Network File Storage with Graceful Performance
Degradation

ANXIAO (ANDREW) JIANG
California Institute of Technology
and

JEHOSHUA BRUCK

California Institute of Technology

A file storage scheme is proposed for networks containing heterogeneous clients. In the scheme, the
performance measured by file-retrieval delays degrades gracefully under increasingly serious faulty
circumstances. The scheme combines coding with storage for better performance. The problem
is NP-hard for general networks; and this paper focuses on tree networks with asymmetric edges
between adjacent nodes. A polynomial-time memory-allocation algorithm is presented, which
determines how much data to store on each node, with the objective of minimizing the total
amount of data stored in the network. Then a polynomial-time data-interleaving algorithm is used
to determine which data to store on each node for satisfying the quality-of-service requirements in
the scheme. By combining the memory-allocation algorithm with the data-interleaving algorithm,
an optimal solution to realize the file storage scheme in tree networks is established.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks|: Distributed
Systems—distributed applications; distributed databases; C.4 [Performance of Systems|: reli-
ability, availability, and serviceability; E.4 [Coding and Information Theory]: error control
codes; E.5 [Files|: backup/recovery; F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—computations on discrete structures; routing and
layout; G.2.2 [Discrete Mathematics]: Graph Theory—graph algorithms; network problems;
trees; H.3.2 [Information Storage and Retrieval|: Information Storage—file organization;
H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—retrieval mod-
els

General Terms: Algorithms, Performance, Reliability, Theory
Additional Key Words and Phrases: Domination, file assignment, interleaving, memory allocation,
fault tolerance

1. INTRODUCTION

A file shared by many distributed clients can be replicated in the network to improve
performance, and the file can be stored in the form of an error-correcting code. Let’s
use (N, ¢) code to denote an error-correcting code that consists of N symbols and
can correct € erasures — in other words, any N —e symbols can be used for decoding
the codeword. Given a file, we can encode it with an (IV, €) code, and distributively
store replicas of the N symbols of the codeword in the network. Then each client
can recover the file by retrieving any N — ¢ different symbols.

The most common practice of file storage, where every node of the network

This work was supported in part by the Lee Center for Advanced Networking at the California
Institute of Technology, and by NSF grant CCR-TC-0208975.

either stores the entire file in its original form or none of it, is a topic that has been
studied in depth [2]. Tt includes median or center type of schemes that minimize
the average or maximum file-access cost [4], [9], dynamic replication schemes based
on estimated temporal data-access statistics (e.g., caching [16]), on-line algorithms
that optimize the file-access performance against the worst future events [1], etc.
In those schemes, the file can be seen as encoded with a (1,0) code, so they are a
special case of the more general file-storage model where files are stored in the form
of error-correcting codes. There also exist schemes using file segmentation [11],
where a file is split into chunks and the chunks are stored distributively, which
can be seen as using a (k,0) code (for some integer k). Error-correcting codes
have played a more important role in disk-storage systems and server clusters —
such as RAID [14] and DPSS [12] — where files are stored using non-trivial error-
correcting codes, but there the concept of network is not significant. Works that
study the general problem of combining network file storage with error-correcting
codes include the important paper [13] by Naor and Roth — which studies how
to store a file using error-correcting codes in a network such that every node can
recover the file by accessing only the codeword symbols on itself and its neighbors,
with the objective of minimizing the total amount of data stored — and a few other
results [5], [7], [8]; however, other than those, research in this field has been very
limited.

Error-correcting code is a more general way to express a file than the file it-
self. Therefore, it brings us the flexibility to find file-storage solutions with better
performance.

In this paper, we study file storage in networks containing heterogeneous clients
— clients that have different quality-of-service requirements on file retrieval. We
model a network as a directed graph G = (V, E), and use (u, v) to denote a directed
edge from vertex u to vertex v. Each edge (u,v) € E has a positive length [(u,v).
We use d(u — v) to denote the length of the shortest directed path from u € V' to
v € V, and call it the distance from u to v. For a vertex v € V and a real number
r, we define N(v,r) as the set of vertices whose distance to v is less than or equal
to r, namely, N(v,r) = {u|u € V,d(u — v) < r}. We encode a file with an (N,¢)
code, and store replicas of the N codeword symbols on the vertices of the graph.
Every vertex is a client that requests the file; at the same time, it can be used to
store some codeword symbols. We use Wiq.(v) to denote the maximum number
of codeword symbols that can be stored on vertex v € V', and call it the memory
capacity of v. If a vertex v retrieves codeword symbols from a set S C V of vertices,
then we call max,cs d(u — v) the file-retrieval delay of v. (So here the length of a
path is interpreted as the delay of transmitting data over that path.)

We allow every vertex to specify a delay that it can tolerate for retrieving N — e
different codeword symbols for its file reconstruction. If some of the stored data
become inaccessible (e.g., because of data loss or processors’ being busy), then a
vertex needs to retrieve codeword symbols from a larger area. It is desirable that
the number of distinct codeword symbols within a distance from a vertex grows
steadily when that distance increases — so that the file-retrieval delay will degrade
gracefully when more and more symbols become inaccessible. We let each vertex
specify the number of distinct codeword symbols that should exist within each spec-

ified distance, and we allow different vertices to have different such requirements.
As a result, we get a file-storage scheme accommodating the varied quality-of-
service requirements of clients, which has graceful performance degradation under
increasingly serious faulty circumstances.

The problem studied in this paper is formally defined as follows.

DEFINITION 1.1. THE FILE STORAGE PROBLEM

INSTANCE: A directed graph G = (V| E), and a codeword of N symbols. Every
edge (u,v) € E has a positive length I(u,v). (I(u,v) is a real number.) Every vertex
v € V is associated with a set R(v) = {(r;(v), ki(v))|1 < i < n,}, which is called
the requirement set of v. Each vertex v € V is also associated with a non-negative
integer Wi,az(v), which is called the memory capacity of v.

QUESTION: How to assign w(v) codeword symbols to each vertex v € V, such
that for every vertex u € V and for 1 <4 < n,, the vertices in the set N(u,r;(u))
together have at least k;(u) distinct codeword symbols? Here w(v) < Wiee(v)
for all v € V. w(v) is called the memory size of v. A feasible solution to this
problem that minimizes the total number of codeword symbols stored in the graph,
> wev w(v), is called an optimal solution.

COMMENTS: Each element in a requirement set R(v) is a pair of numbers, written
in the form as (r, k). r;(v) is a non-negative real number. k;(v), 1y, Winaz(v) and
w(v) are all non-negative integers. m, denotes the number of requirements that v
has. a

The file storage problem defined above is NP-hard for general graphs, because
the NP-complete dominating set problem [3] can be reduced to it. In this paper, we
study the case where the graph G = (V, E) is a tree. We assume G has asymmetric
edges, which means that for any two adjacent vertices, the two directed edges of
opposite directions between them do not necessarily have the same length. Below
is an example of such a file storage problem.

