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Abstract

We study the e¤ects of institutional constraints on stability, e¢ciency and
network formation. An exogenous �societal cover� consisting of a collection of
possibly overlapping subsets covering the set of players speci�es the social or-
ganization in di¤erent groups or �societies�. It is assumed that a player may
initiate links only with players that belong to at least one society that she also
belongs to, thus restricting the feasible strategies and networks. In this setting,
we examine the impact of such societal constraints on stable/e¢cient architec-
tures and on dynamics. We also study stability and stochastic stability in the
presence of decay.
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1 Introduction

In recent years, the study of the economics of networks has attracted considerable
attention from researchers and become one of the hottest topics of economic research1.
The economics of networks is, in Goyal�s words, �an ambitious research program which
combines aspects of markets (e.g., prices and competition) along with explicit patterns
of connections between individual entities to explain economic phenomena� (Goyal,
2007, p. 6).
Several seminal papers provide the basic models of strategic formation of networks.

In the simplest model, links are formed unilaterally (Goyal, 1993, Bala, 1996). In this
setting, Bala and Goyal (2000a) study Nash and strict Nash stability and provide a
dynamic model. A model where links are formed on the basis of bilateral agreements is
studied by Jackson and Wolinsky (1996), who introduce the notion of pairwise stability.
These seminal papers assume homogeneity across players and that the current network
is common knowledge to all node-players. These models have been extended in di¤erent
directions. Bala and Goyal (2000b) introduce imperfect reliability of links. Galeotti
et al. (2006) consider heterogeneous players, while Bloch and Dutta (2009) consider
endogenous link strength. The common knowledge assumption may be unrealistic in
many cases, and indeed is dropped by McBride (2006), who studies the e¤ects of limited
perception, namely, assuming that each node-player perceives the current network only
up to a certain distance from the node.
In the seminal models, networks provide a means for the �ow of information or other

bene�ts through the links, but the current network is assumed to be common knowledge
to all players, who may unrestrictedly initiate links with any other players. This may
be an unrealistic assumption in some cases and, in general, the larger the number of
agents and the network are the more unrealistic it will be. Due to what is generically
referred to here as �institutional constraints� (social, cultural, linguistic, geographical,
economic, etc.), individuals may often see only �part of the world� and initiate links
only within that part or a part of that part. Thus, it seems more realistic to assume that
a set of possibly overlapping groups (family, tribe, clan, club, gender, age, linguistic
community, nationality, professional association, department, etc., depending on the
context) con�gures the social constraints within which individuals interact2. More
precisely, we assume that each individual may initiate links only within the groups
she belongs to. In a way, this is an unorthodox approach if, as put by Goyal, �the
theoretical research on network e¤ects (..) is motivated by the idea that, within the same

1Some recent books surveying this literature are Goyal (2007), Jackson (2008) and Vega-Redondo
(2007).

2The importance of group membership is nowadays widely recognized. A vast literature in psy-
chology deals with the relationship between identity and group membership since at least Tajfel and
Turner (1979) (see also Brewer (1991) and Brewer and Gardner (1996)). In the economic literature,
Akerlof and Kranton (2000) introduce a model where group membership enters the de�nition of a util-
ity function. In the experimental �eld see Chen and Li (2009). See Dev (2010) for a recent attempt
to relate networks and identity formation.
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group [in italics], individuals will have di¤erent connections and that this di¤erence in
connections will have a bearing on their behavior.� (Goyal, 2007, p. 7). Nevertheless,
this is the approach adopted here and it is worth remarking that the orthodox single-
group assumption is in fact a particular case of the more general setting adopted here.
In particular, this allows Bala and Goyal�s (2000a) �two-way �ow� basic model, on
which we concentrate in this paper, to be integrated into a wider model which sheds
new light on various conclusions of their model, showing which prevail and up to which
point, and which do not in this wider setting.
Based on this idea, this paper focusses on the e¤ects of such institutional constraints

on stability, e¢ciency and network formation. More precisely, an exogenous �societal
cover� speci�es social organization in di¤erent groups or �societies�. A societal cover
is a collection of possibly overlapping subsets of the set of players or �societies� that
covers the whole set (i.e., each player belongs to at least one set in this collection) such
that no set in this collection is contained in another. It is assumed that a player may
initiate links only with players that belong to one or more of the societies that she also
belongs to, thus restricting her feasible strategies, and as a consequence the feasible
networks.
It is also assumed that only the part of the current network within each �com-

ponent� of the societal cover (in a sense to be speci�ed later) is common knowledge
to all players in that �component�. Further note that this model collapses to Bala
and Goyal�s (2000a) unrestricted setting for the particular case of the simplest societal
cover consisting of a single society including all players. The notion of societal cover
seems a rather natural constraining structure in the link-formation context. More-
over, we prove a somewhat con�rming result relative to this naturalness: the societal
cover model provides the most general symmetric link-formation constraint that can
be considered. This in particular means that in the context of bilateral link formation
(Jackson and Wolinsky, 1996), where only symmetric constraints make sense, the soci-
etal cover provides a general model of constraint. Of course, other (i.e., non-symmetric)
types of constraints can be considered in the context of unilateral link-formation.
For any given societal cover, we constrain our attention to the admissible networks

(i.e., those consistent with the cover) and �rst extend Bala and Goyal�s (2000a) notion
of a Nash network as those admissible networks where no player has an incentive to
change her strategy, i.e., her choice of admissible links. We then easily extend their
characterization of Nash networks as those among the admissible networks which are
minimally connected. The set of such Nash networks is thus a subset of the set of Bala
and Goyal�s unrestricted Nash networks. Then the notion of strict Nash network is also
naturally extended to this setting. Now a strict Nash network is a network consistent
with the societal cover where no player may initiate and/or delete any admissible link(s)
without loss. By contrast with Nash networks, things turn out to be more complicated
with strict Nash networks. In Bala and Goyal�s setting, the center-sponsored star
is the only (non-empty) architecture of strict Nash networks, while in our setting the
center-sponsored star architecture is feasible only when the �societal hub� is not empty,
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i.e. there is at least one player that shares membership of at least one society with
any other player. Nevertheless, even when the center-sponsored star architecture is
feasible, this might not be the only possible architecture of strict Nash networks. A
variety of architectures of strict Nash networks appear for non-single society covers,
and the more complex the societal cover the greater this variety is. Nevertheless,
some patterns are common to these architectures. Moreover, a full characterization of
all strict Nash networks for a societal cover is provided by means of a condition that
encapsulates synthetically the essence of the architecture of these networks, embodying
a clear hierarchical principle. The main features of their architectures, where stars
continue to play a prominent role, are studied. Particular attention is paid to the
role of players who belong to more than one society, by means of whom di¤erent but
overlapping societies can be connected. It turns out that the two-way �ow model
under societal constraints yields as strict Nash networks the paradigm of hierarchical
structures: either oriented diverging trees (also called �arborescences� in graph theory)
or a sort of �grafted� oriented trees. The latter are proved to be possible only when
there are �hinge-players�, i.e., players who are the unique common member of two or
more societies.
We then apply Bala and Goyal�s dynamic model, where starting from any initial

network each player with some positive probability plays a best response or random-
izes across them when there is more than one, otherwise the player exhibits inertia,
i.e., keeps her links unchanged. In this way, a Markov chain on the state space of
all networks is de�ned. In Bala and Goyal�s setting, the absorbing states are pre-
cisely the strict Nash networks and they prove that starting from any network the
dynamic process converges to a strict Nash network (i.e., the empty network or a
center-sponsored star) with probability 1. When adapted to our setting the best re-
sponse dynamic model does not necessarily lead to strict Nash networks. The reason
is that in our more complex setting this dynamic process may lead to the formation of
partially stable �incomplete� strict Nash incompatible networks that cannot be part of
the same strict Nash network, thus blocking the converging process. Therefore insti-
tutional constraints may hinder the way towards strict Nash networks. Nevertheless,
best response dynamics lead to absorbing sets of minimally connected networks that
we call �quasi-strict Nash networks� and characterize them. Thus, with probability 1,
best response dynamics would lead either to a strict Nash network (whenever the set
of quasi-strict Nash networks reached is a singleton) or one of these absorbing sets of
quasi-strict Nash networks where the best response dynamics would oscillate forever.
Nevertheless stability is reached in terms of payo¤s as it is proved that all quasi-strict
Nash networks within each of these absorbing sets yield the same payo¤s to all players.
We end by examining the impact of decay on this setting. We �rst partially extend

some of Bala and Goyal�s results studying the relative robustness of di¤erent strict
Nash networks in the presence of decay for certain societal covers. It turns out that
when feasible, i.e., when the societal hub is not empty, stars are the most robust strict
Nash networks. More precisely, in the presence of decay stars remain strictly stable
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within a wider range of values for the parameters (cost and level of decay), while other
strict Nash architectures remain stable only within narrower ranges. We then study
stochastically stable networks using Feri�s (2007) dynamic model. We obtain similar
conclusions about the relative robustness of di¤erent strict Nash architectures. We
extend Feri�s (2007) model and show in particular how when the societal hub is not
empty and for all the societies the number of individuals that belong to that society and
only that one is su¢ciently large, stars are the only stochastically stable architectures.
As to e¢ciency in the presence of decay, a general conclusion seems to arise: in the
presence of decay, e¢ciency and stability go basically in the same direction at least
when the societal hub is not empty, as the star centered at the societal hub is the
non-empty architecture with the most robust stability and most e¢cient.
The rest of the paper is organized as follows. In section 2, the basic model is

speci�ed along with the necessary notation and terminology. Section 3 studies stability
and e¢ciency under institutional constraints. In section 4, Bala and Goyal�s dynamic
model is extended to this setting. In section 5, we study the e¤ects of introducing
decay in the model and discuss stability in 5.1, stochastic stability in 5.2 and e¢ciency
in 5.3. Finally, section 6 summarizes the main conclusions and points out some lines
of further research.

