
Network Flow Modeling for Flexible Manufacturing Systems with
Re-entrant Lines

Haitham Hindi and Wheeler Ruml
Palo Alto Research Center (PARC), Palo Alto, California 94304

{hhindi,ruml}@parc.com

Abstract— A relaxed version of the process planning prob-
lem for flexible manufacturing systems/cells (FMS/FMC) and
processing networks, such as flexible flow shops and general
job shops, is formulated using a simple extension of multicom-
modity network flow problems. Our multistage multicommodity
network formulation allows for simultaneous routing and re-
source allocation and also captures the case of re-entrant lines
(recirculation). It can be used to perform rapid, albeit crude,
explorations of the combinatorial space of possible configura-
tions and failure scenarios. The technique can also provide
bounds on the limits of system performance (eg: throughput,
link usage, bottlenecks, etc). This can be used to guide the design
of robust FMS architectures with high degree of redundancy in
machines and routes, as demonstrated in numerical examples.
Being a relaxation to the full discrete problem, our method
could potentially be used as an admissible heuristic for pruning
AI-based planning methods. We demonstrate our approach on
a realistic industrial problem.

I. I NTRODUCTION

Modern flexible manufacturing systems (FMS) and flexi-
ble manufacturing cells (FMC) are highly modular recon-
figurable systems that can be composed of hundreds of
modules which can be connected in different ways. This
leads to an enormous space of possible designs, making the
selection of the optimalsystem architecturea very difficult
task. Furthermore, theplanning and schedulingof material
transport and manufacturing processes can become a major
challenge in such complex systems with many possible
branches and interconnects.

In fact, the two problems of system design and scheduling
are not independent. A bad system design could lead to poor
schedules, while on the other hand, a inefficient schedule
might fail to make the most use of the flexibility and
robustness offered by the particular design. Our use of
the word “bad” presumes the existence of an optimality
criterion, which allows us to measure goodness or badness.
Therefore, ideally, one would want to design both the system
architecture and the plannersimultaneously. In other words,
one would like to design an architecture which admits plans
that allow for the best possible performance, as measured by
the given optimality criterion.

In such system optimization problems, when the costs
and constraints are convex, one can apply efficient convex
optimization to compute a solution [4]. However, in general,
planning and scheduling are nonconvex problems, primarily
due to the discrete aspects of the components and resource
constraints. The flow relaxation approach in this paper is

EI

N

m2

m1

Fig. 1. A simple re-entrant manufacturing cell viewed as a set of
components (I=input, E=exit, mi=machine i) interconnected by a network
(N), processing two jobs requiring different sequences of operations: Job1:
I→m1→m2→m1→E; Job2: I→m1→E.

a step toward making this multiobjective problem more
tractable.

Specifically, in this paper, we will present a network flow
relaxation for maximizing thesteady state throughputof
multiclass deterministic processing networks[2], [22] with
knownfixed processing times, re-entrant linesandno buffers
[5], [26], [8]. In such problems there are a set of machines of
different types, and a set of different jobs, each requiringa
different sequence of operations on the machines, see Fig.1.
The objective is to maximize the amount of jobs per unit
time that the overall system can produce. We will place
particular emphasis on systems withcomplex routing, where
redundancyin machines and routes is designed into the
system forfault-tolerance.

Such deterministic problems are becoming common today
in flexible manufacturing systems [5], [26], [8], where, for
example, robots perform sequences of operations on different
parts such as milling, spray painting, drilling, etc, all of
known fixed duration. This steady state throughput objective
arises naturally in applications where the production process
is run continually without interruption, or where the jobs
are so large that startup transients are insignificant. The
steady state throughput objective fits nicely into the network
flow framework, which can provide good approximations in
situations where the machines are processing large numbers
of parts very quickly and deterministically, in a first-in-first-
out manner, without complex prioritization or preemption.

The deterministic processing times and absence of buffers
distinguishes this problem from work on stochastic process-

ing networks [17], [18], [19], [13], [20], or the finite-horizon
job-shop problems considered in [6], [2]. It is not the goal
of this paper to provide an exact solution to the discrete
problem - in general, such problems are NP-complete. For
exact solution techniques, see [21], [22], [5], [26], [8],
[6], [2] for combinatorial optimization approaches and [1],
[12], [25], [24], [11] for discrete search based planning
and scheduling methods from constraint programming and
artificial intelligence. In fact, we have been successfully
using the latter techniques for planning and scheduling in
real products for several years [24], [11].

