6r has size 7.
Since tails are of size en each,|F;| < % The random sampling result follows by a simple probabilistic
computation. O

3.2 Detecting two-way min-cuts

In this subsection we construct a weak detection set for two-way)-cuts. First we give a non-efficient
deterministic construction. We considgf;, x)-cuts and use a greedy-type algorithm to construct a “maxi-
mal” family of two-way (15, #)-cuts with sidesA; and B; such thatd; C B; foralli # j. In particularA;’s

are pairwise disjoint, so there are at méﬁ%tof them. It turns out that it: < O(e?n) then putting a detector

into eachA; suffices. More precisely we show (Theorem 3.8) that these detectors together with any weak
detection set for shredders give a weakr)-detection set. Then a simple probabilistic argument yields a
randomized result stated below.

Theorem 3.6 Suppose: < 622—(? Then a set 00)(2 log X&) randomly sampled nodes is a weék )-

detection set with probability at least— 4.

We start with some notation and a simple but very useful lemma about crossing min-cuishé atset
of nodes. CallS connectedf the subgraph ot~ induced bysS is connected. Else s&yis disconnectedSay
a cutX preservesS if X disjoint with S andS lies in one component @i \ X. Note that a connected set
of nodes is preserved hy if and only if it is disjoint with X. N (.S) denotes the set of neighbors.$fi.e.
the set of all nodes ifY — S that have an edge 8. Note that ifi” — S — N (S) is non-empty thedV (S) is
a cut.

Say two-way min-cutsX andY arestrongly crossingf each side ofX meets each side &f. Say X
andY areweakly crossindgf X meets both sides &f and vice versa.lt is easy to see that strong crossing
implies weak crossing, but not the other way round.

To formulate the promised lemma, we will use the following notation. The sideX¥ aindY are
respectivelyP;, P, andQ1, Q2. Their intersections (‘quarters”) afg;; = P; N Q;. Also letX; = Q; N X
andY; =P,NYandXNY =65.

Lemma 3.7 (The Two-Quarters Lemma) Suppose two-way min-culs andY” are weakly crossing so that
the two quarterg’,; andCio are non-empty. Then

(8) |X1| = |vi] and|Ya| = [ Xal,

(b) Cy1 and(Cy, are tight, WIthN(CZJ) = Y; + X;+ S,

(c) V — Cs1 — N(C49) is connected, same f@ry .

“Note that if X meets both sides df, say atv; andwvs, respectively, thely” meets both sides of. Indeed, for the sake of
contradiction supposg does not meet a side; of X. Then, since any node i has at least one edge i and P; is connected,
there is av1v2 path inG/Y, contradiction.
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(a) X andY are strongly crossing (kY andY are weakly crossing

Figure 2: Two applications of the Two-Quarters Lemma.

Figure 3: Partitioning of the graph after thi iteration of the algorithm

Proof: T = X; + Y, + S andU = X, + Y7 + S separat&’y; andC;, respectively from the rest of the
graph. It follows that, > X (else|T'| < |X]), X1 > Y; (else|T| < |Y]), X2 > Y> (else|U| < |Y]) and
Y1 > X, (else|U| < | X|). Thereforg X| = |Y1| and|Xs| = |Y|, soU andT are min-cuts and’;2 and
Cy are tight. FinallyV — Cy; — N(C21) is connected as a union of two connected s@tsgnd ) with a
non-empty intersection{;»). O

This lemma is similar to the result of Jordan [14] on intersecting tight sets. Note thaaifdY are
strongly crossing our lemma yieldX(;| = |X»| = |Y1| = |Y2| (Figure 2a). We will also use it foyj;-
balanced min-cuts that are crossing weakly but not strongly. Then one of the “quarter€’,;S&yempty,
so, assuming < {&, Co1 andC1» are not (Figure 2b).

Now we are ready to describe the construction.

