
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 10, OCTOBER 2004 1385

Network Flow Techniques for Dynamic Voltage
Scaling in Hard Real-Time Systems

Vishnu Swaminathan and Krishnendu Chakrabarty, Senior Member, IEEE

Abstract—Energy consumption is an important performance
parameter for portable and wireless embedded systems. However,
energy consumption must be carefully balanced with real-time
responsiveness in hard real-time systems. In this paper, we present
two offline dynamic voltage scaling (DVS) schemes for dynamic
power management in such systems. In the first method, we
develop a generalized network flow (GNF) model for the unipro-
cessor DVS problem and solve it optimally using an efficient
network flow algorithm. The proposed method outperforms
existing DVS schemes for several popular embedded processors
where the number of processor speeds is limited to a few values.
The solutions for the GNF model provide theoretical lower bounds
on energy consumption using DVS in hard real-time systems. We
also describe a minimum-cost network flow model whose solutions
are near-optimal. The minimum-cost models perform at par with
competing methods for processor models with a large range of
operating voltages, and better than them for processor models
with a limited set of operating voltages.

Index Terms—Deadlines, dynamic power management, em-
bedded systems, low-energy, low-power, network flow models,
real-time operating systems.

I. INTRODUCTION

ENERGY consumption is an important performance pa-
rameter for battery-operated embedded systems. An effec-

tive approach to power reduction in embedded systems is based
on dynamic voltage scaling (DVS), a runtime technique that
exploits the quadratic dependence of power consumption of a
CMOS processor on its operating voltage. However, a reduc-
tion in operating voltage results in a drop in the CPU operating
frequency and an increase in the execution times of application
tasks. Therefore, to ensure that no task deadlines are missed,
DVS must be performed judiciously in hard real-time systems.

In this paper, we present two offline DVS schemes to min-
imize the energy consumed by a processor executing a set of
jobs in a hard real-time system. In safety-critical applications,
offline scheduling is often preferred over priority-based runtime
scheduling to achieve high predictability [29]. In systems where
offline scheduling is used, the problem of scheduling tasks for

Manuscript received May 31, 2003; revised August 28, 2003 and December
24, 2003. This paper was supported in part by DARPA under Grant N66001-
001-8946, in part by a graduate fellowship from the North Carolina Networking
Initiative, and in part by DARPA and monitored by the Army Research Of-
fice under Emergent Surveillance Plexus MURI Award DAAD19-01-1-0504. A
preliminary version of this paper appeared in a shortened form in the Proceed-
ings of the IEEE/ACM International Conference on Computer-Aided Design,
pp. 21–25, San Jose, CA, November 2003. This paper was recommended by
Associate Editor M. F. Jacome.

The authors are with the Department of Electrical and Computer Engineering,
Duke University, Durham, NC 27708 USA (e-mail: krish@ee.duke.edu).

Digital Object Identifier 10.1109/TCAD.2004.833621

minimum energy can be readily addressed through the tech-
niques presented here. We first model the DVS problem as a
generalized network flow (GNF) graph and use the generalized
network simplex algorithm [1] to solve it. We consider a sce-
nario where a set of jobs execute on a processor that is capable
of running at a limited number of speeds. Common examples of
such processors are the Transmeta Crusoe [5] and the AMD K-6
[2]. We generate an offline job schedule and identify the speeds
(and corresponding voltages) at which each job must be exe-
cuted such that: 1) the total energy consumed by the set of jobs
is minimized and 2) no deadlines are missed. We also prove that
the solutions of the GNF models result in the theoretical lower
bounds on energy consumption using DVS under the constraint
that voltage switching can only be carried out at task boundaries.
Network flow algorithms are extremely efficient; therefore, our
models can potentially scale well to real-life task sets for a small
number of processor speeds.

A limitation of the GNF model, however, lies in its inability
to scale to large task sets using a processor model with a large
number of operating voltages [28]. In this paper, we address this
issue by developing a minimum-cost network flow model for
the DVS problem. The minimum-cost models are solved using
a fast polynomial-time cost-scaling algorithm to generate near-
optimal solutions. We demonstrate the effectiveness of both net-
work flow techniques by comparing them to some of the most
efficient offline DVS schemes presented thus far in the literature
[22], [30]. Our results also suggest that the number of available
processor speeds is an important consideration for the design
and evaluation of DVS algorithms.

The rest of the paper is organized as follows. In Section II, we
review related prior work. In Section III, we describe DVS in
greater detail, present the problem statement, and briefly review
network flow concepts. In Section IV, we describe and analyze
the GNF model assuming that the processor can operate at only
two discrete voltages. In Section IV-B, we briefly describe a
GNF model for more than two discrete speeds. In Section V, we
describe and analyze the minimum-cost network flow graph for
the DVS problem. In Section VI, we present our experimental
results, and finally, in Section VII, we summarize the paper.

II. RELATED PRIOR WORK ON DVS

A significant body of research has been carried out on the
problem of minimizing processor energy consumption in hard
real-time systems. An offline, preemptive DVS scheme for
minimum energy is described in [30]. An online, preemptive
DVS algorithm is presented in [7]. Integer linear-programming
models for statically assigning voltages to tasks are described
in [11]. The authors also show that any processor frequency can
be emulated using the two frequencies closest to it and on either

0278-0070/04$20.00 © 2004 IEEE

1386 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 10, OCTOBER 2004

side of it. An online DVS technique based on the well-known
rate-monotonic (fixed-priority) algorithm is presented in [24].
An offline near-optimal fixed-priority scheduling algorithm is
described in [22]. Lagrange multipliers are used for low-energy
task scheduling in [19]. DVS for real-time tasks with nonpre-
emptable sections has been studied in [31].

An important advantage of intertask DVS over intratask DVS
lies in its simplicity of implementation. Although intratask DVS
indeed results in greater energy savings than intertask DVS, a
compiler-driven approach is necessary to fully utilize its en-
ergy-saving potential. Online intratask DVS methods, such as
[17], result in increased scheduler complexity (owing to the nu-
merous voltage-scaling checks that must be performed by the
scheduler) and, therefore, increased scheduler overhead. As dis-
cussed in [17], the amount of overhead depends on the granu-
larity of scheduler invocation within a single task.

On the other hand, compiler-driven intratask DVS methods
such as in [3], [8], [9], [25], and [26] result in greater energy sav-
ings than online intratask DVS methods. Current-day practice
consists of inserting “checkpoints” or voltage-switching code
into the application program [3], [9], [26] at strategic points.
These types of methods require OS modifications (when check-
points are used [3]) and power-aware compilers [9], [26]. Thus,
these methods have a significant impact on the portability of
the application and cannot be used where power-aware com-
pilers and/or software tools [26] are unavailable. These draw-
backs have been recognized in prior work [3], [9], [26]. There-
fore, in this paper, we have focused on intertask voltage scaling.
Finally, while DVS algorithms for real-time multiprocessor sys-
tems have also been discussed in detail in [15], [32], we limit
ourselves to uniprocessor systems in this work.