The contribution of this paper is to present a self-contained
development of a network flow model for multiclass deter-
ministic processing networks, and to show in detail how it
can be applied to problems withcomplex routingand re-
entrant lines, a case that was not considered in [27], [15],
[26]. We develop an intuitivemultistage multicommodity flow
formulation, similar in spirit to [27], [15], which can be
solved very efficiently using convex optimization. Although,
in general, the network flow model does not solve the full
discrete problem, it is much faster than the search-based
AI methods. Hence, our technique can be used to perform
rapid, albeit crude, explorations of the combinatorial space
of possible FMS configurations and of failure scenarios. The
technique can also provide bounds on the limits of system
performance (eg: throughput, link usage, bottlenecks, etc),
and hence can be used as a CAD design tool, to guide the
design of FMS architectures. It can also be used forload
balancing.

Finally, we note that since the flow model ignores dis-
cretization, it solves a less constrainedrelaxed problem.
Hence it will always produce a bound on performance
which is more optimistic than the true optimal. This means
that flow model could potentially be used as anadmissible
heuristic for pruning the AI-based planning and scheduling
searches mentioned above [12], [25], [24]. Specifically, we
can safely rule out any part of the design space for which the
throughput of our network flow model is inadequate, since
the throughput of the actual system can only be worse.

Our approach is closely related to [27], [15], [26], in
the sense that one of our performance objectives is steady
state throughput maximization as in [26], while the other is
intelligent automated routing as in [27], [15]. At the same
time, our approach can be viewed as a special case of the
generalstatic planning problempresented in [13] in the
context of stochastic networks. This, in turn, has roots in
activity analysis, developed by economists in the 1950’s [23],
[16], [7]. The dynamic fluid model techniques in [6], [2],
[18], [19], [13], [20] can also be viewed as generalizations
in which our method is implicitly embedded. See also [10]
and the references therein for efforts in the 1980’s to use
multicommodity network flows for the traveling salesman
problem. However, we have found that the special case
considered here very useful in our work on real system de-
signs, so we believe it is worthwhile to describe it explicitly,
since it has received relatively little attention in the literature
in its own right. We hope that its simplicity and intuitive

g2

g1

g2

m1+m2
g1

g2

m2
g1

m1

Fig. 2. Illustration of the Ricardo-Kantorovich principle: by resource pool-
ing: by means of careful resource management, two machines processing
two parts, with different processing capacities for the parts can be more
productive as a whole.

interpretation, in terms of multistage multicommodity flows,
will make it an appealing and useful tool for practical FMS
evaluation and design.

II. M OTIVATION

A. Ricardo-Kantorovich Resource Pooling

In 1817, the British economist D. Ricardo made a remark-
able observation which is regarded as one of the fundamental
motivations for international trade (ie:resource pooling).
Stated concretely, it goes as follows [23]:

If two countries are producing two goods, and the
countries have different opportunity costs for pro-
ducing the goods, then by means of specialization
and trade, it is possible for both countries to have
more of both goods.

If the countries have the same opportunity costs, then there
will be no benefit from specialization and trade. This is
phenomenon is shown in Fig.2. In this figure, the x- and
y-axes measure the countries’ capacities for producing the
goods g1 and g2, and the shaded regions are the production
possibility set for the machines. It is assumed that for each
country, the goods trade off linearly. The area above the
dashed line in the m1+m2 plot represents the potential gain
of resource pooling and judicious management. The entire
m1+m2 region is in fact the set sum of the individual
production possibility regions of m1 and m2, see [9] for
a formal proof of this principle.

In other words, by pooling resources and proper man-
agement, the countries can be more productive as a whole,
without any extra investment in capital or hardware. This
principle was rediscovered by Kantorovich in 1939 [16], in
the context of flow models for manufacturing systems. In
this case, machines replace countries, parts replace goods,
and opportunity costs are replaced by processing times.

B. Fault Tolerance and Performance Costs

Another important motivation for pooling machines, even
for single job production, is the idea ofgraceful degradation
in the face of faults. Consider the option of buying a single
powerful machine with a certain production capacity or, for
the same price, four smaller machines, each with a quarter
the capacity of the large one. Clearly, provided that the
maintenance cost of the 4-machine system is not higher than

the single machine system, the consequences of a single
failure are much lower for the 4-machine system. Thus
robustness is achieved throughredundancy.

Yet another motivation for networking manufacturing sys-
tems isperformance cost. It is often the case that a high-end
machine with twice the performance of a regular machine
costs considerably more than twice as much as the regular
one (think of LCD monitors!). So thus there is potential for
large savings if low end machines could somehow be easily
networked togetherto work as if they were a single high-
end machine. Again, this is further motivation for a design
tool which allows the rapid exploration of different network
architectures.We will show examples of such architecturesin
section IV.

III. N ETWORK FLOW MODEL

Multiclass processing networks do not immediately fall
into the class of standard network flow models, since even
at the flow relaxation level, the flow of each job must pass
through designated links at each stage. Nevertheless, we will
show intuitively and formally in this section, that their relax-
ations can be viewed as a cascade of standard network flow
models, which makes them amenable to linear programming
and convex optimization techniques. Our approach uses ideas
from [17], [6], [2], [18], [19], [13], [20], [27], [15], [26].

