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Abstract

We consider a model for monitoring the connectivity of a network subject to node or edge failures.
In particular, we are concerned with detecting(ε, k)-failures: events in which an adversary deletes up
to k network elements (nodes or edges), after which there are two sets of nodesA andB, each at least
anε fraction of the network, that are disconnected from one another. We say that a setD of nodes is an
(ε, k)-detection set if, for any(ε, k)-failure of the network, some two nodes inD are no longer able to
communicate; in this way,D “witnesses” any such failure. Recent results show that for any graphG,
there is an(ε, k)-detection set of size bounded by a polynomial ink andε, independent of the size ofG.

In this paper, we expose some relationships between bounds on detection sets and the edge-connectivity
λ and node-connectivityκ of the underlying graph. Specifically, we show that detection set bounds can
be made considerably stronger when parameterized by these connectivity values. We show that for an
adversary that can deletekλ edges, there is always a detection set of sizeO(k

ε log 1
ε ) which can be found

by random sampling. Moreover, an(ε, λ)-detection set of minimum size (which is at most1
ε ) can be

computed in polynomial time. A crucial point is that these bounds are independent not just of the size of
G but also of the value ofλ.

Extending these bounds to node failures is much more challenging. The most technically difficult
result of this paper is that a random sample ofO(1

ε log 1
ε ) nodes is a detection set for adversaries that

can delete a number of nodes up toκ, the node-connectivity.
For the case of edge-failures we use VC-dimension techniques and the cactus representation of all

minimum edge-cuts of a graph; for node failures, we develop a novel approach for working with the
much more complex set of all minimum node-cuts of a graph.
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1 Introduction

Monitoring network connectivity. As links or nodes fail in a network, it is important to maintain infor-
mation about basic properties such as connectivity. For large, unstructured networks, this is often done by
recourse to sampling and other approximate measurements; performing such measurements in a robust and
accurate way is an active research topic (e.g. [4, 5, 19, 21, 20]). A general problem here is to minimize
the cost of network monitoring and measurement, in terms of communication, computation, and resource
usage.

Here we consider a model proposed by the first author for monitoring network connectivity [16]. We
are given a connected node graphG on n nodes, and we want to detect “failure events” in which at most
k network elements (nodes or edges) are deleted, after which there are two sets of nodesA andB, each of
size≥ εn, such that no node inA has a path to any node inB. We will call such a pair of setsseparated,
and we will call such an event an(ε, k)-failure. (To reflect the fact that thek node or edge failures can be
arbitrary, we will sometimes speak of them as being selected by an adversary.)

To detect such failures, we consider the strategy of placing “detectors” at a subsetD of the nodes
of G. Now, if we find that two detectors are unable to communicate — either because there is no path
between them, or because one has been deleted — we can record a fault in the network. We would like
our setD to have the property thatwheneveran (ε, k)-failure occurs, some two detectors are unable to
communicate; we will refer to such a setD as an(ε, k)-detection set.Note the nature of this condition:D
must detect all possible(ε, k)-failures, so we imagineD as being chosenbeforethe adversary selects a set
of k network elements to delete. The emphasis in [16] was on finding a bound on the number of nodes that
must be randomly selected from a graphG in order to obtain an(ε, k)-detection set with high probability.
Improvements to these bounds were obtained by [7].1

In this paper, we adopt a somewhat different approach to this issue, by exposing some interesting and
non-trivial connections between the size of the smallest detection set for a graphG and the values of its
edge- and node-connectivity. (The edge-connectivity ofG, denotedλ(G), is the smallest number of edges
that must be deleted in order to disconnectG. The node-connectivity ofG, denotedκ(G), is the analogous
quantity for node deletions.) We show that stronger bounds on detection set size can be obtained if we
parameterize these bounds by the connectivity valuesλ andκ; and for some cases, we use this relationship
with connectivity to provide the firstper-instanceguarantees for detection sets.

Because our results are different depending on whether the adversary is deleting edges or nodes, we
consider these two cases separately.

Detection sets for edge failures. We begin with adversaries that can delete up tok edges; as such, we
will be concerned with(ε, k)-edge-failures, which are(ε, k)-failures in which only edges are deleted. It is
known that a random set ofO(k

ε log 1
ε ) nodes is an(ε, k)-detection set for edge failures with high probability

[16], and that every graph contains an(ε, k)-detection set for edge failures of sizeO(k
ε ) [7]; note that both

bounds are independent of the size of the graphG. It is not difficult to show that both bounds are tight, and
so there is no prospect of obtaining an improvement that applies to all graphs. However, it makes sense to
ask whether better bounds are possible in terms of natural parameters of the graphG.

An obvious parameter to consider here is the edge-connectivityλ; indeed, there can be no(ε, k)-edge-
failures inG if k < λ. Our first main result establishes thatλ is indeed a natural way to parameterize the
problem; we show that every graphG has an(ε, λ)-detection set for edge failures of size at most1

ε . Note
that there is no leading constant in this bound, and that it is independent not just of the size ofG but also
of the value ofλ. Extending this result, we show further that an(ε, λ)-detection set for edge failures of

1Following the publication of the conference version of this paper, further improvements have been obtained in [8].
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minimumsize for a graphG can be computed in polynomial time. The algorithms used to establish these
results are based on the cactus representation of all minimum edge-cuts ofG [6, 9].

Given that strong bounds are possible for detecting an adversary that can delete one minimum cut’s
worth of edges, it is natural to ask what can be said about an adversary capable of deleting a number of
edges equal tok times the size of a minimum cut. We show that a random set ofO(k

ε log 1
ε ) nodes is a

(kλ, ε)-detection set for edge failures with high probability. This is essentially a factor ofλ times stronger
than the bounds of [7, 16], which did not take edge connectivity into account. Our proof of this result uses
a VC-dimension argument in the style of [16]; the bound on the VC-dimension is obtained using a result of
Mader [18, 10]. that extends results of Lovász [17] and of Cherkasskij [3] on edge-disjoint paths in graphs.

Detection sets for node failures. We now consider adversaries that can delete up tok nodes. By analogy
with our results for edge failures, we consider the size of detection sets in terms of the node-connectivityκ.
Our main result here is that every graphG (with κ = O(ε2n)) has an(ε, κ)-detection set for node failures of
sizeO(1

ε ); moreover, a random set ofO(1
ε log 1

ε ) nodes forms an(ε, κ)-detection set for node failures with
high probability. Again, note that these bounds are independent not just of the size ofG but also of the value
of κ. Extending our results to adversaries that deletekκ nodes fork > 1 is a very interesting and apparently
difficult open question.

