NETWORK FLOWS AND COMBINATORIAL
OPTIMIZATION

R. Chandrasekaran
UT Dallas

July 8, 2004

Chapter 1

Matching and Related
Topics

This chapter includes several related problems that we have chosen to label as
matching. There is a book on the topic by Lovasz and Plummer. There are
several perspectives on this problem, and depending on the view point, we get
different versions of this problem.

1.1 Problem:

Let G = [N, E] be an undirected graph. M C E is a matching if no two edges in
M meet. In other words, no node in N has more than one arc of M incident at it.
Given weights c, for e € E, the problem of maxas)¢ ce is called the weighted
matching problem or simply the matching problem. When ¢, =1V e € E, the
problem is known as the cardinality matching problem. Often, the method to
solve cardinality problem is used as a subroutine for the general problem in a
primal dual format.

A node is free (exposed) relative to a matching M if no edge of M is incident
at it. A matching is said to be perfect if it leaves no node exposed. A necessary
condition for a perfect matching to exist in a graph is that |N| is even. A path is
said to be alternating with respect to M if its alternate edges belong to M and
others do not. Thus, if the path consists of edges ey, es, ...,e, and if e; € M,
then all odd numbered edges are in M and even ones are not; if e; ¢ M, then
all odd ones are not in M and even ones are in M. A path is augmenting if it
is a simple alternating path with its end nodes exposed.

Theorem 1 A matching is of mazimum cardinality iff 3 no augmenting path
relative to it.

Proof: “Only if” is clear. To prove the if part: assume M and P are any two
matchings. Consider the graph G® = [N, PAM] where PAM = (P — M) U
(M — P). Let solid lines indicate edges of (P — M) and dashed lines the edges
of (M — P). Then, since there can be no more than one edge of M and one of P
incident at any node, there can be no more than two at any node in G®. Thus,
this graph consists of components each of which is a cycle or a path. In either
case, the edges are alternating in and out of M and P. Thus, each component
looks like one of the following diagrams:

M| A B ---| C D | E
@iy | A B --| C D
iy | A - B Cr—D
(iv) | A
- A

F B
) 1

E C

b

In cases (i), (iv), and (v), the number of edges in (P — M) and (M — P) are
equal. In case (ii), (P — M) has one more edge, and in case (iii), (M — P) has
one more. If |P| > |M]|, then we must have at least one occurrence of case (ii),
and this is an augmenting path relative to M.O

Although this theorem is a characterization, it is far from being useful at
this stage. J. Edmonds’ contribution was in making the process of finding
such a path efficient.

1.2 Weighted Matching

If IN| is even and ¢, > 0V e € E (we are assuming without loss of generality
that the graph is complete now), then it should be clear that 3 an optimal
solution that is a perfect matching. If we require the matching to be perfect

in the weighted matching problem, then it is called a perfect matching problem.
While the WMP is always feasible, PMP may not be. Since feasibility of PMP
requires |N| to be even, we will assume this to be the case when dealing with
PMP. Since the number of edges in any perfect matching is |N| /2 (a constant
for a given graph), the problem with ¢, = ¢, + K for V e € E is equivalent to
the original problem. Thus, we may assume in PMP that ¢, > 0V e € E. Thus,
PMP can be converted to WMP. To show that the converse is also possible, we
first drop the edges with negative weights. Now add those edges not present with
a weight equal to 0 to make a complete graph (and add a vertex if necessary
to make |N| even) and now do a PMP on the resulting structure. Note the
resulting PMP is feasible. Since the two problems are equivalent, we will only
consider PMP from now on.

Integer Programming Formulation of PMP:

_ 1 ee M
=10 e¢M

Ze:e:(i,j) Te=1VieN (11>
max), .pCele

The constraint matrix is totally unimodular iff the graph is bipartite. In this
case, the problem is known in the literature as the assignment problem and can
be solved as a linear program. The LP dual of the above problem (the dual of
the above problem ignoring integrality requirements) is:

Yi +y; > c. Ve e E wheree= (i,)

min Y y; (1.2)

Lemma 2 For any feasible solution to the LP dual and any perfect matching
of G (i.e. an integer feasible solution to the primal), we have Y c. <> y;. If
equality holds for such a pair of solutions, then they are optimal to the respective
problems.