Construction

1. LetF denote family of all5-balanced two-way min-cuts, and ld{.7) denote the family of the sides
ofall F' € F. Stop if F is empty.

2. Choose any inclusion-wise minimal componédgptfrom A(F), let Xy, = N(Ay) be the correspond-
ing cut andBy be the second component &f. Put detectors imy andBg.

3. Delete fromF all cuts which do not preservé,. For X € F let A(X) be the side o thatdoes not
containAy.

4. Start with the first iteration. For theth iteration choose a cuf; € F so thatA(X;) does not contain
any otherA(X) for X € F. LetA; = A(X;). Let B; be the other side oK.

5. Put a detector intd;. Remove fromF all cuts which do not preservé, U A; U ---U A;. Stop If F
is empty; else iterate.

11



A, X2
(b) (c)

Figure 4: Three different options of hoW can interact withX;'s. For (c) we prove that the portion af
between cuts{; and X, shrinks to an empty set, ad, N Y = XoNY.

By construction all4;’s are pairwise disjoint, and eachy > ;. Therefore our algorithm will terminate
after at mostt steps after putting at mos# detectors. Denote this set of detectorsIby LetD; be any
weak detection set for shreddef3,= D; U Ds.

Theorem 3.8 If k < %n then anye-balanced two-way min-cut is weakly detectedZhy

Before proving this theorem we will state some simple properties of our construction.

Lemma 3.9 Forall ¢ # j A; C B;. In particular X;; is disjoint with A;.

Proof: We will prove that for anyi # j, X is disjoint with A; (which would immediately imply4; C B;).
If j < ithen by constructiorX; is disjoint with all 4; for j <7 andA; C B;. On the other hand, if > i
thenB; containsA4; and supposel; N X; # ( thenv € A; N X; has at least one edge ) and thus taB;;,
soA; andB; are not separated, a contradiction. ]

Corollary 3.10 EachB; contains at least one detector.

Lemma 3.11 If atight setA C A; is of size> {; then the cutV (A) is a shredder.
Proof: Suppose not. Thel (A) is a two-way( 5, x)-cut preservingB; and hencé J'_j A;. ThusN (A)
was not deleted fronfF until iterationz, so it should have been chosen insteaXgfcontradiction. O

In what follows we assume < %n The next lemma shows ho®; (a detection set for shredders)

helps to detect two-way min-cuts.

Lemma 3.12 LetY be anyj-balanced two-way min-cut with sidésand D. Supposé) contains a setV
of size at leas{ such thatV (W) is a shredder. The® + Y contains at least one detector frain .

Proof: The shreddeZ = N (W) is {5-balanced, so it is weakly detected By. SinceY is a cut, there are
no edges betweel andC, i.e. Z lies in D + Y. It follows thatC' is connected irG \ Z, hence lies in a
single connected component thereof. Thus at least one detectofffasmot inC, soitisinD +Y. O

Now we are ready to sketch the proof of Theorem 3.8; the details are in the next subsection.
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Proof Sketch of Theorem 3.8. LetY be ane-balanced two-way min-cut with sid€s and D. We need to
show thatD meetsY or both sides thereof. For the sake of contradiction suppose it is not so. Then without
loss of generalityD C C, which implies that” meets every; andB;. Clearly then4; ¢ D +Y, for every
i. Also note that by Lemma 3.12 cannot contain disconnected tight sets larger tffan

There are now three cases to consider, depending on the relatidrtamthe setsX;. First, suppose
Y does not strongly cross any;. We show thatV(D\ U X;) is a two-way;-balanced cut that was not
excluded fromF (see Figure 4a), and this contradicts the stopping condition of the algoritiimstiiongly
crosses exactly on&;, then we replac& by the cuty” = N (DN B;) (see Figure 4b)Y” does not strongly
cross anyX;, so we apply the argument from the case above to showthatdetected. Therefore there is
at least one detector in sé&t, which contradicts our assumption. Finally if none of these two cases apply
thenY strongly crosses at least two sets amgAg}, say X; and.X ;. An argument using the Two-Quarters
Lemma then shows tha&{; and.X; partitionY” into the same subsets (see Figure 4c). We then provethat
and X; cut off a large connected subslt of D such thatV(D’) is a two-way( 15, #)-cut not deleted from
F, which thus violates the stopping condition. O