A. Flow modeling of multiclass FMS: Intuition

Fig. 1 shows a simple re-entrant manufacturing cell viewed
as a set of components (I=input, E=exit, mi=machine i)
interconnected by a network (N). In this example, two jobs
are being processed, requiring the following sequence of op-
erations: Job1: I→m1→m2→m1→E, and Job2: I→m1→E.
The re-entrant flow in Fig. 1 (Job1) can be broken up into
four constituent flows, one for each stage of the process
(x(11) : I → m1 , x(12) : m1 → m2, x(13) : m2 → m1,
x(14) : m1 → E), while Job2 can be decomposed into the
two flows (x(21) : I → m1, x(22) : m1 → E). These
flows are only coupled in two ways: through the network
capacity constraints and through equality constraints between
the output of one flow to the input of the next, to ensure
conservation of the flow, see Fig. 3.

Fig. 4 shows how the same technique of Fig. 3 can be
easily extended to handle systems with multiple machines
of the same type. One can imagine the individual flows
being sent to artificial aggregation nodes. The multiple
machine case happens inflexible flow shopmodels [22]. For
simplicity, we show just Job1. The flows are again coupled
through the network and equality constraints are imposed
to ensure that for each component, the input flow at one
stage must equal its output flow at the next stage. [Note
that the artificial nodes are shown here as a conceptual aid
but, because of the equality constraints between stages, we
will not need them in our implementation.] Fig. 5 shows
the resulting aggregate flows. Just as before, we can easily
handle multiple jobs by using more flows.

N E

m1

m2

I

x11

m1

N

m2

EI

x12

N E

m1

m2

I

x13

m1

N E

m2

I

x14

N

m1

m2

N E

m1

m2

I

x21

m1

N E

m2

I

x22

I E
s
(11)
in

s
(11)
in

s
(11)
out s

(12)
in

s
(12)
out

s
(13)
in

s
(13)
out s

(14)
in

s
(14)
out

s
(14)
out

s
(21)
in

s
(21)
in

s
(21)
out s

(22)
in

s
(22)
out

s
(22)
out

Fig. 3. Breaking up the re-entrant flow in Fig. 1 into 4 constituent sets of
flows of Job1(x(11)

, x
(12)

, x
(13)

, x
(14)), and 2 constituent sets of flows

of Job2 (x(21)
, x

(22)), which are coupled only through the network and
machine capacity constraints and through equality constraints between the
output of one flow to the input of the next, to ensure conservation of the
flow. At the bottom we have the aggregate flow picture.

B. Standard Network Flow Model

We now review thestandard network flow model[3]. We
have a network withN nodes connected byL directed links.
For each noden: I(n) is the set of incoming links, and
O(n) is the set of outgoing links;sin,n ≥ 0 denotes the flow
coming into noden from the outside, andsout,n ≥ 0 is the
flow leaving noden to the outside. Letxi ≥ 0 denote flow
on link i, and letx be the vector of all the flows. The we
can write the flow conservation at each noden as:

∑

i∈I(n)

xi + sin,n =
∑

j∈O(n)

xj + sout,n (1)

I

I

I

I

I

I

I

I

E

E

E

E

N

N

N

N

m1

m1

m1

m1

m1
m1

m1

m1
m1

m1

m2
m2

m2

m2

m2

m2

m2

m2

m2

x11

x12

x13

x14

Fig. 4. The technique of Fig. 3 for multiple machines, along with artificial
aggregation nodes. The flows are coupled through the machineand network
capacity constraints and the equality constraints imposedto ensure that for
each component, its input flow at one stage must equal its output flow at
the next stage.

I

I
EN

m1

m1

m2

m2

Fig. 5. Aggregate flows for the sequence in Fig.4.

These equations can be written compactly in matrix form by
defining the matricesAin andBin as follows:

Ain,ij =

{

1 ; xj ∈ I(i)
0 ; otherwise

; Bin,ij =

{

1 ; sin,j ∈ I(i)
0 ; otherwise

(2)
and similarly defineAout and Bout with I(i) replaced by
O(i). The input-output flow balance is now

Aoutx + Boutsout = Ainx + Binsin

Then, defining theincidence matrixA = (Aout −Ain) gives

Ax + Boutsout − Binsin = 0

We refer toBin and Bout as thesource matrixand sink
matrix, respectively.

There will generally be capacity constraints at each link.
These can be written in two ways: Letµk denote link-k’s
maximum throughput of material per unit time, and letpk =
1/µk denote link-k’s processing time per component. Then
we can write eitherxk ≤ µk or pkxk ≤ 1. The latter will
extend more easily to the situation with multiple flows.

Thus our overall network flow model in terms of the
reduced incidence and source matrices is:

Ax + Boutsout − Binsin = 0
Px � 1 or x � µ
x � 0; sin � 0; sout � 0

(3)

whereµ = (µ1, . . . , µL), P = diag(p1, . . . , pL) and1 is the
vector of all-ones.