EXAMPLE 1.1. A tree G with asymmetric edges is shown in Fig. 1, where the
number beside each edge is its length. The parameters N, R(v) and Wi, (v) (for

every vertex v) are as shown. (So here ny,, =2, ny, =Ny, =+ =Ny, = 1.)
Let’s use integers 1, 2, ---, 12 to denote the 12 codeword symbols. Then one
feasible solution is as follows: assign w(vy) = 3 symbols — {1,2,3} — to vy,

assign w(vy) = 3 symbols — {9,10,11} — to vq, assign w(vz) = 0 symbol to vs,
assign w(vy) = 5 symbols — {4,5,6,7,8} — to vy, assign w(vs) = 7 symbols —
{1,2,3,9,10,11,12} — to vs, assign w(vg) = 0 symbol to vg. We claim without
proof that that solution is optimal, because it minimizes the value) .\ w(v);
readers can verify that the claim is true.

The example here is a simple one. In general, a vertex can have much more than
1 or 2 requirements. O

Trees are often used as embedded networks or backbone networks in real systems.
In those networks, the cost (such as delay) of transmitting data from one node to
another is often not the same as the cost of transmitting data in the opposite
direction. Trees with asymmetric edges take that fact into consideration. They
include undirected trees as a special case.

Finding a solution to the file storage problem has two steps: deciding how many
codeword symbols to assign to each vertex, which we call memory allocation, and

N=12

R(V1)={(10,7),(121)} W_(V1)=3

R(V2)={ (1.2,5)} W _(V2)=5
R(V3)={ (13,5} W_(V3)=6
R(V4)={ (06,5} W_(Va)=5
R(Vs)={ (1.6,12)} W_(Vs)=10
R(Ve)={ (1.0,3)} W_(Ve)=8

Fig. 1. An example of the file storage problem.

deciding which codeword symbol to assign to each vertex, which we call data in-
terleaving. If G is a general graph, these two steps usually depend on each other.
However, we will show that when G is a tree, memory allocation and data inter-
leaving can be solved separately.

The rest of the paper is organized as follows. Section 2 and Section 3 respectively
present a memory-allocation algorithm and a data-interleaving algorithm, both of
polynomial time complexity. The combination of those two algorithms yields an
optimal solution to the file storage problem, and that result is shown in Section 4.
Section 5 presents concluding remarks.

2. MEMORY ALLOCATION
2.1 Definition of the Problem
We define the memory allocation problem as follows.

DEFINITION 2.1. THE MEMORY ALLOCATION PROBLEM

INSTANCE: A tree G = (V, E) with asymmetric edges, and a positive integer N.
Every edge (u,v) € E has a positive length I(u, v). Every vertex v € V is associated
with a set R(v) = {(ri(v), k:(v))|1 < i < mn,}, which is called the requirement set of
v. Each vertex v € V is also associated with a non-negative integer Wi, (v), which
is called the memory capacity of v, and a non-negative integer W, (v), which is
called the memory floor of v. (Here Wi (v) < Winas(v).)

QUESTION: How to associate an integer w(v) with each vertex v € V, such that
for every vertex u € V and for 1 < @ < nu, 3 ,en(um(uy) W) = ki(u)? Here
Winin(v) < w(v) < Wi (v) for all v € V. w(v) is called the memory size of v. A
feasible solution to this problem that minimizes the value), w(v) is called an
optimal solution.

COMMENTS: All the parameters above — except the new parameter W, (v) —
have the same meaning as in the file storage problem (Definition 1.1). So we omit
defining their allowed ranges of values. a

The memory allocation problem has one generalization compared to the file stor-
age problem — an integer Wi, (v), instead of the constant 0, is set to be the
lower bound for the memory size of v. Other than that, the memory allocation
problem is a simplification of the file storage problem — instead of requiring that

there are at least k;(v) distinct codeword symbols stored on the vertices in the set
N(v,r;(v)), the memory allocation problem just requires at least k;(v) codeword
symbols (whether they are the same or not) to be stored there. Clearly, in the case
where Wi, (v) = 0 for all v € V| if an optimal solution to the memory allocation
problem assigns the integer w(v) to vertex v, then » _, w(v) is a lower bound for
the total number of codeword symbols stored in the tree in any feasible solution
to the file storage problem. In later sections, we will show that in fact, storing
> vev w(v) codeword symbols is also sufficient.

We assume in the rest of the paper that for every vertex u € V and for 1 <
TS Ny Dpe N (uyrs (u)) Wimaa (V) 2 Ki(u), because that is the necessary and sufficient
condition for there to exist a solution to the memory allocation problem.

2.2 Memory-Allocation Algorithm

We see one of the vertices of the tree G as its root, and denote it by v,.,0:. For any
two vertices v; and vo, we say ‘vi is a descendant of vy’ or ‘v is an ancestor of vy’
if v # v1 and vy is on the shortest path from the root to v;. We say ‘v; is a child
of vy’ or ‘vs is the parent of vy’ if v; and v are adjacent and vy is a descendant of
vg. For any vertex v € V', we use Des(v) to denote the set of descendants of v.

For any set S, we use |S| to denote its cardinality. For any two sets S and T,
S —T denotes the set of elements that are in S but not in 7. For any two variables
a and b, a < b means to make a be equal to b (in other words, it means to assign
the value of b to a).

We present below a memory-allocation algorithm that uses the technique of
searching the tree from its leaves toward its root. Similar techniques have been
used in several papers [10], [15], to solve the domination problem.

DEFINITION 2.2. AN OPTIMAL MEMORY BASIS

A set {w(v)|v € V'} is called an optimal memory basis if there exists an optimal
solution to the memory allocation problem which assigns the integer wep(v) to
every vertex v € V, such that for every vertex v € V, Wi (v) < w(v) < wope(v).
O

The following lemma shows given an optimal memory basis {w;(v)jv € V},
how one can derive a new optimal memory basis {ws(v)|v € V'} that dominates
{w1(v)|v € V} — meaning that for every v € V., wa(v) > w1 (v).

LEMMA 2.1. In the memory allocation problem, let uy be a child of us in the tree
G = (V,E). Let {w1(v)|v € V}} be an optimal memory basis. Assume the following
condition is true: “for every vertex v € Des(uy), its requirement set R(v) = (;
R(u1) contains an element (r, k), namely, (r,k) € R(u1)”.

Define Sy as S1 = N(ug,r — d(us — uy)), and define Sy as So = N(uq,r) — 5.
We compute the elements of a set {wa(v)|v € V'} through the following three steps:

Step 1: for allv € V, let wa(v) «— wy(v).
Step 2: Let

X — maX{O,k — Z Wmax(v) - Z wl(v)}7
vES, vE Sy

and let C' «+— S5.
Step 8: Let vy be the vertex in C that is the closest to u; — namely, vy € C

and d(vo — u1) = minyec d(v — uy1). Let wa(vg) «— min{ Wy, (vo),
wy(vo) + X }. Let X — X —(wa(vg) —w1(vg)), and let C «— C'—{vp}.
Repeat Step 3 until X equals 0.
Then the following two conclusions are true:
(1) {wa(v)|v € V} is an optimal memory basis, and {ws(v)|v € V} dominates
the optimal memory basis {w1(v)|v € V'};
(2) s, Wnas(0) + 5y, w3(0) > k.

