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Abstract— A relaxed version of the process planning prob-
lem for flexible manufacturing systems/cells (FMS/FMC) and
processing networks, such as flexible flow shops and general
job shops, is formulated using a simple extension of multicom-
modity network flow problems. Our multistage multicommodity
network formulation allows for simultaneous routing and re-
source allocation and also captures the case of re-entrant lines
(recirculation). It can be used to perform rapid, albeit crude,
explorations of the combinatorial space of possible configura-
tions and failure scenarios. The technique can also provide
bounds on the limits of system performance (eg: throughput,
link usage, bottlenecks, etc). This can be used to guide the design
of robust FMS architectures with high degree of redundancy in
machines and routes, as demonstrated in numerical examples.
Being a relaxation to the full discrete problem, our method
could potentially be used as an admissible heuristic for pruning
AI-based planning methods. We demonstrate our approach on
a realistic industrial problem.

I. I NTRODUCTION

Modern flexible manufacturing systems (FMS) and flexi-
ble manufacturing cells (FMC) are highly modular recon-
figurable systems that can be composed of hundreds of
modules which can be connected in different ways. This
leads to an enormous space of possible designs, making the
selection of the optimalsystem architecturea very difficult
task. Furthermore, theplanning and schedulingof material
transport and manufacturing processes can become a major
challenge in such complex systems with many possible
branches and interconnects.

In fact, the two problems of system design and scheduling
are not independent. A bad system design could lead to poor
schedules, while on the other hand, a inefficient schedule
might fail to make the most use of the flexibility and
robustness offered by the particular design. Our use of
the word “bad” presumes the existence of an optimality
criterion, which allows us to measure goodness or badness.
Therefore, ideally, one would want to design both the system
architecture and the plannersimultaneously. In other words,
one would like to design an architecture which admits plans
that allow for the best possible performance, as measured by
the given optimality criterion.

In such system optimization problems, when the costs
and constraints are convex, one can apply efficient convex
optimization to compute a solution [4]. However, in general,
planning and scheduling are nonconvex problems, primarily
due to the discrete aspects of the components and resource
constraints. The flow relaxation approach in this paper is
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Fig. 1. A simple re-entrant manufacturing cell viewed as a set of
components (I=input, E=exit, mi=machine i) interconnected by a network
(N), processing two jobs requiring different sequences of operations: Job1:
I→m1→m2→m1→E; Job2: I→m1→E.

a step toward making this multiobjective problem more
tractable.

Specifically, in this paper, we will present a network flow
relaxation for maximizing thesteady state throughputof
multiclass deterministic processing networks[2], [22] with
knownfixed processing times, re-entrant linesandno buffers
[5], [26], [8]. In such problems there are a set of machines of
different types, and a set of different jobs, each requiringa
different sequence of operations on the machines, see Fig.1.
The objective is to maximize the amount of jobs per unit
time that the overall system can produce. We will place
particular emphasis on systems withcomplex routing, where
redundancyin machines and routes is designed into the
system forfault-tolerance.

Such deterministic problems are becoming common today
in flexible manufacturing systems [5], [26], [8], where, for
example, robots perform sequences of operations on different
parts such as milling, spray painting, drilling, etc, all of
known fixed duration. This steady state throughput objective
arises naturally in applications where the production process
is run continually without interruption, or where the jobs
are so large that startup transients are insignificant. The
steady state throughput objective fits nicely into the network
flow framework, which can provide good approximations in
situations where the machines are processing large numbers
of parts very quickly and deterministically, in a first-in-first-
out manner, without complex prioritization or preemption.

The deterministic processing times and absence of buffers
distinguishes this problem from work on stochastic process-



ing networks [17], [18], [19], [13], [20], or the finite-horizon
job-shop problems considered in [6], [2]. It is not the goal
of this paper to provide an exact solution to the discrete
problem - in general, such problems are NP-complete. For
exact solution techniques, see [21], [22], [5], [26], [8],
[6], [2] for combinatorial optimization approaches and [1],
[12], [25], [24], [11] for discrete search based planning
and scheduling methods from constraint programming and
artificial intelligence. In fact, we have been successfully
using the latter techniques for planning and scheduling in
real products for several years [24], [11].