This is actually weaker than the usual weak duality result because of the
integrality requirement. The following example shows we may not always be
able to find such a pair where equality holds.

4.5 2.5

1 5 4
©

CS N DI
> 4

5 2.5 3.5 6

5
1.5 4.5

In this example, M* = {(1,3),(2,6),(4,5)} and }_ . p+ce = 18; the optimal
dual solution is y* = [4.5,1.5,2.5,2.5,3.5,4.5] and >y = 19.

Example:

For bipartite graphs, this equality holds, and this is shown by the Hungarian
algorithm which is a primal dual algorithm for this problem. Before we proceed
to describe this algorithm, we need a definition.

A subset H of nodes is said to be Hungarian relative to a graph G if: (i)
no two nodes of H are connected in G and (ii) the set Ng(H), of neighbors of
H in G (which is the set of nodes of G that are connected to some node of H)
satisfies the condition |Ng(H)| < |H]|.

N(H)

Clearly, if a graph G contains a Hungarian set, then it can have no perfect
matching (whether or not the graph G is bipartite). The algorithm will show
that, for bipartite graphs, the converse is also true. However, the converse is not
true for the complete graph on three points or for that matter any odd cycle.
Actually a stronger version is true for bipartite graphs as in:

Theorem 3 For any bipartite graph G = [S, T; A], the following statements are
equivalent:

(1) 3 no perfect matching in G.
(ii) 3 a Hungarian set H wholly contained in S or T.

For any edge weighted undirected bipartite graph G that contains a perfect
matching, the maximum in the primal is equal to the minimum in the LP dual.

Corollary 4 If c. are integral in addition, 3 an integral solution that is optimal
to the LP dual if 3 an optimal solution to this problem.

Corollary 5 If G has no perfect matching, then the LP dual is unbounded.

All of these results are shown by an algorithm which will be generalized for
nonbipartite graphs. This algorithm is a primal dual algorithm and starts with
an (easily found) dual solution which is integral if ¢, are integral.

1.2.1 Algorithm I: (bipartite version)

Step 1: Find a feasible solution to the LP dual. If all ¢, are integers, then choose
y to be integral (this is always possible). For example, let y; = max ¢, where the
maximum is taken over all edges e incident at node 1. Let y5 = max c. where
the maximum is taken over all edges incident at node 2 that are not incident at
node 1, and so on.

Step 2: Define G°, the current equality graph as follows: G = [S,T; A’]
where A’ ={e € A: f(y) =yi +y; = cc with e = (4,7)}.

Step 3: Use subroutine R; described below which terminates with either a
perfect matching M all of whose edges are in G? or with a set H of nodes
wholly contained in S or 7" which is Hungarian with respect to G°¢. In the
former case, the perfect matching solves the primal and the current y solves the
dual LP and, therefore, the algorithm terminates. In the latter case, go to step
4.

Step 4: If H is Hungarian in G, stop; 3 no perfect matching in the graph G,
and the dual LP is unbounded. Else go to step 5.

Step 5: Use subroutine Ry to change the dual variables (maintaining integrality
of the dual solutions if all ¢, are integral).

This will give an improved dual solution, and the equality graph changes
(“for the better”) and we go to step 3 with a new equality graph. Much of the
work done in R; is unchanged as we will show in R;. The only termination
conditions are in steps 3 and 4. In step 3, we get optimal solutions, and in step
4 we get infeasibility. Now we describe subroutines R; and Rs. Up to this point,
what we have described is nothing more than what is known in LP as primal
dual algorithm’s superstructure. R, describes the algorithm for solving the so
called restricted primal problem. R, is the usual dual variable change found in
primal dual algorithms.