A drawback of many of the single-processor DVS methods
listed above is that they either assume a processor model with a
large range of operating frequencies and voltages or a specific
scheduling strategy. For example, [22], [24] perform fixed-pri-
ority scheduling for a processor with a frequency range of 100
MHz to 8 MHz, adjustable in increments of 1 MHz, while the
method described in [30] performs dynamic-priority scheduling
with a continuously variable voltage spectrum. In this paper,
we show that when such a fine-grained or continuous range of
frequencies is unavailable, the efficiency of the above methods
degrades significantly. Moreover, popular embedded processors
such as the Transmeta Crusoe processor (frequency range of
300–800 MHz, adjustable in increments of 100 MHz [5]) and
the AMD K-6 (300–500 MHz, adjustable in 50 MHz increments
[2]) provide only a limited set of available speeds at which tasks
can be executed. In this paper, we show that with this restriction
on processor speeds, network flow techniques can be applied to
solve the DVS problem optimally in reasonable periods of time.
These network flow models are independent of the number of
available processor speeds and scheduling strategy. Therefore,
the DVS problem can be solved optimally using network flow
techniques.

III. BACKGROUND

A. DVS

DVS refers to the runtime variation of processor supply
voltage to obtain quadratic reductions in energy. The dynamic

power consumption in CMOS circuits is characterized by the
following:

(1)

where is the dynamic power consumption of a logic
gate, is the average number of transitions made by the gate
in a single clock cycle, is the switching capacitance of the
gate, is the value of the supply voltage, and is the fre-
quency of operation. Clearly, decreasing the values of any of
these parameters results in reduced power consumption. Since

varies quadratically with , supply voltage reduc-
tion is the most effective approach to decrease power consump-
tion of a CMOS gate. However, a decrease in the supply voltage
results in a corresponding increase in gate delay. This relation-
ship between supply voltage and gate delay is reflected in the
following:

(2)

where is referred to as the velocity saturation
index [23], is the delay of the CMOS gate, and are the
widths and lengths of the transistors, respectively, is the
output capacitance of the gate, and is the threshold voltage
of the transistors.

The execution time of an application task is proportional to
the sum of the gate delays on the critical path in a CMOS pro-
cessor. Since varies (almost) linearly with , the execution
time of a task increases with decreasing . Equation (2) there-
fore implies that a penalty in speed is inevitable when supply
voltage is reduced and therefore, the dynamic power consump-
tion of the circuit exhibits a cubic dependence on (since

). However, the energy consumption of the CMOS
circuit, which is the product of the power and the delay, i.e.,

, exhibits a quadratic dependence on .
Next, we define the problem that is addressed in this paper.

B. Problem Description

: We are provided with a set of
jobs and a processor that is capable of operating at one of

speeds . These speeds correspond to
unique CPU operating voltages . Each job

is characterized by: 1) a release time ; 2) a deadline
; and 3) worst-case execution times at

the different operating speeds.
The goal is to determine a voltage and

a start time for each job such that

i) the total energy , is
minimized;

ii) and .
Since we consider only jobs (and not tasks), our method can

be used to schedule aperiodic as well as periodic task sets, since
both can be represented using the job model described above
through the application of the LCM method [16]. A periodic task
consists of an infinite sequence of identical activities. Such tasks
are characterized by a release time, a deadline, and a period,
which defines the rate of activation of the task, and a worst-case

SWAMINATHAN AND CHAKRABARTY: NETWORK FLOW TECHNIQUES FOR DVS IN HARD REAL-TIME SYSTEMS 1387

execution time. Aperiodic tasks also consist of an infinite se-
quence of identical activities, but the activation of these tasks is
not regular. Each instance of a task is called a job. Jobs are char-
acterized only by an arrival time, a deadline and the worst-case
execution time. Our method can be used to generate optimal en-
ergy-solutions, and a postprocessing transformation ensures that
the same energy-optimal schedule does not cause any missed
deadlines with the use of a priority-based (fixed- or dynamic-)
scheduling policy. We next briefly review important concepts
from network flow theory.

C. Network Flow Models

The objective in a network flow model is to move some entity
(electricity, water, time, etc.) from one point to another through
an underlying network as efficiently as possible. A network flow
model is represented as a directed network defined
by a set of nodes and a set of directed arcs. Each
arc has an associated cost that denotes the cost
per unit flow on the arc. The flow cost varies linearly with the
amount of flow. Also associated with is an upper bound

on the arc capacity that denotes the maximum flow on
and a lower bound that denotes the minimum flow on the
arc. In GNF models, a positive multiplier exists for of
the network and if 1 unit of flow is sent from node to node

along arc , then units of flow arrive at node . Each
node is also characterized by an integer representing
its supply/demand.

The decision variables in the GNF problem are the arc flows
on and are represented by . The GNF problem is an
optimization problem that can be formulated as

Minimize subject to

1)
2) .
Constraint (1) is called the mass balance constraint. It states

that the difference between the flow into a node and the flow
out of node must equal its supply/demand of flow. However,
in a circulation version of a network flow problem, such as the
one used here, , (in a circulation version, an
additional arc exists between sink and source; all flow therefore
circulates around the network) and so no flow can accumulate
at any node . Constraint (2) is called the flow constraint.
It states that the flow along any arc must lie between its
lower and upper capacity bounds. In any feasible solution, every
arc flow satisfies both these constraints.

In GNF graphs, the arc costs vary linearly with the amount of
flow through the arc and the arc flows in the objective function
are separable, i.e., the different flow variables appear in
separate terms. Nonlinear optimization problems with
separable convex objective functions are typically solved using
network flow techniques through convex-cost network flow
models. In such models, the separable terms are allowed to
be nonlinear functions of the form . Each nonlinear
function is restricted to be purely convex, i.e., any linear
interpolation between two points on the function always lies
on or above it, as illustrated in Fig. 1. With this restriction

Fig. 1. Example of a convex cost function.

on the form of a nonlinear function, efficient techniques have
been developed to solve nonlinear network flow models.
lends itself naturally to nonlinear (convex cost) network flow
techniques through the convex dependence of energy on .
Recall from Section III-A that the energy consumed by a
CMOS processor is a quadratic (convex) function of the supply
voltage, i.e., .

The convex cost model is formally defined as

Minimize

subject to

1)
2) .

Note that the separable terms with linear cost coefficients in the
objective function have now been replaced by separable convex
cost functions. A convex cost model can be transformed into a
minimum cost model which is defined as follows:

Minimize

subject to

1)
2) .
The nonlinear functions in a convex cost model are

represented in a piecewise linear representation fashion, where
each arc cost has at most linear segments. Let

represent the different breakpoints of the cost function
for arc . The cost varies linearly in the interval .
Therefore, a cost function is defined by the set of breakpoints
and the slopes between successive breakpoints. This type of def-
inition of arc costs sees an increase in the number of nodes in
the model as the arc cost becomes more complex.

The piecewise linear representation of arc costs is illustrated
in Fig. 2, which depicts an arc in a convex cost network.
The cost function here is represented as a convex function of arc
flow, e.g., . The original arc shown in Fig. 2(a) is expanded
into parallel arcs from node to node (recall that each cost
function has linear segments). Each parallel arc

has a cost equal to the slope between the breakpoints
and and an upper bound equal to .