The contribution of this paper is to present a self-contained
development of a network flow model for multiclass deter-
ministic processing networks, and to show in detail how it
can be applied to problems withcomplex routingand re-
entrant lines, a case that was not considered in [27], [15],
[26]. We develop an intuitivemultistage multicommodity flow
formulation, similar in spirit to [27], [15], which can be
solved very efficiently using convex optimization. Although,
in general, the network flow model does not solve the full
discrete problem, it is much faster than the search-based
AI methods. Hence, our technique can be used to perform
rapid, albeit crude, explorations of the combinatorial space
of possible FMS configurations and of failure scenarios. The
technique can also provide bounds on the limits of system
performance (eg: throughput, link usage, bottlenecks, etc),
and hence can be used as a CAD design tool, to guide the
design of FMS architectures. It can also be used forload
balancing.

Finally, we note that since the flow model ignores dis-
cretization, it solves a less constrainedrelaxed problem.
Hence it will always produce a bound on performance
which is more optimistic than the true optimal. This means
that flow model could potentially be used as anadmissible
heuristic for pruning the AI-based planning and scheduling
searches mentioned above [12], [25], [24]. Specifically, we
can safely rule out any part of the design space for which the
throughput of our network flow model is inadequate, since
the throughput of the actual system can only be worse.

Our approach is closely related to [27], [15], [26], in
the sense that one of our performance objectives is steady
state throughput maximization as in [26], while the other is
intelligent automated routing as in [27], [15]. At the same
time, our approach can be viewed as a special case of the
generalstatic planning problempresented in [13] in the
context of stochastic networks. This, in turn, has roots in
activity analysis, developed by economists in the 1950’s [23],
[16], [7]. The dynamic fluid model techniques in [6], [2],
[18], [19], [13], [20] can also be viewed as generalizations
in which our method is implicitly embedded. See also [10]
and the references therein for efforts in the 1980’s to use
multicommodity network flows for the traveling salesman
problem. However, we have found that the special case
considered here very useful in our work on real system de-
signs, so we believe it is worthwhile to describe it explicitly,
since it has received relatively little attention in the literature
in its own right. We hope that its simplicity and intuitive
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Fig. 2. Illustration of the Ricardo-Kantorovich principle: by resource pool-
ing: by means of careful resource management, two machines processing
two parts, with different processing capacities for the parts can be more
productive as a whole.

interpretation, in terms of multistage multicommodity flows,
will make it an appealing and useful tool for practical FMS
evaluation and design.

II. M OTIVATION

A. Ricardo-Kantorovich Resource Pooling

In 1817, the British economist D. Ricardo made a remark-
able observation which is regarded as one of the fundamental
motivations for international trade (ie:resource pooling).
Stated concretely, it goes as follows [23]:

If two countries are producing two goods, and the
countries have different opportunity costs for pro-
ducing the goods, then by means of specialization
and trade, it is possible for both countries to have
more of both goods.

If the countries have the same opportunity costs, then there
will be no benefit from specialization and trade. This is
phenomenon is shown in Fig.2. In this figure, the x- and
y-axes measure the countries’ capacities for producing the
goods g1 and g2, and the shaded regions are the production
possibility set for the machines. It is assumed that for each
country, the goods trade off linearly. The area above the
dashed line in the m1+m2 plot represents the potential gain
of resource pooling and judicious management. The entire
m1+m2 region is in fact the set sum of the individual
production possibility regions of m1 and m2, see [9] for
a formal proof of this principle.

In other words, by pooling resources and proper man-
agement, the countries can be more productive as a whole,
without any extra investment in capital or hardware. This
principle was rediscovered by Kantorovich in 1939 [16], in
the context of flow models for manufacturing systems. In
this case, machines replace countries, parts replace goods,
and opportunity costs are replaced by processing times.

B. Fault Tolerance and Performance Costs

Another important motivation for pooling machines, even
for single job production, is the idea ofgraceful degradation
in the face of faults. Consider the option of buying a single
powerful machine with a certain production capacity or, for
the same price, four smaller machines, each with a quarter
the capacity of the large one. Clearly, provided that the
maintenance cost of the 4-machine system is not higher than



the single machine system, the consequences of a single
failure are much lower for the 4-machine system. Thus
robustness is achieved throughredundancy.