ProOF. It is not difficult to see that the second conclusion is true. And it is
simple to see that {ws(v)|v € V} dominates the optimal memory basis {w; (v)|v €
V}. So below we just need to prove that {wy(v)|v € V} is an optimal memory
basis.

The following two statements are clearly true:

STATEMENT 1: “S;USs = N(ug,r), and S1 NSy =0.”

STATEMENT 2: “For any v € Sa, Wiin(v) < wq(v) < wa(v) < Winas(v). For
any v € V—>S, Wiin(v) < wi(v) = wa(v) < Winae(v). And) oy wa(v)—
ey wi(0) = max{0,k — 3, Wnas (0) — oes, w1(0) 17

{w1(v)|v € V} is an optimal memory basis. So there exists an optimal solution
to the memory allocation problem that assigns memory size wop: (v) to every vertex
v € V, such that wi(v) < wept(v) for any v € V. We know >, ¢ vy,) Wopt (V) = k.

Since Z’UGN(ul,T‘) Wopt (V) = ZvGSl Wopt (V) + Z'L}GSQ Wopt(v) < Zvesl Winaz(v) +
D ves, Wopt (V), we get Y- o wopt(v) >k — > oo Winaa(v). By STATEMENT 2,
Dves, W2(0) = Dpes, W2 (V) + Xpey g, w2(V) =D ey g, W1(V) =D peg, wi(v) +
D oves, Wi(v) =D cpw2(v) = 32 oy wi(v) + 32, g, wi(v) = max{0, k—

ZveSl Wm(lﬂ?(v) - ZUESQ w1 (U)} + ZvESz w1 (U) = maX{ZvESz wy (U)v k—

2 ves; Wmae(v)} 80 3 eq, Wopt (v) 2 32, e 5, wa(v).

Let’s compute a set {w,(v)|v € V} through the following three steps:

Step 1: for all v € V=S5, let wo(v) «— wepe(v). For all v € Sy, let w,(v) «— wi(v).

Step 2: Let Y «= > o wopt(v) =, cg, w1(v), and let C' « Ss.

Step 3: Let vy be the vertex in C' that is the closest to u; — namely, vy € C' and
d(vg — u1) = minyec d(v — uy). Let wo(vg) «— min{Wi,az(vo), w1 (ve) + Y}. Let
Y —Y — (wo(vg) — wi(vg)), and let C «— C — {vp}. Repeat Step 3 until ¥ equals
0.

From the above three steps, it is simple to see that the following must be true:
“for any v € V', wo(v) > we(v); for any v € V — 953, we(v) = wept(v); for any v € Ss,
Winin(v) < wo(v) £ Winaz (v); 2pey Wo(v) = 3ycy Wopt(v), and 37 g wo(v) =
> ves, Wopt(v).” 1t is simple to see that the following must also be true: “if there
exists a vertex v; € Sy such that w,(v1) > wi(v1), then for any v € Sy such that
d(v — u1) < d(vy — u1), We(v) = Winae(v); if there exists a vertex ve € Sy such
that w,(v2) < Winaz(v2), then for any v € Sy such that d(v — up) > d(ve — uq),
wo(v) = wi(v).” Therefore for any real number L, if we define Q as Q = {v|v €
Sz,d(v — uy) < L)}, then Y- o wo(v) > 37, 0 Wopt (V).

Let vg € V be any vertex such that R(vg) # 0, and let (rg, ko) be any ele-
ment in R(vg). Clearly vg ¢ Des(uy). Since S C Des(uq) U {u1}, N(vg,79) =
{v|jv € N(vg,r0),v ¢ Sa} U{v|v € N(vg,70),v € Sa} = {v|]v € N(vo,70),v ¢
Sat UA{v|v € Sa,d(v — vg) < ro} = {v|v € N(vo,70),v ¢ Sa} U{v|v € Sy,d(v —
up) < rg—d(u; — v9)}. So ZUGN(onro)wo(v) > Z’UGN(Uo,To)wOPt(U)' Clearly

ZveN(vo,m) Wopt (V) > ko. So ZveN(vU,ro) wo(v) > ko. Since) i wo(v) =
> ey Wopt(v), the memory-allocation solution that assigns memory size w,(v) to
every vertex v € V' is an optimal solution to the memory allocation problem.

We have known that for any v € V, Wi, (v) < wa(v) < we(v). So {we(v)|v € V}
is an optimal memory basis. [J

The following lemma shows given a memory allocation problem, how one can
derive a new memory allocation problem by modifying the requirement sets and
memory floors, such that an optimal solution to the new problem is also an optimal
solution to the original memory allocation problem, and what’s more, more vertices
in the new problem have empty requirements sets than in the original problem
(therefore the new problem is easier to solve).

LEMMA 2.2. In the memory allocation problem, let uy be a child of us in the
tree G = (V,E). Let {wo(v)lv € V} be an optimal memory basis. Assume the
following conditions are true: “for every vertex v € Des(uy), its requirement set
R(v) = 0; for every element in R(u;) — say the element is (r,k) — we have
ZvEN(ug,rfd(ug—»ul)) Wm@w(v) + ZUEN(ul,T)fN(uz,rfd(U2~>u1)) ’U)o(l}) > k.7

We compute the elements of a set {R(v)|v € V'} through the following two steps:

Step 1: for allv € V, let R(v) — R(v).

Step 2: let (r, k) be an element in R(uy). If > veN (uy,r) Wo(v) <k, then add
an element (r — d(ug — uy), k — ZUeN(ulW)_N(umr_d(uz_}ul)) wo(v))
to the set R(usy). Remove the element (r,k) from R(u1). Repeat Step
2 until R(uy) becomes an empty set.

Let’s call the original memory allocation problem, in which the requirement set of
each vertex v € V is R(v), the ‘old problem’. We derive a new memory allocation
problem — which we call the ‘new problem’ — in the following way: in the ‘new
problem’ everything is the same as in the ‘old problem’, except that for each vertex
v €V, its requirement set is R(v) instead of R(v), and its memory floor is wo(v)
instead of Win(v).

Then the following two conclusions are true:

(1) The ‘new problem’ has a feasible solution;

(2) An optimal solution to the ‘new problem’ is also an optimal solution to the
‘old problem’.

PROOF. It is not difficult to see that the first conclusion is true. Below we prove
the second conclusion through two steps: firstly, we prove that an optimal solution
to the ‘new problem’ is a feasible solution to the ‘old problem’; then, we prove that
an optimal solution to the ‘new problem’ assigns the same total memory size to the
vertices of the tree as an optimal solution to the ‘old problem’ does.