1388 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 10, OCTOBER 2004

Fig. 2. Transformation of arcs in a convex cost model to arcs in a minimum
cost model.

The arc capacities, costs and supplies/demands in the model
assumed to be integers. Although this assumption results in
some loss of generality, it is not truly a restriction because
rational numbers can always be transformed to integers by
multiplying them with suitably large numbers to obtain the
required degree of accuracy. For example, if a solution more
accurate than the integer optimal solution is required, each flow
variable is replaced by , where is sufficiently large,
depending on the required accuracy. Then, if denotes an
optimal solution to the transformed problem, is
the optimal solution to a degree of accuracy .

GNF models are solved using the generalized network sim-
plex algorithm. The generalized network simplex algorithm
maintains a feasible basis structure at every iteration and by
performing pivot operations, it transforms a solution into a
better one until the solution satisfies specific optimality criteria.
The worst-case complexity of the generalized network simplex
algorithm cannot be bounded by a polynomial function of the
number of nodes and number of arcs . However, empirical
studies have revealed that the running time of the algorithm is
generally a low-order polynomial of and . The algorithm
has been observed to be only two or three times slower than
the network simplex algorithm used to solve the minimum cost
flow problem [1].

Network flow models have been used in the past for task
scheduling without energy considerations [18], [20], [27]. In
[18], a maximum flow network model to identify a schedule for
a set of jobs running at a single constant voltage is described.
The problem of finding a preemptive schedule for a set of jobs
with arrival times and deadlines running on parallel uniform ma-
chines has been studied in [20]. In [27], the author describes a
network flow model for scheduling a job on multiple processors
in order to minimize execution cost and interprocessor commu-
nication. In this paper, we consider the problem of scheduling a
set of jobs on a single processor that is capable of operating at
speeds such that the total energy consumed by the set of jobs is
minimized. A feasible solution for the models is a set of flows

that satisfies all flow constraints and capacity constraints.
The decision variables represent the execution time for each
job. The identification of the execution times trivially leads to

an assignment of speeds to the jobs. In the next section, we de-
scribe our GNF model for .

IV. GNF MODEL FOR

For the sake of simplicity, we first develop a GNF model for
with two speeds and , with supply voltages

and , respectively. In Section IV-B, an extension
to speeds is described. Depending on the execution speed,
a job has an execution time of either or .

We first sort the arrival times and deadlines of the jobs in
ascending order. This results in elements in the set

, which divide the hyperperiod into
a sequence of at most distinct subintervals. Let rep-
resent the time interval , i.e.,

.
The nodes and arcs in the GNF model for are described

next. In order to avoid tedium, each arc is described by
a four-tuple representing the lower bound,
upper bound, cost and multiplier respectively.

Each interval node represents a distinct time interval in
. The GNF model for with two speeds

consists of a special source node , a special sink node , a set
of nodes that represent the jobs, a set of nodes that represent
execution speeds for the jobs, and a set of nodes that represent
time intervals in which jobs can be scheduled. Each job node
has two associated speed nodes and (see Fig. 3).

The arcs in the GNF model are best explained by classifying
them based on the interpretation of their flows. They are de-
scribed below:

1) Speed identification. These arcs are constructed from
source to each job vertex . They are described by the
four-tuple . The lower bound represents
the execution time of at the high speed, and the upper
bound is simply (the reason for this is explained
shortly). The lower bounds test the schedulability of the
job set: recall that a feasible schedule is one where the
arc flows satisfy their flow constraints and capacity con-
straints. Therefore, in any feasible solution for the net-
work flow graph, at least units of flow is sent along
each of these arcs. In other words, if at least units
of flow do not appear along every arc , then job
cannot be scheduled between its arrival time and deadline
and therefore, the set of jobs is not schedulable. Further-
more, the integer restriction on arc flows forces the flow
value to one of two values, thereby ensuring that only one
of the two allowable speeds is chosen for job execution.

2) Speed selection. These arcs are constructed from job
node to its associated speed nodes and . The
sum of the flows along this pair of arcs for each job node
represents its assigned execution time. We describe each
type of speed selection arc individually:

Job execution at . The flows along the arcs from
to represent the execution of job at speed . In any
feasible schedule, the flows on these arcs is equal to .
The associated costs are indicative of the power consumed
by job at the high speed, i.e., , where

. Since units of execution time flows along
these arcs, a total energy of units is consumed.

SWAMINATHAN AND CHAKRABARTY: NETWORK FLOW TECHNIQUES FOR DVS IN HARD REAL-TIME SYSTEMS 1389

Fig. 3. GNF model for P .

Job execution at . A flow of 1 unit along the arcs
from to indicates that is executed at the low
speed . This requires further explanation. Recall that
the flow into node can only be or . Assume
that units of flow enter node . Constraint (2) from
Section III-C states that no flow can accumulate at and,
therefore, this flow must leave node . Since the lower
bound on equals , all flow exits along this arc
and constraint (2) is satisfied. Now, assume that
units of flow enter node . Again, constraint (2) states
that no flow can accumulate at , and therefore, all flow
entering must leave through the and
arcs. units of flow exit through arc (the upper
bound prohibits any additional flow on this arc) and 1 unit
exits along arc , thereby satisfying the mass bal-
ance constraint. Now, a flow of appears at node
and a flow of appears at , resulting in a total
flow of units that must now flow along the interval as-
signment arcs (described next). Therefore, a flow of
units entering node represents ’s execution at the low
speed and a flow of units into node represents its
execution at the high speed.

3) Interval assignment. These arcs are constructed from
speed nodes and to each interval node if

and . They are described by the four-tuple
, These arcs ensure that jobs can be scheduled

only within certain intervals, i.e., between their arrival
times and deadlines.

4) Time intervals. These arcs are constructed from each
interval node to sink node with parameters

. The capacities of these arcs represent
the amount of time available each interval.

The solution of the GNF model results in a set of flows
along the arcs. The flow along each arc represents the ex-
ecution time of job . From this, the assigned execution speed
for each job is determined. The job schedule is determined by in-
specting the flows along the and arcs. These
flows represent the amount of CPU time that is allotted to job
in interval .

A. Proof of Energy-Optimality

In order to show that the GNF model for results in en-
ergy-optimal solutions, it is sufficient to show that the costs as-

1390 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 10, OCTOBER 2004

sociated with the arcs accurately represent the energy consump-
tions of the jobs at the different speeds, and to show that the
objective function and constraints in the GNF model are equiv-
alent to an optimization problem formulation of .

We first show that the cost functions of the arcs accurately
model the energy consumption of the jobs at different speeds.
This is formalized through the following theorem.

Theorem 1: The costs associated with the speed selection
arcs in the GNF model for are representative of the en-
ergy consumption of the jobs at the different operating speeds.

Proof: Recall from Section III-C that the flow into a job
node can be either or . Depending on the value
of the flow entering , job consumes different amounts of
energy. A flow of into corresponds to its execution at the
high speed, while a flow of represents its execution at the
low speed. Since the mass balance constraint states that no flow
can accumulate at , any flow entering must leave through
the speed selection arcs. Consider the following two cases.