Yet another motivation for networking manufacturing sys-
tems isperformance cost. It is often the case that a high-end
machine with twice the performance of a regular machine
costs considerably more than twice as much as the regular
one (think of LCD monitors!). So thus there is potential for
large savings if low end machines could somehow be easily
networked togetherto work as if they were a single high-
end machine. Again, this is further motivation for a design
tool which allows the rapid exploration of different network
architectures.We will show examples of such architecturesin
section IV.

III. N ETWORK FLOW MODEL

Multiclass processing networks do not immediately fall
into the class of standard network flow models, since even
at the flow relaxation level, the flow of each job must pass
through designated links at each stage. Nevertheless, we will
show intuitively and formally in this section, that their relax-
ations can be viewed as a cascade of standard network flow
models, which makes them amenable to linear programming
and convex optimization techniques. Our approach uses ideas
from [17], [6], [2], [18], [19], [13], [20], [27], [15], [26].

A. Flow modeling of multiclass FMS: Intuition

Fig. 1 shows a simple re-entrant manufacturing cell viewed
as a set of components (I=input, E=exit, mi=machine i)
interconnected by a network (N). In this example, two jobs
are being processed, requiring the following sequence of op-
erations: Job1: I→m1→m2→m1→E, and Job2: I→m1→E.
The re-entrant flow in Fig. 1 (Job1) can be broken up into
four constituent flows, one for each stage of the process
(x(11) : I → m1 , x(12) : m1 → m2, x(13) : m2 → m1,
x(14) : m1 → E), while Job2 can be decomposed into the
two flows (x(21) : I → m1, x(22) : m1 → E). These
flows are only coupled in two ways: through the network
capacity constraints and through equality constraints between
the output of one flow to the input of the next, to ensure
conservation of the flow, see Fig. 3.

Fig. 4 shows how the same technique of Fig. 3 can be
easily extended to handle systems with multiple machines
of the same type. One can imagine the individual flows
being sent to artificial aggregation nodes. The multiple
machine case happens inflexible flow shopmodels [22]. For
simplicity, we show just Job1. The flows are again coupled
through the network and equality constraints are imposed
to ensure that for each component, the input flow at one
stage must equal its output flow at the next stage. [Note
that the artificial nodes are shown here as a conceptual aid
but, because of the equality constraints between stages, we
will not need them in our implementation.] Fig. 5 shows
the resulting aggregate flows. Just as before, we can easily
handle multiple jobs by using more flows.
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Fig. 3. Breaking up the re-entrant flow in Fig. 1 into 4 constituent sets of
flows of Job1(x(11)

, x
(12)

, x
(13)

, x
(14)), and 2 constituent sets of flows

of Job2 (x(21)
, x

(22)), which are coupled only through the network and
machine capacity constraints and through equality constraints between the
output of one flow to the input of the next, to ensure conservation of the
flow. At the bottom we have the aggregate flow picture.

B. Standard Network Flow Model

We now review thestandard network flow model[3]. We
have a network withN nodes connected byL directed links.
For each noden: I(n) is the set of incoming links, and
O(n) is the set of outgoing links;sin,n ≥ 0 denotes the flow
coming into noden from the outside, andsout,n ≥ 0 is the
flow leaving noden to the outside. Letxi ≥ 0 denote flow
on link i, and letx be the vector of all the flows. The we
can write the flow conservation at each noden as:

∑

i∈I(n)

xi + sin,n =
∑

j∈O(n)

xj + sout,n (1)



I

I

I

I

I

I

I

I

E

E

E

E

N

N

N

N

m1

m1

m1

m1

m1
m1

m1

m1
m1

m1

m2
m2

m2

m2

m2

m2

m2

m2

m2

x11

x12

x13

x14

Fig. 4. The technique of Fig. 3 for multiple machines, along with artificial
aggregation nodes. The flows are coupled through the machineand network
capacity constraints and the equality constraints imposedto ensure that for
each component, its input flow at one stage must equal its output flow at
the next stage.
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Fig. 5. Aggregate flows for the sequence in Fig.4.

These equations can be written compactly in matrix form by
defining the matricesAin andBin as follows:

Ain,ij =

{

1 ; xj ∈ I(i)
0 ; otherwise

; Bin,ij =

{

1 ; sin,j ∈ I(i)
0 ; otherwise

(2)
and similarly defineAout and Bout with I(i) replaced by
O(i). The input-output flow balance is now

Aoutx + Boutsout = Ainx + Binsin

Then, defining theincidence matrixA = (Aout −Ain) gives

Ax + Boutsout − Binsin = 0

We refer toBin and Bout as thesource matrixand sink
matrix, respectively.