C. Multicommodity Network Flow Model

The standard network flow model in (3) can be easily
extended to handle multiple simultaneous flows on the net-
work, each having its own sources and sinks. This is known
as themulticommodity network flow model[3]. Assume that
there areF source-destination flowsx(i), i = 1, . . . , F just
like the one above, each with its own set of sourcess

(i)
in ,

sinkss
(i)
out, and processing timesP (i) = diag(p

(i)
1 , . . . , p

(i)
L).

These flows are almost independent in the sense that each
must satisfy its own flow conservation and nonnegativity
constraints, but they are coupled through the shared link

capacities of the network. It follows that the overall network
flow model for the multicommodity scenario is [3]:

Ax(i) + B
(i)
outs

(i)
out − B

(i)
in s

(i)
in = 0; i = 1, . . . , F

∑F

i=1 P (i)x(i) � 1

x(i) � 0; s
(i)
in � 0; s

(i)
out � 0; i = 1, . . . , F

(4)

The incidence matrix is the same for the whole graph, but
each flow has its own source and sink matrix. If theP (i)

are all equal, then we can optionally replace the processing
times capacity constraint with the corresponding peak flow
capacity constraint as in (3) above, ie:

∑F

i=1 x(i) � µ. But
this not always possible to do in general.

D. Multistage Multicommodity Network Flow Model

We will now introduce themultistage multicommodity
network flow model, which allows us to extend the standard
and multicommodity network flow models above to the
multiple job, multiple stage-per-job, multiple-route, possibly
re-entrant scenario. Our development is based on ideas from
[6], [2], [18], [19], [13], [20], [27], [15], [26].

Consider a multi-stage jobi where we have a set of flows
x(ij), j = 1, . . . , Fi obtained as a result of breaking up the
overall process through the components as shown in section
III-A. Flow conservation and nonnegativity must hold for
each subflow, and they must share the links of the network.
Therefore, the flow at each stage is subject to (4) above:

Ax(ij) + B
(ij)
out s

(ij)
out − B

(ij)
in s

(ij)
in = 0; j = 1, . . . , Fi

∑Fi

j=1 P (ij)x(ij) � 1

x(ij) � 0; s
(ij)
in � 0; s

(ij)
out � 0; j = 1, . . . , Fi

(5)
where A is the incidence matrix of the entire aggregate
system, with all the machines included.

In addition, two more essential features must be modeled:
The first feature is that since, at each stage, we are interested
in the flow from one specific set of machines to another
specific set, all the other machines must be “switched off”,
ie: we must not allow any flow through the other machines
in the system at that stage. This is enforced by constraining
the flows on the other machines to be zero

Φijx
(ij) = 0, ∀i, j (6)

where Φij is a matrix whose rows are rows of identity
corresponding to the link indexes of the machines switched
off at that stage. The second feature that must be modeled is
the cascading of the stages in each individual job. At each
stage, from the second stage onward, the flows on the output
links of each final component must equal the input flows to
the subsequent stage. This is expressed by the constraint:

s
(i,j+1)
in = s

(i,j)
out , ∀j ≥ 2. (7)

Using (7) in (5), we can eliminates(ij)
in from each stage after

the first to get the new conservation constraints:

Ax(i1) + B
(i1)
out s

(i1)
out − B

(i1)
in s

(i1)
in = 0;

Ax(ij) + B
(ij)
out s

(ij)
out − B

(ij)
in s

(i,j−1)
out = 0; j = 2, . . . , Fi

(8)
Now if there areJ multistage jobs, each with its own
set of flows x(ij), j = 1, . . . , Fi, all of which share the
interconnection network, then we arrive at our finalmulti-
stage multicommodity network flow modelfor a multiple job,
multiple stage-per-job, multiple-route scenario is:

Ax(i1) + B
(i1)
out s

(i1)
out − B

(i1)
in s

(i1)
in = 0; ∀i

Ax(ij) + B
(ij)
out s

(ij)
out − B

(ij)
in s

(i,j−1)
out = 0; ∀i, j ≥ 2

Φijx
(ij) = 0; x(ij) � 0; s

(ij)
out � 0; ∀i, j

s
(i1)
in � 0; ∀i

∑J

i=1

∑Fi

j=1 P (ij)x(ij) � 1

(9)

At this point it is useful to recall the interpretation of the
link capacity constraint in (9): since theP (ij) are diagonal
matrices, we can write these constraints equivalently at the
link level:

J
∑

i=1

Fi
∑

j=1

p
(ij)
k x

(ij)
k ≤ 1; k = 1, . . . , L

wherep
(ij)
k and x

(ij)
k are, respectively, the processing time

and the flow of linkk for job i at stagej.