Case 1) units of flow entering . In this case, has
been assigned the higher speed for execution. Since the
lower bound for arc is equal to , all flow en-
tering exits through this arc. The cost function associ-
ated with arc is . Recall that the cost
represents the cost of transporting a single unit of flow
along an arc. Therefore, the cost of transporting units
of flow is , which is the energy cost of ’s execu-
tion at the high speed.
Case 2) units entering . This represents the as-
signment of the lower operating speed for job . Recall
that when units of flow enter units exit
through and 1 unit leaves through . The
cost of the arc is selected to be .
Summing the total cost of all the flow leaving node , we
have

(3)

which represents the energy cost of executing at
the lower speed . This completes the proof of the
theorem. .

It is now easy to see that the separable terms in the objective
function of the GNF model are representative of the energy costs
of the jobs. Since the costs of all the arcs other than the speed
selection arcs is zero, no other term in the objective function
contributes to the overall flow cost in the objective function.

We next show that the objective function of the GNF model
maps to an optimization problem statement for . This is
formalized through the following theorem.

Theorem 2: The objective function and constraints that are
modeled in the GNF model for are equivalent to the opti-
mization problem statement for .

Proof: Since we wish to minimize the total energy con-
sumed by the set of jobs, and because , the objective
function can be written as

Minimize (4)

The execution time and execution voltage of job can be
represented in a “sum-of-products” form

where and are 0–1 binary variables, i.e., .
Substituting for and in (4) and noting that after multipli-

cation, the terms containing the product of and are equal
to zero, we obtain the following simplified objective function:

Minimize (5)

We next show that the objective function of the GNF model
simplifies to (5).

The objective function in the GNF model is

Minimize (6)

Since the only arcs with nonzero costs are and ,
(6) can be rewritten as

Minimize (7)

Any feasible solution of the model always has a flow which is
exactly equal to along arc . Moreover,

and . Equation (7) can there-
fore be written as

Minimize (8)

Simplification of this equation results in the following objective
function:

Minimize (9)

It is now easy to observe the similarity between (9) and (5).
Specifically, the variables are equivalent to the vari-
ables in the optimization problem formulation. Since

, the correspondence between the two objective func-
tions is proved.

The constraints in the GNF model can be seen to map exactly
to the constraints in the optimization problem statement by a
simple inspection. These constraints are listed below.

1) An entire job is executed at a single speed.
2) For every execution speed, there is a corresponding exe-

cution time for a job.
3) Each job must start no earlier than its arrival time and must

complete execution at its assigned speed no later than its
deadline.

This completes the proof of the theorem. .
We next describe a GNF model for with more than two

speeds.

SWAMINATHAN AND CHAKRABARTY: NETWORK FLOW TECHNIQUES FOR DVS IN HARD REAL-TIME SYSTEMS 1391

Fig. 4. GNF Model for three-speed P .

B. GNF Model for With More Than Two Speeds

In this section, we briefly describe a GNF model to handle
the case where the CPU can operate at discrete speeds, where

. For the sake of illustration, we assume here that the
CPU can operate at 3 speeds— represent three
operating voltages. The extension to is similar. The GNF
model for this system consists of the following vertices and arcs
(see Fig. 4):

1) the source vertex and the sink vertex ;
2) a job vertex for each job in the job set;
3) an interval vertex for each interval ;
4) three speed vertices , and for each job vertex

;
5) an arc from source to each of the job vertices with

parameters ;
6) an arc from each job node to its corresponding speed

node with parameters ;
7) an arc from each job node to its corresponding speed

node with parameters ;
8) an arc from each job node to speed node with

parameters ;
9) an arc from each speed node to each interval node if

and with parameters ;
10) an arc from each interval node to sink node with

parameters .

C. Graph Complexity

In this section, we analyze the complexity of the network flow
graph. Let be the number of jobs in the job set, and be the
number of available processor speeds. The number of nodes in

the network flow graph can be bounded from above through the
following analysis: the network flow graph has job nodes, and
each job node has corresponding speed nodes. This results
in vertices. The hyperperiod is divided into
distinct subintervals, thereby contributing at most interval
nodes . Therefore, an upper bound on the number of nodes
in the network flow graph is .

In a similar manner, an upper bound on the number of arcs can
be derived through the following analysis. arcs exist from the
source node to the job nodes , and arcs from the job nodes
to their corresponding speed nodes. In a worst-case scenario,
arcs could exist from each of the speed nodes to each of the

interval nodes, resulting in speed-interval arcs.
Finally, arcs are constructed from the interval nodes to
the sink . An upper bound on the number of arcs in the network
flow graph is therefore .

Thus far, we have focused on solving optimally using
GNF graphs. A limitation of the GNF model for lies in
its inability to scale to a large number if processor speeds. By
utilizing the convex dependence of energy on CPU operating
voltage, more efficient network flow techniques can be applied
to for near-optimal solutions. These algorithms are known
to be some of the fastest and most efficient algorithms in the field
of operations research, and belong to the category of scaling-
based algorithms. In the next section, we develop a minimum-
cost network flow formulation for . This model is scalable
and generates efficient solutions in reasonable periods of time.
A limitation of the model is the growth in the number of nodes in
the network flow graph; however, our experimental results show
that the model scales well even to real-life task sets. Unlike pre-
viously developed DVS algorithms, this model is not limited by

1392 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 10, OCTOBER 2004

Fig. 5. Calculation of arc slopes for a three-speed processor.

the number of available processor frequencies (it performs effi-
ciently with processors with a large range of frequencies as well
as with processors with a small set of available frequencies).

V. MINIMUM-COST MODEL FOR

A. Construction of the Model

In this section, we detail the construction of the minimum-
cost network flow model for . Recall that each job can exe-
cute at one of different speeds (voltages). Therefore, for every
job , the energy consumption at the different voltages is
plotted against the corresponding execution time, resulting in

discrete breakpoints on the “ - ” curve (see Fig. 5). The
slopes of the line segments between successive breakpoints are
calculated and used as linear arc costs in the minimum-cost net-
work. Let and represent the energy consumption and
execution time of job executing at voltage , respectively,
and let represent the slope of the line segment between
breakpoints and . Note that for the
highest voltage , there is no preceding breakpoint. Therefore,

is the slope of the line segment between the origin
and .

Similar to the preprocessing performed for the GNF model in
Section IV, the arrival times and deadlines of the jobs divide the
hyperperiod into a sequence of at most distinct inter-
vals. Assume that the set of arrival times and deadlines are sorted
in ascending order and are given by . Let

represent the time interval , i.e., .
Each arc is represented by a three-tuple

representing the lower bound, upper bound, and cost respec-
tively. The minimum-cost model for is shown in Fig. 6.
It consists of the source node and the sink node job-speed
nodes for each job denoted by , each of which represents
job executing at voltage , and interval nodes for each
interval .

We again categorize the arcs based on the interpretations of
their flows. They are described below.