Consider an optimal solution to the ‘new problem’ that assigns memory size
Wopt (V) to each vertex v € V. Let o € V be any vertex such that R(7) # 0,
and let (7, k) be any element in R(v). Either (7,k) € R(v) or (7,k) ¢ R(v). If
(7,k) € R(v), then clearly 3y m) Wopt(u) > k. Now consider the case where
(7,k) ¢ R(v). Clearly in this case o = uy, and either DN (ur) Wolu) = k,
OF D eN(uy,rm) Wolu) < k. If ZueN(z@,F) wo(u) > k, since Wopi(u) > wo(u) for any
ueV,wehave oy Wopt(u) = k. We define Sy as 51 = N(uz, 7—d(uz — u1)),

and define Sy as Sy = N(u1,7) — S1. Then if 37y, wolu) < k, it is simple
to see that (7 — d(uz — u1),k — 3, cq, wo(u)) € R(u2). So -, cnp,m Wopt(u) =
Zuesl wopt(u)+zuesz Wopt(u) >]f—zuesz UJO(U)‘f'Zues2 Wopt(u) > k. Therefore
ZuEN(T),F) Wopt(u) > k in all cases. Therefore, an optimal solution to the ‘new
problem’ 1s a feasible solution to the ‘old problem’.

{wo(v)|v € V'} is an optimal memory basis for the ‘old problem’. So there exists
an optimal solution to the ‘old problem’ that assigns memory size wep(v) to each
vertex v € V, such that for any v € V, wo(v) < wepe(v).

We compute the elements of four sets — {w1 (v)|v € V'}, {we(v)|v € V}, {ws(v)|v €
V} and {wy(v)|v € V} — through the following five steps:

Step 1: for each v € Des(us), let wy(v) « wo(v). For each v € V — Des(uz), let
w1 (V) — Wopt (V).

Step 2: for each v € Des(us), let wa(v) — wopt(v) — wo(v). For each v €
V — Des(uz), let wa(v) « 0.

Step 3: for each v € V, let w3(v) «— 0. Let Z « > i, wa(v), and let C' « V.

Step 4: Let vy be the vertex in C' that is the closest to us — namely, vy € C' and
d(vg — u2) = min,ec d(v — uz). Let ws(vg) «— min{W,4z(vo) — wi(vg), Z}. Let
Z — Z —ws(vg), and let C' «— C — {vp}. Repeat Step 4 until Z equals 0.

Step 5: for each v € V, let wy(v) «— wy(v) + w3 (v).

It is simple to see that the following must be true after the above five steps:
S er Wopt (1) = Sy wa(0) + 3y wa(v) = 3y wa(v), and 3,y wa(v) =
> vy W3(v); for any v € V, wo(v) < wy(v) < Winae(v); for any real number L,
D oveN (us, 1) W3(V) 2 D en(u,,n) w2(v); for any v € V, if wy(v) < Winae(v), then

wEN (ug,d(v—usz)) w3 (u) = Zuev wa(u).”

Let © € V be any vertex such that R(9) # 0, and let (7, k) be any clement in R(d).
Clearly & € V — Des(uy). Either (7,k) € R(0) or (7,k) ¢ R(0). If (7,k) € R(%),
then ZvEN(f),f) wy(v) = ZveN(f)j) wy(v) + ZveN(ﬁ,f) ws(v) = ZUEN (9,7) wi(v) +

VEN (uzsi—d(uz—0)) W3(V) = D pen(a,m wi(v) + ZUEN(ug,f“fii(uzﬂv)) wa(v) =
ZUEN(@,M wi(v) + ZUEN(@J‘) wa(v) = ZveN(f)) Wopt (V) = k.

Now consider the case where (7, k) ¢ R(0). We define 7 as 7 = 7 + d(uz — w1),
define 9 as S; = N (ug,), define Sy as Sy = N(uy,7) — Sy, and define k as
k=k+ > ved, Wo(v). It is easy to see that in this case, o = up and (F, k) € R(uy).
If wy(v) = Winaa(v) for every vertex v € N(ua, 1), then clearly 3, n 5) wa(v) = k
because the ‘new problem’ has a feasible solution. If there exists vg € N(uq,7) such
that we(vo) < Winae (v0)s then 3, cyiop wa(v) = Yeg, wi(0) + Xyey walv) >
ZveN(ulf) w1 (v) — Zve§2 w1 (v) + ZveN(ul,f) w2 (v) = ZUEN(ul,F) Wopt (V) —
Z’UGS2 w1 (U) Z k— Z'UGSQ w1 (U) =k.

So ZUGN(U) wa(v) > k in all cases. So the solution that assigns memory size
wq(v) to every vertex v € V is a feasible solution to the ‘new problem’ — so
Y vev Wopt (V) < > ey wa(v). Since every optimal solution to the ‘new problem’
is a feasible solution to the ‘old problem’, we have) .\ Wopt(v) < 37 oy Wopt (V).

Clearly >, cy wa(v) = D, cy Wopt(vV), 80 Y ey Wopt (V) = D ey Wopt(v). So the
optimal solution to the ‘new problem’, which assigns memory size Wy (v) to every

vertex v € V, is also an optimal solution to the ‘old problem’. Now we can see that

the second conclusion of this lemma is true. O

Lemma 2.1 and Lemma 2.2 naturally lead us to an algorithm for optimally solv-
ing the memory allocation problem. We can process the vertices of the tree one
by one, with every vertex processed before its parent. Every time a vertex is pro-
cessed, corresponding to each element in its requirement set, we use the method
in Lemma 2.1 to derive an optimal memory basis of larger values; then we use the
method in Lemma 2.2 to force the vertex’s requirement set to be empty. In the
end, the root becomes the only vertex whose requirement set may not be empty,
and the memory allocation problem becomes very simple to solve.

The following algorithm outputs an optimal solution to the memory allocation
problem.

Algorithm 2.1 [Memory Allocation on Tree G = (V, E)]

1. Initially, for every vertex v € V, let w(v) «— Winin(v).

2. Process all the vertices one by one, in an order that follows the following rule:
“every vertex is processed before its parent.” For each vertex v € V that is not the
root Vreot, it is processed through the following two steps:

“Step 1: Treat 0, the parent of ¢ and the set {w(v)|v € V} respectively as
the vertex ‘uy’, the vertex ‘uy’ and the set ‘{w;(v)|v € V} in Lemma 2.1, and for
each element in R(?) do the following two things: (1) treat that element in R(?)
as the element ‘(r, k)’ in Lemma 2.1, and compute the set ‘{ws(v)|v € V}’ as in
Lemma 2.1; (2) for every vertex v € V, let w(v) get the value of wa(v) — namely,
w(v) — wa(v).

Step 2: Treat @, the parent of ¢ and the set {w(v)|v € V'} respectively as the
vertex ‘uy’, the vertex ‘uz’ and the set ‘{wg(v)|v € V}’ in Lemma 2.2, and do the
following two things: (1) compute the set ‘{R(v)|v € V}’ as in Lemma 2.2; (2) for
every vertex v € V, let R(v) «— R(v), and let Wiin(v) — w(v).”

The root v,0 is processed in the following way:

“Pretend that the root v,.,: has a parent whose distance to v, is infinitely
large. Treat v, as the vertex v above, and run just its Step 1.”

3. Output the following solution as the solution to the memory allocation prob-
lem: for each vertex v € V, assign w(v) to it as its ‘memory size’.

O

A pseudo-code of Algorithm 2.1 is presented in Appendix A for interested readers.