We note the distinction, raised by Gupta [13], betweenstrongandweakdetection sets for node failures.
A strong detection setD has the property that, after any(ε, k)-node-failure, two nodes ofD lie in different
connected components. A weak detection setD′ has the property that, after any(ε, k)-node-failure, two
nodes ofD lie in different connected componentsor an element ofD has been deleted. Either of these
definitions arguably forms a plausible definition of network failure detection. Improving a bound of [16],
Fakcharoenphol showed that a random set ofO(k

ε logk log 1
ε ) nodes is a strong(ε, k)-detection set for node

failures [7], and Gupta showed that every graph has a weak(ε, k)-detection set for node failures of size
O(k

ε ). As we note in Section 4, weak detection appears to be a more useful notion when the problem is
parameterized by node connectivity; in particular, our main result is about weak detection sets. Henceforth,
we will assume that all detection sets for node failures are weak unless otherwise specified.

Our analysis for node failures is significantly more complicated than for edge failures, and this is not
surprising; not only is no analogue of the cactus representation known for min-node-cuts, but this appears to
be intrinsic due to the#P -completeness of even counting the number of min-node-cuts [2]. Indeed, given
the lack of tractable representations for min-node-cuts, we believe that our analysis develops some useful
properties of their structure. We begin by constructing a detection set of minimum size for adversaries
that can deleteshredders[2, 15] — min-node-cuts whose deletion produces at least three components.
The construction of the detection set then proceeds by greedily isolating a maximal collection of relatively
balanced min-node-cuts that produce just two components, and whose “small sides” are disjoint; the small
side of each such cut is required to have at leastεn

10 nodes. We then show that by placing detectors so that one
lies on the small side of each of these cuts, there is no way for a min-node-cut producing two components
of size at leastεn each to avoid being detected.

Further Discussion. A simple calculation based on Karger’s algorithm gives an upper bound ofO(k
ε logn)

on a random sample of nodes that forms an(ε, kλ)-detection set for edge failures.2 However, our goal in
this paper is to find bounds that do not depend on the size of the graph.

Following [16], we can extend our results to a model in which the nodes of the networkG are partitioned
into two sets — a setV0 of end nodesand a setV1 of internal nodes. We assume that we are only allowed to
place detectors at end nodes, and correspondingly are only interested in monitoring the connectivity of the

2Note that no such simple bound is available for the case of node-failures, which is yet another evidence of its difficulty.
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end nodes. Specifically, we re-define(ε, k)-failures as failures of≤ k network elements, after which two
disjoint subsets ofV0, each of size≥ ε|V0|, are separated from each other. We can show that the bounds
obtained above carry over to this more general setting; we omit further discussion of the generalization from
this version of the paper.

Our work is similar in spirit to some of the work on vertex connectivity and augmentation thereof,
e.g. [14, 2, 15, 12]. The actual technical issues are quite different, however, since we are only interested
in balanced cuts. In general one could view our work here as integrating notions from edge- and node-
connectivity with the problem of balanced separators of graphs — two topics that have traditionally been
approached separately due to their great differences in tractability.

Notation. In this paper all graphs are assumed undirected; our standard notation for a graph isG = (V, E).
An edge(node)-cut is a setX of edges (nodes) such thatG \ X is disconnected.

A min-edge(node)-cut is an edge(node)-cut of minimum size. This size is also known as edge(node)-
connectivityand denoted byλ andκ respectively. We will writemin-cutwhen it is clear whether we are
talking about edge-cuts or node-cuts. A set of nodes istight if it is a union of some (but not all) components
of a min-cut. A cutX is calledε-balancedif there are two sets of vertices of size≥ εn that are disconnected
from one another inG \ X . An ε-balanced cut of≤ k edges(nodes) is called an(ε, k)-cut.

If setsX , Y have a non-empty intersection, we sayX meetsY . To help clarify the notation in places,
we will sometimes writeX + Y to denote the union of disjoint setsX andY , andX − Y to denote the
difference of setsX andY for whichY ⊆ X .

2 Detection sets for edge failures

In this section we present our results on edge failures. For edge failures that correspond to min-edge-cuts,
our algorithms are based on thecactus representationof all min-cuts in a graph [6, 9]. We include a self-
contained review of the relevant definitions and facts. Our result for the general edge-failures proof uses a
VC-dimension argument in the style of [16]; the bound on the VC-dimension is obtained using a result of
Mader [18, 10] on edge-disjoint paths in graphs.

Throughout the section, all cuts are edge-cuts, and all detection sets are for edge failures. LetD be a set
of nodes, representing the locations of our detectors. We say thatD detectsa cutX if some pair of detectors
is separated inG \ X . We callD an(ε, k)-detection setif it detects every(ε, k)-edge-cut.

In Section 2.1 we review the cactus representation. Section 2.2 is on min-edge-cuts: we construct a
smallest(ε, λ)-detection set and prove it has size≤ 1

ε . Section 2.3 is on general edge-failures: we prove that
a set ofO( k

λε log 1
ε ) randomly sampled nodes is an(ε, k)-detection set with high probability.

2.1 Review: cactus representation

Edges will be viewed as cycles of length two; cycles of length 3 or more are calledproper. A cactusis a
connected graph such that any two of its cycles have at most one vertex in common. An arbitrary cactus
can be obtained starting from a cycle and recursively adding new cycles that share a single vertex with the
existing graph. In a cactus, some edges are contained in a proper cycle (cycle edges), and some aren’t (path
edges). Each cycle edge has capacity1

2 , and each path edge has capacity 1. It follows that min-cuts of a
cactus have capacity 1. We can characterize them as follows:

Fact 2.1 Consider a cactusT . Then (a) each path edge is a min-cut, (b) any pair of cycle edges from the
same cycle is a min-cut, and (c) there are no other min-cuts.
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Proof: Clearly any cut inT has capacity at least1. For part (a), letuv be a path edge. If there exists a
uv-pathp not containing the edgeuv, thenp + uv is a cycle, contradicting the definition of a path edge.
Thereforeu andv are separated inT − uv. Souv is a cut inT , hence a min-cut.

For part (b), lete1, e2 be cycle edges from the same cycleC. e1 + e2 splitsC into two arcs, call them
C1 andC2. SupposeC1 andC2 are connected inT − e1 − e2. Then there exist verticesu ∈ C1, v ∈ C2

such that there is auv-pathp that does not intersect withC except for the endpoints. LetC ′ be theuv-arc
of C that containse1. Thenp + C ′ is a cycle inT that shares≥ 2 vertices withC, contradiction. SoC1 and
C2 are not connected inT − e1 − e2. Thereforee1 + e2 is a cut inT , hence a min-cut.