Ry: We have a graph G¢? [which is bipartite with the same partition as G
because G is]. Let M be any matching in G°? (one could start with the ¢ for
example). If the current M is perfect, then we stop as in step 3. If not, let r
be an exposed node relative to M in G°?. We will either augment the current
matching M so that all its nonexposed nodes remain nonexposed and r and
another exposed node are no longer exposed thereby increasing the size of the
matching by one or exhibit a Hungarian set of the type promised containing r.
For this purpose, we start growing a tree with r as its root. The entire tree will
be in G°? and have its alternating edges in M. To begin with, the tree consists
only of r which is declared to be an outer node of the tree. We look for an edge
that connects an outer node of the tree to a node outside the tree through an
arc of G¢. If such an edge is found, there are two possibilities: (i) the end of
this edge that is not in the tree is an exposed node or (ii) it is not. In the first
case, we have an augmenting path connecting the root of the tree to this node,
and we augment the matching by deleting from the matching those edges in this
path that are in M and including those that are not. The tree is dismantled,

and we repeat R; with some node that is an exposed node relative to this new
matching. In case (ii), we grow the tree by including this edge as well as the
edge that is in M that meets this node. Nodes are declared to be alternatively
outer and inner as we go along any path in the tree traversing it from the root.
We now continue to repeat this process until the tree cannot grow any further,
and we do not get case (i). In general, the picture looks like:

. Inner Node of T
. Outer Node of T
\\\ Edge in T-M
AN
. \\\ Edge in Tand M
N N
N ~N. | —— Edge in G - (T+M)
—a

All outer nodes must be in one side of the partition of the nodes in G and so
do the inner nodes which are in the other and |outernodes|= |innernodes|+1. If
we cannot grow the tree and cannot improve the matching, then the set of outer
nodes forms a Hungarian set relative to G°¢, and as promised, it is completely
contained in S or T. Clearly the tree cannot grow for more than n steps, and
the matching cannot grow for more than n/2 steps and, hence, we must either
get a perfect matching or a Hungarian set in polynomial time. When we find a
Hungarian set in G¢Y, we go to Rs.

Ry: If H is the Hungarian set in G°?, then there are two possibilities: (i)
it is also Hungarian in G, in which case G does not have any perfect matching
and we will show that the dual is unbounded; (ii) H is not Hungarian in Gji.e.
Ng(H) D Ngea(H). Hence, 3 edges in G that are not in G°¢ joining an outer

node of tree T to a node outside the tree. The inclusion of such an edge in G*?
will allow the subroutine R; to grow the tree further or increase the size of the
matching. We now change the dual solution as follows:

Let € = min[f,(y) — c.] where e = (i, j) where the minimum is taken over all
edges e with one end as an outer node of the tree and the other outside the tree.
Thus, € > 0 and is integral if all ¢, are. If Ng(H) = Nged(H), then € = 0o, and
this will show that the dual is unbounded in this case. The new dual solution
is given by:

/ Y; + € 1 inner node of T’
Yi = { Y — € i outer node of T' (1.3)

It should be clear that 1’ is feasible to the LP dual and all edges whose both
ends are in T are retained in the new G¢ as are those in the current matching.
At least one edge is included in the new G¢? so that the tree can grow. The
only edges that might drop out are those with one end as an inner node and
the other end not in the tree; these are neither in M nor in the tree and, hence,
do not matter for our construction. Thus, we can retain the old M and the
old tree as is. Please note the solution 3’ is better than y for the dual because
>yl =>"y; — € since there are more outer nodes in the tree than inner nodes.
This also shows the unboundedness of the LP dual if € = co. All the theorems
and corollaries have been proven. We have also shown the following theorem:

Theorem 6 G is bipartite <= the extreme points of Pg are precisely the in-
cidence vectors of perfect matchings in G where Pg is defined as:

Pg = {z|z > 0; Z ze =1} (1.4)

e:e=(i,7)

This completes our description of the algorithm for bipartite graphs. We
now turn our attention to the general case.