Analysis shows that Algorithm 2.1 has time complexity O(q|V|?), where |V|
is the number of vertices and ¢ is the average cardinality of a requirement set,
namely, ¢ = ﬁ > wev [R(v)]. The complexity analysis as well as the proof for the
correctness of Algorithm 2.1 (including the optimality of the solution it outputs)
are presented in Appendix B.

2.3 Variation of the Algorithm

Algorithm 2.1 has complexity O(q|V[?). But if Wya.(v) = oo for all v € V. —
namely, if no upper bound exists for the vertices’ memory sizes — then an algorithm
of time complexity O(g|V|?) can actually be derived. We present such an algorithm
and its complexity analysis in Appendix C for interested readers.

10

3. DATA INTERLEAVING
3.1 Definition of the Problem

Assume that in the file storage problem, the number of codeword symbols assigned
to each vertex v € V, w(v), is already known. (The only requirement for w(v) here
is that for every vertex u € V and for 1 <4 < ny, 32, N(um () W) = ki(u). No
feasible solution to the problem exists if that requirement is not satisfied.) Then,
the file storage problem is simplified to be the following data interleaving problem.

DEFINITION 3.1. THE DATE INTERLEAVING PROBLEM

INSTANCE: A tree G = (V, E) with asymmetric edges, and N different colors.
Every edge (u,v) € E has a positive length I(u,v). Every vertex v € V is associated
with a set R(v) = {(r;(v), k;(v))|1 < i < n,}, which is called the requirement set of
v. Every vertex v € V is also associated with a non-negative integer w(v). (Here
w(v) < N.)

QUESTION: How to assign w(v) colors to each vertex v € V, such that for every
vertex u € V and for 1 < i < n,, the vertices in the set N(u,r;(u)) together have
at least k;(u) distinct colors? (At most N different colors can be used, and every
color can be assigned more than once to the vertices.)

COMMENTS: All the parameters above have the same meaning as in the file
storage problem (Definition 1.1). So we omit defining their allowed ranges of values.
O

In the data interleaving problem, we use N different colors to represent the IV
symbols in the codeword, for a more abstract understanding of the problem.

3.2 Data-Interleaving Algorithm

In the paper [6], a solution is presented for coloring the vertices of an undirected
tree using N colors, in such a way that for every point of the tree (which can
be either a vertex or a point on an edge), there exist K different colors that are
placed as closely as possible around it, for a preset parameter K (K < N). In this
section, we derive a data-interleaving algorithm using a similar technique. The new
algorithm is adapted to the file-allocation scheme studied here, and is for trees with
asymmetric edges between adjacent vertices.

Since every vertex v € V' is to be assigned w(v) colors, we think of v as having
w(v) color-slots, where each color-slot is to be assigned one color — and we say
that those w(v) color-slots belong to v.

We define w as w =) ., w(v), that is, the total number of color-slots in the
tree G. We label all the color-slots in G as s1, S2, -+, Si following this rule: if
d(sz - UT'O()t) < d(Sj - Uroot)) then i < .7

For any two color-slots s; and s;, we use d(s; — s;) to denote the distance
from the vertex that s; belongs to to the vertex that s; belongs to. In other
words, if s; is a color-slot of vertex u, and s; is a color-slot of vertex v, then
d(s; — s;) = d(u — v). Similarly, we also use d(s; — v) and d(u — s;) to denote
the same value as d(u — v).

For any vertex v € V and any real number r, we define B(v,r) as B(v,r) =
{si]1 < i < w,d(s; — v) < r} — namely, the set of color-slots whose distance to
v is at most r. Similarly, for any color-slot s; and any real number r, we define

11

B(sj,7) as B(sj,r) ={s;|1 <i < w,d(s; — s;) <r}.

For any three color-slots s;, s, and s,, where x # y (but z does not have to be
different from z and y), we use “(s; = s,) < (sy = s.)” to denote the following
condition: either d(s, — s,) < d(sy — s;), or “d(s; — s.) = d(sy — s,) and
<y

Similarly, by replacing the ‘color-slot s,’ in the above paragraph by ‘vertex v’,
we get the definition of “(s, = v) < (sy = v).”

For every vertex v, we define k, as K, = maxj<;<n, k;(v). We use S, to denote
the set of color-slots that satisfies the following two conditions: (1) |S,| = kv; (2)
for any color-slot s, € S, and any color-slot s, ¢ S, (s, = v) < (s4 = v).

Finally, for every color-slot s;, we assign to it an integer X; that satisfies the
following two conditions: (1) for every vertex v, if s; € Sy, then X; > |S, N {s¢|t <
it]; (2) 1 < X; < N, and X; <. For now let’s assume that the integer X; is given
by an oracle; later in Subsection 3.3 we will discuss how to set the value of X;.

The following algorithm solves the data interleaving problem.

Algorithm 3.1 [Data Interleaving on Tree G = (V, E)]
fori=1to wdo
{ Let T be the set of color-slots that satisfies the following two conditions:
(1) T C{slt <i},and |T| = X; — 1;
(2) for any color-slot s, € T and any color-slot s, € {s;|t < i} — T,
(sp = 8i) < (8q = si).
Assign to s; a color that differs from the color of every color-slot in 7'

}

O

9

LEMMA 3.1. After Algorithm 3.1 is used to assign colors to the tree G = (V, E),
for any integer i (1 < i < w) and any vertex v € V, no two color-slots in the set
Sy N {st|t < i} are assigned the same color.

PrROOF. Let v be an arbitrary vertex. Let’s use ASSERTION to denote the
following assertion: “no two color-slots in the set S, N {s;|t < i} are assigned the
same color.”

We use induction on the parameter ¢ (1 <i < w) to prove this lemma.

When i = 1, the set S, N {s|t < i} contains at most one color-slot, so the
ASSERTION is true. This serves as our base case.

Now let I be an integer such that 2 < I < w. Assume that when i < I, the
ASSERTION is true. We shall prove that when i = I, the ASSERTION still holds.

Let i = I. If |S, N {s¢t < i}| equals 0 or 1, then clearly the ASSERTION is
true. If |S, N {s|t < i} > 1 and s; ¢ S, N {s|t < i}, by letting j* denote the
maximum value of j subject to the constraint that s; € S, N {s¢|t < i}, we can
see that S, N {s;t < i} = 9, N{s;|t < j*} and j* < ¢ — then by the induction
assumption, no two color-slots in the set S, N {s¢|t < j*} are assigned the same
color, so the ASSERTION is true. Therefore in the remainder of the proof, we shall
only consider the case where |S, N {s:|t <i}| > 2 and s; € S, N {s¢]t < i}

Let LCA denote the least common ancestor of v and the vertex that s; belongs to
— namely, LCA is the unique vertex that lies on the path between v, and v, on
the path between v,.,,¢ and the vertex that s; belongs to, and on the path between

12

v and the vertex that s; belongs to.

Let s, be an arbitrary color-slot in the set S, N {s;|t < ¢}. Let s, be an arbitrary
color-slot in the set {si|s; ¢ Sy,t < i}. Define P as such a set: P = {s]t < 4,
the vertex that s; belongs to is either LCA or a descendant of LCA}. We have the
following three statements.

STATEMENT 1: “s, ¢ P.”