2 The model

Let N = f1; 2; ::; ng denote the set of nodes or players. Players may choose with which
other players to initiate or support links. By gij 2 f0; 1g we denote the existence
(gij = 1) or not (gij = 0) of a link connecting i and j initiated by i. Vector gi =
(gij)j2Nni 2 f0; 1gNni speci�es3 the set of links supported by i and will be referred
to as an (unrestricted) strategy of player i. Gi := f0; 1gNni denotes the set of i�s
(unrestricted) strategies and GN = G1�G2� ::�Gn the set of (unrestricted) strategy
pro�les. An unrestricted strategy pro�le g 2 GN univocally determines a directed
network4 (N;�g), where

�g := f(i; j) 2 N �N : gij = 1g;

that we identify with g and refer to as network g. If M � N we denote by g jM the
subnetwork (M;�gjM ) with

�gjM := f(i; j) 2M �M : gij = 1g:

We now consider the following situation. An exogenous �societal cover� speci�es a
set of possibly overlapping �societies� that represent a social constraint in the following
sense: each player in N can initiate links with any other player as long as they share
membership of at least one society. Formally, we have the following

3We always drop the brackets �f::g� in expressions such as Nnfig:
4In graph theory this is called a �digraph� without loops, i.e., edges connecting a node with itself

(see, for instance, Tutte (1984)).
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De�nition 1 A �societal cover� of N is a collection of subsets of N (called �soci-
eties�), K � 2N , such that: (i)

S

A2K

A = N; and (ii) for all A;B 2 K (A 6= B),

A * B:

Condition (i) ensures that every player belongs to at least one society; while con-
dition (ii) precludes super�uous societies: if A � B; A would be super�uous given the
interpretation of societies.
We denote by Ki � K the set of societies to which i belongs, and by N(Ki) � N

the set of nodes that i may directly access, that is:

Ki := fA 2 K : i 2 Ag

and
N(Ki) :=

[

A2Ki

A:

Two nodes i; j have identical a¢liation if they belong to the same societies, i.e.,
Ki = Kj. Two nodes i; j have the same reach if N(Ki) = N(Kj). Note that identical
a¢liation implies the same reach, but the converse is not true.

Example 1 If N = f1; 2; 3; 4; 5; 6; 7; 8; 9g and

K := ff1; 2; 3; 4; 5; 6g; f4; 5; 6; 7; 8; 9g; f1; 2; 4; 5; 7; 8g; f2; 3; 5; 6; 8; 9gg;

then 2 and 4 have the same reach: N(K2) = N(K4) = N , but di¤erent a¢liations as
K2 6= K4.

Observe that we consider a particular type of a more general situation where an
exogenous �link-constraining system� speci�es for each player in N with which other
players she can initiate links. Formally, we have the following

De�nition 2 A �link-constraining system� in N is a collection of subsets of N , L =
fLigi2N , such that, for all i, i 2 Li.

With the anticipated interpretation: each player i is assumed to be able to initiate
links with any player in Li (di¤erent from herself, as it is only a matter of convenience
to include i in set Li). Note that this allows for asymmetric situations, where it may
be the case that a player i may initiate a link with j but j cannot initiate a link with i.
In particular, a societal cover K imposes a link-constraining system, namely L(K) :=
fN(Ki)gi2N , by limiting the reach of each player. This raises the reciprocal issue:
under which conditions a link-constraining system L can be interpreted as associated
with or imposed by a societal cover? The answer is given by the following condition: a
link-constraining system L is symmetric if for all i; j 2 N : i 2 Lj if and only if j 2 Li.
Then we have the following result.
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Proposition 1 A link-constraining system L can be interpreted as associated with or
imposed by a societal cover if and only if it is symmetric.

Proof. Necessity ()): It follows immediately from the constraints imposed by a
societal cover.
Su¢ciency ((): Let L be a symmetric link-constraining system. De�ne K(L) as

the set of non-empty subsets A of N s.t. (i) for all i 2 A, A � Li, and (ii) no A0 ! A
exists that satis�es condition (i). First note thatK(L) is well-de�ned given that the set
of subsets that satisfy condition (i) is partially ordered by inclusion, and consequently
maximal elements do exist. K(L) consists of such maximal elements. Equivalently,
K(L) consists of maximal sets with this property: every two nodes within the set are
within each other�s reach. Further note that for all i, i 2 A for some A 2 K(L), given
that fig � Li, and for all A;A0 2 K(L) s.t. A 6= A0, A * A0. Therefore K(L) is a
societal cover. It only remains to be shown that for all i, N(Ki(L)) = Li, i.e., that
[A:i2A2K(L)A = Li. First, assume j 2 N(Ki(L)) = [A:i2A2K(L)A, i.e., j 2 A 2 K(L)
for some A s.t. i 2 A. Then by condition (i) in the de�nition of K(L), A � Li
and consequently j 2 Li. Now reciprocally, assume j 2 Li. Then, given that L is
symmetric, i 2 Lj. Therefore fi; jg satis�es condition (i) in the de�nition of K(L),
and consequently fi; jg � A for some A 2 K(L). Thus j 2 [A:i2A2K(L) = N(Ki(L)).

Proposition 1 provides a di¤erent (but equivalent) interpretation: a societal cover
speci�es a symmetric link-constraining system. But note that di¤erent societal covers
may yield the same link-constraining system. Nevertheless, it is easy to check that for
any link-constraining system L the cover K(L) constructed in the proof of Proposition
1 is the maximal one that yields it in the following sense: any society of any cover that
yields that link-constraining system is contained in some society of K(L). In fact, we
have the following relationship:

L(K(L)) = L;

while in general the maximal societal cover that represents the link-constraining system
imposed by a societal cover K di¤ers from K, that is: K(L(K)) 6= K. For instance, for
the societal cover in Example 1

K(L(K)) = fNnf1; 3g; Nnf3; 9g; Nnf7; 9g; Nnf1; 7gg 6= K:

It is worth remarking the generality of the type of constraint a societal cover imposes:
all the results that follow apply to any symmetric link-constraining system5. Nev-
ertheless we �nd the societal cover notion closer to, or at least embodying a more
intuitive perception of, real world constraints, and it is in these terms that all results
are presented.

5In particular, in the context of bilateral link formation (Jackson and Wolinsky, 1996) only sym-
metric link-constraining make sense. In other words, in the context of bilateral link formation the
societal cover provides a general model of constraint.
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A component C of a societal cover K is a subset C � K such that (i) for all A;B 2 C
there exist A1; ::; Ak 2 K s.t. A1 = A and B = Ak, and Ai\Ai+1 6= ? for i = 1; ::; k�1,
and (ii) for all B 2 KnC; B \ ([A2CA) = ?. The subset [A2CA of N covered by a
component C is denoted by N(C). For each i, Ci(K) denotes the component of K that
contains Ki. A societal cover is connected if it has a unique component. The societal
hub of a societal cover is the set of nodes whose reach is N , i.e.,

hub(K) := fi 2 N : N(Ki) = Ng:

This set may be empty. Note that only the players in the societal hub may have direct
access to all individuals in N .6

Let K be a societal cover of N , if K0 � K we say that K0 is a subcover of K if K0 is
a societal cover of N(K0) := [A2K0A s.t. for all A 2 K; A � N(K0) implies A 2 K0. In
particular, a component of a societal cover K is a (connected) subcover of K.
The following de�nition constrains the structure of a network so as to be consistent

with a given societal cover of N by ruling out links connecting individuals who are not
members of at least one society in common.

De�nition 3 A network g is consistent with a societal cover K (or is a K-network) if
for every link gij = 1 there exists some A 2 K s.t. i; j 2 A (i.e., Ki \ Kj 6= ?).

A vector gi = (gij)j2N(Ki)ni 2 f0; 1g
N(Ki)ni speci�es a set of K-feasible links initiated

by i and is referred to as a K-admissible strategy of player i, as we assume i�s capacity
to choose which links to support in N(Ki). Gi(K) := f0; 1gN(Ki)ni denotes the set of i�s
K-admissible strategies and GK = G1(K)�G2(K)� ::�Gn(K) the set of K-admissible
strategy pro�les. A K-admissible strategy pro�le g univocally determines a K-network
that we identify with g.
Observe that this setting is not narrower than Bala and Goyal�s standard one. It

is in fact more general as the standard (i.e., unrestricted) notions of network, strategy
and strategy pro�le correspond to the particular case of the simplest societal cover
K = fNg, where a single society includes all players and all links are feasible.
Given a network g, we denote �gij := maxfgij; gjig. In this way a non-directed

network �g is de�ned7. �g represents the e¤ective communication provided by network g,
which is independent of who supports the existing links according to the assumptions
of the model. We say that there is a path of length k from i to j in g if there exist k+1
players j0; j1; ::; jk, s.t. i = j0, j = jk, and for all l = 1; ::; k, �gjl�1jl = 1, and we say
that such a path is i-oriented if for all l = 1; ::; k, gjl�1jl = 1. A path (oriented or not)

6A more restrictive notion is that of societal core or set of nodes that belong to all societies, i.e.,
core(K) := \A2KA: In general, core(K)  hub(K). For instance, in Example 1 we have core(K) = f5g
and hub(K) = f2; 4; 5; 6; 8g. But it is easy to check that for any K core(K(L(K))) = hub(K(L(K))):
In other words, core and hub coincide for maximal covers. In Example 1, core(K(L(K))) =
hub(K(L(K))) = f2; 4; 5; 6; 8g:

7In graph theory terms, �g is the �underlying graph� of digraph g (see, e.g., Tutte, 1984).
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is K-feasible if all its links are K-feasible. The set of players with whom i supports a
link is denoted by Nd(i; g), and the set of players connected with i by a path (union
fig) by N(i; g), and their cardinalities by �di (g) := #N

d(i; g) and �i(g) := #N(i; g).
Note that if g is a K-network then Nd(i; g) � N(Ki) and N(i; g) � N(Ci(K)). We say
that a network g is an oriented diverging tree (converging tree) if there is a node i0
such that for any other node j there is a unique path connecting it with the node root
i0 and such path is i0-oriented (j-oriented).
A component of a network g is a subnetwork g jC , where C � N , such that any two

players in C are connected by a path, and no player in N n C is connected by a path
with a player in C. We say that g is connected if g is the unique component of g. A
network is minimal if for all i; j s.t. gij = 1, the number of components of g is smaller
than the number of components of g � ij, where g � ij is the network that results by
replacing gij = 1 by gij = 0 in g (similarly, when gij = 0 we write g + ij to represent
the network that results by replacing gij = 0 by gij = 1 in g). A network is minimally
connected if it is connected and minimal.