For part (c), supposeX is a min-cut ofT that is neither a path edge nor a pair of cycle edges from the
same cycle. Since the capacity ofX is≤ 1, it consists of one or two cycle edges. So there is a (proper) cycle
C such thatX contains exactly one edgeuv ∈ C. SinceX is a min-cut, it must separateu andv. However,
they are connected byC − uv. Contradiction. 2

In a cactus, nodes of degree one will be calledleaves, nodes of degree two that are contained in a cycle
will be calledcycle nodes, and all other nodes will be calledbranch nodes.

Fact 2.2 Letv be a branch node of a cactusT . Then the cycles that containv are pairwise disconnected in
T − v.
Proof: Let C, C ′ be cycles that containv. Let uv, u′v be edges inC, C ′, resp. Supposeu andu′ are
connected inT − v, i.e. there is auu′-pathp not containingv. Thenp + uv + vu′ is a cycle that shares≥ 2
vertices withC (andC ′), contradiction. SoC andC ′ are disconnected inT − v. 2

Consider a branch nodev of a cactusT . It connects two or more cycles. By Fact 2.2, the removal ofv
splitsT into two or more connected components (v-components). Eachv-componentX is tight: for some
cycleC containingv, it is obtained by removing the edge(s) ofC that are adjacent tov.

Fact 2.3 SupposeS is a tight set in cactusT , v is a branch node. Then:
(a) if v ∈ S thenS contains at least onev-component.
(c) if v 6∈ S thenS is contained in av-component.
(c) for anyv-componentX of T , eitherX ⊂ S, or S ⊂ X , or X ⊂ V − S, or V − S ⊂ X .

Proof: For part (a), letS be a component of a min-cutC. By Fact 2.1C is contained in a cycle, so
C ⊂ T [X + v] for somev-componentX . Therefore ifY is any otherv-component thenY + v is connected
in T \ C. Y ⊂ S follows sincev ∈ S andS is connected inT \ C.

For part (a), supposeS meets twov-components then they are connected inT −v (viaS), contradiction.
For part (c), supposeX meets bothS andV − S. Then by part (b) ifv ∈ S thenV − S ⊂ X , else we

haveS ⊂ X . 2

Let G be a weighted graph onn vertices. Acactus-pairof G is a pair(T, π) whereT is a cactus, and
π is a mapping fromV (G) to V (T ) such that ifM is a tight set inT thenπ−1(M) is a tight set inG. For
each tight setM of T say that(T, π) representsthe min-cutC of G such thatπ−1(M) is aC-component.
A cactus representationof G is a cactus-pair ofG that represents all min-cuts ofG. Dinits et al. [6] proved
that every capacitated graph has a cactus representation of sizeO(n). Further results show that a cactus
representation of sizeO(n) can be efficiently constructed. See the introduction of [9] for discussion.

2.2 Detection sets for min-edge-cuts

Here we are only interested inε-balanced min-cuts, and so the cactus representation is too general for our
purposes. This motivates the following definitions.
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Definition 2.4 Let anε-cactus-pairbe a cactus-pair that represents allε-balanced min-cuts. Let anε-cactus
be the cactus in such cactus-pair (if the mapping is clear). A subsetS of vertices of a cactus isheavy if
|π−1(S)| ≥ εn. Call a cactus-pairreducedif everyv-component is heavy.

A reducedε-cactus-pair can be efficiently computed from a standard cactus representation by consecu-
tively applying the following reduction.

Lemma 2.5 SupposeT is anε-cactus,v is a branch node,X is a v-component that is not heavy. LetT ′ be
T with X contracted intov. ThenT ′ is also anε-cactus.
Proof: For eachε-balanced min-cutC of G there is a min-cutC ′ of T that represents it. By Fact 2.3c there
is a componentS of C ′ such thatX ⊂ S or S ⊂ X . SinceS is heavy andX isn’t, it must be the case that
X is a proper subset ofS. Thenv ∈ S, soC ′ is a min-cut inT ′, too. ThereforeT ′ representsC. 2

Let G be a capacitated graph. Let(T, π) be a reducedε-cactus-pair ofG. We will characterize(ε, λ)-
detection sets of minimum size in terms ofT .

Let asubcyclebe a set of consecutive cycle nodes of a (proper) cycle inT . Consider the non-degenerate
case when there is at least one branch node. Then the weight|π−1(·)| of each leaf and each subcycle is at
most(1 − ε)n. Let acanonical subcactusbe a set of nodes ofT that contains each leaf, has an element in
every heavy subcycle, and contains no branch nodes. LetD ⊂ V (G) be a set of detectors (not necessarily
an(ε, λ)-detection set). SayD is T -canonicalif π(D) is a canonical subcactus, and at most one detector is
mapped to each node ofT . The following two lemmas show that any smallest(ε, λ)-detection set is in fact
a smallestT -canonical set.

Call S ⊂ V heavyif |S| ≥ εn, andbalancedif both S andV \ S are heavy. CallS ′ ⊂ V (T ) balanced
if π−1(S ′) is balanced. For each balanced tight setS of G let π′(S) be a (balanced) tight setS ′ of T such
thatS = π−1(S ′).

Lemma 2.6 Any smallest(ε, λ)-detection set isT -canonical.
Proof: Let D be a smallest(ε, λ)-detection set. Call elements ofD detectors. We need to show that (1) at
most one detector is mapped to each node ofT , (2) there is a detector mapped to each leaf and each heavy
subcycle ofT , (3) and no detectors are mapped to branch nodes ofT . Let us prove these three statements in
order.

(1) Suppose two detectorsd1, d2 map to a nodev of T . To obtain a contradiction it suffices to show an
(ε, λ)-detection set smaller thanD. We claim thatD − d1 is also an(ε, λ)-detection set. Suppose not. Then
there is a balanced tight setS of G that containsD− d1. Obviouslyd1 6∈ S. LetS ′ = π′(S). Sinced2 ∈ S,
v = π(d2) ∈ S ′, sod1 ∈ S, too, a contradiction.

(2) There is a detector mapped to each heavy tight set ofT , in particular, to each leaf and each heavy
subcycle.