1.3 General Graph:

The previous formulation as an integer program is still valid. However, if the
problem is solved as an LP, we are no longer guaranteed integrality. Pg has
fractional extreme points (indeed they are multiples of 1/2). We, therefore,
have to introduce inequalities that are satisfied by all integral but not by some
fractional solutions. These constraints are called cuts and were used by R.E.
Gomory. While Gomory’s algorithm would solve the LP and then add one or
a few cuts at a time, J. Edmonds’ idea is to add all the necessary cuts (and a
few redundant ones) at one time a priori. Thus, he gives a direct characterization
of I Pg, the convex hull of integral points in Pg.

T, > 0; ZE:C:(i,j) Te=1VieN }}

IPg = : 1.5
¢ {x { Ze:e:(i7j);i,j65[$€] < LSJ /2 =ds VS CN ()

This is the first such instance where the integer hull has been completely de-
scribed and is different from the set of feasible solutions to the corresponding
LP.

It should be clear that 0/1 vectors satisfying the first two conditions of 1.5
also satisfy the third. Hence, I Ps as defined by 1.5 does include incidence
vectors of all perfect matchings in G. Now it remains to show that the extreme
points of I Pg as defined by these relations are all integral. This is done by
showing that any linear function is maximized at an integer point of I Pg. The
means used for showing this is an algorithm that is strongly polynomial n.

Dual of I P :

y(S)>0VvVSCN
fe) =yi +y; + ZS:iJeS y(S) 2 eV (i,j) =e € E
min[}, yi + > g qsy(S)

A solution ({y:},{y(S)}) is feasible to the dual if the constraints of this LP
are satisfied. The following result is the weak duality theorem applied to these
two problems;

Lemma 7 For any perfect matching M and any feasible y,

D <D ui+ Y asy(S). (1.6)
S

eeM i

If equality holds for a pair that they are optimal solutions to the two problems
respectively also follows from LP duality.

Now we are ready to describe the primal dual algorithm for this case.

1.3.1 Algorithm II:(General Graph)

Step 1: Find a feasible solution to the dual (this is easy). For example, let
y(S) =0V S; and let y; be chosen as in the bipartite case.

Step 2: Define the equality graph G°? as before using the relation e € G <—-
fe(y) = ce.

Step 3: Using R; try to find a perfect matching in G¢4. If one is found, then it
is optimal and the y is optimal to the dual. We now describe R; before stating
Rs . We need this in order to have some terms clarified.

Ry : We start with an arbitrary matching in G? as before. We try to grow a
rooted tree as before starting with an exposed node r as its root. The tree still
consists of edges of which alternate ones are in M and the remaining not in M
as one traverses from the root. Alternate nodes are declared outer and inner
as before with the root being an outer node. We look for an edge in G¢? that
connects an outer node of the tree to a node outside the tree. If we find such

an edge, then there are the same two possibilities as before, and we follow the
same procedures as before in each case. Thus, in one of these, we augment the
matching, and in the other, the tree grows by two edges and two nodes, one of
which is inner and the other is an outer node. If the matching is augmented,
then as before we discard the tree and start growing another from a node that
is exposed relative to the new matching.

All of this is the same as the algorithm for the bipartite case. What is
different is that there is another case to consider now. This is because we may
have the situation in which we are unable to grow the tree, unable to augment
the matching and the outer nodes of the current tree do not form a Hungarian
set in the equality graph. This is caused by the possibility that two outer nodes
of the current tree may be connected by an edge of the equality graph. In this
case, the graph has an odd circuit which was not possible in the bipartite case
and is now.

- D . Pseudo-Outer Node
- —‘:v:w . Inner Node of T
D Outer Node of T
Before Shrinking
the Blossom .
Edge in T-M
77777 Edge in Tand M
"""""""" Edge in G - (T+M)
i | Blossom |
- L] []
—
After Shrinking
the Blossom
'
£
2
N : 7]
BB

If two outer nodes of the tree are connected by an edge in G¢?, then the
odd circuit created by adding this edge to the tree is called a blossom, and the
path from the root to the node in this circuit closest to the root in the tree is
called the stem. These two are together called a flower. Please note that the

node common to the stem and the blossom is an outer node of the tree. We
now do an operation called shrinking which is done simultaneously on the
blossom, the tree, the matching, the equality graph and the original
graph (at least conceptually). This operation is what we called condensing of
nodes in multi terminal flows. The resulting node of the tree is called a pseudo
node. Thus, the blossom condenses to a single outer node which is a pseudo
node.