3.3 Full proof of Theorem 3.8

Lemma 3.13 Supposé” is e-balanced andA; meetsD. Then either there is a detector i + Y or the
following conditions hold:

(a) Y strongly crossesy;, and

(b) N(Dn B;) is a two-way2s-balanced min-cut.
Proof: Suppose there is no detectorfin+ Y. SinceA; and B; each contain a detector, they mé&tNow
we can invoke the Two-Quarters Lemma to quarers) C and A; N D and conclude thati; N D is tight.
We claim that|B; N D| > f—g n. Indeed, otherwis¢A; N D| > £, so by Lemma 3.12V(A; N D) is a
two-way cut, which contradicts Lemma 3.11. Claim proved.

This proves (a) and shows that(B; N D) is an f—g-balanced cut. To complete (b), note thatN D is

tight by the Two-Quarters Lemma, so by Lemma 3N@B; N D) is two-way. O

LetY be ane-balanced two-way min-cut with sid€$ and D. We need to show thd? meetsy” or both
sides thereof. For the sake of contradiction suppose it is not so. Then without loss of geferality,
which implies thatC' meets everyd; and B;. Clearly thenA; ¢ D + Y, for everyi. Also note that, by
Lemma 3.12D cannot contain disconnected tight sets larger tifanThere are three possible cases which
we prove separately: (1) cift does not strongly cross any;, (2) cutY strongly crosses exactly ong;,
and (3) cutY” strongly crosses at least tw’s.

Case 1: cutY does not strongly cross anyX;. To re-use this proof for the second case, we will assume
thatY is only f—g-balanced, rather thambalanced,

Since we assumed that; does not strongly cross by Lemma 3.13 we have all;’s are disjoint with
D. Using this fact we show that eacty excises a small a piece of size at medtom D, and finally we
show thatD\ U X; is large, tight, connected, and preseruve$;, and thus algorithm could have made at
least one more step.

Let X;,, X;,,...X;, be all cuts which are intersecting with. LetD; = D — D N U{L:l X, Y =
N(DJ) ande =V — Y; — Dj. First of all
J
8¢ 10 3€
D;| > |D| — X, |>—n—-—r—>—
D312 1D = 301Xl 2 ggn = n s 2 g
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The last transition is because< %n

We will prove by induction that eacl®; is tight, connected and corresponding &gt = N (D) is
two-way for every0 < j < t.

Suppose we did that, the; by its construction is disjoint with any;, and thus all4;’s are disjoint
with Y;, and hence lie iV — D; — Y;, thereforeY; preserves ) A; (becausé’; is a two-way cut). On the
other handD;| > % n and|C;| > |C| > eN. SoY; is £¢-balanced two-way min-cut and preser(gsd;,
thus our algorithm could have made one more step, and so we come to contradiction.

Now we have to prove our claim. Clearly, is tight, connected an&/(D,) = Y is two-way by our

definition of Y and D. Suppose the claim holds fd@?;_;, we now prove it forD;. We have
Dj = Dj—l — Dj—l N XZ']. = BZ']. N Dj—l'

If D; is disjoint with X;, thenD; = D;_; and we are immediately done. Otherwi3®, ; weakly crosses
X;,. (Indeed,D;_; is not preserved by; , andC;_; 2 C and hence meets both;, and B;, and so not
preserved.) But then we satisfy conditions of the Two-Quarters Lemma, whereC;_; andB;; N D;_;
is not empty, and thup; = B;, N D;_ is tight. Therefore by Lemma 3.12; is connected andV (D) is
a two-way cut. This proves the claim.