(3) Suppose a detectord is mapped to a branch nodev of T . By analogy with (1), we claim thatD − d
is also an(ε, λ)-detection set. For suppose not. ThenD − d is disjoint with some balanced tight setS. Let
S ′ = π′(S). SinceD is an(ε, λ)-detection set,d ∈ S, sov ∈ S ′. Therefore by Fact 2.3aS ′ contains
somev-componentS ′′. SinceT is reduced,S ′′ is heavy, so there is a detector mapped to it. SoS contains a
detector other thand, a contradiction. 2

Lemma 2.7 AnyT -canonical set is an(ε, λ)-detection set.
Proof: SupposeD ⊂ V andπ(D) meets each leaf and each heavy subcycle ofT . We need to prove that
π(D) meets each heavy tight set ofT . To show this we claim that any heavy tight setS of T contains a leaf
or a heavy subcycle.
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Figure 1: Anε-cactus with detectors. Branch nodes are denoted by ’•’, detectors by ’*’. In the central
cycle, there are three subcycles between the branch nodes. The smallest of them is not heavy, hence does
not contain a detector. The other two are big enough so that they need two detectors each. Each of the three
smaller cycles is heavy (even without its branch node), since otherwise it would have been contracted.

We’ll use induction on the size ofS. The base case corresponds to anS that consists of one vertex, say
v. By Fact 2.3av cannot be a branch node. So eitherv is a leaf or it is a heavy subcycle consisting of a
single cycle node.

For the induction step, note that ifS contains a branch nodev then by Fact 2.3aS contains some (heavy)
v-componentsS ′, to which the induction hypothesis applies. IfS does not contain any branch nodes, then
it lies within a single cycle, soS is a (heavy) subcycle. The claim follows. 2

Theorem 2.8 A smallest(ε, λ)-detection set is of size at most1
ε . There is a polynomial-time algorithm to

construct it.
Proof: Let (T, π) be a reducedε-cactus-pair ofG. We have seen that smallest(ε, λ)-detection sets are
(mapped to) smallest canonical subcacti ofT . Therefore it suffices to compute a smallest canonical subcac-
tus ofT .

Let S be a subset of a proper cycleC in T . Call S a C-detection set ifS does not contain any branch
nodes, and every heavy subcycle ofC contains an element ofS. By definition, if there are no heavy
subcycles inC then an empty set is aC-detection set. Obviously, a subset ofT is a canonical subcactus
iff it is a union of leaves ofT and (disjoint)C-detection sets, one for each proper cycle ofT . Therefore
to compute a smallest canonical subcactus ofT it suffices to construct a smallestC-detection set for each
proper cycleC of T .

The construction is as follows. AssumingT consists of more than one cycle,C contains one or more
branch nodes. AssumingC contains cycle nodes, pick any branch nodevb followed by a cycle nodev. Start
with v. In the iterative step, start with a cycle node and move clockwise alongC till a heavy subcycle is
detected (call this subcycleselected) or a branch node is reached. Start a new step with the next cycle node.
Stop whenvb is reached. LetS be the set of the last nodes (clockwise) of selected subcycles.

ObviouslyS is aC-detection set.S is a smallest such set by the following observation. LetS ′ be a
C-detection set. Letv ∈ C be a branch node or an element ofS ′. Letv′ be the next node clockwise. LetC ′

be the smallest heavy subcycle starting withv′, if it exists. Letw be the last node ofC ′. ThenC ′ contains
at least one element ofS. The observation is thatS ′ −C ′ + w is aC-detection set with the same or smaller
number of elements. Consecutively applying this observation, we can transformS ′ to S without increasing
the number of detectors.

Our construction puts one detector into each leaf ofT and each selected subcycle. Since leaves ofT are
heavy and selected subcycles are heavy and disjoint, our construction covers at leastεn weight with each
detector. Since the total weight of (nodes of)T is n, the total number of detectors is at most1

ε . 2

2.3 Smaller detection sets for edge failures

A setS of nodes isk-edge-separableif there exists a setZ of ≤ k edges such thatS is a union of components
of G \ Z. LetF be the family of allk-edge-separable sets. We say thatA ⊆ V is shatteredby F if for all
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B ⊆ A there exists anF ∈ F such thatB = A∩ F . TheVC-dimensionof F is defined to be the maximum
cardinality of a subset ofV that is shattered byF .

In [16], it was shown that one can connect the VC-dimensiond of F with (ε, k)-detection sets via the
notion of anε-net, which is a set that meets eachF ∈ F of size≥ εn. Specifically, a theorem by [1] says
that a set ofO(d

ε log 1
ε + 1

ε log 1
δ ) randomly sampled nodes is anε-net forF with probability at least1− δ.3

Moreover, it is easy to show [16] that anε-net forF is an(ε, k)-detection set.
In [16], it was shown that the VC-dimension ofF is at most2k + 1, yielding a bound ofO(k

ε log 1
ε ) on

the size of an(ε, k)-detection set. In this section, we strengthen the VC-dimension bound onF to O( k
λ).

Thereforem we obtain the following theorem.

Theorem 2.9 A set ofO( k
λε log 1

ε ) randomly sampled nodes is an(ε, k)-detection set with high probability.

We now turn to the new bound on the VC-dimension; to prove it, we will use the following theorem by
Mader [18] on edge-disjoint paths between elements of a given set of vertices. LetR be a subset ofV of
sizer. Letd(R) be the number of edges leavingR. Let q(R) be the number of componentsC of G−R for
whichd(C) is odd. Let anR-pathbe a path connecting distinct elements ofR.

Theorem 2.10 [18] The maximal number of edge-disjointR-paths is1
2 min(

∑
d(Vi) − q(∪Vi)), where the

minimum is taken over all collections of disjoint subsets of verticesV1, V2, . . . , Vr such that|Vi ∩ R| = 1.

Corollary 2.11 There areΩ(rλ) edge-disjointR-paths.
Proof: Consider a collection of disjoint subsets of verticesV1, V2, . . . , Vr such that|Vi ∩ R| = 1. Let
d =

∑
d(Vi), q = q(∪Vi). By the above theorem it suffices to prove thatd − q = Ω(rλ).

Note thatd ≥ rλ sinced(Vi) ≥ λ. Let C1 . . .Cq be the componentsC of G − ∪Vi such thatd(C) is
odd. All edges exiting eachCi are to∪Vi. Sod ≥ d(∪Vi) ≥

∑
d(Ci) ≥ qλ. If r ≥ q thend−q ≥ rλ−q ≥

r(λ− 1). If r < q thend − q ≥ qλ − q ≥ r(λ− 1). Therefored − q = Ω(rλ). 2

The following is a well-known application of the probabilistic method.

Lemma 2.12 Let (R, F ) be a multi-graph onR. Then there exists a partition ofR into setsR1, R2 such
that there are at least12 |F | edges betweenR1 andR2.

Lemma 2.13 The VC-dimension ofF is O( k
λ).

Proof: Let R be a subset ofV of sizer. By Cor. 2.11 there exists a familyP of Ω(rc) edge-disjointR-
paths. Let(R, F ) be a multi-graph onR such that there is a 1-1 correspondence betweenuv-paths inP
and edgesuv ∈ F . By Lemma 2.12 there exists a partition ofR into setsR1, R2 such that (in the original
graph) there areΩ(rλ) edge-disjoint paths betweenR1 andR2. We can chooser = Θ( k

λ) so that there is
guaranteed to be a familyP ′ of (at least)k + 1 edge-disjoint paths betweenR1 andR2.