Thus, at any stage of the algorithm, we have a shrunken graph G, a
shrunken equality graph G¢¢, a shrunken matching M, and a shrunken tree
T as well their original counterparts. There are real and pseudo nodes which
may have in them real and/or pseudo nodes. However, the number of real nodes
inside a pseudo node is odd at all times. The term current pseudo nodes refers
to the outermost (or equivalently the largest) of the pseudo nodes in the nested
family. Thus, there are pseudo nodes inside pseudo nodes and these are not
current. Also, we may not unshrink a pseudo node unless we are forced to do
so, and because of this, there may, at any time, be some pseudo nodes that are
inner nodes of the current tree. There are only two instances in the algorithm
that force the unshrinking of a pseudo node: (i) we find a perfect matching in
the shrunken equality graph and want to expand this to a perfect matching in
the equality (unshrunken) graph, and (ii) dual variable of a pseudo node goes
down to 0 (this will only happen if this pseudo node is an inner node of the
tree). One could also unshrink whenever the matching is augmented; while this
is conducive to a simpler explanation of the algorithm, it is inefficient for the
algorithm itself and, therefore, we will not do this.

If at some stage we are unable to augment the matching, or grow the tree, or
shrink some blossom, then the outer nodes (real and pseudo) form a Hungarian
set in the shrunken equality graph G¢¢. Now we go into the subroutine Ry that
makes the change in dual variables. If this set is Hungarian in G, the shrunken
graph, then we will show that G does not have a perfect matching, and the dual
problem is unbounded.

Ry: Choose € as large as possible subject to the following conditions:

I For every edge e of G5, — GG5¢ whose one end is an outer node of T and the
other is not in T, € < fe(y) — ce-

IT For every edge e of Gy — G¢? both of whose ends are outer nodes of
T e < (fe(y) - Ce)/z'

IIT For every S which represents the set of all real nodes corresponding to a
current inner pseudo node of T, e < y(S)/2.

Now change the dual variables as follows:

, { y; — € ireal outer or € pseudo outer node of T’

Yi=\ yi+e irealinner or € pseudo inner node of T (1.7)

10

S)+2¢ S a current pseudo outer node of T'
Vs ={ 13 b (1.8

y(S) —2¢ S a current pseudo inner node of T

Clearly the new y is feasible to the dual and ¢y'(S) >0V S C N. Also we
will assume that y(S) > 0 for all the current pseudo inner nodes of T For,
otherwise, ¢ may not be positive and y’ = y.

Let us see the effect of these dual variable changes on various structures we
have introduced so far. Clearly, edges both of whose ends are outside the tree
will not be affected since f.(y) does not change for these. The same is true for
edges both of whose ends is inside the same pseudo node (whether this is inner
or outer or outside the tree). If an edge has both ends as outer nodes of the tree
or inside distinct outer nodes of the tree, then f.(y) decreases by 2¢; however, e
was chosen so that the new solution is still feasible. One of these edges is added
to G if € is determined by (II), and in this case, we will be able to shrink the
tree further. If both ends of an edge are inner nodes or inside inner nodes of the
tree, then this edge will drop out of G¢9; however, this is of no concern since this
edge is not in My nor in the tree. If one end is an outer node or inside one and
the other is an inner node or inside one, then f.(y) is unchanged and, hence, is
not affected. Edges with one end an inner node of the tree or inside one and
the other outside the tree will have an increase in f.(y) and, hence, may drop
out; but again this is of no concern. Edges with one end an outer node of the
tree or inside one and the other outside the tree will have a decrease in f.(y),
and one of these may be added to G¢4 if € is determined by (I), and in this case,
the tree will be able to grow.