E. The Objective Function

So far we have focused on the formulation of the flow
constraints but said nothing about the objective function.
Basically any objective function that is of interest in network
flow optimization is a suitable candidate for our formulation.
We mention a few interesting possibilities:

• Steady state throughput: as mentioned in the introduc-
tion this was one of the primary motivations for our
work. The corresponding optimization problem is

max
∑J

i=1 s
(i1)
in

s.t. (9).
(10)

• Link utilization: in complex manufacturing cells with
highly redundant routes, one might wish to find rea-
sonablysparse flows. Another reason why this might
be of interest is forshort paths. Both are captured
with the samel1-norm objective [4]. So for example
on could minimize thel1-norm objective subject to the
throughput being more than some specifiedα

(i)
min:

min
∑J

i=1

∑Fi

j=1 ‖x
(ij)‖1

s.t. s
(i1)
in � α

(i)
min, i = 1, . . . , J ; (9).

(11)

• Load Balancing: this can easily be effected either with
a term in the objective that penalizes deviation of the
flows of the machines from each other, or by imposing
constraints that require the flows to be equal or close to
each other.

• Utility, Fairness, Delays: there are several objectives
which capture different notions of utility, fairness and
expected delays. See [27] and the references therein.

F. Extensions

As pointed out in [27] in the context of communication
networks, two extensions are immediately possible. The first
extension is that the link capacities themselves could be any
concave functions of yet other variables, such as link power
consumption, and any convex constraints associated with
these variables can easily be appended to (9). The second
extension is also inspired by [27]), and this is that it wouldbe
interesting to study different solution algorithms such asdual
decomposition methods, subgradient cutting plane methods,
etc.

Another extension is to explore the use of this technique
as a heuristic in AI based search methods [1], [12], [25],
[24]. Such methods are closely related to branch-and-bound
search and essentially enumerate all possible plans (action
sequences) and schedules (resource allocation orderings).
Efficiency is gained by expanding partial solutions in a
‘best-first’ order defined by a lower bound on the solution
objective. Our network flow analysis can be used in a pre-
processing step to compute an approximate routing. Possible
plans inconsistent with this routing can then be pruned
from the search space explored by the AI planner. Note
that, because the flow analysis merely approximates the
possible actions applicable in the machine, restricting the
planner in this way to paths deemed optimal by the flow
analysis may result in a suboptimal final production plan.
However, the approximation may be very tight in certain
applications, and the speed-up in planning time is enormous.
If planning must explore a search tree of depthd and
breadthb, ie: bd states, then exploring only(b/3)d states may
make previously intractable applications feasible. If retaining
optimality is critical, the flow analysis results can be usedas
a ‘node-ordering’ heuristic to focus the planner’s attention on
promising actions first while retaining the ability to backtrack
to the non-preferred options.

IV. EXAMPLES

In this section, we present two examples to illustrate our
ideas.

A. A Simple Two Job System

We now present the results of applying our method to
the two-job, two-machine example in Fig. 1 with routing
Job1: I→m1→m2→m1→E; Job2: I→m1→E. This simple
example could be solved by hand. However, it is included
here to complete the running example from the earlier section
and to show, at the link-node level, the process of breaking
up the flows and interpreting the results. The resulting graph
topology is shown in Fig. 7. Note that since the jobs are
required to pass through the exit link “E”, it must be treated
as a third type of machine in our framework too. The
processing times on all the links except m1 and m2 were
chosen small enough,p(ij)

k = 0.1, to ensure that only m1

Job−1, Flow−1

 10

 9

 8

 7 6

 5

 4 3 2 1

10 9 8 7

654321 m1

m2

E
I

Job−1, Flow−2

 10

 9

 8

 7 6

 5

 4 3 2 1

10 9 8 7

654321 m1

m2

E
I

Job−1, Flow−3

 10

 9

 8

 7 6

 5

 4 3 2 1

10 9 8 7

654321 m1

m2

E
I

Job−1, Flow−4

 10

 9

 8

 7 6

 5

 4 3 2 1

10 9 8 7

654321 m1

m2

E
I

Job−2, Flow−1

 10

 9

 8

 7 6

 5

 4 3 2 1

10 9 8 7

654321 m1

m2

E
I

Job−2, Flow−2

 10

 9

 8

 7 6

 5

 4 3 2 1

10 9 8 7

654321 m1

m2

E
I

Fig. 6. The four flows of Job1, and the two flows of Job2.

Job−1, All Flows

 10

 9

 8

 7 6

 5

 4 3 2 1

10 9 8 7

654321 m1

m2

E
I

Fig. 7. Aggregate flows of Job1. Note that Job1 is a re-entrantjob.

and m2 act as bottlenecks. (This was verified by the results
of the optimization.) The processing times for m1 (link 9)
were set of 0.2 for all stages of job 1, and 0.4 for all stages
of job2. The processing times of m2 (link 10) were set to
0.8 for job 1 and arbitrary for job 2, since job 2 must never
be routed through m2.