1) Speed selection. These arcs are constructed from source
to the job-speed nodes . The arc flows are indicative

of the speed at which is executed. They are explained in
greater detail next.

a) Job execution at the high speed . A nonzero flow on
and zero flows on indicates that

is assigned the highest voltage . These arcs are de-
scribed by the three-tuple . The lower
and upper bounds on these arcs are equal to the execu-
tion time of job at the highest speed. Therefore, no
feasible schedule exists for the job set if the capacity
constraints on these arcs are not satisfied. It is also easy
to see that an energy cost of is in-
curred when a job is assigned voltage , thereby ac-
curately modeling the energy consumption of at the

.
b) Job execution at reduced speed. These arcs are con-

structed from to with parameters
. A flow along represents job ex-

ecuting at voltage . The arc cost for is equal to
the slope between the breakpoints and . These
arcs have the following interesting property: if a job is
scheduled to run at a voltage , the arc flows along
all arcs are equal to their upper bounds

. Furthermore, the costs associated with
these arcs are negative and decrease with increasing
values of .

2) Task scheduling. Task scheduling arcs are constructed
from to each interval node if and .
They are described by . They model the constraint
that jobs can be scheduled only within certain intervals, i.e.,
between their arrival times and deadlines.
3) Interval arcs. These arcs are constructed from each in-
terval node to sink node with parameters . The
capacities of these arcs represent the amount of time available
for scheduling jobs in each interval.
The solution of the minimum-cost model results in a set

of flows . The flows along represent the execution
time of job . Therefore, by inspecting the variables, the
speed (voltage) at which each job is executed is identified. The
job schedule is determined by the inspection of flows along

. These flows represent the amount of time allotted to
job in interval .

We next prove the equivalence of the minimum-cost network
flow model to by demonstrating the equivalence of the
objective functions and constraints in two different formulations
of : 1) the network flow formulation and 2) the optimization
problem formulation.

B. Validation of the Minimum-Cost Model

The objective function in the optimization problem formula-
tion of from is given by

Minimize (10)

Each job can execute at any of discrete speeds (voltages).
Therefore, and can be represented using binary variables

as

SWAMINATHAN AND CHAKRABARTY: NETWORK FLOW TECHNIQUES FOR DVS IN HARD REAL-TIME SYSTEMS 1393

Fig. 6. Minimum-cost model for P .

and

where

Substituting for and in (10) and noting that the product
when , we obtain the following simplified

objective function:

Minimize

(11)

On the other hand, the objective function for the network flow
model is

Minimize

where is the arc flow along and is the cost
associated with arc . The costs are the slopes
of the different line segments between successive breakpoints.
So, the objective function can be rewritten as

Minimize

(12)

However, . Fur-
ther, let each decision variable be equal to ,
where is a binary variable. Due to the convexity of the cost
function, if a nonzero flow exists along arc , then, for all
arcs . This
means that all binary variables for all . Using this
characteristic of the costs, and substituting for , (11) sim-
plifies to

Minimize

(13)

It is now easy to see the correspondence between the two ob-
jective functions. If a job is chosen to execute at a voltage

for all and for all . The indi-
vidual terms in (13) cancel out, leaving only in the ob-
jective function. This exactly corresponds to the term
in (11), the objective function in the optimization problem for-
mulation.

A drawback of this model is its inability to characterize the
presence of slack in the low-energy schedule. For example, as-
sume that job can execute at a voltage but not at voltage

because of insufficient time between its arrival and dead-
line. A nonzero flow along implies the assignment of
an inadmissible speed to job . However, this can be avoided
by raising the voltage of job from to . Any inadmis-
sible flow is simply the unavoidable slack in the system and can

1394 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 10, OCTOBER 2004

Fig. 7. Postprocessing algorithm for the correct assignment of speeds in the
minimum-cost model.

be safely ignored. Additional postprocessing of the solution of
the minimum-cost network flow model enables the identifica-
tion of jobs that execute at inadmissible speeds, and allows us
to raise the speeds to the next higher value and make the neces-
sary adjustments to the total energy cost to reflect this change. A
straightforward postprocessing algorithm is described in Fig. 7.

We have proved the correctness of the objective function of
the minimum-cost model. We now explain the correctness of the
constraints: 1) and 2) .

Recall that arcs are drawn from node to each interval node
only if and . It is easy to see that the

construction of these arcs accurately models the scheduling of
job only between its release and deadline.

We next analyze the complexity of the minimum-cost model
for by deriving upper bounds on the number of nodes and
arcs.

C. Complexity of the Minimum-Cost Model for

Let represent the number of jobs and represent the number
of processor speeds. An upper bound on the number of nodes
in the network flow model can be derived as follows. Each of
the jobs has associated with it job-speed nodes, resulting
in job-speed nodes in the model. The intervals in
the hyperperiod contribute at most interval nodes.
Therefore, the number of nodes in the minimum-cost model is
bounded from above by .

An upper bound on the number of arcs can be derived in a
similar fashion. A total of arcs exist from source to the
job-speed nodes . In a worst-case scenario, all jobs can be
scheduled in all intervals, resulting in speed-
interval arcs. Finally, interval arcs exist from the interval
nodes to the sink node . The total number of arcs in the
model is therefore bounded from above by . In
the next section, we present our experimental results.

VI. EXPERIMENTAL RESULTS

We next evaluate the network flow models with several dif-
ferent job sets with varying utilization. We first compare the
GNF method with a baseline case where all jobs are executed
at the highest processor speed. We then compare our results to
the offline fixed-priority DVS algorithm from [22], the offline
dynamic priority scheme from [30], and the offline dynamic
priority scheme from [14], which is designed specifically for
processors with a discrete set of voltages. We refer to the al-
gorithm described in [22] as VSLP, the one in [30] as LPEDF

TABLE I
AVAILABLE SPEED AND VOLTAGE SETTINGS FOR THE FIVE-SPEED

PROCESSOR MODELS USED IN OUR EXPERIMENTS

and the one in [14] as D-LPEDF. VSLP assumes a processor
with a large range of operating frequencies from 8 MHz to 100
MHz that is adjustable in increments of 1 MHz, while LPEDF
uses an infinitely continuous range of frequencies. To the best
of our knowledge, the results presented in these papers are the
best results published thus far in the literature. To demonstrate
that the GNF method performs better than VSLP and LPEDF
for processors with only a few speed settings, we also compare
our method with modified versions of VSLP and LPEDF, which
we call 5-VSLP and 5-LPEDF, that use only five speeds. In the
first set of experiments, we use two different processor models.
The first model is that of a Crusoe processor and our second
model corresponds to an AMD K-6 processor. The voltage and
frequency settings for these processors are listed in Table I.

The job sets are constructed from pure periodic task sets, and
the same task sets are used for all approaches. Each task set con-
sists of five tasks, the periods and execution times of which are
generated randomly. The arrival times of all tasks are set to 0.
All times are assumed to be in units of milliseconds. The execu-
tion times in Table II represent the worst-case execution times of
the tasks while executing at the maximum processor speed. The
deadline of a task is assumed to be equal to its period. The prop-
erties of the evaluation task sets are shown in Table II. The GNF
models are solved using a Microsoft Excel-based GNF solver
[12] running on a Pentium III PC at 500 MHz with 256 MB of
RAM.