We claim thatR cannot be shattered byF . Suppose not. Then there existsX ∈ F such thatX∩R = R1.
X is a union of components of some cutZ of k or less edges.Z is disjoint with (at least) one pathp ∈ P ′.
The ends ofp are in the sameZ-component, so either they are both inX , or both not inX . In both cases
this contradictsX ∩ R = R1. Thus, the claim is proved, and it follows that the VC-dimension ofF is
r = O( k

λ). 2

3Both [16] and [7] used a slightly weaker theorem, with a corresponding bound ofO( d
ε log d

ε + 1
ε log 1

δ ).
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3 Detection sets for node failures

The main theorem of this section (Theorem 3.6) is that forκ < O(ε2n) a set ofO(1
ε log 1

ε ) randomly
sampled nodes is a weak(ε, κ)-detection set with high probability. We rely on a special case ofε-shredders,
which is a corollary of our result onstrongdetection thereof (Theorem 3.1). We also present a partial result
(Theorem 3.15) on extending strong detection sets forε-shredders to those for general(ε, κ)-cuts.

Before we proceed, let’s review the definitions. In this section all cuts are node-cuts, all detection sets
are for node failures. A cutX is calledtwo-wayif G \ X has exactly two connected components, called
the sidesof X . A shredderis a min-cut with three or more components. Anε-shredderis anε-balanced
shredder. A setD of nodesstrongly detectsa cutX if some pair of detectors is separated inG \ X . If D

either meets or strongly detectsX , sayD weaklydetectsX . D detects (is a detection set for) a family of
cuts if it detects every cut in the family.

The rest of this section is organized as follows. In Section 3.1 we show how to find a strong detection
sets forε-shredders. In Section 3.2 we use shredders to get a detection set for two-wayε-balanced min-cuts.
In Section 3.3 we combine these two results and obtain the main theorem. Finally, in Section 3.4 we present
our partial result on strong detection sets.

3.1 Strong detection sets for shredders

It is a well-known fact that there can be exponentially many min-cuts. Furthermore, evencountingmin-cuts
is #P-complete [2]. However, there can be onlyO(n) shredders [15], with a polynomial-time enumeration
algorithm [2]. We start by stating the main result of this subsection.

Theorem 3.1 Supposeκ < εn. Then a set ofO(1
ε log 1

εδ ) randomly sampled nodes is a strong detection set
for ε-shredders with probability at least1− δ. Moreover, asmalleststrong detection set forε-shredders has
size≤ 1

ε and can be constructed in polynomial time.

Before we prove this theorem we need to establish some basic facts about min-cuts. For a cutX the
connected components ofG \X are also calledX-components. LetS, T be min-cuts. SayS meshesT if S
meets at least twoT -components. By [2, Lemma 4.3(1)] ifS meshesT thenT meets everyS-component.
Thus meshing is a symmetric relation. IfS meshesT (andT meshesS), the two cuts aremeshing. ElseS
andT arenon-meshing.

Lemma 3.2 ([2], Lemma 4.3(2))If min-cutsS andT are meshing, then there is a componentQ of eitherS
or T such thatQ containsV − S − T .

Corollary 3.3 If κ < εn then any twoε-shredders are non-meshing.

Lemma 3.4 Let S and T be non-meshing shredders. LetC be theS-component that meetsT . ThenC
contains allT -components but one, call itC ′. Moreover,C ′ containsV − S − C, i.e. all S-components
other thanC.
Proof: Pick anyv ∈ S − T . By minimality of S, v has edges to eachS-component (else,S − v is a cut).
Thus,V − S − C + {v} is connected. SinceT ⊂ S ∪ C, V − T − C is connected, and hence lies in a
T -componentC ′. So all otherT -components are contained inC andV − S − C ⊂ V − T − C ⊂ C ′. 2

For a familyF of ε-shredders, we call a component of a shredder anF -headif it meets at least one
shredder inF . Now, suppose we have an(ε, k)-detection set for shredders, andS is anε-shredder with an
F -headH . Then there existsT ∈ F that meetsH ; so by Lemma 3.4H contains allT -components but one,
and hence contains a detector. This gives the following lemma.
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Lemma 3.5 LetF be a family ofε-shredders, withκ < εn, and letS be anε-shredder with anF -headH .
Then any detection set forF meetsH .

Proof of Theorem 3.1:Let F0 be the family of allε-shredders. Start withF = F0. While there exists an
ε-shredderS ∈ F with two or moreF -heads, deleteS fromF . LetF1 be the resulting family of shredders.
By Lemma 3.5 any strong detection set forF1 is a strong detection set forF0.

LetS ∈ F1. Let theheadH of S be the (single)F1-head ofS. Let thetail of S beV −S−H . Note that
by Lemma 3.4 for anyS, T ∈ F1 the tail ofS is contained in the head ofT (and vice versa). In particular,
tails are pairwise disjoint. Since each head contains someone else’s tail, a setD of nodes is a detection
set forF1 iff D meets the tail of eachS ∈ F1. Therefore, a smallest detection set forF1 has size|F1|.
Since tails are of size≥ εn each,|F1| ≤ 1

ε . The random sampling result follows by a simple probabilistic
computation. 2

3.2 Detecting two-way min-cuts

In this subsection we construct a weak detection set for two-way(ε, κ)-cuts. First we give a non-efficient
deterministic construction. We consider( ε

10, κ)-cuts and use a greedy-type algorithm to construct a “maxi-
mal” family of two-way( ε

10 , κ)-cuts with sidesAi andBi such thatAi ⊆ Bj for all i 6= j. In particularAi’s
are pairwise disjoint, so there are at most10

ε of them. It turns out that ifκ < O(ε2n) then putting a detector
into eachAi suffices. More precisely we show (Theorem 3.8) that these detectors together with any weak
detection set for shredders give a weak(ε, κ)-detection set. Then a simple probabilistic argument yields a
randomized result stated below.

Theorem 3.6 Supposeκ < ε2n
20 . Then a set ofO(1

ε log 1
εδ ) randomly sampled nodes is a weak(ε, κ)-

detection set with probability at least1 − δ.

We start with some notation and a simple but very useful lemma about crossing min-cuts. LetS be a set
of nodes. CallS connectedif the subgraph ofG induced byS is connected. Else sayS is disconnected. Say
a cutX preservesS if X disjoint with S andS lies in one component ofG \ X . Note that a connected set
of nodes is preserved byX if and only if it is disjoint withX . N(S) denotes the set of neighbors ofS, i.e.
the set of all nodes inV − S that have an edge toS. Note that ifV − S −N(S) is non-empty thenN(S) is
a cut.