There will generally be capacity constraints at each link.
These can be written in two ways: Letµk denote link-k’s
maximum throughput of material per unit time, and letpk =
1/µk denote link-k’s processing time per component. Then
we can write eitherxk ≤ µk or pkxk ≤ 1. The latter will
extend more easily to the situation with multiple flows.

Thus our overall network flow model in terms of the
reduced incidence and source matrices is:

Ax + Boutsout − Binsin = 0
Px � 1 or x � µ
x � 0; sin � 0; sout � 0

(3)

whereµ = (µ1, . . . , µL), P = diag(p1, . . . , pL) and1 is the
vector of all-ones.

C. Multicommodity Network Flow Model

The standard network flow model in (3) can be easily
extended to handle multiple simultaneous flows on the net-
work, each having its own sources and sinks. This is known
as themulticommodity network flow model[3]. Assume that
there areF source-destination flowsx(i), i = 1, . . . , F just
like the one above, each with its own set of sourcess

(i)
in ,

sinkss
(i)
out, and processing timesP (i) = diag(p

(i)
1 , . . . , p

(i)
L ).

These flows are almost independent in the sense that each
must satisfy its own flow conservation and nonnegativity
constraints, but they are coupled through the shared link



capacities of the network. It follows that the overall network
flow model for the multicommodity scenario is [3]:

Ax(i) + B
(i)
outs

(i)
out − B

(i)
in s

(i)
in = 0; i = 1, . . . , F

∑F

i=1 P (i)x(i) � 1

x(i) � 0; s
(i)
in � 0; s

(i)
out � 0; i = 1, . . . , F

(4)

The incidence matrix is the same for the whole graph, but
each flow has its own source and sink matrix. If theP (i)

are all equal, then we can optionally replace the processing
times capacity constraint with the corresponding peak flow
capacity constraint as in (3) above, ie:

∑F

i=1 x(i) � µ. But
this not always possible to do in general.

D. Multistage Multicommodity Network Flow Model

We will now introduce themultistage multicommodity
network flow model, which allows us to extend the standard
and multicommodity network flow models above to the
multiple job, multiple stage-per-job, multiple-route, possibly
re-entrant scenario. Our development is based on ideas from
[6], [2], [18], [19], [13], [20], [27], [15], [26].

Consider a multi-stage jobi where we have a set of flows
x(ij), j = 1, . . . , Fi obtained as a result of breaking up the
overall process through the components as shown in section
III-A. Flow conservation and nonnegativity must hold for
each subflow, and they must share the links of the network.
Therefore, the flow at each stage is subject to (4) above:

Ax(ij) + B
(ij)
out s

(ij)
out − B

(ij)
in s

(ij)
in = 0; j = 1, . . . , Fi

∑Fi

j=1 P (ij)x(ij) � 1

x(ij) � 0; s
(ij)
in � 0; s

(ij)
out � 0; j = 1, . . . , Fi

(5)
where A is the incidence matrix of the entire aggregate
system, with all the machines included.

In addition, two more essential features must be modeled:
The first feature is that since, at each stage, we are interested
in the flow from one specific set of machines to another
specific set, all the other machines must be “switched off”,
ie: we must not allow any flow through the other machines
in the system at that stage. This is enforced by constraining
the flows on the other machines to be zero

Φijx
(ij) = 0, ∀i, j (6)

where Φij is a matrix whose rows are rows of identity
corresponding to the link indexes of the machines switched
off at that stage. The second feature that must be modeled is
the cascading of the stages in each individual job. At each
stage, from the second stage onward, the flows on the output
links of each final component must equal the input flows to
the subsequent stage. This is expressed by the constraint:

s
(i,j+1)
in = s

(i,j)
out , ∀j ≥ 2. (7)

Using (7) in (5), we can eliminates(ij)
in from each stage after

the first to get the new conservation constraints:

Ax(i1) + B
(i1)
out s

(i1)
out − B

(i1)
in s

(i1)
in = 0;

Ax(ij) + B
(ij)
out s

(ij)
out − B

(ij)
in s

(i,j−1)
out = 0; j = 2, . . . , Fi

(8)
Now if there areJ multistage jobs, each with its own
set of flows x(ij), j = 1, . . . , Fi, all of which share the
interconnection network, then we arrive at our finalmulti-
stage multicommodity network flow modelfor a multiple job,
multiple stage-per-job, multiple-route scenario is:

Ax(i1) + B
(i1)
out s

(i1)
out − B

(i1)
in s

(i1)
in = 0; ∀i

Ax(ij) + B
(ij)
out s

(ij)
out − B

(ij)
in s

(i,j−1)
out = 0; ∀i, j ≥ 2

Φijx
(ij) = 0; x(ij) � 0; s

(ij)
out � 0; ∀i, j

s
(i1)
in � 0; ∀i

∑J

i=1

∑Fi

j=1 P (ij)x(ij) � 1

(9)

At this point it is useful to recall the interpretation of the
link capacity constraint in (9): since theP (ij) are diagonal
matrices, we can write these constraints equivalently at the
link level:

J
∑

i=1

Fi
∑

j=1

p
(ij)
k x

(ij)
k ≤ 1; k = 1, . . . , L

wherep
(ij)
k and x

(ij)
k are, respectively, the processing time

and the flow of linkk for job i at stagej.

E. The Objective Function

So far we have focused on the formulation of the flow
constraints but said nothing about the objective function.
Basically any objective function that is of interest in network
flow optimization is a suitable candidate for our formulation.
We mention a few interesting possibilities:

• Steady state throughput: as mentioned in the introduc-
tion this was one of the primary motivations for our
work. The corresponding optimization problem is

max
∑J

i=1 s
(i1)
in

s.t. (9).
(10)

• Link utilization: in complex manufacturing cells with
highly redundant routes, one might wish to find rea-
sonablysparse flows. Another reason why this might
be of interest is forshort paths. Both are captured
with the samel1-norm objective [4]. So for example
on could minimize thel1-norm objective subject to the
throughput being more than some specifiedα

(i)
min:

min
∑J

i=1

∑Fi

j=1 ‖x
(ij)‖1

s.t. s
(i1)
in � α

(i)
min, i = 1, . . . , J ; (9).

(11)

• Load Balancing: this can easily be effected either with
a term in the objective that penalizes deviation of the
flows of the machines from each other, or by imposing
constraints that require the flows to be equal or close to
each other.



• Utility, Fairness, Delays: there are several objectives
which capture different notions of utility, fairness and
expected delays. See [27] and the references therein.

F. Extensions

As pointed out in [27] in the context of communication
networks, two extensions are immediately possible. The first
extension is that the link capacities themselves could be any
concave functions of yet other variables, such as link power
consumption, and any convex constraints associated with
these variables can easily be appended to (9). The second
extension is also inspired by [27]), and this is that it wouldbe
interesting to study different solution algorithms such asdual
decomposition methods, subgradient cutting plane methods,
etc.

Another extension is to explore the use of this technique
as a heuristic in AI based search methods [1], [12], [25],
[24]. Such methods are closely related to branch-and-bound
search and essentially enumerate all possible plans (action
sequences) and schedules (resource allocation orderings).
Efficiency is gained by expanding partial solutions in a
‘best-first’ order defined by a lower bound on the solution
objective. Our network flow analysis can be used in a pre-
processing step to compute an approximate routing. Possible
plans inconsistent with this routing can then be pruned
from the search space explored by the AI planner. Note
that, because the flow analysis merely approximates the
possible actions applicable in the machine, restricting the
planner in this way to paths deemed optimal by the flow
analysis may result in a suboptimal final production plan.
However, the approximation may be very tight in certain
applications, and the speed-up in planning time is enormous.
If planning must explore a search tree of depthd and
breadthb, ie: bd states, then exploring only(b/3)d states may
make previously intractable applications feasible. If retaining
optimality is critical, the flow analysis results can be usedas
a ‘node-ordering’ heuristic to focus the planner’s attention on
promising actions first while retaining the ability to backtrack
to the non-preferred options.

IV. EXAMPLES

In this section, we present two examples to illustrate our
ideas.

A. A Simple Two Job System

We now present the results of applying our method to
the two-job, two-machine example in Fig. 1 with routing
Job1: I→m1→m2→m1→E; Job2: I→m1→E. This simple
example could be solved by hand. However, it is included
here to complete the running example from the earlier section
and to show, at the link-node level, the process of breaking
up the flows and interpreting the results. The resulting graph
topology is shown in Fig. 7. Note that since the jobs are
required to pass through the exit link “E”, it must be treated
as a third type of machine in our framework too. The
processing times on all the links except m1 and m2 were
chosen small enough,p(ij)

k = 0.1, to ensure that only m1
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Fig. 6. The four flows of Job1, and the two flows of Job2.