Remark: Note the relationship between the notions of connected component of a soci-
etal cover K of N and connected component of a K-network : a connected component
of a K-network is always covered by a connected component of the societal cover K.

We denote by g�i the network where all links supported by i in g are deleted, and
by (g�i; g0i) the strategy pro�le and network that results by replacing gi by g

0
i in g.

It is assumed that each node contains valuable information and a link allows that
information to �ow in both directions, without friction or decay8, independently of who
supports it, so that each node receives the information from all nodes with which it is
connected by a path. Let vij > 0 be the payo¤ that player i derives from connecting
directly (by a link) or indirectly (by a path) with player j, and cij > 0 the cost for
player i of initiating a link with j. Thus, the payo¤ of player i in g is

�i(g) =
X

j2N(i;g)

vij �
X

j2Nd(i;g)

cij:

If we assume costs and bene�ts to be homogeneous9 across players (i.e., vij = v and
cij = c; for all i; j) and v > c, connections with new nodes are always pro�table and10

�i(g) = v�i(g)� c�
d
i (g): (1)

8This assumption is abandoned in section 5.
9The societal cover imposes a certain heterogeneity but of di¤erent nature of the one considered in

Galeotti et al. (2006), where players are assumed to be partitioned into disjoint groups that can be
ordered on a line so that the distance is interpreted as a measure of the heterogeneity and the cost of
a link between two players depends on the distance between the groups these players belong to. This
model does not include, nor is included in, the one we are dealing with here.
10Although the results presented here can easily be extended with some slight modi�cations to the

case where payo¤s are, as in Bala and Goyal (2000a), given by a function �(�i(g); �
d
i
(g)), where

�(x; y) is strictly increasing in x and strictly decreasing in y, we prefer this simpler assumption about
payo¤s so as to make the statements of the basic results simpler. The assumption v > c is dropped
in section 5 when we consider decay.
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A K-network is e¢cient if it maximizes the aggregate payo¤ under the constraint
of K-feasible payo¤s, that is, those that can be obtained by means of K-networks.
We next discuss some notions of stability of networks consistent with a given societal

cover K.

3 Stability and e¢ciency

The following de�nitions are natural extensions of the notions of Nash stability and
strict Nash stability following Bala and Goyal (2000a) for a network in a scenario where
payo¤s are given by (1) and: (i) a societal cover K allows only for links connecting
individuals that have at least one society in common, and (ii) all players in the same
component C of K, i.e., in N(C), have common knowledge of the part of the current net-
work connecting individuals of N(C). The common knowledge assumption restricted to
players in the same component of the cover can be justi�ed by assuming that informa-
tion about the current network propagates between overlapping societies11. Note that
this scenario yields the unconstrained and common-knowledge environment of Bala
and Goyal (2000a) for the particular case of the simplest societal cover: K = fNg.

De�nition 4 A Nash K-network is a K-network g that is stable under K-admissible
strategies, that is, for all i 2 N :

�i(g) � �i(g�i; g
0
i) for all g0i 2 Gi(K): (2)

When (2) holds, we say that gi is a best (admissible) response of i to g�i. Thus, in
a Nash K-network every player is playing a best K-admissible response to those played
by the others. Note that for K = fNg a Nash K-network is a Nash network in the
standard setting.
The stability notion can be re�ned in the strict sense by extending Bala and Goyal�s

strict Nash networks.

De�nition 5 A strict Nash K-network is a Nash K-network g such that for all i 2 N :

�i(g) > �i(g�i; g
0
i) for all g0i 2 Gi(K) (g

0
i 6= gi): (3)

Thus, (3) means that in a strict Nash K-network every player is playing her unique
best (admissible) response to those played by the others. Likewise note that for K =
fNg a strict Nash K-network is a strict Nash network in the standard setting.

11This assumption can be weakened by assuming that each player knows which nodes are within
her reach and the payo¤ associated with each of her strategies if played against the current network
g, that is, N(i; (g�i; g0i)) for all g

0
i
. This is a weaker assumption as many di¤erent networks may yield

the same payo¤, and it is not completely unrealistic: one individual may have a clear idea of how
worthy is a connection even ignoring the details of the connections of that connection.
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Given the constraints on information, strategies and feasible networks that a societal
cover imposes, the set of playersN(C) in each component C of the cover, where subcover
C prescribes what links are feasible, form an entirely �separate world�: no link with
NnN(C) is possible and no information about it reaches N(C). In particular we have
the following straightforward result.

Proposition 2 A K-network g is a Nash (strict Nash) K-network if and only if g jN(C)
is a Nash (strict Nash) C-network for each component C of K.

Remark: Although societies consisting of a single individual are included in the model,
such trivial societies are of no interest in this setting. Moreover, the only connected
societal cover K that contains a society A s.t. #A = 1 is K = fAg.

Therefore, in view of Proposition 2 and the preceding remark, in what follows our
attention is constrained to connected societal covers and we always assume that all
societies have at least two individuals. The following proposition extends Bala and
Goyal�s result to this setting.

Proposition 3 A K-network g is a Nash K-network if and only if it is minimally
connected.

Proof. Necessity ()): Let K be a connected societal cover of N , and g a K-network.
Assume g is not connected. Then there exist two nodes i; j 2 N not connected by a
path in g. As cover K is connected, a �nite sequence of nodes x1; ::; xm exists, such
that x1 = i, xm = j and for each k = 1; ::;m�1, there is some A 2 K s.t. xk; xk+1 2 A.
Then for at least two consecutive nodes among thesem nodes, say xk and xk+1, there is
no path in g connecting them. But then it is feasible and pro�table for either of these
two nodes to initiate a link with the other. Thus g must be connected. If g were not
minimal there would be some super�uous link that could be eliminated and that would
bene�t the player that did so, and consequently g would not be a Nash K-network.
Su¢ciency ((): Reciprocally, assume that g is minimally connected. Let i be any

player and g0i be any strategy g
0
i 2 Gi(K) (g

0
i 6= gi). We show that �i(g) � �i(g�i; g

0
i).

A new strategy g0i 6= gi means deleting some links and initiating new ones. If g is
minimally connected, then each deletion means disconnecting i with a set of nodes,
and if there is more than one deletion, any two of these sets of nodes disconnected
from i must also be disconnected from each other (otherwise a deleted link would be
redundant). Thus the number of links initiated should be at least equal to the number
deleted, otherwise the payo¤ would decrease. But then i�s payo¤ for (g�i; g0i) cannot
be greater than for g. Therefore if g is minimally connected no player has an incentive
to make any K-admissible change.
In Bala and Goyal (2000a), the following result is established (in our terminology

and under the assumptions about costs and bene�ts made here12): a network is e¢-

12In fact, given their weaker assumptions on the payo¤s (see footnote 10), the empty network may
also be Nash stable in their setting, as would be the case in ours assuming c > v in (1).

10



A1

(a)

A2

`

`

`

`

`

��
��

HHHH
����

r
r

rr

A1

(b)

A2

`

`

`

`

`

��
��

HHHH
����

r

r

rr

Figure 1: Minimally connected networks and K-networks.

cient if and only if it is minimally connected, and Nash networks are those minimally
connected. In view of this, we have the following

Corollary 1 A network g is an e¢cient K-network if and only if g is a Nash K-
network.

Therefore, for any given set of nodes N and any societal cover K, the set of Nash
K-networks is a subset of the set of standard unrestricted Nash networks. In Figure 1
two minimally connected networks are represented13: (a) is a Nash K-network, while
(b) is not even a K-network because one link connects two nodes that do not belong
to the same society.
We now focus on strict Nash K-networks. Stars of di¤erent types play an important

role in network stability in di¤erent contexts (see, e.g., Bala and Goyal (2000a, 2006),
Jackson and Wolinsky (1996), Bloch and Dutta (2009)), and, as we show below, they
are also important in connection with strict Nash K-networks. In this context, the
following variant of the notion of center-sponsored star proves useful.

De�nition 6 A set of players M � N (#M � 2) is said to be connected by a center-
sponsored star s in a network g if g jM= s and there is a node i 2M s.t. Nd(i; g) =Mni
and gjk = 0 for all j 2Mni and all k 2Mnj.

Note that, according to this de�nition: (i) a center-sponsored star does not neces-
sarily connect all players in N ; (ii) its center i can be linked from other nodes di¤erent
from those in the star; and (iii) the nodes in the periphery, i.e., those j inM s.t. gij = 1
can be connected with other nodes that do not belong to the star. When M = N we
say that the star is all-encompassing.
Re-stated in terms of the current setting, notation and terminology, and adapted to

it, Bala and Goyal (2000a) establish the following result: the only strict Nash networks
are those consisting of a single center-sponsored star that connects all players14.

13As in all �gures, nodes are represented by dots (without labels unless convenient for the purpose
of the illustration), links by segments between them, and a �lled circle over a link close to a node
indicates the node that supports it.
14Given their weaker assumptions on the payo¤s (see footnotes 10 and 12), the empty network may

also be strict Nash in their setting.
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As we show below, the societal cover diversi�es the stable/e¢cient networks. A
variety of constellations of interconnected stars emerges as possible strict Nash K-
networks depending on the structure of the societal cover; moreover, in general, several
architectures appear as strict Nash for a given societal cover. Our next goal is to
identify and characterize these networks.
In the characterization of strict Nash K-networks, the following binary relation on

N associated with a network g plays an important role. Let
g
! be the transitive closure

of the binary relation Lg de�ned by

i Lg j , (i = j or gij = 1):

That is to say, i
g
! j if i = j or there exists an i-oriented path from i to j. This

relation is obviously transitive, but in general, for an arbitrary network g, it is not
complete, antisymmetric or acyclic15. But if g is minimally connected, then

g
! is

certainly antisymmetric and acyclic (otherwise at least one link would be redundant).
Thus, in view of Proposition 3, we have the following

Lemma 1 For any Nash K-network g, the binary relation
g
! is a partial order on N .