The objective was maximization of throughputs
(11)
in +

s
(21)
in . The resulting optimal flows ares(11)

in = s
(21)
in = 1.25.

The individual flows of both jobs are shown in Fig. 6, while
the aggregate flows of each job are shown in Fig. 7 and
Fig. 8. The link thicknesses are proportional to the flows.
The results are easy to understand: Job1 loops through the
system, giving rise to twice the flow on the upper path as
the lower path (Fig. 7); while Job2 passes straight through,
with the same flow in both stages, whose size is consistent
with the remaining capacity of m1.

Job−2, All Flows

 10

 9

 8

 7 6

 5

 4 3 2 1

10 9 8 7

654321 m1

m2

E
I

Fig. 8. Aggregate flows of Job2.

B. Multimachine Example with Complex Routing

In this example, we will show how thegraceful degra-
dation mentioned section II-B can been achieved through
redundancyand intelligent routing. Although this example
may seem somewhat contrived, it is actually a sanitized
version of a real application from one of our industry
sponsors.

Suppose that a single multistage job with the same se-
quence of operations as job1 above (I→m1→m2→m1→E)
is being processed on a manufacturing network with topology
shown in Fig. 9. The flow decomposition will be as in Fig. 4
and Fig. 5, except with four instances of each machine
type. (Again, the exit link “E” is treated as a third type
of machine.) The inputs are on the far left, and the output
is the far right. The four machines on the outer perimeter
are of type m2; the four machines on the inside are of
type m1. For fault-tolerance and production cost, there are
multiple instances of each type of machine, with multiple
paths into and out of each machine. Note that there are many
bidirectional links in this system, represented by pairs of
opposing links. (Not all the link labels are visible at this
small size unfortunately.)

The the network interconnection links, m2 machines, and
exit link all have capacities ofµ2 = 10. The type m1
machines have a capacity ofµ1 = 2.5. The link thickness is
proportional to the capacity, hence links of the m1 machines
have a quarter the thickness of all the other links. Again, we
have chosen the network link capacities to be large, in order
to ensure than only m1 machines can act as bottlenecks.

Fig. 10 shows the aggregate optimal route, again for
throughput maximization. Note that Matlab graphics quan-
tizes the line thickness, so they are only approximately
proportional to the flows. The result of the throughput opti-
mization is 5.0 which makes sense, since the total capacity
of the bottleneck machines is4× 2.5 = 10, but each unit of
flow leaving the system must have been processed by an m1
machine twice, thus reducing the total capacity from 10 to
5. We observe that each quadrant runs almost independently
performing the m1, m2 and m1 operations locally, and then
the flows are combined at the transportation bus in the middle
of system. To avoid unnecessary looping or meandering, a
small l1 term was added to the max-flow objective. This
produces appealing shortest-path like routes.

Fig. 11 shows the resulting aggregate routing in thefailure
scenario, where the top right m2 machine is broken, by
severing the link connecting nodes 50 to 49. Nevertheless,
the result of the throughput optimization is still 5 - thus
achieving the graceful degradation mentioned earlier through
redundancy and intelligent routing. Again, the resulting flows
are easy to understand. Note that the remaining three m2
machines still have enough capacity to cope with the flow
from all four m1 machines. Thus the optimal flow simply
processes more m2 flow on one of the remaining working
m2’s, namely the one in the upper left. We observe that the
lower part of the system is running just as before, but the
upper part has done some looping and resource management,