Job−1, All Flows

  10

  9

  8

  7   6

  5

  4  3  2  1

10 9 8 7

654321 m1

m2

E
I

Fig. 7. Aggregate flows of Job1. Note that Job1 is a re-entrantjob.

and m2 act as bottlenecks. (This was verified by the results
of the optimization.) The processing times for m1 (link 9)
were set of 0.2 for all stages of job 1, and 0.4 for all stages
of job2. The processing times of m2 (link 10) were set to
0.8 for job 1 and arbitrary for job 2, since job 2 must never
be routed through m2.

The objective was maximization of throughputs
(11)
in +

s
(21)
in . The resulting optimal flows ares(11)

in = s
(21)
in = 1.25.

The individual flows of both jobs are shown in Fig. 6, while
the aggregate flows of each job are shown in Fig. 7 and
Fig. 8. The link thicknesses are proportional to the flows.
The results are easy to understand: Job1 loops through the
system, giving rise to twice the flow on the upper path as
the lower path (Fig. 7); while Job2 passes straight through,
with the same flow in both stages, whose size is consistent
with the remaining capacity of m1.
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Fig. 8. Aggregate flows of Job2.



B. Multimachine Example with Complex Routing

In this example, we will show how thegraceful degra-
dation mentioned section II-B can been achieved through
redundancyand intelligent routing. Although this example
may seem somewhat contrived, it is actually a sanitized
version of a real application from one of our industry
sponsors.

Suppose that a single multistage job with the same se-
quence of operations as job1 above (I→m1→m2→m1→E)
is being processed on a manufacturing network with topology
shown in Fig. 9. The flow decomposition will be as in Fig. 4
and Fig. 5, except with four instances of each machine
type. (Again, the exit link “E” is treated as a third type
of machine.) The inputs are on the far left, and the output
is the far right. The four machines on the outer perimeter
are of type m2; the four machines on the inside are of
type m1. For fault-tolerance and production cost, there are
multiple instances of each type of machine, with multiple
paths into and out of each machine. Note that there are many
bidirectional links in this system, represented by pairs of
opposing links. (Not all the link labels are visible at this
small size unfortunately.)

The the network interconnection links, m2 machines, and
exit link all have capacities ofµ2 = 10. The type m1
machines have a capacity ofµ1 = 2.5. The link thickness is
proportional to the capacity, hence links of the m1 machines
have a quarter the thickness of all the other links. Again, we
have chosen the network link capacities to be large, in order
to ensure than only m1 machines can act as bottlenecks.

Fig. 10 shows the aggregate optimal route, again for
throughput maximization. Note that Matlab graphics quan-
tizes the line thickness, so they are only approximately
proportional to the flows. The result of the throughput opti-
mization is 5.0 which makes sense, since the total capacity
of the bottleneck machines is4× 2.5 = 10, but each unit of
flow leaving the system must have been processed by an m1
machine twice, thus reducing the total capacity from 10 to
5. We observe that each quadrant runs almost independently
performing the m1, m2 and m1 operations locally, and then
the flows are combined at the transportation bus in the middle
of system. To avoid unnecessary looping or meandering, a
small l1 term was added to the max-flow objective. This
produces appealing shortest-path like routes.

Fig. 11 shows the resulting aggregate routing in thefailure
scenario, where the top right m2 machine is broken, by
severing the link connecting nodes 50 to 49. Nevertheless,
the result of the throughput optimization is still 5 - thus
achieving the graceful degradation mentioned earlier through
redundancy and intelligent routing. Again, the resulting flows
are easy to understand. Note that the remaining three m2
machines still have enough capacity to cope with the flow
from all four m1 machines. Thus the optimal flow simply
processes more m2 flow on one of the remaining working
m2’s, namely the one in the upper left. We observe that the
lower part of the system is running just as before, but the
upper part has done some looping and resource management,