Case 2: cutY strongly crosses exactly oneX;. Indeed, consider séd’ = D N B;. By Lemma 3.13 and
our assumption that there were no detector®in- Y, it has size at Iea% n, is tight and corresponding
cutY =DnNX,;+X;NY +Y N B; is two-way min-cut.

SinceD’ C D, and only one4; meetsD (and it does not meet with’ by our construction), na; meets
with D’. Therefore by Lemma 3.18’ does not strongly cross ad; and thus by the case () is detected
by D. This proves that there is at least one detectdf’in- D’, and by constructio” + D' C D +Y, and
therefore there is at least one detectofin- Y, contradiction.

Case 3: cutY strongly crosses at least two¥;'s. We need to prove that eithé? + Y contains at least
one detector fronD (and thus contradicting our assumption), or we could have done one more step of the
algorithm A2. Without loss of generality” strongly crosseXx’; and X, (see Figure 4c).

First we prove that each of the triplés\;, X, B;) and(As, X», By) partitions setY” into the same
subsets.

Clam3.14 XinY=XsnYandAiNnY =B,NYandBiNY =A4,NY.

Proof: Notethaty =Y NA;, +Y NX, +Y N B;,and sinced; C By, we have that N 4; C Y N By,
and analogously” N As C Y N By, but by the Two-Quarters Lemma we hg¥én A,| = |Y N B;| and
Y NAs| =Y NBylandthusy N Ay =Y NByandY N A, =Y NBj,andthusX; NY = XoNY. O

We will prove that either there is a leftover pdpt in D, which could have used for the next step of the
algorithm, orY is detected.

For eachi = 1, 2, sinceX; strongly crosse¥’, setD is partitioned by.X; into three non empty parts
D = DNB;, D] = DN A; andD} = D N X;. Now, by Lemma 3.13 and our assumption that
DN (D +Y) = 0, we conclude thaD} is tight, its cardinality is at leas}s n and N(D}) is two-way
min-cut.

ConsiderD’ = D n Dj. We claim that the corresponding cit= N (D’) is a two-way(15, x)-cut
that preservesiA;. This contradicts the stopping condition of the algorithm: it could have made one more
iteration. Therefore it remains to prove the claim.

Firstly, D’ is tight by the Two-Quarters Lemma applied to cdt$¢D}) and N (D5). Its size is
en 6e

>
10—1—&)

|D'| = [D} N Dyl = |D — (Dy + DY) U (Dy + Dy')| > en —2( Z 0™
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S0 Z is {g-balanced, and moreové?’ is connected (this is by Lemma 3.12 and the assumptiorRhiat
disjointwithY + D). SinceZ = (X;UX53)N(DUY'), we conclude that (1Y is two-way, sincd/ — D' — Z
is connected as a union of three non-disjoint connected subsets and A, and (2)Z is disjoint with
UA; by Lemma 3.9.

To prove thatZ preservesJA; it remains to show that alli;’s are disjoint withD’. Indeed, suppose
someA; meetsD’. It cannot be properly contained i, hence inD’. So, sinced; is connected, it meets
Z, contradiction. Claim proved. This completes the proof of Theorem 3.8.

3.4 Strong detection sets

We present a partial result on extending strong detection setssturedders to those for genefal <)-cuts.
Essentially, we show that it suffices to have a strong)-detection seD’ for some subgrapt’ = (V, E)
of G of the same connectivity. In particular, we can without loss of generality assume ¢hat minimally
k-connected.

Theorem 3.15 Suppose: < en and we have a stronfy, )-detection se’ for a k-connected subgraph
G’ = (V,E’) of G. Then we can us®’ to construct a stronde, )-detection set fots. Specifically, for a
high-probability result it suffices to ad@(% log %) randomly sampled detectors. Alternatively, it suffices to
add at most% detectors, and there is a polynomial-time algorithm to construct them.