For any Nash K-network g, we use the following terminology. We say that i is a
predecessor of j (and that j is a successor of i) in g if i 6= j and i

g
! j. We say that a

node is terminal in g if it has no successors, and we say that a node is maximal in g if
it has no predecessors.
As we will presently prove, strict Nash K-networks have a strongly hierarchical

structure and the following terminology proves useful.

De�nition 7 A node j is �within hierarchical reach� of another node i in a minimally
connected K-network g if j is within i�s reach and j is not a predecessor of i nor there
is a predecessor of i connected with j through a path not containing i.

That is, j is within hierarchical reach of i in g if: (i) j 2 N(Ki)ni, (ii) j
g
9 i, and

(iii) there is no k 6= i s.t. k
g
! i and j 2 N(k; g jNni). Note that a necessary condition

for for j to be within hierarchical reach of i in g it is that gji = 0, but it is not required
that gij = 1. When this is required, so that every node supports links with every node
within its hierarchical reach, the network adopts a strongly hierarchical structure as
we will presently see. This motivates the following

De�nition 8 A K-network g is �hierarchical� if it is minimally connected and every
node supports links with all those within its hierarchical reach in g.

15A binary relation R on a set X is antisymmetric if, for all x; y 2 X, xRy and yRx, implies x = y;
and R is said to be acyclic if there is no �nite chain x1; x2; ::; xn in X s.t. xkRxk+1 for k = 1; 2; ::; n�1,
and xnRx1, unless xk = xk+1 for k = 1; 2; ::; n � 1. In general, the second condition is weaker than
the �rst, but when the relation is transitive they are equivalent.
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Figure 2: Hierarchical and non-hierarchical connections.

Figure 2, representing three situations where three nodes belonging to a society
are connected by two links, illustrates De�nitions 7 and 8. Only (c) can occur in a
hierarchical K-network one of whose societies contains the three nodes, while (a) and
(b) cannot. In (a) 3 is within 1�s hierarchical reach and g13 = 0, and in (b) 1 and 3 are
within each other�s hierarchical reach and g13 = g31 = 0.
Then we have the following characterization: strict Nash K-networks are just hier-

archical K-networks.

Theorem 1 A network g is a strict Nash K-network if and only if g is a hierarchical
K-network.

Proof. Necessity ()): Obviously, a strict Nash K-network g is also a Nash K-network
and, by Proposition 3, necessarily minimally connected, so that, by Lemma 1,

g
! is

a partial order. Now let i be a node in g and assume gij = 0 for some j within i�s
hierarchical reach, i.e., some j 2 N(Ki)ni that is not a predecessor of i and for which
there is no k predecessor of i such that j 2 N(k; g jNni). As g is minimally connected,
there must be a path connecting i and j, that then does not contain any predecessor of
i. Therefore the �rst link on that path must be a link supported by i. But then i can
delete that link and initiate a link with j without altering i�s payo¤, and consequently
g is not a strict Nash K-network.
Su¢ciency ((): Assume that g is a minimally connected K-network. According to

Proposition 3, g is a NashK-network. Let i be any node and any g0i 2 Gi(K) s.t. g
0
i 6= gi.

We show that �i(g) > �i(g�i; g
0
i) if g is hierarchical. Reasoning as in Proposition 3,

as g is minimally connected, g0i 6= gi involves deleting some links and initiating at least
an equal number of new links for (g�i; g0i) to be also minimally connected, otherwise i�s
payo¤s would be smaller in (g�i; g0i), but in fact the number of links deleted and that
of those newly initiated by i should be the same for the same reason. Let link ii0 be
one of the former (i.e., gii0 = 1 and g0ii0 = 0) and let ij be one of the latter (i.e., gij = 0
and g0ij = 1). If g is hierarchical, either j is a predecessor of i in g or there exists a k
predecessor of i in g such that j 2 N(k; g jNni). But this implies a cycle in (g�i; g0i).
The reason is this: evidently adding link g0ij = 1 to g means a cycle in (g� ii

0)+ ij, but
it must be proved that this cycle is contained in (g�i; g0i). This is so because no link
in the path in g connecting i and j can have been initiated by i (this would imply a
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cycle in g, which is assumed to be minimally connected). Therefore, no matter which
other links in gi are deleted in g0i, the cycle is entirely contained in (g�i; g

0
i). The same

can be said about all new links in g0i w.r.t. gi, all new links are redundant in (g�i; g
0
i).

Therefore necessarily �i(g) > �i(g�i; g0i):
This characterization allows in particular for a constructive proof of existence of

strict Nash K-networks for any societal cover K: start at any node i0 and initiate links
with all nodes in N(Ki0), then extend the network by initiating new links from those
nodes, always respecting hierarchical priority. In fact we have the following result:

Proposition 4 For any societal cover K and any node i0 2 N there exists an oriented
diverging tree g rooted at i0 that is a strict Nash K-network.

Proof. Iterate the following procedure:
- Step 0: Initially let i0 be any player in N , and g0 the K-network that results by

i0 initiating links with all players in N(Ki0), and let C0 := N(Ki0):
- Step from k to k + 1: If gk is the current K-network resulting from step k, take

a terminal node, say ik+1, in gk, for which the set of nodes N(Kik+1)nCk is not empty,
and let ik+1 initiate links with all those players. If no such node exists, stop; otherwise,
let gk+1 be the K-network that results by adding all these links initiated by ik+1 to gk,
and Ck+1 := Ck [N(Kik+1):
It is clear that if K is connected, this iterated process must stop in a �nite number of

steps (when Ck = N) and the resulting network will be an oriented diverging tree rooted
in i0 that is obviously hierarchical, thus forming a strict Nash K-network connecting
all players in N .
As a corollary of Theorem 1, the following propositions establish some prominent

features of the architecture of strict Nash K-networks that help to form a clearer idea
about these networks, which we later illustrate with some examples. The �rst one
shows the role of stars in strict Nash K-networks.

Proposition 5 In a strict Nash K-network g:
(i) There is at least one node that supports links with all nodes within its reach.
(ii) For each society A 2 K, g jA consists of disjoint center-sponsored stars and/or
isolated nodes.

Proof. (i) By Lemma 1, given that g is minimally connected,
g
! is a partial order

and necessarily exists at least one maximal element, i.e., with no predecessor. Let i0
be a maximal element. As i0 is maximal, by Theorem 1, necessarily Nd(i0; g)[ fi0g =
N(Ki0), i.e., i0 must support links with all nodes within its reach.
(ii) Let A be a society in the cover K. Assume that for some i; j 2 A, gij = 1. It

is enough to show that the only other link that may exist connecting any k 2 Anfi; jg
with i or j is a link supported by i. Assume that gkj = 1. Then, k can delete the link
with j and initiate one with i and have the same payo¤. Assume that gjk = 1. Then,
i can delete the link with j and initiate one with k and have the same payo¤. Finally,
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assume that gki = 1. Then k can delete the link with i and initiate one with j and
have the same payo¤. Thus, the only remaining possibility of a link connecting any
k 2 Anfi; jg with i or j is a link gik = 1.
As an immediate corollary of Proposition 5, we have the following conclusion that

yields Bala and Goyal�s result as a particular case.

Corollary 2 An all-encompassing star is a strict Nash K-network if and only if the
societal hub is non-empty and the center belongs to it. In particular, when K = fNg
the only strict Nash K-networks are the all-encompassing center-sponsored stars.

Observe the similarity of the proof of part (ii) with Bala and Goyal�s proof of their
result and its di¤erences: minimal connectedness and �strict Nash-ness� do not entail
all nodes in a society A being connected by a single star. Now the possibility of other
center-sponsored stars within a society is left open, along with even the possibility
of some nodes being left outside these stars (but linked through nodes belonging to
societies other than A). Yet the hierarchical arrangement of a strict Nash K-network
entails a maximum of two levels within each society: centers and spokes (as seen in
Figure 2). The question now is: how do nodes in di¤erent societies interconnect in
g? Evidently through overlapping societies. More precisely, the following proposition
shows that in a strict Nash K-network connections �propagate� in an oriented way that
can be reversed only at a node that is linked by another two whose reaches� intersection
contains only that player.

Proposition 6 Let g be a strict Nash K-network, and i; j; k 2 N s.t. gji = gki = 1,
then necessarily N(Kj) \N(Kk) = fig.

Proof. Let g be a strict Nash K-network, and i; j; k 2 N s.t. gji = gki = 1. Assume
that i0 2 N(Kj) \N(Kk), with i 6= i0. If i and i0 were linked (i.e., �gii0 = 1), then j (or
k) could delete the link with i and initiate a link with i0 without loss. Thus, we should
have �gii0 = 0. As g is minimally connected, either a path connecting i0 and j and not
containing k exists, or there exists a path connecting i0 and k and not containing j. In
the �rst case k can delete the link with i and initiate a link with i0, and in the second
j can delete the link with i and initiate a link with i0. In both cases this is without
loss for the player who changes strategy, therefore contradicting that g is a strict Nash
K-network.
The examples in Figure 3 illustrate the characterization and its corollaries and

convey the logic of strict Nash K-networks. Of course, the characterizing condition of
respecting hierarchical priority holds in all cases, as the reader may check. Examples
(a) and (b) represent societal covers with a non-empty hub where an all-encompassing
center-sponsored star is one of the possible architectures of strict Nash K-networks:
(d) and (c) represent other strict Nash K-networks for the same covers. In examples
(a), (b) and (d) a single center-sponsored star covers (partially) each society, while two
center-sponsored stars cover society A3 in (c) and society A5 in (e), and in both cases
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Figure 3: Strict Nash K-networks.
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no other link exists between pairs of individuals. In all cases, a maximal node exists
(represented by a white circle ���), but there may be more than one, as in examples (e),
(f) and (g), which illustrate Proposition 6: stars connecting �hand in hand� by means
of a �free rider� node are possible when a single player belongs to both societies. We
reach in fact the following conclusion: when no pair of societies in the societal cover
K share a single player, a strict Nash K-network is an oriented diverging tree, as is
proved by the following

Corollary 3 Let K be a societal cover such that for all A;B 2 K, A \ B is empty or
contains at least two nodes, then a strict Nash K-network necessarily forms an oriented
diverging tree.