Job−1, Flow−1

 169 169

 168 168

 167 167

 166 166

 165 165

 164 164

 163 163

 162 162

 161 161

 160 160 159 159 158 158 157 157
 156 156 155 155 154 154 153 153

 152 152

 151 151

 150 150
 149 149

 148 148
 147 147

 146 146
 145 145

 144 144
 143 143

 142 142
 141 141 140 140 139 139

 138 138
 137 137

 136 136
 135 135

 134 134 133 133 132 132
 131 131

 130 130 129 129 128 128 127 127
 126 126 125 125 124 124 123 123

 122 122

 121 121

 120 120
 119 119

 118 118
 117 117

 116 116
 115 115

 114 114
 113 113

 112 112
 111 111 110 110 109 109

 108 108
 107 107

 106 106
 105 105

 104 104 103 103 102 102
 101 101

 100 100
 99 99

 98 98
 97 97

 96 96
 95 95

 94 94
 93 93

 92 92
 91 91

 90 90
 89 89

 88 88
 87 87

 86 86
 85 85

 84 84
 83 83

 82 82
 81 81

 80 80 79 79 78 78 77 77
 76 76 75 75 74 74 73 73

 72 72

 71 71

 70 70
 69 69

 68 68
 67 67

 66 66
 65 65

 64 64
 63 63

 62 62
 61 61 60 60 59 59

 58 58
 57 57

 56 56
 55 55

 54 54 53 53 52 52
 51 51

 50 50 49 49 48 48 47 47
 46 46 45 45 44 44 43 43

 42 42

 41 41

 40 40
 39 39

 38 38
 37 37

 36 36
 35 35

 34 34
 33 33

 32 32
 31 31 30 30 29 29

 28 28
 27 27

 26 26
 25 25

 24 24 23 23 22 22
 21 21

 20 20
 19 19

 18 18
 17 17

 16 16
 15 15

 14 14
 13 13

 12 12
 11 11

 10 10
 9 9

 8 8
 7 7

 6 6
 5 5

 4 4
 3 3

 2 2
 1 1

6867

66

65

6463

6261

60595857

56555453

5251

5049

48474645

44434241

40393837

36353433

3231

3029

28272625

24232221

2019

1817

16151413

1211109

8765

4321

I

I

m1 m1

m1 m1

m2 m2

m2 m2

E

Fig. 9. Topology and relative link capacities for a manufacturing network
with multiple machines and redundant routes. (Not all the link labels are
visible at this small size unfortunately.)

processing more m2 flow. Note that while the crossing of
the flows at node 14 may be unappealing, it is unavoidable
in this failure mode. The designer can then easily try other
topologies by changing the model, or adding extra links,
relying on the optimization to identify the most important
ones.

As mentioned earlier, this example is based on a san-
itized version of a real manufacturing system of one of
our industry sponsors. And it was exactly questions such
as machine topology, throughput maximization, and failure
scenario analysis that were most pertinent during the system
architecture and design phase. Running the network flow
model presented in this paper was about two orders of
magnitude faster than running the discrete planner. Thus
many more machine architectures and failure scenarios could
be explored, and cases for which the performance of the
relaxed network model was poor could be immediately ruled
out, since the full discrete planner could not do better.

V. CONCLUSION

A relaxed version of the steady state material flow
planning problem for flexible manufacturing systems/cells
(FMS/FMC) such as flexible flow shops and general job
shops is formulated using a simple extension of multicom-
modity network flow problems. Our convex multistage mul-
ticommodity network formulation allows for simultaneous
routing and resource allocation, and also captures the case
of re-entrant lines (recirculation). It can be used to perform
rapid, albeit crude, explorations of the combinatorial space
of possible FMS configurations and of failure scenarios.
The technique can also provide bounds on the limits of
system performance (eg: throughput, link usage, bottlenecks,
etc). This can be used to guide the design of robust FMS
architectures with high degree of redundancy in routes and
machines. Our flow based technique can model the trans-
formation of the components from one form to another, as

Job−1, All Flows

 169

67

40

 168

67

36

 167
6867

 166
566

 165
165

 162
378

 161
334

 159

39

59

 153

57

37

 152
61 62

 151
6463

 147

55

59

 146

58

54

 140
5964

 139
6358

 137
5857

 134
62 55

 133
54 61

 129

35

47

 123

45

33

 122
49 50

 121
5251

 117

43

47

 116

46

42

 110
4752

 109
5146

 107
4645

 104
50 43

 103
42 49

 91
4039

 89
3938

 87
3837

 85
3635

 83
3534

 81
3433

 79

7

27

 73

25

5

 72
29 30

 71
3231

 67

23

27

 66

26

22

 60
2732

 59
3126

 57
2625

 54
30 23

 53
22 29

 49

3

15

 43

13

1

 42
17 18

 41
2019

 37

11

15

 36

14

10

 30
1520

 29
1914

 27
1413

 24
18 11

 23
10 17

 11
87

 9
76

 7
65

 5
43

 3
32

 1
21

I

I

m1 m1

m1 m1

m2 m2

m2 m2

E

Fig. 10. Throughput-optimal routes and flows for the manufacturing
network of Fig. 9.

Job−1, All Flows

 169

67

40

 168

67

36

 167
6867

 166
566

 165
165

 162
378

 161
334

 159

39

59

 153

57

37

 152
61 62

 151
6463

 147

55

59

 146

58

54

 140
5964

 139
6358

 137
5857

 134
62 55

 133
54 61

 129

35

47

 124

46

34

 121
5251

 110
4752

 109
5146

 91
4039

 89
3938

 87
3837

 85
3635

 81
3433

 79

7

27

 73

25

5

 72
29 30

 71
3231

 67

23

27

 66

26

22

 60
2732

 59
3126

 57
2625

 54
30 23

 53
22 29

 48

2

14

 43

13

1

 42
17 18

 41
2019

 37

11

15

 36

14

10

 30
1520

 29
1914

 27
1413

 24
18 11

 23
10 17

 11
87

 9
76

 7
65

 5
43

 3
32

I

I

m1 m1

m1 m1

m2 m2

m2 m2

E

broken

Fig. 11. Throughput-optimal routes and flows for the manufacturing
network of Fig. 9, in a partially failed state with the upper-left m2 broken.
Yet the system can still run at maximum throughput.

well as their movement from one location to another. Being
a relaxation to the full discrete problem, our method could
potentially be used as an admissible heuristic for pruning
AI-based planning methods. We demonstrated our approach
on a realistic industrial problem.
Acknowledgment We are grateful to Rong Zhou, Bryan
Preas, Lara Crawford, Minh Do, and David Biegelsen for
helpful discussions and suggestions, and to Randy Cogill
for independently verifying our results and for helping us
streamline our formulation. Our computations were done
using TOMLAB/CPLEX optimization package for Matlab
[14].