STATEMENT 2: “If s, € P, then (s, = 5;) < (54 = 5;).”

STATEMENT 3: “If s, ¢ P, then (s, = s;) < (sq = 5;).”

To see why STATEMENT 1 is true, we use contradiction. Assume s, € P. Then
d(sq = Vroot) = d(sq — LCA) + d(LOA— vpoot). Clearly d(s; — Uroor) = d(si —
LCA) + d(LCA— vpoot). Since g < i, we get that d(sq — Vroot) < d(Si = Uroot)s
so d(sq — LCA) < d(s; — LCA). So d(sq — v) < d(sq — LCA)+d(LCA— v) <
d(s; = LCA) + d(LCA— v) = d(s; — v). Since s; € Sy, d(sq — v) < d(s; — v)
and ¢ < 7, by the definition of S, we get that s, € S,, which is a contradiction.
So STATEMENT 1 is true.

To see why STATEMENT 2 is true, let’s assume that s, € P. By the same
argument as in the previous paragraph, we get that d(s, — LCA) < d(s; — LCA).
Since s; € Sy, ¢ > g and s; ¢ S,, by the definition of S,, we get that d(s, —
v) > d(s; — v). From STATEMENT 1, we know that the vertex that s, belongs
to is neither LCA nor a descendant of LCA, so d(s;, — v) = d(sq, — LCA) + d(
LCA— v); and we know that d(s; — v) = d(s; — LCA) + d(LCA— v). So d(sq —
LCA) > d(s; — LCA) > d(s, — LCA). So d(s, — s;) < d(sp — LCA) + d(
LCA— s;) < d(sq — LCA) +d(LCA— s;) = d(sq — 8i). S0 (sp = 8;) < (8¢ = 5i).
So STATEMENT 2 is true.

To see why STATEMENT 3 is true, let’s assume that s, ¢ P. Since s, € S, and
Sq & Sy, by the definition of S,, we get that (s, = v) < (s; = v). Since neither the
vertex that s, belongs to nor the vertex that s, belongs to is LCA or a descendant
of LCA, but v is either the same as or a descendant of LCA, we get that (s, =
LCA) <1 (sq = LCA). Since s; is either the same as or a descendant of LCA, we get
that (sp = s;) < (sq = si). So STATEMENT 8 is true.

By STATEMENT 2 and STATEMENT 3, we know that (s, = s;) < (sq = s;) in
any case. Note that s, is an arbitrary color-slot in the set S, N {s;|t < i}, and s, is
an arbitrary color-slot in the set {s¢|s; ¢ S,,t < i}. Since X; > |S, N{s¢|t < i}| and
s; € Sy, we get that |S, N{s¢|t < i}| < X; —1— so by Algorithm 3.1, the color of s;
differs from that of any color-slot in S, N {s:|t < ¢}. By the induction assumption,
no two color-slots in the set S, N {s:|t < i} are assigned the same color. So no two
color-slots in S, N {s;|t < i} are assigned the same color. So the ASSERTION is
true when ¢ = I. That concludes the induction step of the proof. O

LEMMA 3.2. After Algorithm 3.1 is used to assign colors to the tree G = (V, E),
for any vertex v, no two color-slots in S, — whose cardinality is k, = maxi<;<n, ki(v)
— are assigned the same color.

PRrROOF. Replace the integer ‘4’ in Lemma 3.1 by w. Note that S, N{s:|t < w} =
Sy. O

THEOREM 3.3. Algorithm 3.1 correctly outputs a solution to the data interleav-
ing problem.

13

ProOOF. For any vertex v, we know that there are x, = maxj<;<n, k;(v) distinct
colors assigned to the color-slots in .S,,. Consider an arbitrary requirement of v —
say it is (r;(v), ki(v)). By the definition of S, and the fact that |B(v,r;(v))| > k;(v),
we can see that there are at least k; distinct colors assigned to the color-slots in the
set {s¢]d(st —v) <m}. O

3.3 Discussions on the Data-Interleaving Algorithm

For Algorithm 3.1, the minimum value that X; (1 < ¢ < w) can take is the greater
number between 1 and max,.s,cs, |Sy N{s:|t < i}|, and the maximum value X; can
take is min{N,i}. X; can take any value between those two bounds. The smaller
X is, the less restriction the algorithm has while choosing a color for s; — therefore
the more possible outputs the algorithm has. So choosing a smaller value for X;
increases the generality of the algorithm; on the other side, setting X; to be the
maximum value — min{N, i} — certainly makes its computation simple.

If we set X; to be min{N,i} for all ¢, then Algorithm 3.1 will output a solution
that has the following property: for every vertex, there are N different colors placed
as closely to it as possible. That property can be proved by using the following two
facts: (1) if we make the requirement set of each vertex v € V to be R(v) = {(x, N)},
where ‘x’ is an arbitrary integer, Algorithm 3.1 will still work exactly the same way
as before (since the value of each X; has been fixed to be min{XV, i}); (2) Lemma 3.2
tells us that if a vertex has a requirement (r, k), then Algorithm 3.1 places at least
k different colors as closely to it as possible.

Note that for the data-interleaving algorithm, we can, in fact, pick any vertex
of G to be the root vertex v,,0t. It does not have to be the same root as in the
memory-allocation algorithm.

The complexity analysis of Algorithm 3.1 is presented in Appendix D.

4. OPTIMAL SOLUTION TO THE FILE STORAGE PROBLEM

The combination of the memory-allocation algorithm and the data-interleaving al-
gorithm yields an optimal solution to the file storage problem — we firstly use the
memory-allocation algorithm to determine the number of codeword symbols, w(v),
assigned to each vertex v € V (where we should set Wiy, (v) = 0 for all v € V in
the corresponding memory-allocation problem), then use the data-interleaving al-
gorithm to determine which w(v) codeword symbols to assign to each vertex v € V.

For any element (r, k) in the requirement set of any vertex v € V, the memory-
allocation algorithm guarantees that there are at least k codeword symbols placed
within distance r to v, then the data-interleaving algorithm further guarantees
that there are at least k distinct codeword symbols placed within distance r to v
— so the solution to the file storage problem is feasible. The total memory size
determined by the memory-allocation algorithm, »° , w(v), is a lower bound for
the total memory size in a file-storage solution, and the data-interleaving algorithm
shows that this lower bound is in fact sufficiently large — so the solution to the file
storage problem is optimal.

5. CONCLUSION

This paper proposes a scheme for storing a file in a network where clients have di-
verse requirements on file-retrieval delays, under both fault-free and faulty circum-

14

stances. The file is encoded with a general error-correcting code. When the network
is a tree with asymmetric edges between adjacent nodes, a memory-allocation al-
gorithm and a data-interleaving algorithm are used to respectively determine how
many and which codeword symbol to store on each node. Both algorithms are of
polynomial time complexity. They together provide an optimal solution to the file
storage problem, which minimizes the total amount of data stored in the network.

There are many additional important issues to be solved in the field of file storage
using error-correcting codes. Among them, storing files in dynamic environments
and finding good codes that have low complexity for file revision are two interesting
examples.