Proof. There is a unique path connecting any maximal node with each node. Assume
that there are two maximal nodes i0 and i1. Then, there is a path connecting i0 and
i1, but then there must be three nodes on that path i, j and k such that gij = gkj = 1.
Now if the intersection of any two societies in K is either empty or contains more
than a single player, this is impossible according to Proposition 6. Therefore, there
can be only one maximal node connected with any other node by a unique path and
consequently g is an oriented diverging tree.
But note that, as examples (e), (f) and (g) in Figure 3 show, when there are two

or more societies to which a single player belongs, several maximal nodes may exist.
In such cases, an oriented diverging tree does not result. In this case, two or more
�grafted� oriented diverging trees may emerge, so that any node is connected by an
oriented diverging tree with at least one but possibly more maximal nodes. In this case
several hierarchies overlap consistently.
Finally, in the spirit of the �community detection� problem (see, e.g., Jackson,

2009), we address a reciprocal issue to that considered so far. Given a network g,
can it be interpreted as a strict Nash K-network for any particular societal cover K?
It is easy to see that this question admits many answers: in general, an oriented
diverging tree (or several grafted ones) can be seen as a strict Nash K-network for
di¤erent societal covers. Restricting attention to oriented diverging trees, the following
associated societal covers are worth noting. Let g be an oriented diverging tree rooted at
i0. The generational cover, consisting of a minimal number of societies, each consisting
of all nodes at the same distance from the root that are not terminal along with their
�o¤spring�; the family cover where each node forms a society with its o¤spring; and
the trivial binary cover where any two directly linked nodes form a society. For all
three societal covers, the oriented diverging tree g is a strict Nash K-network and it is
the only one with maximal node i0 for the latter two.

4 Dynamics

We now study Bala and Goyal�s (2000a) dynamic model in this setting. Namely, start-
ing from any initial K-network g each player i with some positive probability responds
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Figure 4: Dynamic deadlock towards a strict Nash K-network.

with a K-admissible best response16 to g�i or randomizes across them when there are
more than one, otherwise player i exhibits inertia, i.e., keeps her links unchanged. In
this way, a Markov chain on the state space of all K-networks is de�ned. Bala and
Goyal�s prove that in their setting, i.e., for K = fNg, starting from any network,
the dynamic process converges to a strict Nash network (i.e., the empty network or a
center-sponsored star) with probability 1. In other words, the only absorbing sets are
singletons consisting of strict Nash networks. The following example shows that this
is not the case for the same dynamic model in the context of K-networks.

Example 2 In Figure 4 (a) players inA1 have no best response but keep their strategies,
while player 1 is indi¤erent between initiating a link with 2 or 3 or 4. Consequently
the best response dynamic process would oscillate forever within this three-element
absorbing set. Similarly, in Figure 4 (b) all players in A2, A3 and A4 keep their
strategies, while player 1 is indi¤erent between supporting a link with 2 or 3 or 4,
and consequently best response dynamics would oscillate forever among these three
networks forming a three-element absorbing set. Note that in both examples the K-
networks among which the best response dynamics oscillate are minimally connected
and yield the same payo¤s to all players.
The example shows an interesting di¤erence with respect to Bala and Goyal�s set-

ting. The same logic that in their setting leads to the absorbing strict Nash networks,
in ours may also lead to the formation of interconnected center-sponsored stars, whose
centers are �xed (i.e., immune to miscoordination), which are incompatible in any strict
Nash K-network. In this case, the converging process is blocked. Thus, in general, the
dynamic process leads to an absorbing set, that is, a minimal set of K-networks closed

16Note that if g is a Nash K-network any K-admissible strategy g0
i
of player i such that �i(g) =

�i(g�i; g
0
i
), is a best response to g�i.
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under best response dynamics. This raises the question about what these absorbing
sets consist of. We call quasi-strict Nash K-networks to those that belong to any of
these absorbing sets and explore their structure. For this purpose a clear understanding
of the possibility of miscoordination in a minimally connected K-network is needed.

De�nition 9 A minimally connected K-network is �miscoordination-proof� if it can-
not be disconnected by best response dynamics.

Observe that both examples in Figure 4 consist of miscoordination-proofK-networks.
In a minimally connected K-network miscoordination between two nodes can only oc-
cur if their reaches intersect and both support a link with the same node k. This occurs
when both have best responses that consist of breaking these links with k and replac-
ing them by initiating new ones with nodes connected by some path with the other
that separately would not disconnect the network, but when they are simultaneous this
would disconnect it. Moreover, even if two nodes do not support a link with the same
node k, it may be the case that one or both have best responses consisting of linking
the same node and we are back to the situation just discussed. The following lemma
speci�es in detail the conditions under which none of these situations may occur in a
minimally connected K-network, which is therefore miscoordination-proof.

Lemma 2 A minimally connected K-network g is miscoordination-proof if and only if
for every society A 2 K, g jA consists of center-sponsored stars and/or isolated nodes
and for any two nodes i; j either (i) N(Ki)\N(Kj) = ?, or (ii) for all k, either (ii-1)
gik = gjk = 1 and

N(Ki) \N(j; g � jk) = ? or N(Kj) \N(i; g � ik) = ?; (4)

or (ii-2) gik = 1 and gjk = 0 and for all k
0 s.t. gjk0 = 1 and it is a best response for j to

delete link jk0 and initiate jk, condition (4) holds for the resulting network, or (ii-3)
gik = gjk = 0 and for all k0 s.t. gik0 = 1 and it is a best response for i to delete ik0

and initiate ik and all k00 s.t. gjk00 = 1 and it is a best response for j to delete jk
00 and

initiate jk, condition (4) holds for the network that results from both best responses.

Proof. Necessity ()): Let g be a minimally connected K-network. First note that
if for some society A 2 K, g jA does not consist of center-sponsored stars and/or
isolated nodes miscoordination between nodes of that society can surely disconnect the
network17. Assume then that this condition holds. If for some pair of nodes i; j whose
reaches intersect any of the other three conditions fails to hold, it is easy to check that
it is possible to disconnect the network by miscoordination in one best response step
in case (ii-1) and in two steps in cases (ii-2) or (ii-3).
Su¢ciency ((): Let g be a minimally connected K-network for which all conditions

in the lemma hold. Then it is easy to check that no sequence of best response steps
can disconnect the network.
17The proof is similar to that for Theorem 4.1 in Bala and Goyal (2000a).
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We have then the following result that proves that quasi-strict Nash K-networks
are just miscoordination-proof minimally connected K-networks.

Proposition 7 Under a societal cover K the absorbing sets under best response dy-
namics consist of miscoordination-proof minimally connected K-networks, and any
miscoordination-proof minimally connected K-network belongs to an absorbing set.

Proof. First note that starting from any miscoordination-proof minimally connected
K-network best response dynamics cannot disconnect the network and can only yield
another network satisfying the same conditions, i.e., another miscoordination-proof
minimally connected K-network where the number of links supported by each node
remains unchanged. Therefore, any miscoordination-proof minimally connected K-
network along with all others that can be reached from it by best response dynamics
form an absorbing set. It remains to be shown that there are no other absorbing sets.
Starting from any K-network, best response dynamics lead with probability 1 to a
minimally connected K-network g such that for every society A 2 K, g jA consists of
center-sponsored stars and/or isolated nodes18. If some of the conditions of Lemma
2 does not hold, miscoordination is possible (in one or two steps) in a way that the
network is disconnected (i and j deleting simultaneously their links with k) and a cycle
appears. In a new best response step, one of the involved nodes, say i, links k again
and the other breaks the cycle. In this way, a new minimally connected network results
where the i-centered star has a new spoke and one of the possibilities of miscoordination
has disappeared. A sequence of best response steps that leads to a miscoordination-
proof minimally connected K-network is therefore proved to exist.
As a corollary, we have the following result that shows that when an absorbing set

is reached, in spite of the possibly perpetual oscillation, stability in terms of payo¤s is
reached given that all networks in the same absorbing set yield the same payo¤s to all
players.

Corollary 4 For any two quasi-strict Nash K-networks g; g0 that belong to the same
absorbing set and all i 2 N , �i(g) = �i(g

0).

Proof. Let Q be an absorbing set and g 2 Q. As g is a miscoordination-proof mini-
mally connected K-network, the number of links supported by each node is invariant
under best response dynamics. Therefore, the payo¤s must remain unchanged for all
players within Q.
In summary, quasi-strict Nash K-networks, i.e., the constituent of the absorbing

sets of best response dynamics, are not very di¤erent from strict Nash K-networks.
They are minimally connected K-networks consisting of interconnected stars, one or
several disjoint ones in each society, where nodes support links with all nodes within
their hierarchical reach with the only possible exception of some nodes that support

18The proof is similar to that for Theorem 4.1 in Bala and Goyal (2000a), merely respecting K-
feasibilty.

20



links with only one node among several between which best response dynamics can
oscillate. Thus, the architecture of quasi-strict NashK-networks is that of grafted trees,
something that was only possible for strict Nash networks when a unique individual
belonged to two di¤erent societies.