Job−1, Flow−1

  169  169

  168  168

  167  167

  166  166

  165  165

  164  164

  163  163

  162  162

  161  161

  160  160  159  159  158  158  157  157
  156  156  155  155  154  154  153  153

  152  152

  151  151

  150  150
  149  149

  148  148
  147  147

  146  146
  145  145

  144  144
  143  143

  142  142
  141  141  140  140  139  139

  138  138
  137  137

  136  136
  135  135

  134  134  133  133  132  132
  131  131

  130  130  129  129  128  128  127  127
  126  126  125  125  124  124  123  123

  122  122

  121  121

  120  120
  119  119

  118  118
  117  117

  116  116
  115  115

  114  114
  113  113

  112  112
  111  111  110  110  109  109

  108  108
  107  107

  106  106
  105  105

  104  104  103  103  102  102
  101  101

  100  100
  99  99

  98  98
  97  97

  96  96
  95  95

  94  94
  93  93

  92  92
  91  91

  90  90
  89  89

  88  88
  87  87

  86  86
  85  85

  84  84
  83  83

  82  82
  81  81

  80  80  79  79  78  78  77  77
  76  76  75  75  74  74  73  73

  72  72

  71  71

  70  70
  69  69

  68  68
  67  67

  66  66
  65  65

  64  64
  63  63

  62  62
  61  61  60  60  59  59

  58  58
  57  57

  56  56
  55  55

  54  54  53  53  52  52
  51  51

  50  50  49  49  48  48  47  47
  46  46  45  45  44  44  43  43

  42  42

  41  41

  40  40
  39  39

  38  38
  37  37

  36  36
  35  35

  34  34
  33  33

  32  32
  31  31  30  30  29  29

  28  28
  27  27

  26  26
  25  25

  24  24  23  23  22  22
  21  21

  20  20
  19  19

  18  18
  17  17

  16  16
  15  15

  14  14
  13  13

  12  12
  11  11

  10  10
  9  9

  8  8
  7  7

  6  6
  5  5

  4  4
  3  3

  2  2
  1  1

6867

66

65

6463

6261

60595857

56555453

5251

5049

48474645

44434241

40393837

36353433

3231

3029

28272625

24232221

2019

1817

16151413

1211109

8765

4321

I

I

m1 m1

m1 m1

m2 m2

m2 m2

E

Fig. 9. Topology and relative link capacities for a manufacturing network
with multiple machines and redundant routes. (Not all the link labels are
visible at this small size unfortunately.)

processing more m2 flow. Note that while the crossing of
the flows at node 14 may be unappealing, it is unavoidable
in this failure mode. The designer can then easily try other
topologies by changing the model, or adding extra links,
relying on the optimization to identify the most important
ones.

As mentioned earlier, this example is based on a san-
itized version of a real manufacturing system of one of
our industry sponsors. And it was exactly questions such
as machine topology, throughput maximization, and failure
scenario analysis that were most pertinent during the system
architecture and design phase. Running the network flow
model presented in this paper was about two orders of
magnitude faster than running the discrete planner. Thus
many more machine architectures and failure scenarios could
be explored, and cases for which the performance of the
relaxed network model was poor could be immediately ruled
out, since the full discrete planner could not do better.

V. CONCLUSION

A relaxed version of the steady state material flow
planning problem for flexible manufacturing systems/cells
(FMS/FMC) such as flexible flow shops and general job
shops is formulated using a simple extension of multicom-
modity network flow problems. Our convex multistage mul-
ticommodity network formulation allows for simultaneous
routing and resource allocation, and also captures the case
of re-entrant lines (recirculation). It can be used to perform
rapid, albeit crude, explorations of the combinatorial space
of possible FMS configurations and of failure scenarios.
The technique can also provide bounds on the limits of
system performance (eg: throughput, link usage, bottlenecks,
etc). This can be used to guide the design of robust FMS
architectures with high degree of redundancy in routes and
machines. Our flow based technique can model the trans-
formation of the components from one form to another, as
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Fig. 10. Throughput-optimal routes and flows for the manufacturing
network of Fig. 9.
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Fig. 11. Throughput-optimal routes and flows for the manufacturing
network of Fig. 9, in a partially failed state with the upper-left m2 broken.
Yet the system can still run at maximum throughput.

well as their movement from one location to another. Being
a relaxation to the full discrete problem, our method could
potentially be used as an admissible heuristic for pruning
AI-based planning methods. We demonstrated our approach
on a realistic industrial problem.
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