While changing the dual variables if € is determined by (III), then y'(S) = 0
for some pseudo inner node, and this is one instance where we are forced to
unshrink this pseudo node; we, however, do this only for one layer. By this, we
mean we do not unshrink any pseudo node inside this pseudo node. We will
explain this process now.

This part drops out of T
i e
DK T

[

Expansion of a pseudo-inner node

11

Let e1 be the edge of the matching that is incident at the pseudo node S. Let
e2 be the edge incident at S on the path from S to the root of the tree. (This
exists because S is inner). Let the blossom that induced the creation of pseudo
node S be B. Unshrinking the blossom is the following process: edges incident at
the node in the blossom that meets e; are not used in the matching’s completion
within the blossom; the ones adjacent to these are, and the remaining ones are
alternatively in and out of the matching. The even path in the blossom between
the two nodes of the blossom that meet edges e; and e is retained in the tree,
and the odd one is dropped from the tree; the nodes are labeled as outer and
inner in the usual manner. See the diagrams below. After this process, we may
still have pseudo nodes some of which now become current. Please note that
only inner pseudo nodes are unshrunk. For this purpose, we remember only the
odd circuit of the blossom but not the original matching because the final one
bears no relationship to the original. The edges of the blossom that drop out of
the tree still remain in the equality graph. Now we go back to Ry in step 3.

Termination of the algorithm: In step 3, we terminate if we find a perfect
matching in G¢¢ by unshrinking one step at a time and recovering the perfect
matching in G°? just as we have described the process of unshrinking before.
The other possibility is that at some stage of the algorithm we are unable to
augment the matching, grow the tree, shrink the tree, and the set of outer nodes
in the tree T, is Hungarian in not only G¢¢ but also G5. Further, there are no
pseudo inner nodes to limit the value of €. Thus, in this case ¢ = oo, and the
dual is unbounded. Although we are not guaranteed a Hungarian set in GG, there
is no perfect matching in G because out of each pseudo node, at least one real
node inside it will have to be matched to a node outside this set, and there are
not enough to go around.

The number of times M can increase is at most |N| /2. The number of times
we shrink a blossom (between two matching augmentations) is no more than
|N|/2. Please note that shrinking results in a pseudo outer node. Unshrinking
is done only on pseudo inner nodes, and this cannot be done more than |N|/2
times either (without augmenting the matching). Thus, in polynomial time, we
must either find that the outer nodes form a Hungarian set in G5 or augment
the matching. Thus, the whole algorithm is strongly polynomial and finds the
optimal perfect matching when one exists and shows that none exists when this
is the case.

This completes our description of the matching algorithm. We will discuss
some “applications” of this problem and its extensions.

1.4 Applications:

1. 2-machine UET Shop: In this problem, we have n jobs each of which
has to be processed on one of two identical machines A and B. All the

12

processing times are equal (and hence taken to be 1). In addition, there
are precedence constraints on the jobs. It is assumed that no preemption
s allowed. We want to minimize the makespan which is the total time
required to finish all the jobs. In [FKN] is a formulation of this problem
as a cardinality matching problem as follows: Let a graph G be defined
as G = [N, E] where the nodes correspond to the jobs and edges to pairs
of jobs which can be processed simultaneously (have no direct or implied
precedents). Clearly, in the final schedule jobs that are processed in the
same time slot (since all processing times are equal to 1, we can define
these entities) will correspond to nodes that are joined by an edge in G.
The length of the schedule is |[N| — the number of slots with two jobs.
Hence, the problem of minimizing schedule length is equivalent to maxi-
mizing the number of slots with pairs of jobs. Clearly, there is a matching
corresponding to any feasible schedule in that the edges correspond to
pairs of jobs that occupy the same slot. If we show the converse, then the
formulation will be complete. To do this, let M be a matching. If there
are single jobs (those that are left exposed by the matching) which have
no predecessors, then process them in the beginning of the schedule. If
there is a pair of jobs (corresponding to an edge in the matching) both of
which have no predecessors, then process these in the first time slot. If
neither is true, then we modify the matching to another with the same
cardinality in which one of these conditions is satisfied. This process can
be repeated, and we get a corresponding schedule. For this purpose, let
there be no single job or any pair corresponding to an edge in the matching
without predecessors. Let job 1 be a job without predecessors (3 such a
job if there is a feasible schedule), and because of the above conditions, let
1 be paired with 2 in the matching. Since 2 has predecessors, let 3 be the
job obtained by following the chain of predecessors of 2 such that 3 has
no predecessors (again 3 such a job). Job 3 is paired with some other job,
say 4. 4 is clearly different from 1 and 2. If 2 and 4 can be processed at
the same time slot, then interchange the edges (1,2) and (3,4) to form a
new matching (1,3) and (2,4). Now the pair (1, 3) is without predecessors
and can be processed first. If not, we get another pair(5,6) of this type
and at the end of this process, we get the interchange of the type above.
Thus, corresponding to any matching (after some interchanges) we get a
schedule with as many pairs as there are edges in the matching. Thus, the
formulation is correct.