A. PSEUDO-CODE OF ALGORITHM 2.1
In this appendix we present the pseudo-code of Algorithm 2.1.

Algorithm 2.1 [Memory Allocation on Tree G = (V, E)]

1. Label the vertices in V' as vy, va, - -+, vjy| according to the following rule: “if v;
is the parent of v;, then i > j.”
For 1 <i <|V]|, let w(v;) «— Winin(v;).

2. Fori=1to |[V|—1do:
{ Let vp denote the parent of v;. Let R(v;) «— R(v;).

While R(v;) # 0 do:

{ Let (r, k) be any element in R(v;). Define S; as S; = N(vp,r—d(vp — v;)),
and define Sy as Sy = N(v;,r) — S1. Update the elements in {w(v)jv € V}
through the following two steps:

Step 1: Let X « max{0,k — > g Winaz(v) — >, cg, w(v)}, and let
C «— 52.

Step 2: Let ug be the vertex in C' that is the closest to v;—namely, ug € C
and d(ug — v;) = mingee d(u — v;). Let Temp — min{ W42 (uo),
w(ug) + X}. Let X — X — (Temp — w(ug)), let w(ug) «— Temp,
and let C' « C' — {up}. Repeat Step 2 until X equals 0.

Remove the element (r, k) from R(v;).

}

While R(v;) # () do:

{ Let (r, k) be any element in R(v;). If =, ¢,) w(u) <k, then add an
element (r — d(vp = Vi), k = 2 e N (vs.r) = N(vp r—d(vp—uvi)) W(W)) to the set
R(vp). Remove the element (r, k) from R(v;).

}

}
3. While R(UW\) 7é ¢ do:
{ Let (r, k) be any element in R(v|y|). Update the elements in {w(v)lv € V'}
through the following two steps:

Step 1: Let X «— max{0,k — ZueN(vW|,r) w(v)}, and let C — V.

Step 2: Let ug be the vertex in C' that is the closest to v}y — namely,
up € C and d(up — vjy|) = min,ec d(u — v)y|). Let Temp —
min{Wiaz (uo), w(ug) + X}. Let X «— X — (Temp — w(ug)), let
w(ug) <« Temp, and let C «— C' — {up}. Repeat Step 2 until X
equals 0.

15

Remove the element (r, k) from R(vjy).
}
Output w(vy), w(vs), - -, w(vjy|) as the solution to the memory allocation
problem.
O
Note that in the above pseudo-code, the values of memory floors are not really
updated because it is not necessary to do that, although they have been used in
Section 2 as a helpful tool for analysis.

B. PROOF AND COMPLEXITY ANALYSIS OF ALGORITHM 2.1

In this appendix, we prove the correctness of Algorithm 2.1, and analyze its com-
plexity.

THEOREM B.1. Algorithm 2.1 correctly outputs an optimal solution to the mem-
ory allocation problem.

PROOF. For all the vertices except the root v,qt, Algorithm 2.1 processes them
one by one, using the methods in Lemma 2.1 and Lemma 2.2 to increase the memory
sizes of vertices and transform the memory allocation problem from ‘old problems’
to ‘new problems’. (To recall the definition of ‘old problem’ and ‘new problem’, see
Lemma 2.2.) After that, only v,00: has not been processed, and v is the only
vertex whose requirement set may not be empty. Then the algorithm increases the
memory sizes of the vertices to satisfy v,.,o¢’s requirements, with the increase part of
the memory sizes placed as close as possible to v,40¢ and being as small as possible,
and ends there — and that is clearly the optimal way to solve the ‘new’ memory
allocation problem at that moment (which is just to assign enough memory sizes
to satisfy the requirements of v,40). Since an optimal solution to a ‘new problem’
is always an optimal solution to an ‘old problem’, Algorithm 2.1 has successfully
found an optimal solution to the original memory allocation problem. O

Complezity Analysis: Algorithm 2.1 needs two tools for its execution: a distance
matrix recording the distance between any pair of vertices, which takes time com-
plexity O(|V|?) to compute; and for every vertex v, a table ordering all the vertices
according to their distance to v — computing all these |V tables has time com-
plexity O(|V|?), too. With these two tools available, the algorithm processes all the
vertices one by one. Let ¢ denote the average cardinality of a requirement set in the
original memory allocation problem, namely, ¢ = ﬁ > wev |R(v)|. So originally
there are totally ¢|V| elements in all the requirement sets. When the algorithm is
computing, every time an element in a vertex’s requirement set is deleted, a new
element might be inserted into the vertex’s parent’s requirement set — and in no
other occasion will a new element be generated. Each vertex can have at most
|V| — 1 ancestors. So during the whole period when the algorithm is computing,
there are no more than ¢|V|? elements — old and new, in total — in all the re-
quirement sets. Every time a vertex is processed, all the elements in its requirement
sets are processed in the following way — for each element, the set {w(v)jv € V'}
and the set {R(v)|v € V} are updated, which has time complexity O(|V]). So the
complexity of Algorithm 2.1 is O(|V|? + |V|? 4+ ¢|V|? - |V|), which equals O(q|V|3).

16

C. ALGORITHM FOR MEMORY ALLOCATION PROBLEM WITHOUT UPPER
BOUND FOR MEMORY SIZES

When W4 (v) = oo for all v € V — that is, when no upper bound exists for the
memory sizes — the memory allocation problem can be solve with time complexity
O(q|V']?). In this appendix, we present the pseudo-code of such an algorithm —
Algorithm C.1.

Algorithm C.1 is similar to Algorithm 2.1, except that in Algorithm C.1, a new
notion named ‘residual requirement set’ is used. The notion is defined as follows.
Say at some moment, each vertex v € V is temporarily assigned a memory size
w(v), and its requirement set is R(v). For every element (r,k) € R(v), there is a
corresponding element (7, k) in the residual requirement set of v, denoted by Res(v),
computed in the following way: 7 = r, and k = max{k — 2 ueN(w,r) w(w),0}. (The
meaning of the element (7,%) is that the summation of the memory sizes of the
vertices in N(v,r) needs to be increased by k so that > ueN (v, w(w) will be no
less than k.)

Algorithm C.1 [Memory Allocation on Tree G = (V, E) without Upper Bound

for Memory Sizes]

1. Label the vertices in V' as vy, va, - -+, vjy| according to the following rule: “if
v; is the parent of v;, then ¢ > j.” Let w(v;) < Wiin(v;) for 1 < i < |V|. Let
Res(v;) « Ofor1 <i < |V|. Forl <i < |V|, and for each element (r, k) € R(v;),
do the following: “if k =, ¢ yy,) w(v) > 0, then let Res(v;) «— Res(v;)U
{(rk =2 en (@)}

2. Fori=1to |V| -1 do:

{ Let vp denote the parent of v;. Let Q(v;) « Res(v;), and let z < 0.
While Q(v;) # 0 do:
{ Let (r, k) be any element in Q(v;). If r < d(vp — v;), then let z «— max{z, k}

and remove the element (r, k) from the set Res(v;). Remove the element
(r, k) from Q(v;).