Say two-way min-cutsX andY arestrongly crossingif each side ofX meets each side ofY . SayX
andY areweakly crossingif X meets both sides ofY and vice versa.4 It is easy to see that strong crossing
implies weak crossing, but not the other way round.

To formulate the promised lemma, we will use the following notation. The sides ofX and Y are
respectivelyP1, P2 andQ1, Q2. Their intersections (“quarters”) areCij = Pi ∩ Qj . Also letXi = Qi ∩ X
andYi = Pi ∩ Y andX ∩ Y = S.

Lemma 3.7 (The Two-Quarters Lemma)Suppose two-way min-cutsX andY are weakly crossing so that
the two quartersC21 andC12 are non-empty. Then

(a) |X1| = |Y1| and |Y2| = |X2|,
(b) C21 andC12 are tight, withN(Cij) = Yj + Xi + S,
(c) V − C21 − N(C21) is connected, same forC12.

4Note that ifX meets both sides ofY , say atv1 andv2, respectively, thenY meets both sides ofX. Indeed, for the sake of
contradiction supposeY does not meet a sideP1 of X. Then, since any node inX has at least one edge toP1 andP1 is connected,
there is av1v2 path inG/Y , contradiction.
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Figure 2: Two applications of the Two-Quarters Lemma.
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Figure 3: Partitioning of the graph after theith iteration of the algorithm

Proof: T = X1 + Y2 + S andU = X2 + Y1 + S separateC21 andC12 respectively from the rest of the
graph. It follows thatY2 ≥ X2 (else|T | < |X |), X1 ≥ Y1 (else|T | < |Y |), X2 ≥ Y2 (else|U | < |Y |) and
Y1 ≥ X1 (else|U | < |X |). Therefore|X1| = |Y1| and|X2| = |Y2|, soU andT are min-cuts andC12 and
C21 are tight. Finally,V −C21 −N(C21) is connected as a union of two connected sets (Q1 andP2) with a
non-empty intersection (C12). 2

This lemma is similar to the result of Jordán [14] on intersecting tight sets. Note that ifX andY are
strongly crossing our lemma yields|X1| = |X2| = |Y1| = |Y2| (Figure 2a). We will also use it forε10-
balanced min-cuts that are crossing weakly but not strongly. Then one of the “quarters”, sayC11, is empty,
so, assumingκ < εn

10 , C21 andC12 are not (Figure 2b).
Now we are ready to describe the construction.

Construction

1. LetF denote family of all ε
10-balanced two-way min-cuts, and letA(F) denote the family of the sides

of all F ∈ F . Stop ifF is empty.

2. Choose any inclusion-wise minimal componentA0 from A(F), let X0 = N(A0) be the correspond-
ing cut andB0 be the second component ofX0. Put detectors inA0 andB0.

3. Delete fromF all cuts which do not preserveA0. ForX ∈ F let A(X) be the side ofX thatdoes not
containA0.

4. Start with the first iteration. For thei-th iteration choose a cutXi ∈ F so thatA(Xi) does not contain
any otherA(X) for X ∈ F . LetAi = A(Xi). Let Bi be the other side ofXi.

5. Put a detector intoAi. Remove fromF all cuts which do not preserveA0 ∪ A1 ∪ · · · ∪ Ai. Stop IfF
is empty; else iterate.
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Figure 4: Three different options of howY can interact withXi’s. For (c) we prove that the portion ofY
between cutsX1 andX2 shrinks to an empty set, andX1 ∩ Y = X2 ∩ Y .

By construction allAi’s are pairwise disjoint, and eachAi ≥ ε
10 . Therefore our algorithm will terminate

after at most10
ε steps after putting at most10

ε detectors. Denote this set of detectors byD2. LetD1 be any
weak detection set for shredders,D = D1 ∪ D2.

Theorem 3.8 If κ ≤ ε2

20n then anyε-balanced two-way min-cut is weakly detected byD.

Before proving this theorem we will state some simple properties of our construction.

Lemma 3.9 For all i 6= j Aj ⊆ Bi. In particular Xi is disjoint withAj .

Proof: We will prove that for anyi 6= j, Xi is disjoint withAj (which would immediately implyAj ⊆ Bi).
If j < i then by constructionXi is disjoint with allAj for j ≤ i andAj ⊆ Bi. On the other hand, ifj > i
thenBj containsAi and supposeAj ∩Xi 6= ∅ thenv ∈ Aj ∩Xi has at least one edge toAi and thus toBj ,
soAj andBj are not separated, a contradiction. 2

Corollary 3.10 EachBi contains at least one detector.

Lemma 3.11 If a tight setA ⊂ Ai is of size≥ εn
10 then the cutN(A) is a shredder.

Proof: Suppose not. ThenN(A) is a two-way( ε
10 , κ)-cut preservingBi and hence

⋃i−1
j=0 Aj . ThusN(A)

was not deleted fromF until iterationi, so it should have been chosen instead ofXi, contradiction. 2

In what follows we assumeκ ≤ ε2

20n. The next lemma shows howD1 (a detection set for shredders)
helps to detect two-way min-cuts.

Lemma 3.12 LetY be an ε
10-balanced two-way min-cut with sidesC andD. SupposeD contains a setW

of size at leastεn10 such thatN(W ) is a shredder. ThenD + Y contains at least one detector fromD1.
Proof: The shredderZ = N(W ) is ε

10-balanced, so it is weakly detected byD1. SinceY is a cut, there are
no edges betweenW andC, i.e. Z lies in D + Y . It follows thatC is connected inG \ Z, hence lies in a
single connected component thereof. Thus at least one detector fromD1 is not inC, so it is inD + Y . 2

Now we are ready to sketch the proof of Theorem 3.8; the details are in the next subsection.
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Proof Sketch of Theorem 3.8. Let Y be anε-balanced two-way min-cut with sidesC andD. We need to
show thatD meetsY or both sides thereof. For the sake of contradiction suppose it is not so. Then without
loss of generalityD ⊂ C, which implies thatC meets everyAi andBi. Clearly thenAi 6⊆ D+Y , for every
i. Also note that by Lemma 3.12D cannot contain disconnected tight sets larger thanεn

10 .
There are now three cases to consider, depending on the relation ofY to the setsXi. First, suppose