REFERENCES

[1] P. Babtiste, C. Le Pape, and W. Nuijten.Constraint-Based Scheduling.
Kluwer, 2001.

[2] D. Bertsemas, D. Gamarnik, and J. Sethuraman. From fluid relaxations
to practical algorithms for job shop scheduling: the holding cost
objective. Operations Research, 51, 2003.

[3] D. Bertsimas and J. Tsitsiklis.Intro. to Linear Optimization. Athena
Scientific, 1997.

[4] S.P. Boyd and L. Vandenberghe.Convex Optimization. Cambridge
University Press, 2004.

[5] Y. Crama, V. Kats, and J. van de Klundert. Cyclic scheduling in robotic
flowshops.Ann. Oper. Res., (96):97–124, 2000.

[6] J.G. Dai and G. Weiss. A fluid heuristic for minimizing makespan in
job-shops.Operations Research, 50, 2002.

[7] G.B. Dantzig. Linear Programming and Extensions. Princeton, 1963.
[8] M.W. Dewande, H.N. Geismar, and S.P. Sethi. Dominance ofcyclic

solutions and challenges in the scheduling of robotic cells. SIAM
Review, 47(4):709–721, 2005.

[9] A. Dixit and V. Norman. Theory of International Trade. Cambridge
University Press, 1980.

[10] G. Finke. Practical network methods to solve TSP. InInt. Conf. on
Optimization Techniques and Applications, Singapore, 1987.

[11] M.P.J. Fromherz, D.G. Bobrow, and J. de Kleer. Model-based com-
puting for design and control of reconfigurable systems.AI Magazine,
Special Issue on Qualitative Reasoning, 24, 2003.

[12] M. Ghallab, D. Nau, and P. Traverso.Automated Planning. Morgan
Kaufmann, 2004.

[13] J.M. Harrison. Stochastic networks and activity analysis. In Y. Suhov,
editor, Analytic Methods in Applied Probability. American Methemat-
ical Society, 2002.

[14] K. Holmstrom, A. Goran, and M. Edval.TOMLAB/CPLEX Optimiza-
tion Software for Matlab. TOMLAB Optimization, http://tomlab.biz,
2005.

[15] M. Johansson, L. Xiao, and S. Boyd. Optimal routing and sinr target
selection for power-controlled cdma wireless networks. InModeling
and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt),
2003.

[16] L. Kantorovich. Mathematical methods in the organization and plan-
ning of production.Management Science, 6:366–422, 1960 (Russian
original 1939).

[17] F. Kelly. Reversibility and Stochastic Networks. Wiley, 1979.
[18] P.R. Kumar and S.P. Meyn. Duality and linear programs for stability

and performance analysis of queuing networks and scheduling policies.
IEEE Trans. Aut. Contr., 41:4–17, 1996.

[19] C. Maglaras. Dynamic Control of Stochastic Processing Networks:
A Fluid Model Approach. PhD thesis, EE Dept, Stanford University,
1998.

[20] S.P. Meyn. Workload models for stochastic networks: Value functions
and performance evaluation.IEEE Trans. Aut. Contr., 50(8):1106–
1122, 2005.

[21] M.L. Pinedo. Scheduling Theory Algorithms and Systems. 2002,
Prentice Hall.

[22] M.L. Pinedo.Planning and Scheduling in Manufacturing and Services.
2005, Springer.

[23] D. Ricardo. On The Principles of Political Economy and Taxation.
John Murray, Albemarle-Street, London, 1817.

[24] W. Ruml, M.B. Do, and M.P.J. Fromherz. On-line planningand
scheduling in a high-speed manufacturing domain. InProceedings
of the Fifteenth International Conference on Automated Planning and
Scheduling (ICAPS-05), 2005.

[25] S. Russell and P. Norvig.Artificial Intelligence: A Modern Approach.
Prentice Hall, 2002.

[26] T-.Y. Wang and Y-.L. Chen. Applying the network flow model to
evaluate an FMC’s throughput.Int. J. Prod. Res., 40(3):525–536,
2002.

[27] L. Xiao, M. Johansson, and S. Boyd. Simultaneous routing and
resource allocation via dual decomposition.IEEE Trans. on Comm.,
52(7):1136–1144, July 2004.