5 Decay

We now consider the case where the value that a player i receives from another player j
is sensitive to the geodesic distance between them, i.e., the length of the path with the
minimum number of links that connects them. Namely, if d(i; j; g) denotes this distance
in a network g, we assume that this value is discounted by �d(i;j;g), where 0 < � � 1.
Therefore, assuming homogeneity and, without loss of generality, that v = 1, the payo¤
of player i in network g is

�i(g) =
X

j2N(i;g)

�d(i;j;g) � c�di (g): (5)

If � = 1, we have the linear case we have dealt with so far. In the sequel, we assume
there is actual decay i.e., � < 1. We now have to deal with two parameters: c and �.

5.1 Stability and decay

When a societal cover K constrains link formation, a natural extension of Bala and
Goyal�s notion of �tw-complete� network is the following: a tw-complete K-network is
a network g where �gij = 1 for all i; j s.t. Ki \ Kj 6= ? (every node is at distance 1
from every other K-reachable node) and gij = 1 ) gji = 0 (no link is twice paid).
In Bala and Goyal�s setting, a variety of all-encompassing mixed stars become stable
in the presence of decay. That is to say, stars that (i) connect all other nodes to a
center, and (ii) each link is either paid by the center or by the spoke node, but never
by both. An all-encompassing star is periphery-sponsored if all the links are supported
by the spoke nodes. Such all-encompassing stars are feasible in our setting only when
the societal hub is not empty. Then, given that under a societal cover the feasible
responses of any node form a subset of her feasible responses without constraints, the
following extension of Bala and Goyal�s (2000a) Proposition 5.3 is straightforward:

Proposition 8 Let the payo¤s be given by (5) and K the societal cover that constrains
link formation, then:
(i) If 0 < c < ���2, then tw-complete K-networks are the only strict Nash K-networks.
(ii) If � � �2 < c < � and hub(K) 6= ?, then every all-encompassing star centered at
any point in the hub is a strict Nash K-network.
(iii) If � < c < � + (n � 2)�2 and hub(K) 6= ?, then any periphery-sponsored all-
encompassing star centered at any point in the hub, but none of the other stars, is a
strict Nash K-network.
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(iv) If � < c, then the empty network is strict Nash.

When a societal cover constrains link formation, the societal hub may be empty and
(ii)-(iii) parts of Proposition 8 do not apply in that case, but, as we have seen, even
when it is not empty, hierarchical architectures di¤erent from the all-encompassing
star may be strict Nash when there is no decay. Bala and Goyal (2000a) focus on
the stability of di¤erent types of mixed stars under di¤erent ranges of cost and decay.
The situation is here more complicated, given the variety of strict Nash architectures
even for relatively simple societal covers. In our setting, a rather general analogous of
the mixed stars whose stability Bala and Goyal deal with are K-compatible �mixed�
(i.e., not necessarily oriented) trees or grafted trees that result from a strict Nash K-
network without decay (i.e., an oriented diverging tree or several grafted diverging trees
satisfying the hierarchical characterizing condition of Theorem 1) by just allowing each
link to be paid by any one of the two nodes it connects (but never by both). We have
thus the following

De�nition 10 A �mixed hierarchical� K-network is a K-network g s.t. (i) for all
i; j 2 N , gij = 1 implies gji = 0, and (ii) there exists a hierarchical K-network h s.t.
�h = �g.

We say that a mixed hierarchical K-network is periphery-sponsored if every node
that has only one node at distance 1 supports the link that connects it. The question
thus arises about the stability and e¢ciency of such architectures in the presence of
decay and the comparison with all-encompassing stars when these are feasible. Some
simple examples allow us to illustrate what seem to be the basic patterns. We �rst
consider the case when the societal hub is not empty. In order to make the comparison
with Bala and Goyal (2000a) easier, we discuss the e¤ect of decay for the same di¤erent
intervals of values relating c and �. In view of Proposition 8-(i), we can start with c and
� in the interval of case (ii). The following notation is used: for each A 2 K, _A denotes
the set of nodes in A that do not belong to any other society, i.e., _A := An[A02KnfAgA0,
and the cardinalities of A and _A by a := #A and _a := # _A.
1. Interval: � � �2 < c < �. In this case it is worth initiating a link whose

marginal contribution is that of connecting an isolated node (c < �) and it is not worth
supporting a link whose marginal contribution is that of shortening from 2 to 1 the
distance to just one node (� � �2 < c), but this may be worthwhile if that node is
su¢ciently well connected. As a simple term of reference, let us consider a societal
cover consisting of two intersecting societies K = fA;Bg. In this case, an oriented
diverging tree rooted at, say, i0 2 _A, where i1 2 A \ B supports links with all nodes
in _B; is strict Nash if there is no decay, but may fail to be stable if � < 1. In fact,
if c � � + (_b � 1)�2 � _b�3 this network is not strict Nash because any individual in A
other than i0 would be better o¤ (or at least as well) by initiating a link with i1. Note
that this number is surely greater than � � �2, but it is within the interval considered
(i.e., � + (_b � 1)�2 � _b�3 < �) only if � > (_b � 1)=_b. That is, for su¢ciently large _b,
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unless there is almost no decay, this network is not strict Nash for any value of c in
the whole interval. If � > (_b � 1)=_b, this number divides the interval considered into
two subintervals: this network is strict Nash only for costs above this number. Now
consider the mixed hierarchical variations of this K-network. If _b � a� 3 and at least
one node j 6= i1 in A supports her link with i0, this K-network is not strict Nash since
j has a best response consisting of deleting the link with i0 and replacing it by a link
with i1, and this does not depend on the value of c. If _b < a� 3 or there is no node in
A di¤erent from i1 that supports her link with i0, the discussion and conclusions are
entirely similar as those for the diverging tree rooted at i0.
Similar conclusions are obtained for the oriented diverging tree (and all its mixed

hierarchical variations) where two or more nodes in the intersection A \ B instead of
only one support links with the reminder nodes in _B.
Now consider the case where A\B contains a unique node i0. As we have seen, two

center-sponsored stars �hand-in-hand�, one centered at _A, the other at _B, connecting
all nodes in A and B respectively and i0 in particular, is a strict Nash K-network
in this case. Assume b � a. The situation is again similar: this network is stable
only if c > � + (_b � 2)�3 � (_b � 1)�4. Note that this number is greater than � � �2,
but it is within the interval considered (i.e., � + (_b � 2)�3 � (_b � 1)�4 < �) only if
� > (_b� 2)=(_b� 1). Therefore, again as _b grows this network is not strict Nash in the
whole interval, unless there is almost no decay. If � > (_b � 2)=(_b � 1), this number
divides the interval considered into two subintervals: this network is strict Nash only
for costs above this number. Now consider the mixed hierarchical variations of this
K-network. If at least one node j in _A ( _B) supports her link with the center of the star
in A (B) and ( _a� 3)�( _a+ _b�4)�+(_b�1)�2 � 0 ((_b�3)�( _a+ _b�4)�+(_a�1)�2 � 0),
this K-network is not strict Nash since j has a best response consisting of deleting her
link with the center of the star in A (B) and replacing it by a link with i0, and this does
not depend on the value of c. Otherwise, the discussion and conclusions are entirely
similar as those for the case of two center-sponsored stars �hand-in-hand�.
Thus, roughly speaking, for a social con�guration as the one described, and c and �

within the interval considered, all-encompassing stars centered in the societal hub are
e¢cient and stable, while non-e¢cient architectures as mixed hierarchical variations
of strict Nash (without decay) K-networks can be stable only for certain combinations
involving a relatively small number of nodes in some society outside the societal hub, a
relatively low decay and a relatively high cost.
Let us consider now the case where c and � are in the interval of case (iii).
2. Interval: � < c < � + (n � 2)�2. In this case, it is not worth connecting an

isolated node (� < c), but it would surely be worth for an isolated node to support a
link with the center of a star that connects all other nodes

�
c < � + (n� 2)�2

�
. In this

case, given that � < c, only periphery-sponsored mixed hierarchical K-networks can
be stable. Let us consider then a tree as the �rst one we have considered in the �rst
interval, but where the terminal nodes support the links connecting them, while the
link between nodes i0 and i1 could be supported by either of them. Given that � < c,
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restrictions on c are needed in order to ensure that no node �nds pro�table to delete
the link she is supporting in the tree. If the link between nodes i0 and i1 is supported
by i1, it is necessary c < minf�+(a� 2) �

2; �+ _b�2+(a� 2) �3g; and if the link between
nodes i0 and i1 is supported by i0, it is necessary c < minf�+ _b�

2; �+(a� 2) �2+ _b�3g.
Furthermore in both cases, the same reason as for the interval � � �2 < c < � requires
_b < a�3 and c > �+(_b�1)�2� _b�3 for these networks to be stable, which may still be
actually a constraint as �+(_b�1)�2� _b�3 is in the interval now considered if � < (_b�1)=_b.
We again see the same pattern: only for certain combinations involving a relatively
small number of nodes in either society outside the societal hub, a relatively low decay
and a relatively high cost the periphery-sponsored mixed hierarchical variants of this
architecture remain stable, while periphery-sponsored stars centered at any point of
the societal hub remain stable in the whole interval.
This range of cost-decay values has other implications. For instance, for the same

cover, a tree where all nodes in A are at distance 1 to i0 2 _A and two (or more) nodes
in the intersection A\B are linked by the nodes in _B is not strict Nash whatever the
cost in this range be. A strict Nash may only result if all nodes in _B support links
with only one and the same node in A \ B. We here see another pattern: a tendency
to concentrate inter-societal connections in the presence of decay.
Now consider the case where A \ B contains a unique node i0. And consider two

mixed stars �hand-in-hand�, one centered at i1 2 _A, the other at i2 2 _B. Assume
b � a. Given that � < c, only periphery-sponsored mixed hierarchical K-networks can
be stable, therefore the spoke nodes in _A[ _B support the links connecting them, while
the link between nodes i1 and i0 could be supported by either of them, the same for the
link between nodes i2 and i0. Given that � < c, restrictions on c are needed in order
to ensure that no player �nds pro�table to delete the link that she is supporting in the
grafted tree. If i0 supports both links with i1 and i2, it is necessary c < � + (_a� 1) �

2;
if i1 and i2 both support their links with i0, c < � + �

2 + (_a� 1) �3; if i0 supports the
link with i1 and i2 supports the link with i0, c < minf�+(_a� 1) �

2; �+�2+(_a� 1) �3g;
�nally if i0 supports the link with i2 and i1 supports the link with i0, c < minf� +
(_b � 1)�2; � + �2 + (_b � 1)�3g. Furthermore, in the four cases, the same reason as
for the interval � � �2 < c < � require ( _a� 3) � ( _a + _b � 4)� + (_b � 1)�2 > 0 and
c > � + (_b� 2)�3 � (_b� 1)�4 for these networks to be stable.
It would be long and tedious to discuss it in detail, but the case of a connected soci-

etal cover consisting of three societies with a non-empty societal hub can be discussed
case by case to obtain similar conclusions. In fact, whatever the number of societies,
when the societal hub is not empty we have similar conclusions: (i) the all-encompassing
center-sponsored star is the most robust architecture among the strict NashK-networks
without decay as it remains stable in the �rst interval (� � �2 < c < �), while other
architectures remain stable only for a relatively low decay, a relatively high cost and a
relatively small number of nodes in every society involved in the �graft� in the case of
grafted trees, or relatively small number of nodes in at least one society outside the so-
cietal hub in the case of trees; (ii) in the second interval (� < c < �+(n�2)�2), as spoke
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nodes must pay the links that connect them to the network, neither all-encompassing
center-sponsored stars nor any strict Nash network without decay is stable with decay,
but some mixed trees and grafted trees may remain stable subject to similar limita-
tions. In contrast, all-encompassing periphery-sponsored stars centered at any point
of the societal hub remain stable in this interval.
In sum, it is not a heavy societal hub that compels the society to organize itself

as an all-encompassing star when this is feasible, but a heavy hub-periphery. More
precisely, we have the following conclusion from the preceding discussion19:

Proposition 9 Let the payo¤s be given by (5) and K be a societal cover such that
hub(K) 6= ?, then:
(i) If � � �2 < c < � and the number of nodes in _A is su¢ciently large for all A 2 K,
the only strict Nash K-networks without decay that remain strict Nash with decay are
the all-encompassing center-sponsored stars whose center is within the societal hub.
(ii) If � < c < � + (n � 2)�2 and the number of nodes in _A is su¢ciently large for all
A 2 K, the only mixed hierarchical K-networks that are strict Nash with decay are the
all-encompassing periphery-sponsored stars whose center is within the societal hub.

These results and the preceding discussion may make the reader think of Feri�s
(2007) results about stochastic stable networks. In the next subsection, we explicitly
deal with Feri�s dynamics and use these conclusions.
Let us now consider the case where the societal hub is empty. The simplest case

of a connected cover with an empty hub is a three-society cover K = fA;B;Cg with
A\B\C = ?. In this case, reasoning in similar terms to the case of a two-society cover,
it can be concluded that none of those K-networks which are strict Nash without decay
(nor any mixed hierarchical variant of them) remains stable in the presence of decay if
the number of nodes that belong to each one, but only one, of the three societies is big
enough20. Nevertheless, mixed stars, interlinked in a variety of ways, maybe redundant,
sharing a number of spoke nodes, appear as strict Nash for the di¤erent ranges of the
parameters. Consider the case where A\B 6= ?, B\C 6= ? and A\C = ?. Let m be
the cardinality of the smallest set of _A and _C. Then if ���2 < c < �+(m�1)�2�m�3,
the network where a node i1 2 A \B is linked with all nodes in _A, a node i2 2 B \ C
is linked with all nodes in _C, all nodes in Bnfi1; i2g support links with both i1 and i2,
and one of these two links the other21, is a strict Nash network (note that as the upper

19Consider the following example: let K be a two-society cover K = fA;Bg and A\B 6= ?, and let
g be the strict Nash K-network without decay where some i 2 _A supports links with all other nodes
in A, and a node in A \B supports links with all other nodes in _B. If _B is small enough, say 1, this
network remains strict Nash in the interval � � �3 < c < �:
20Otherwise, in some particular cases a strict Nash K-network without decay or a mixed tree variant

remains stable with decay. For instance, if #(A \B) = #(B \ C) = 1, and _B = ? then the oriented
K-tree rooted at the unique point in one intersection forms a strict Nash K-network in the �rst interval
(in the second interval spoke nodes in _A [ _C should pay their links).
21Note this is a �quasi linked star� (qls) in Feri�s (2007) terms.
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bound of this interval can be in the second interval, i.e. if � < � + (m � 1)�2 �m�3,
in this case, if c is in this second interval spoke nodes should pay their links). Now if
�+ (m� 1)�2�m�3 < c < �+m�2� �3�m�4, then the link between i1 and i2 should
be eliminated, and doing so the remaining K-network could be strict Nash where two
stars share their spoke nodes in B22.
In summary, in the presence of decay, when the hub is not empty we have: (i) in

the �rst interval, all-encompassing center-sponsored stars are the most robust strict
Nash among those without decay, but also all mixed all-encompassing stars centered
in the hub become strict Nash; (ii) in the second interval, all-encompassing periphery-
sponsored stars centered in the hub are the only stars which are strict Nash. These
patterns corroborate, in a more complex context, Goyal�s diagnosis: �Decay introduces
incentives for players to reduce the lengths of paths between themselves. This means
that the star network is even more attractive than before. However, the introduction of
decay also means that cycles can be sustained in equilibrium.� (Goyal, 2007, p. 172).
Moreover, even when the hub is empty, stars, which are no longer all-encompassing
under institutional constraints, interlinked in possibly redundant ways seem a persisting
feature in strict Nash networks under decay, while none of the strict Nash K-networks
without decay is robust in its presence if for all the societies the number of nodes that
belong to that society and only that one is large enough.

5.2 Stochastic stability and decay

In Feri (2007), a di¤erent dynamic model consisting of unperturbed dynamic plus errors
or mutations is considered23. Namely, one node is randomly chosen at every period to
revise her strategy by choosing a best response (or one of them at random when there
are more than one). This is the unperturbed dynamic, but at every period the chosen
node with a probability " > 0 makes a mistake consisting of choosing her strategy
randomly. Thus, an evolutionary process results that is an aperiodic and irreducible
Markov chain, which consequently has a unique invariant probability distribution �".
Feri then studies the stochastically stable networks, i.e., those g for which �̂(g) > 0,
where �̂ = lim"!0 �". This can be done by applying the result according to which
the stochastically stable states of such an evolutionary process are characterized as
those that belong to an absorbing set of a recurrent set of the evolutionary process
(Proposition 7.7 in Samuelson (1997)). A recurrent set is a set R of absorbing sets
of the unperturbed dynamic such that (i) for any state within the recurrent set, a
mutation followed by unperturbed dynamics cannot end up in an absorbing set not
belonging to R, and (ii) it is possible to reach any absorbing set in R from any other
likewise in R by means of a sequence of one-step mutations, i.e., steps consisting of one

22This is a �quasi linked star 2� (qls2) in Feri�s (2007) terms.
23Other papers dealing with dynamic models in the presence of decay are Watts (2001), Jackson

and Watts (2002), Goyal and Vega-Redondo (2005), Hojman and Szeidl (2008) and Feri and Meléndez
(2009).
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mutation followed by unperturbed dynamics.
As is by now clear, when a societal coverK constrains link-formation, things become

rather complicated. Nevertheless, part of Theorem 1 in Feri (2007) can be easily
extended. Denote by Ĝ(K) the set of stochastically stable K-networks under Feri�s
dynamic, by Gc(K) the set of all tw-complete K-networks, and by Gs(K) (Gps(K)) the
set of all-encompassing (periphery-sponsored) stars whose center belongs to hub(K)
whenever it is not empty. Then we have

Theorem 2 Let the payo¤s be given by (5) and K a societal cover, and let 0 < � < 1:
(i) If c < � � �2, then Ĝ(K) = Gc(K).
(ii) If ���2 < c < � and hub(K) 6= ?, then Ĝ(K) � Gs(K); moreover, if ���3 < c < �;
there exists n(c; �) such that if _a > n(c; �) for all A 2 K, then Ĝ(K) = Gs(K):
(iii) If � < c and hub(K) 6= ?, there exists n0(c; �) such that if _a > n0(c; �) for all
A 2 K, then Ĝ(K) = Gps(K) [ fgeg:

Proof. (i) The proof is an easy adaptation of the proof of part (i) of Feri�s Theorem
1 that we omit.
(ii) The proof of the �rst part results from an easy adaptation of Feri�s Lem-

mas 1 and 2. That is to say, within this interval of cost, from any K-network, an
error followed by unperturbed dynamic is enough to reach an all-encompassing center-
sponsored star whose center belongs to the hub (Lemma 1 in Feri (2007)); and for any
two all-encompassing stars whose centers are in the hub a sequence of one-step muta-
tions leads from one to the other (Lemma 2 in Feri (2007)). Then, using Proposition
7.7 in Samuelson (1997), one concludes that there is only one recurrent set, which con-
tains Gs(K). As to the second part, an overwhelmingly cumbersome detailed discussion
that we omit here shows that when the number of nodes that belong to each society
(and only to that society) is su¢ciently large, starting at an all-encompassing star, a
mutation followed by unperturbed dynamic ends up at another all-encompassing star
(Lemma 3 in Feri (2007)).
(iii) We omit the details that again consist of an adaptation of Lemmas 4, 5 and 6

in Feri (2007). Within this interval of cost, from any K-network, an error followed by
unperturbed dynamic is enough to reach the empty network (Lemma 4 in Feri (2007));
and if the number of nodes that belong to each society (and only to that society) is
su¢ciently large, starting at the empty network, a mutation followed by unperturbed
dynamic ends up at the empty network or a periphery-sponsored all-encompassing
star (Lemma 5 in Feri (2007)). There is then only one recurrent set and it contains
the empty network. Finally when the number of nodes that belong to each society
(and only to that society) is su¢ciently large, starting at a periphery-sponsored all-
encompassing star, a mutation followed by unperturbed dynamic ends up at another
periphery-sponsored all-encompassing star or the empty network (Lemma 6 in Feri
(2007)).
A more detailed extension of Feri�s Theorem 1 should be possible, but a general

extension does not seem feasible, given the variety of societal covers. In fact, there
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should be a precise extension for each particular cover. A di¢culty now arises that, even
for very simple societal covers, there are several possible architectures for a strict Nash
K-network (with and without decay), moreover, quasi strict Nash K-networks should
also be taken into account when dealing with recurrent sets. Thus, the complexity of
extending Feri�s Lemmas 3 and 6 becomes explosive. To make things more complicated,
as we have seen in the preceding subsection, di¤erent architectures of strict or quasi
strict Nash K-networks are stable within di¤erent ranges of the parameters c and �,
which makes cumbersome a detailed formulation about which ones are stochastically
stable within each subinterval.
Nevertheless, in order to gain some insight on how things go in this complex setting,

we constrain our attention to a very simple example of a two-society connected cover
and show how this extension can be done and study the impact of the cover in stochastic
stability.