Y does not strongly cross anyXi. We show thatN(D\ ∪ Xi) is a two-way ε
10-balanced cut that was not

excluded fromF (see Figure 4a), and this contradicts the stopping condition of the algorithm. IfY strongly
crosses exactly oneXi, then we replaceY by the cutY ′ = N(D∩Bi) (see Figure 4b).Y ′ does not strongly
cross anyXi, so we apply the argument from the case above to show thatY ′ is detected. Therefore there is
at least one detector in setD, which contradicts our assumption. Finally if none of these two cases apply
thenY strongly crosses at least two sets among{Xi}, sayXi andXj . An argument using the Two-Quarters
Lemma then shows thatXi andXj partitionY into the same subsets (see Figure 4c). We then prove thatXi

andXj cut off a large connected subsetD′ of D such thatN(D′) is a two-way( ε
10 , κ)-cut not deleted from

F , which thus violates the stopping condition. 2

3.3 Full proof of Theorem 3.8

Lemma 3.13 SupposeY is ε-balanced andAi meetsD. Then either there is a detector inD + Y or the
following conditions hold:

(a) Y strongly crossesXi, and
(b) N(D ∩ Bi) is a two-way8ε

10-balanced min-cut.
Proof: Suppose there is no detector inD + Y . SinceAi andBi each contain a detector, they meetC. Now
we can invoke the Two-Quarters Lemma to quartersBi ∩ C andAi ∩ D and conclude thatAi ∩ D is tight.
We claim that|Bi ∩ D| ≥ 8ε

10 n. Indeed, otherwise|Ai ∩ D| ≥ εn
10 , so by Lemma 3.12N(Ai ∩ D) is a

two-way cut, which contradicts Lemma 3.11. Claim proved.
This proves (a) and shows thatN(Bi ∩ D) is an 8ε

10-balanced cut. To complete (b), note thatBi ∩ D is
tight by the Two-Quarters Lemma, so by Lemma 3.12N(Bi ∩ D) is two-way. 2

Let Y be anε-balanced two-way min-cut with sidesC andD. We need to show thatD meetsY or both
sides thereof. For the sake of contradiction suppose it is not so. Then without loss of generalityD ⊂ C,
which implies thatC meets everyAi andBi. Clearly thenAi 6⊆ D + Y , for everyi. Also note that, by
Lemma 3.12D cannot contain disconnected tight sets larger thanεn

10 . There are three possible cases which
we prove separately: (1) cutY does not strongly cross anyXi, (2) cutY strongly crosses exactly oneXi,
and (3) cutY strongly crosses at least twoXi’s.

Case 1: cutY does not strongly cross anyXi. To re-use this proof for the second case, we will assume
thatY is only 8ε

10 -balanced, rather thanε-balanced,
Since we assumed thatXi does not strongly crossY by Lemma 3.13 we have allAi’s are disjoint with

D. Using this fact we show that eachXi excises a small a piece of size at mostκ from D, and finally we
show thatD\ ∪ Xi is large, tight, connected, and preserves∪Ai, and thus algorithm could have made at
least one more step.

Let Xi1 , Xi2, . . .Xit be all cuts which are intersecting withD. Let Dj = D − D ∩
⋃j

h=1 Xih , Yj =
N(Dj) andCj = V − Yj − Dj . First of all

|Dj| ≥ |D| −
j∑

h=1

|Xih | ≥
8ε

10
n − κ

10
ε

≥ 3ε

10
n
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The last transition is becauseκ ≤ ε2

20n.
We will prove by induction that eachDj is tight, connected and corresponding cutYj = N(Dj) is

two-way for every0 ≤ j ≤ t.
Suppose we did that, thenDt by its construction is disjoint with anyXi, and thus allAi’s are disjoint

with Yt, and hence lie inV − Dt − Yt, thereforeYt preserves
⋃

Ai (becauseYt is a two-way cut). On the
other hand|Dt| ≥ 2ε

10 n and|Ct| ≥ |C| ≥ εN . SoYt is 2ε
10 -balanced two-way min-cut and preserves

⋃
Ai,

thus our algorithm could have made one more step, and so we come to contradiction.
Now we have to prove our claim. ClearlyD0 is tight, connected andN(D0) = Y is two-way by our

definition ofY andD. Suppose the claim holds forDj−1, we now prove it forDj . We have

Dj = Dj−1 − Dj−1 ∩ Xij = Bij ∩ Dj−1.

If Dj is disjoint withXij thenDj = Dj−1 and we are immediately done. Otherwise,Yj−1 weakly crosses
Xij . (Indeed,Dj−1 is not preserved byXij , andCj−1 ⊇ C and hence meets bothAij andBij and so not
preserved.) But then we satisfy conditions of the Two-Quarters Lemma, whereAij ∩ Cj−1 andBij ∩ Dj−1

is not empty, and thusDj = Bij ∩ Dj−1 is tight. Therefore by Lemma 3.12Dj is connected andN(Dj) is
a two-way cut. This proves the claim.

Case 2: cutY strongly crosses exactly oneXi. Indeed, consider setD′ = D ∩ Bi. By Lemma 3.13 and
our assumption that there were no detectors inD + Y , it has size at least8ε

10 n, is tight and corresponding
cutY ′ = D ∩ Xi + Xi ∩ Y + Y ∩ Bi is two-way min-cut.

SinceD′ ⊆ D, and only oneAi meetsD (and it does not meet withD′ by our construction), noAi meets
with D′. Therefore by Lemma 3.13Y ′ does not strongly cross anyXi and thus by the case (1)Y ′ is detected
byD. This proves that there is at least one detector inY ′ + D′, and by constructionY ′ + D′ ⊆ D + Y , and
therefore there is at least one detector inD + Y , contradiction.

Case 3: cutY strongly crosses at least twoXi’s. We need to prove that eitherD + Y contains at least
one detector fromD (and thus contradicting our assumption), or we could have done one more step of the
algorithmA2. Without loss of generalityY strongly crossesX1 andX2 (see Figure 4c).

First we prove that each of the triples(A1, X1, B1) and(A2, X2, B2) partitions setY into the same
subsets.

Claim 3.14 X1 ∩ Y = X2 ∩ Y andA1 ∩ Y = B2 ∩ Y andB1 ∩ Y = A2 ∩ Y .
Proof: Note thatY = Y ∩ Ai + Y ∩ Xi + Y ∩ Bi, and sinceA1 ⊆ B2, we have thatY ∩ A1 ⊆ Y ∩ B2,
and analogouslyY ∩ A2 ⊆ Y ∩ B1, but by the Two-Quarters Lemma we have|Y ∩ A1| = |Y ∩ B1| and
|Y ∩ A2| = |Y ∩ B2| and thusY ∩ A1 = Y ∩ B2 andY ∩ A2 = Y ∩ B1, and thusX1 ∩ Y = X2 ∩ Y . 2

We will prove that either there is a leftover partD′ in D, which could have used for the next step of the
algorithm, orY is detected.