}
Let w(v;) «— w(v;) + x.
For j =i+ 1 to |V], and for every element (r,k) € Res(v;), do the following:
“f r > d(v; — v;) and k — z > 0, then replace the element (r, k) in the set
Res(v;) by (r,k—=x); if r > d(v; — v;) and k—x < 0, then remove the element
(r,k) from Res(v;).”
For every element (r, k) € Res(v;) do the following: “if k& > x, then let Res(vp)
«— Res(vp) U{(r —d(vp — v;),k —x)}.”
Let Res(v;) < 0.

}

3. Let x + 0.

While Res(v)y|) # 0 do:

{ Let (r, k) be any element in Res(vjy|). Let x < max{z,k}. Remove the
element (7, k) from Res(v|y)).

}

Let w(v‘v‘) —w(vy|) + .

4. Output w(vi), w(vz), ---, w(vy|) as the solution to the memory allocation

17

problem.

O

Complezity Analysis: The complexity of Algorithm 2.1, which is O(q|V|?), is
dominated by the complexity of updating memory sizes — the memory sizes can
be updated up to O(q|V|?) times, and each time up to O(|V|) memory sizes might
change. When there is no upper bound for the memory sizes, with the help of
‘residual requirement sets’, each time only one memory size will need to be updated,
which has complexity O(1). So the complexity of updating memory sizes is reduced
from O(q|V[?) to O(q|V'|?). Maintaining the ‘residual requirement sets’ also has a
total complexity of O(q|V|?). So the complexity of Algorithm C.1 is O(q|V|?).

D. COMPLEXITY OF THE DATA-INTERLEAVING ALGORITHM

The complexity of the data-interleaving algorithm depends on how the variables
X; (1 < i < w) are chosen. The smaller the values of X; are, the more general
the algorithm is — meaning that the algorithm has more possible outputs. The
smallest value X; can take is max,.s;es, |Sy N {s¢|t < i}| (assuming that number
is no less than 1; otherwise the value is simply 1.) Below we will show that if the
algorithm chooses X; to be max,.s,es, |Sy N {s¢|t < i}| for 1 < i < w, then the
algorithm has the total time complexity of O(|V|? + Nw? + Nw|V|). We point out
that this time complexity can be reduced if one is willing to add more restrictions on
the algorithm — for example, when the color-slots of the same vertex are labelled
with consecutive indices, or when X, is simply set to be min{N,i} for all 7, the
algorithm can be implemented in more efficient ways.

The full implementation of the data-interleaving algorithm has the following ma-
jor operations:

Operation 1: Label the color-slots as s1, S2, - -, Sw;

Operation 2: For each vertex v, find out the set S,;

Operation 3: For 1 < i < w, set the value of X; to be max,.s,es, |S, N{st|t < i};

Operation 4: For 1 < i < w, find the set denoted by ‘I’ in the algorithm.

Below we analyze the time complexity.

In order to implement the algorithm, we need to construct a |V| x |V| distance
table which records the distance from any vertex to any other vertex; then for every
vertex v, we need to construct a list which orders all the vertices according to their
distance to v. That has time complexity O(|V|?). Then, Operation 1 has time
complexity O(w + |V]).

Now consider Operation 2. Computing k, = maxi<i<n, k;(v) for all v takes
complexity) i n,. It is totally reasonable to assume that n, < N (because oth-
erwise some of v’s requirements would be redundant), so that complexity becomes
O(N|V]). To find out S,, we need to sort the color-slots firstly based on their
distance to v then according to the indices of their labels, and pick out the first &,
of them — that can be done with complexity O(k,w + |V]) < O(Nw + |V|). So
Operation 2 has complexity O(N|V| + [V|(Nw + |V])) = O(Nw|V| + |V|?).

Now consider Operation 3. For each vertex v, we sort the color-slots in S,
based on the indices of their labels, which has complexity O(k, logk,); then, if
a color-slot s; is the j-th element in the sorted list, it means |S, N {s¢|t < i}| = 7,
which can be used to update the value of X;. So Operation 3 has complexity

18

O ey kwlogky,) < O(|VINlog N).

Operation 4 is similar to Operation 2, except that here we are consider it for
each color-slot s; instead of for each vertex v. So Operation 4 can be seen to have
complexity O(w(Nw + |V])) = O(Nw? + =|V]).

We can rightly assume that @w > N, because otherwise the data-interleaving
problem would be completely trivial — just make all the color-slots have differ-
ent colors. Therefore, the total complexity of the data-interleaving algorithm is
O(V]?) + O(w + |V|) + O(Nw|V| + [V[*) + O(|V|Nlog N) + O(Nw? + w|V]) =
O(V|?> + Nw? + Nw|V]).

REFERENCES

1. Borodin, A., and El-Yaniv, R. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

2. Dowdy, L. W., and Foster D. V. Comparative models of the file assignment problem. Com-
puting Surveys 14, 2 (1982), 287-313.

3. Garey, M. R., and Johnson, D. S. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, New York and San Francisco, 1979.

4. Hochbaum, D. S., and Shmoys, D. B. A best possible heuristic for the k-center problem.
Mathematics of Operations Research 10, 2 (1985), 180-184.

5. Jiang, A., and Bruck, J. Memory allocation in information storage networks. In Proc. IEEE
Int. Symp. on Information Theory. Yokohama, Japan (2003), 453.

6. Jiang, A., and Bruck, J. Diversity coloring for distributed data storage in networks.
manuscript (2003).

7. Jiang, A., and Bruck, J. Multi-cluster interleaving on linear arrays and rings. In Proc. Seventh
Int. Symp. on Communication Theory and Applications. Ambleside, Lake District, UK (July
2003), 112-117.

8. Jiang, A., Cook, M., and Bruck, J. Optimal t-interleaving on tori. In Proc. IEEE Int. Symp.
on Information Theory. Chicago, USA (2004), 22.

9. Kalpakis, K., Dasgupta, K., and Wolfson, O. Optimal placement of replicas in trees with
read, write, and storage costs. IEEE Trans. Parallel and Distributed Systems 12, 6 (June 2001),
628-637.

10. Kariv, O., and Hakimi, S. L. An algorithmic approach to network location problems. I: the
p-centers. STAM J. Appl. Math. 37, 3 (December 1979), 513-538.

11. Mahmoud, S., and Riordan, J. S. Optimal allocation of resources in distributed information
networks. ACM Trans. Database Systems 1 (1976), 66-78.

12. Malluhi, Q. M., and Johnston, W. E. Coding for high availability of a distributed-parallel
storage system. IEEE Trans. Parallel and Distributed Systems 9, 12 (Dec. 1998), 1237-1252.
13. Naor, M., and Roth, R. M. Optimal file sharing in distributed networks. STAM J. Comput.
24, 1 (1995), 158-183.

14. Patterson, D. A., Gibson, G. A., and Katz, R. A case for redundant arrays of inexpensive
disks. In Proc. SIGMOD Int. Conf. Data Management. (1988), 109-116.

15. Slater, P. J. R-domination in graphs. J. ACM 23, 3 (March 1976), 446-450.

16. Wang, J. A survey of web caching schemes for the Internet. ACM SIGCOMM Computer
Comm. Rev. 29, 5 (1999), 36-46.