Proof: LetD” be asmallest detection set feshredders of7. Let S be an(e, x)-cutG. ThenS is an(e, «)-

cut in G’ such that eacl¥-component in7 is a union ofS-components ir;’. Obviously, if S-components
are the same it and inG’, thenD’ detectsS. Therefore, ifD’ U D” does not detec$, thensS is a two-way

(¢, k)-cutin G but a shredder i6’. Call such cut®vil. Therefore it suffices to detect all evil cuts.

For an evil cutS, the two components df in G are calledS-shores We need to put a detector in each
S-shore. For the rest of the proof we can forget abGutWe operate (only) oid:’ and treatS-shores as
unions of components & in G’. The proof is similar to that of Theorem 3.1.

Evil cuts arec-shredders irG’, so there are at mostof them and they can be efficiently listed. L&}
be the family ofall evil cuts. Start withF = Fy. While there exist$ € F such that eacly'-shore contains
an F-head ofS, deleteS from F (because by Lemma 3.8 is detected byD’). Let F; be the resulting
family of evil cuts. Clearly ifD is a detection set faF; thenD U D’ is a detection set fafy.

SayH C Visaheadof S if H is anF;-head ofS. Let thetail shoreof S € F; be theS-shore that does
not contain any heads of (such shore exists by construction8f). Observe that for any tws, T € F;
the tail shore of" is contained in a head ¢f (and vice versa). Why? meets exactly one component®f
sayH (soH is a head). By Lemma 3. contains alll’-components but one, call@. C' meetsS, thusC
is a head. Therefore, the tail shoreldfs contained inH .

By the observation above, the tail shores of cut&jrare pairwise disjoint and moreover (assumifig
consists of at least two cuts) putting a detector in each of these shores strongly dgteSisce the tail
shores have size en each,|F;| < % Therefore we neeéﬁl detectors forFy, which together withD” is
< % detectors. For a random sampling result note that it suffices to augidayt a hitting set for the tail
shores ofF; and the tails ot-shredders of7, as defined in the proof of Theorem 3.1. O

4 Extensions and further directions

There are a number of natural questions left open by this work. One is to investigate whetlagk jan
detection set for node failures of minimum size can be computed in polynomial time for a givenG@raph
this would parallel the per-instance result we obtain for edge failures. We note that Section 3.1 provides
such an optimality result for node failures when the adversary is restricted to deleting a shredder.
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We believe it would be interesting to extend our results on node failures to obtain bounds for strong
detection sets. Infact, our bounds for shredders apply already to the case of strong detection; and in Theorem
3.15 we provide a further step in this direction, proving that we can without loss of generality assume that
G is minimally k-connected.

It would clearly be interesting to obtain results on detection sets with respect to adversaries that can
delete a number of nodes equal to a constant times the node-connectivity, by analogy with our results for
edge-connectivity. To obtain detection set bounds here that are independent of the valui¢ isfnot
difficult to see that we need to focus on weak detection; indeed, there exist graphs in which we would need
at leastt — x nodes in any stron, k)-detection set for node failures.

Finally, the problem of deciding whether a given g€&is an(e, k)-detection set provides another clear
connection to the problem of balanced separators in graphs: indeed, deciding whether the empty set is an
(¢, k)-detection set is coNP-complete because of its equivalence to a balanced separator problem. On the
other hand, using techniques from [11, 22], we can obtain a polynomial-time algorithm for deciding whether
D is an(e, k)-detection set for node failures whén= «; this is non-trivial due to the fact that there can be
exponentially many min-node-cuts.

Acknowledgments. Itis our pleasure to acknowledge the contribution of Laszlo Lovasz; discussions with
him about the prospect of parameterizing detection sets by the minimum cut size provided a portion of the
motivation for this work, and also led to the results described in Section 2.3.
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