For eachi = 1, 2, sinceXi strongly crossesY , setD is partitioned byXi into three non empty parts
D′

i = D ∩ Bi, D′′
i = D ∩ Ai and D′′′

i = D ∩ Xi. Now, by Lemma 3.13 and our assumption that
D ∩ (D + Y ) = ∅, we conclude thatD′

i is tight, its cardinality is at least8ε
10 n andN(D′

i) is two-way
min-cut.

ConsiderD′ = D′
1 ∩ D′

2. We claim that the corresponding cutZ = N(D′) is a two-way( ε
10 , κ)-cut

that preserves∪Ai. This contradicts the stopping condition of the algorithm: it could have made one more
iteration. Therefore it remains to prove the claim.

Firstly,D′ is tight by the Two-Quarters Lemma applied to cutsN(D′
1) andN(D′

2). Its size is

|D′| = |D′
1 ∩ D′

2| = |D − (D′′
1 + D′′′

1 )∪ (D′′
2 + D′′′

2 )| ≥ εn − 2(
εn

10
+ κ) ≥ 6ε

10
n,
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so Z is ε
10-balanced, and moreoverD′ is connected (this is by Lemma 3.12 and the assumption thatD is

disjoint withY +D). SinceZ = (X1∪X2)∩(D∪Y ), we conclude that (1)Z is two-way, sinceV −D′−Z

is connected as a union of three non-disjoint connected subsetsC, A1 andA2, and (2)Z is disjoint with
∪Ai by Lemma 3.9.

To prove thatZ preserves∪Ai it remains to show that allAi’s are disjoint withD′. Indeed, suppose
someAi meetsD′. It cannot be properly contained inD, hence inD′. So, sinceAi is connected, it meets
Z, contradiction. Claim proved. This completes the proof of Theorem 3.8.

3.4 Strong detection sets

We present a partial result on extending strong detection sets forε-shredders to those for general(ε, κ)-cuts.
Essentially, we show that it suffices to have a strong(ε, κ)-detection setD′ for some subgraphG′ = (V, E ′)
of G of the same connectivityκ. In particular, we can without loss of generality assume thatG is minimally
k-connected.

Theorem 3.15 Supposeκ < εn and we have a strong(ε, κ)-detection setD′ for a κ-connected subgraph
G′ = (V, E ′) of G. Then we can useD′ to construct a strong(ε, κ)-detection set forG. Specifically, for a
high-probability result it suffices to addO(1

ε log 1
ε ) randomly sampled detectors. Alternatively, it suffices to

add at most2ε detectors, and there is a polynomial-time algorithm to construct them.
Proof: LetD′′ be a smallest detection set forε-shredders ofG. LetS be an(ε, κ)-cutG. ThenS is an(ε, κ)-
cut in G′ such that eachS-component inG is a union ofS-components inG′. Obviously, ifS-components
are the same inG and inG′, thenD′ detectsS. Therefore, ifD′∪D′′ does not detectS, thenS is a two-way
(ε, κ)-cut inG but a shredder inG′. Call such cutsevil. Therefore it suffices to detect all evil cuts.

For an evil cutS, the two components ofS in G are calledS-shores. We need to put a detector in each
S-shore. For the rest of the proof we can forget aboutG. We operate (only) onG′ and treatS-shores as
unions of components ofS in G′. The proof is similar to that of Theorem 3.1.

Evil cuts areε-shredders inG′, so there are at mostn of them and they can be efficiently listed. LetF0

be the family ofall evil cuts. Start withF = F0. While there existsS ∈ F such that eachS-shore contains
anF -head ofS, deleteS from F (because by Lemma 3.5S is detected byD′). Let F1 be the resulting
family of evil cuts. Clearly ifD is a detection set forF1 thenD ∪ D′ is a detection set forF0.

SayH ⊂ V is aheadof S if H is anF1-head ofS. Let thetail shoreof S ∈ F1 be theS-shore that does
not contain any heads ofS (such shore exists by construction ofF1). Observe that for any twoS, T ∈ F1

the tail shore ofT is contained in a head ofS (and vice versa). Why?T meets exactly one component ofS,
sayH (soH is a head). By Lemma 3.4H contains allT -components but one, call itC. C meetsS, thusC
is a head. Therefore, the tail shore ofT is contained inH .

By the observation above, the tail shores of cuts inF1 are pairwise disjoint and moreover (assumingF1

consists of at least two cuts) putting a detector in each of these shores strongly detectsF1. Since the tail
shores have size≥ εn each,|F1| ≤ 1

ε . Therefore we need1ε detectors forF0, which together withD′′ is
≤ 2

ε detectors. For a random sampling result note that it suffices to augmentD′ by a hitting set for the tail
shores ofF1 and the tails ofε-shredders ofG, as defined in the proof of Theorem 3.1. 2

4 Extensions and further directions

There are a number of natural questions left open by this work. One is to investigate whether an(ε, κ)-
detection set for node failures of minimum size can be computed in polynomial time for a given graphG;
this would parallel the per-instance result we obtain for edge failures. We note that Section 3.1 provides
such an optimality result for node failures when the adversary is restricted to deleting a shredder.
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We believe it would be interesting to extend our results on node failures to obtain bounds for strong
detection sets. In fact, our bounds for shredders apply already to the case of strong detection; and in Theorem
3.15 we provide a further step in this direction, proving that we can without loss of generality assume that
G is minimallyk-connected.

It would clearly be interesting to obtain results on detection sets with respect to adversaries that can
delete a number of nodes equal to a constant times the node-connectivity, by analogy with our results for
edge-connectivity. To obtain detection set bounds here that are independent of the value ofκ, it is not
difficult to see that we need to focus on weak detection; indeed, there exist graphs in which we would need
at leastk − κ nodes in any strong(ε, k)-detection set for node failures.

Finally, the problem of deciding whether a given setD is an(ε, k)-detection set provides another clear
connection to the problem of balanced separators in graphs: indeed, deciding whether the empty set is an
(ε, k)-detection set is coNP-complete because of its equivalence to a balanced separator problem. On the
other hand, using techniques from [11, 22], we can obtain a polynomial-time algorithm for deciding whether
D is an(ε, k)-detection set for node failures whenk = κ; this is non-trivial due to the fact that there can be
exponentially many min-node-cuts.

Acknowledgments. It is our pleasure to acknowledge the contribution of Laszlo Lovász; discussions with
him about the prospect of parameterizing detection sets by the minimum cut size provided a portion of the
motivation for this work, and also led to the results described in Section 2.3.
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