. Odd/Even Shortest Routes: Given an undirected graph G = [N, E|
whose edges have positive lengths, we want the shortest among paths
between s and ¢ that have an odd/even number of edges. To formulate
the problem as a matching problem define a graph H = [NUN’, FEUE'UW|
where for each i € N 3 its clone i’ € N’ and for each edge e = (4, j) with
i,7 € N3 its clone €' = (i, j') and these together from E’. W consists of

13

all edges in H of the form (7,i"). These W edges have ¢, = 0; all other
edges have the same weight as their original lengths or the length of the
edge of which it is a clone. Now depending on whether we are interested
in paths with odd or even number of edges we remove the pair of nodes
{s',t'} or the pair {s',t} from H and let the resulting graph be denoted
by F'. Now we solve the perfect matching problem in F' to get the optimal
path. This is done by deleting from this optimal matching edges of the
type (4,4'). It is easy to see that because all lengths are positive, the
edges in the optimal matching other than those that from the path of the
desired type the only edges are of the type (¢,4"). Thus, the equivalence
is established.

. The Chinese Postman Problem: This problem has a very interesting
history and is indeed considered by many to be one of the first problems
of graph theory. It deals with Euler’s solution of the famous Kénigsberg
bridge problem. Euler showed that in order to be able to traverse all the
edges of an undirected graph in a continuous walk without repeating any
edge the graph must have even degree at each node and be connected. Such
graphs are now called Eulerian graphs. The corresponding condition for
directed graphs is that the graph be strongly connected and the indegree
at each node equal its outdegree. If an undirected graph has two nodes
whose degrees are odd, then such a traversal is possible if we start at
one of these nodes and are allowed to finish at the other. If this number
exceeds two (and it is known that this number is always even), then in
order to traverse all the edges, we will be forced to repeat some edges
and the question is of repetition of minimal total length. Similarly, if such
traversal is impossible for a directed graph, repetition is necessary and the
optimal repetition, in this case, can be found by solving a transportation
problem after some “preprocessing” using shortest route algorithms. The
problem of repetition of some edges so as to make an undirected graph
Eulerian with minimal repetition is what we solve by matching now. First,
we solve the problem of determining the shortest paths between all pairs of
nodes (for this purpose, we assume that lengths of all edges in the original
graph to be positive). Now we define another graph H whose nodes are
the nodes in G whose degree is odd. Each pair of these is connected in
H, and the length of the edge (i, j) in H is the length of the shortest
path between i and j in G. In H, we solve the perfect matching problem.
We repeat the paths in G that correspond to the edges in the optimal
matching in H, and this is the required solution for the Chinese Postman
problem in G. To prove this algorithm “works,” we state the following
results. No edge of G is traversed more than twice in the optimal traversal.
Indeed, we can strengthen this result, too. If we let Q = [N, D] where D is
the set of edges that are repeated, then 3 no cycle in Q. Thus, @ is forest.
Further, the parity of the degree in G and @Q is the same for all nodes (i.e.,

14

odd nodes in G are odd in @) and even ones are even). This forest can be
decomposed into paths between odd nodes which are disjoint in the edges
they use as well as their tip nodes. Thus, they form a matching in H.
Hence, the result follows.