The comparison of the GNF approach with the baseline case
is shown in Table III.

For task sets of any utilization value, the GNF method results
in significant energy savings.

The comparison of the GNF method with VSLP and 5-VSLP
is presented in Table IV. Comparative results for a real-life
benchmark, namely CNC [13], are also presented. The 5-GNF
method performed at par with 5-VSLP due to the relatively low
processor utilization of the CNC task set.

For task sets with low processor utilization, the results for
5-GNF and 5-VSLP are identical. This is because in these cases,
the highest voltage used for scheduling jobs is less than the
lowest voltage available in the processor. Therefore, the exe-
cution voltages of jobs that execute at voltage values less than
0.9 V (for the Crusoe processor) are raised to 0.9 V. However,
at higher utilization values (0.65 and higher), 5-VSLP performs

SWAMINATHAN AND CHAKRABARTY: NETWORK FLOW TECHNIQUES FOR DVS IN HARD REAL-TIME SYSTEMS 1395

TABLE II
DETAILS OF EVALUATION TASK SETS

worse than 5-GNF. This is because VSLP distributes slack uni-
formly to all jobs within a critical interval. In order to do this, it
computes the processor utilization of all the jobs in the critical
interval and then scales down the frequency of execution of the
jobs in the critical interval such that each job sees an equal in-
crease in execution time (yet no job misses its deadline). Thus,
within each critical interval, all jobs run at a constant voltage.
Now, consider the case where the CPU is allowed to assume only
two frequencies, say, , and . If the constant min-
imum voltage required by VSLP to schedule a set of jobs in a
critical interval is , the set of jobs cannot be scheduled
at because this exceeds the time available for job exe-
cution in the interval. Therefore, the next highest speed, which
is , is chosen to schedule all the jobs within the critical in-
terval. This causes a corresponding rise in the energy consump-
tion using VSLP with a processor with a few speeds, and is the
reason 5-VSLP performs worse than 5-GNF at high values of
processor utilization.

TABLE III
COMPARISON OF GNF WITH EXECUTION AT A SINGLE PROCESSOR SPEED

In the GNF model, this equal allocation of slack does not
take place. Jobs are allocated slack in a “lump-sum” manner,
which appears to be more effective than an equal distribution of
slack to all jobs when processor utilization is high. Note that the
increased energy consumptions for the utilization values of 0.72
and 0.85 are due to the larger hyperperiods of the corresponding
task sets.

A similar trend is also observed in the comparison of 5-GNF
with LPEDF, shown in Table V. The GNF method for discrete
speed processors performs better than 5-LPEDF at high utiliza-
tion values. The reason for this observation is the same as that
described in the comparison between 5-GNF and 5-VSLP. How-
ever, the value of processor utilization at which GNF outper-
forms LPEDF is much higher than the one for VSLP. Note also
that LPEDF performs marginally better than VSLP (both algo-
rithms are designed for continuous-speed processors). This is
because the number of critical intervals generated by LPEDF is
less than the number of critical intervals in VSLP. (This demon-
strates that the scheduling strategy—either fixed-priority or dy-
namic priority—plays a role in energy consumption.)

Finally, we compare the GNF method to an algorithm de-
signed specifically for discrete-speed processors [14], referred
to here as D-LPEDF. This algorithm builds on LPEDF and dis-
cretizes a continuous-speed voltage schedule using the trans-
formation described in [11]. The comparison of 5-GNF with
D-LPEDF is shown in Table VI. D-LPEDF assumes that voltage
transitions can occur within critical intervals, and can therefore
potentially increase the number of preemptions. In the few cases
where D-LPEDF slightly outperforms 5-GNF, it requires an ad-
ditional preemption for the task set. If the cost of preemption is
high, this may lead to undesirable results. In the GNF method,
we restrict voltage switching to occur only at task boundaries.

The solutions of the GNF models are provably optimal
lower bounds on energy consumption under the assumption
that voltage switching can occur only at task boundaries. It
therefore serves as a baseline against which other DVS schemes
can be compared. However, with a large number of speeds,
the GNF models do not run to completion. Hence, heuristic
solution techniques such as VSLP are useful in such cases.

1396 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 10, OCTOBER 2004

TABLE IV
COMPARISON OF GNF AND VSLP [22]

TABLE V
COMPARISON OF GNF AND LPEDF [30]

Finally, we consider the DVS problem for processor models
with less than five speeds. Examples of such embedded proces-
sors are the embedded SL enhanced Intel486 DX2 processor
[10], which operates at 5.5 and 3.3 V, and the Motorola 6805
[21], which operates at 5.5, 3.3, and 2.2 V. This comparison
highlights the importance of the number of available speeds as
an important evaluation parameter for DVS algorithms. Our re-
sults for these processors are shown in Table VII. Here too, the
GNF method outperforms VSLP for all task sets with high pro-
cessor utilization.

We next evaluate the performance of the minimum-cost net-
work flow model for . We compare the minimum-cost net-
work flow method to VSLP and LPEDF. Since the minimum-
cost models for are scalable to processor models with a
large number of speeds, we first consider these kinds of pro-
cessors. Therefore, similar to the processor model used in [22],
we assume that the maximum operating frequency of the CPU

is 100 MHz at 3.3 V and the minimum frequency is 8 MHz at
0.264 V (note, however, that LPEDF uses an infinite range of
frequencies). To solve our models, we used a scaling-based net-
work flow solver [4], [6].

The three methods are evaluated with the same data sets, and
the results are presented in Table VIII. The solutions of the
minimum-cost models closely match the solutions generated by
VSLP and LPEDF. However, unlike the GNF models, the execu-
tion times for solving the minimum-cost method for all task sets
were comparable to the execution times of VSLP and LPEDF.
Thus, this method results in efficient solutions in runtimes that
are comparable to VSLP and LPEDF.

For processor models with a few speeds, the minimum-cost
method results in better solutions than VSLP. We also gener-
ated minimum-cost models for the Crusoe processor (with five
speeds) and compared the results with 5-VSLP. These results
are presented in Table IX. For task sets of low utilization, the

SWAMINATHAN AND CHAKRABARTY: NETWORK FLOW TECHNIQUES FOR DVS IN HARD REAL-TIME SYSTEMS 1397

TABLE VI
COMPARISON OF GNF AND D-LPEDF [14]

TABLE VII
RESULTS FOR THE INTEL 486DX2 AND MOTOROLA 6805 PROCESSORS

TABLE VIII
EXPERIMENTAL RESULTS FOR THE MINIMUM-COST MODEL FOR P FOR

TASK SETS OF VARYING UTILIZATION USING THE ARM PROCESSOR MODEL

minimum-cost model generates optimal-energy schedules. For
task sets with higher processor utilization, the minimum-cost
method begins to diverge from the optimal solution, but still per-
forms slightly better than 5-VSLP.

VII. CONCLUSION

In this paper, we have solved the problem of minimizing
the energy consumption of an embedded CMOS processor
in a hard real-time system optimally using network flow
techniques. We have developed a GNF model for the DVS

TABLE IX
COMPARISON OF FIVE-SPEED VARIANTS

problem when voltage switches are limited to task boundaries.
The GNF problem can be solved efficiently when the CPU
can operate only at a small number of admissible speeds.
We have proved that the solutions generated using the GNF
method are optimal and represent theoretical upper bounds
on energy savings that can be achieved using DVS. The GNF
method for discrete-speed processors performs significantly
better than competing schemes. The models are also scalable
to large real-life task sets. For processors with a large range
of frequencies, we have shown how can be modeled as
a minimum-cost network flow graph and solved using a fast
solution algorithm to generate near-optimal task and voltage
schedules in reasonable periods of time. This technique is as
efficient as the best results published thus far in the literature
with processors with a large range of frequencies, and performs
better than competing methods when the processor speeds are
limited to a small set of discrete frequencies.

As part of future work, we are investigating network flow
models for intratask voltage scaling and network flow model
that consider voltage transition time and energy.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms and Applications. Englewood Cliffs, NJ: Prentice-Hall,
1993.

[2] “AMD PowerNow! Technology Platform Design Guide for Embedded
Processors,”, AMD Document Number 24 267a, Dec. 2000.

[3] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A. Veidenbaum,
and A. Nicolau, “Profile-based dynamic voltage scheduling using pro-
gram checkpoints in the COPPER framework,” in Proc. Design Automa-
tion Test Conf. Eur., 2002, pp. 168–176.

[4] CS2. An Implementation of a Scaling Push-Relabel Algorithm for the
Minimum-Cost Flow/Transportation Problems [Online]. Available:
http://www.avglab.com/andrew/soft.html

[5] Transmeta Crusoe TM5500 Data Sheet [Online]. Available:
http://www.transmeta.com/developers/crusoe_docs.html

[6] A. V. Goldberg, “An efficient implementation of a scaling minimum-cost
flow algorithm,” J. Algorithms, vol. 22, pp. 1–29, 1997.

[7] I. Hong, M. Potkonjak, and M. B. Srivastava, “On-line scheduling of
hard real-time tasks on variable-voltage processor,” in Proc. Int. Conf.
Computer-Aided Design, 1998, pp. 653–656.

[8] C.-H. Hsu, U. Kremer, and M. Hsiao, “Compiler-directed dynamic
voltage/frequency scheduling for energy reduction in microprocessors,”
in Proc. Int. Symp. Low-Power Electron. Design, 2001, pp. 275–279.

[9] C.-H. Hsu and U. Kremer, “The design, implementation and evaluation
of a compiler algorithm for CPU energy reduction,” in Proc. Conf. Pro-
gram. Lang. Design Implementation, 2003, pp. 38–48.

[10] Intel Embedded SL Enhanced 486DX2 Processor [Online]. Available:
http://www.intel.com

[11] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynami-
cally variable voltage processors,” in Proc. Int. Symp. Low-Power Elec-
tron. Design, 1998, pp. 197–202.

1398 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 10, OCTOBER 2004

[12] Operations Research Models and Methods, P. A. Jensen and J. F. Bard.
[Online]. Available: www.ormm.net

[13] N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, and H. Shin, “Visual as-
sessment of a real-time system design: Case study on a CNC controller,”
in Proc. Real-Time Syst. Symp., 1996, pp. 300–310.

[14] W.-C. Kwon and T. Kim, “Optimal voltage allocation techniques for
dynamically variable voltage processors,” in Proc. Design Automation
Conf., 2003, pp. 125–130.

[15] J. Luo and N. K. Jha, “Static and dynamic variable voltage scheduling
algorithms for real-time heterogeneous distributed embedded systems,”
in Proc. Int. Conf. VLSI Design, 2002, pp. 719–726.

[16] E. L. Lawler and C. U. Martel, “Scheduling periodically occurring tasks
on multiple processors,” Inform. Process. Lett., vol. 12, no. 1, pp. 9–12,
1981.

[17] S. Lee and T. Sakurai, “Run-time voltage hopping for low-power real-
time systems,” in Proc. Design Automation Conf., 2000, pp. 806–809.

[18] J. W. S. Liu, Real-Time Systems. Englewood Cliffs, NJ: Prentice-Hall,
2000.

[19] A. Manzak and C. Chakrabarti, “Variable voltage task scheduling algo-
rithms for minimizing energy,” in Proc. Int. Symp. Low-Power Electron.
Design, 2001, pp. 279–282.

[20] C. Martel, “Preemptive scheduling with release times, deadlines, and
due times,” J. ACM, vol. 29, pp. 812–829, 1982.

[21] Motorola 6805 Processor [Online]. Available: http://www.motorola.com
[22] G. Quan and X. Hu, “Energy efficient fixed-priority scheduling for real-

time systems on variable voltage processors,” in Proc Design Automa-
tion Conf., 2001, pp. 828–833.

[23] T. Sakurai and A. R. Newton, “Alpha-power law MOSFET model and
its applications to CMOS inverter delay and other formulas,” IEEE J.
Solid-State Circuits, vol. 25, pp. 584–594, Apr. 1990.

[24] Y. Shin and K. Choi, “Power conscious fixed priority scheduling for
hard real-time systems,” in Proc. Design Automation Conf., 1999, pp.
134–139.

[25] D. Shin and J. Kim, “A profile-based energy-efficient intra-task voltage
scheduling algorithm for hard real-time applications,” in Proc. Int. Symp.
Low-Power Electron. Design, 2001, pp. 271–274.

[26] D. Shin, J. Kim, and S. Lee, “Intra-task voltage scheduling for low-en-
ergy hard real-time applications,” IEEE Design Test Comput., pp. 20–30,
2001.

[27] H. S. Stone, “Multiprocessor scheduling with the aid of network flow
algorithms,” IEEE Trans. Software Eng., vol. SE-3, pp. 85–93, Jan. 1977.

[28] V. Swaminathan and K. Chakrabarty, “Generalized network flow tech-
niques for dynamic voltage scaling in hard real-time systems,” in Proc.
Int. Conf. Computer-Aided Design, 2003, pp. 21–25.

[29] J. Xu and D. L. Parnas, “Priority scheduling vs. pre-run-time sched-
uling,” Int. J. Time-Critical Comput. Syst., vol. 18, pp. 7–23, 2000.

[30] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
CPU energy,” in Proc. IEEE Annu. Foundations Comput. Sci., 1995, pp.
374–382.

[31] F. Zhang and S. T. Chanson, “Processor voltage scheduling for real-time
tasks with nonpreemptable sections,” in Proc. Real-Time Syst. Symp.,
2002, pp. 235–245.

[32] Y. Zhang, X. Hu, and D. Chen, “Task scheduling and voltage selection
for energy minimization,” in Proc. Design Automation Conf., 2002, pp.
183–188.

Vishnu Swaminathan received the B.E. degree in
computer science and engineering from the Univer-
sity of Madras, Chennai, India, in 1996 and the M.S.
and Ph.D. degrees in electrical and computer engi-
neering from Duke University, Durham, NC, in 1999
and 2003, respectively.

He is currently a Researcher at Duke University.
His research interests are in low-power system de-
sign, dynamic power management, and real-time op-
erating systems.