4. Bidirected Flows: Consider the problem:
[mincz : ¢ > 0; Az = b; x integer] (1.9)

where A is a matrix whose entries a; ; integral. If A satisfies the condi-
tion >, |a; j| <2V j, then the problem above is called a bidirected flows
problem. Of course, this implies that the elements of A € {0,+1,+2}, and
there are, at most, two nonzeroes in every column of A, and if there are
two, both of them must be £1. It is usual to assume that the variables
have upper and lower bounds in addition. (Otherwise such bounds can
be found on the optimal values of the variables). It is an easy exercise
to show that it is possible to convert all entries to +1’s and satisfy these
conditions at the same time. Problem of this type is called a b-matching
problem. In many applications, variables in the b-matching problem will
be between 0 and 1. In these cases, we can also make b; = 0 or 1 by
suitable transformations. All this without affecting the size in a nonpoly-
nomial manner. At this point, we have a regular matching problem of
the type we have considered so far. One good example of this type is the
shortest route problem in undirected networks allowing negative edges but
no negative undirected cycles. The usual trick of replacing an edge by two
arcs with opposite directions will immediately create negative cycles in
the corresponding directed version. We have no other means of solving
this problem polynomially except through the use of matching algorithms.
Here then is the formulation: Let

_ 1 €€Ps7t
Xe_{() €¢P5’t

1 1=s,1
Ze:e:(z’,j) Te = { (110)

pe% else
0<a; <1VieN
min) c.ze
Please note that this is a bidirected flows problem and, hence, can be

converted to matching since the bounds are 0, 1.

5. T-joins and T-cuts: This application is very useful in multicommodity
flows. In particular, much of the work on planar networks etc. is based
on this concept. it is taken up in a separate section later on.

This completes our description of the applications although there is a prob-
lem in geometry dealing with decomposition of a simple polygon into minimal
number of convex polygons (see Chazelle and Dobkin).

15

‘We now introduce the related problem of finding an independent set of nodes
that has the maximum weight. Given an undirected graph G = [N, E], a subset
S of nodes is called an independent set if 4 no edge connecting a pair of nodes
in S.

1.4.1 Problem III:

Given G = [N, E] and node weights v;, find an independent set with maximum
weight. This problem in general is NP-hard. If G is perfect, then it is nicely
solvable. The connection of this to the matching problem is established in the
following result.

Lemma 8 The matching problem is a special case of the independent set prob-
lem.

Proof: Given a weighted matching problem on G = [N, E] define another
graph L(G) = [E.F], (called the line graph of G) whose nodes correspond to
the edges of G and there is an edge in L(G) for each pair of edges in G which
have a common node. With this definition, it is clear that there is a one-to-one
correspondence between matchings in G and independent sets in L(G) and hence
the equivalence of the two problems. Hence, if we know the original graph G
of a line graph L(G), then by solving the matching problem on G, we can solve
the independence set problem on L(G). Given a graph L, there is a polynomial
algorithm that will test if this is a line graph of some graph and produce that
graph if the answer is affirmative. Hence, this is nicely solvable case of the
independent set problem. We now take up an extension to claw free graphs by
Minty.

16

Chapter 2

Claw Free Graphs:

An undirected graph is said to be claw-free if there is no K, , as a subgraph.
The following result shows that this class of graphs includes line graphs.

Lemma 9 Line graphs are claw-free.

Thus, the independent set problem on claw-free graphs includes those on line
graphs and hence matching problems. However, there are claw-free graphs that
are not line graphs and hence this is a proper generalization of the matching
problem. The methods used to solve this problem uses the algorithm of matching
as a subroutine.

What we now describe is due to G. Minty and N. Sbihi.

17