Krishnendu Chakrabarty (S’92–M’96–SM’00)
received the B.Tech. degree from the Indian Institute
of Technology, Kharagpur, India, in 1990, and the
M.S.E. and Ph.D. degrees from the University of
Michigan, Ann Arbor, in 1992 and 1995, respec-
tively, all in computer science and engineering.

He is currently an Associate Professor of Elec-
trical and Computer Engineering at Duke University,
Durham, NC. From 2000 to 2002, he was also a Mer-
cator Visiting Professor at the University of Potsdam,
Potsdam, Germany. His current research projects

include: design and testing of system-on-a-chip integrated circuits; embedded
real-time systems, distributed sensor networks; modeling, simulation, and
optimization of microelectrofluidic systems; microfluidics-based chip cooling.
He is a coauthor of two books: Microelectrofluidic Systems: Modeling and
Simulation (Boca Raton, FL: CRC Press, 2002) and Test Resource Partitioning
for System-on-a-Chip (Norwell, MA: Kluwer, 2002), and an editor of SOC
(System-on-a-Chip) Testing for Plug and Play Test Automation (Norwell, MA:
Kluwer, 2002). He has published over 160 papers in journals and refereed
conference proceedings, and holds a US patent in built-in self-test.

Dr. Chakrabarty is a Member of ACM, ACM SIGDA, and Sigma Xi. He is a
recipient of the National Science Foundation Early Faculty (CAREER) Award
and the Office of Naval Research Young Investigator Award. He received a
best paper award at the 2001 Design, Automation, and Test in Europe (DATE)
Conference. He is also the recipient of the Humboldt Research Fellowship,
awarded by the Alexander von Humboldt Foundation, Germany. He is an
Associate Editor of IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF

INTEGRATED CIRCUITS AND SYSTEMS, an Editor of the Journal of Electronic
Testing: Theory and Applications (JETTA), and a member of the editorial
board for Sensor Letters and the Journal of Embedded Computing. He has also
served as an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS—PART II: ANALOG AND DIGITAL SIGNAL PROCESSING. He serves as
Vice Chair of Technical Activities of the IEEE’s Test Technology Technical
Council and is a Member of the program committees of several IEEE/ACM
conferences and workshops.

	toc
	Network Flow Techniques for Dynamic Voltage Scaling in Hard Real
	Vishnu Swaminathan and Krishnendu Chakrabarty, Senior Member, IE
	I. I NTRODUCTION
	II. R ELATED P RIOR W ORK ON DVS
	III. B ACKGROUND
	A. DVS
	B. Problem Description
	C. Network Flow Models

	Fig. 1. Example of a convex cost function.
	Fig. 2. Transformation of arcs in a convex cost model to arcs in
	IV. GNF M ODEL FOR ${\cal P}_{\rm cpu}$

	Fig. 3. GNF model for ${\cal P}_{\rm cpu}$.
	A. Proof of Energy-Optimality
	Theorem 1: The costs associated with the speed selection arcs in
	Proof: Recall from Section III-C that the flow into a job node $

	Theorem 2: The objective function and constraints that are model
	Proof: Since we wish to minimize the total energy consumed by th

	Fig. 4. GNF Model for three-speed ${\cal P}_{\rm cpu}$.
	B. GNF Model for ${\cal P}_{\rm cpu}$ With More Than Two Speeds
	C. Graph Complexity

	Fig. 5. Calculation of arc slopes for a three-speed processor.
	V. M INIMUM -C OST M ODEL FOR ${\cal P}_{\rm cpu}$
	A. Construction of the Model
	B. Validation of the Minimum-Cost Model

	Fig. 6. Minimum-cost model for ${\cal P}_{\rm cpu}$.
	Fig. 7. Postprocessing algorithm for the correct assignment of s
	C. Complexity of the Minimum-Cost Model for ${\cal P}_{\rm cpu}$
	VI. E XPERIMENTAL R ESULTS

	TABLE I A VAILABLE S PEED AND V OLTAGE S ETTINGS FOR THE F IVE -
	TABLE II D ETAILS OF E VALUATION T ASK S ETS
	TABLE III C OMPARISON OF GNF W ITH E XECUTION AT A S INGLE P ROC
	TABLE IV C OMPARISON OF GNF AND VSLP [22]
	TABLE V C OMPARISON OF GNF AND LPEDF [30]

	TABLE VI C OMPARISON OF GNF AND D-LPEDF [14]
	TABLE VII R ESULTS FOR THE I NTEL 486DX2 AND M OTOROLA 6805 P RO
	TABLE VIII E XPERIMENTAL R ESULTS FOR THE M INIMUM -C OST M ODEL
	VII. C ONCLUSION

	TABLE IX C OMPARISON OF F IVE -S PEED V ARIANTS
	R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: The

	AMD PowerNow! Technology Platform Design Guide for Embedded Proc
	A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A. Veidenb

	CS2. An Implementation of a Scaling Push-Relabel Algorithm for t
	Transmeta Crusoe TM5500 Data Sheet [Online] . Available: http://
	A. V. Goldberg, An efficient implementation of a scaling minimum
	I. Hong, M. Potkonjak, and M. B. Srivastava, On-line scheduling
	C.-H. Hsu, U. Kremer, and M. Hsiao, Compiler-directed dynamic vo
	C.-H. Hsu and U. Kremer, The design, implementation and evaluati

	Intel Embedded SL Enhanced 486DX2 Processor [Online] . Available
	T. Ishihara and H. Yasuura, Voltage scheduling problem for dynam
	Operations Research Models and Methods, P. A. Jensen and J. F. B
	N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, and H. Shin, Visua
	W.-C. Kwon and T. Kim, Optimal voltage allocation techniques for
	J. Luo and N. K. Jha, Static and dynamic variable voltage schedu
	E. L. Lawler and C. U. Martel, Scheduling periodically occurring
	S. Lee and T. Sakurai, Run-time voltage hopping for low-power re
	J. W. S. Liu, Real-Time Systems . Englewood Cliffs, NJ: Prentice
	A. Manzak and C. Chakrabarti, Variable voltage task scheduling a
	C. Martel, Preemptive scheduling with release times, deadlines,

	Motorola 6805 Processor [Online] . Available: http://www.motorol
	G. Quan and X. Hu, Energy efficient fixed-priority scheduling fo
	T. Sakurai and A. R. Newton, Alpha-power law MOSFET model and it
	Y. Shin and K. Choi, Power conscious fixed priority scheduling f
	D. Shin and J. Kim, A profile-based energy-efficient intra-task
	D. Shin, J. Kim, and S. Lee, Intra-task voltage scheduling for l
	H. S. Stone, Multiprocessor scheduling with the aid of network f
	V. Swaminathan and K. Chakrabarty, Generalized network flow tech
	J. Xu and D. L. Parnas, Priority scheduling vs. pre-run-time sch
	F. Yao, A. Demers, and S. Shenker, A scheduling model for reduce
	F. Zhang and S. T. Chanson, Processor voltage scheduling for rea
	Y. Zhang, X. Hu, and D. Chen, Task scheduling and voltage select