Example 3 Let N = f1; 2; 3; 4; 5; 6; 7g and K = fA;Bg, where A = f1; 2; 3; 4; 5; 6g
and B = f3; 4; 5; 6; 7g, so that hub(K) = A \ B = f3; 4; 5; 6g. Up to isomorphism,
there are four architectures for strict Nash K-networks (without decay):
-SN1 : all-encompassing center-sponsored stars whose center is within A \B;
-SN2 : oriented diverging trees rooted at _A where a node in A\B supports a link

with node 7;
-SN3 : oriented diverging trees rooted at 7 where a node in A \ B supports links

with nodes 1 and 2;
-SN4 : oriented diverging trees rooted at 7 where one node in A \ B supports a

link with node 1 and another node in A \B supports a link with node 2.
There are also two quasi strict Nash architectures:
-QSN5 : node 7 supports links with all other nodes in B and a node in _A supports

links with the other in _A and with one in A\B (in best response dynamics the latter
would oscillate between the four nodes in A \B);
-QSN6 : a node in _A supports links with all other nodes in A and node 7 supports a

link with a node in A\B (in best response dynamics the latter would oscillate between
the four nodes in A \B).
Let us consider �rst the interval � � �2 < c < �. In view of the discussion in the

preceding subsection, we can expect di¤erent subintervals within which each of these
architectures and/or their mixed variants remain strict or quasi strict Nash. Let us
denote by M1 and M2 the architectures consisting of all mixed hierarchical variants
of SN1 and SN2; by M3 the variants of SN3 where the links connecting 7 with those
in A \ B not connected with nodes 1 and 2 are supported by 7; and by M4 and M5
the variants of SN4 and QSN5 where the links connecting 7 are supported by any
one of the adjacent nodes, while the other links are supported as in SN4 and QSN5
(otherwise it would not even be Nash)24. Note that the mixed hierarchical variants of
QSN6 are M2.

24In all cases the excluded variants are not stable.
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A similar discussion to that made in the preceding subsection leads to the following
nested intervals where each of these architectures remains stable:
-M1 remains strict Nash in the whole interval IM1, where � � �

2 < c < �;
-M2 remains strict Nash in the interval IM2, where � � �

3 < c < �;
-M3 remains strict Nash in the interval IM3, where �+ �

2� 2�3 < c < � (note that
this interval is not empty only for � > 1=2);
-M4 remains strict Nash in the interval IM4, where � + �

2 � �3 � �4 < c < � (not
empty only for � > 0:618);
-M5 remains quasi strict Nash in the interval IM5, where � + �

2 � �3 � 3�4 < c < �
(not empty only for � > 0:7676).
Thus, we have that: (i) only for � su¢ciently high (always greater than 1=2) do

the architectures M3, M4, and M5, remain stable or quasi stable in a non-empty
subinterval; (ii) IM1 ! IM2 ! IM3 ! IM4 ! IM5, so that the pattern is clear: as the
cost goes down, the set of stable architectures shrinks and only all-encompassing mixed
stars (i.e., M1) remain strict Nash below � � �3.
As to stochastic stability within the interval considered, things become much more

complicated. It can be seen25 that the following extensions of Feri�s lemmas 1 and 2
hold: (i) a transition from any K-network to a star inM1 can be induced by a mutation
followed by unperturbed dynamic; (ii) from any network in any of these �ve sets, any
other can be reached in any other of these sets by a sequence of one-step mutations.
Much more cumbersome as the reader may guess is the extension of Lemma 3 of Feri
(2007). This requires all possible mutations in all of these architectures followed by
unperturbed dynamic to be studied. A detailed discussion of cases leads to an upper
bound for the cost in this interval in order to ensure that in the worst case unperturbed
dynamic does not get stuck on its way towards some of these architectures. This upper
bound is

c < � + 2�2 � 3�3:

Note that this number is between the lower bound of IM4 and that of IM5, which leaves
outside M5. In sum, we have the following conclusions. If Ĝ(K) denotes the set of
networks within the recurrent set then we have that
-in the interval � � �2 < c < � � �3: M1 � Ĝ(K);
-in the interval � � �3 < c < � + �2 � 2�3: Ĝ(K) =M1 [M2;
-if � > 1=2, in the interval �+�2�2�3 < c < �+�2��3��4: Ĝ(K) =M1[M2[M3;
-if � > 0:618, in the interval � + �2 � �3 � �4 < c < � + 2�2 � 3�3: Ĝ(K) =

M1 [M2 [M3 [M4.
Note how the set of stochastically stable architectures shrinks as the cost diminishes

from �+2�2� 3�3 to �� �3. Further note the wider interval for the mixed hierarchical
architecture rooted in the society of greatest cardinality A (i.e., M2) with respect to
that rooted at the smallest society B (i.e., M3).

25We omit the details of the proofs of these extensions, easy for Lemma 1 and more tedious for
Lemma 2.
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Now let us consider the interval where c > �. In this interval a node that has only
one node at distance 1 must support the link that connects it, therefore only periphery-
sponsored mixed hierarchical K-networks can be stable, but it can easily be seen that
periphery-sponsored mixed variants of M3, M4 and M5 are not strict Nash. This
drives us to consider the following architectures:
-PM1 : all-encompassing periphery-sponsored stars centered at any point of A\B;
-PM2 : oriented converging trees rooted at 1 or 2 where all nodes in A support

links with the root and 7 supports a link with a node in A \B;
Observe that PM1  M1 and PM2  M2.
A similar discussion to that made for the preceding interval leads to the following

intervals where each of these architectures remains stable:
-The empty network ge remains strict Nash in the whole interval � < c;
-PM1 remains strict Nash in the interval IPM1, where � < c < � + 5�

2;
-PM2 remains strict Nash in the interval IPM2, where

� < c < minf� + �2 + 4�3; � + 4�2g:

As to the relative inclusion of these intervals, we always have IPM1 ! IPM2. Thus,
we now have that in the interval considered, for su¢ciently high cost, only the empty
network is strict Nash, but as the cost decreases, all-encompassing periphery-sponsored
stars (PM1) �rst also become strict Nash, then also PM2.
Let us now consider stochastic stability. It can be seen26 that the following adap-

tations of Feri�s results hold if c > �: (i) a transition from any K-network to the empty
network can be induced by a mutation followed by unperturbed dynamic; (ii) a single
mutation in the empty network followed by unperturbed dynamic converges to the
empty network itself or a network in one of the two sets PM1 and PM2, in the latter
two cases for a su¢ciently low cost, namely:
-PM1 can be reached if c < � + 3�2;
-PM2 can be reached if c < minf� + 2�2; � + �2 + 4�3g;

and (iii) if c < � + 3�2 (c < minf� + 2�2; � + �2 + 4�3g) starting from PM1 (PM1 or
PM2) a mutation followed by unperturbed dynamic leads to ge or some network in
PM1 (PM1 or PM2).
Then, combining this with the results about strict Nash stability, we have that:
-in the interval where � + 3�2 < c: fgeg = Ĝ(K):
-in the interval minf� + 2�2; � + �2 + 4�3g < c < � + 3�2: fgeg [ PM1 = Ĝ(K):
-in the interval � < c < minf� + 2�2; � + �2 + 4�3g: fgeg [ PM1 [ PM2 = Ĝ(K):

Thus, the set of stochastically stable K-networks in the example considered is charac-
terized for any � (0 < � < 1) and any c > �.

26We omit the detailed calculations along with the exhaustive discussion case by case which the
proofs consist of.
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5.3 E¢ciency and stability with decay

As we have seen in section 3, e¢ciency (i.e., maximal aggregate utility) and stability
(in the sense of Nash equilibrium) without decay are equivalent conditions: they are
satis�ed by all K-networks minimally connected and only by them. As we have seen,
this is no longer the case in the presence of decay, where non-e¢cient architectures
may be strict Nash. Nevertheless, what seems to be a general conclusion when the
societal hub is not empty arises from the preceding discussion. In the presence of
decay, e¢ciency and stability go hand in hand in a sense: the greatest stability in the
sense of a widest interval where an architecture remains stable (i.e., strict Nash) or
stochastically stable, and the greatest e¢ciency (i.e., the greatest aggregate utility),
are obtained for all-encompassing stars when the societal hub is not empty.
This is illustrated by Example 3. As the reader may easily check, in the interval

where � � �2 < c < �, within each of the four sets of mixed hierarchical networks that
contain the stochastically stable K-networks, M1 (all-encompassing stars centered in
the societal hub), M2, M3 and M4, the aggregate utility is the same for any two
networks in the same set, and with respect to each other, we have the same order:
M1 � M2 � M3 � M4 both for the degree of e¢ciency (i.e., the aggregate utility is
maximized in M1 and decreases down to M4), and for the range within which those
sets of networks are stable and stochastically stable, this interval is the largest for M1
and narrows down till the smallest interval for M4.
In the second interval, where c > �, given that PM1  M1 and PM2  M2, we

have the order PM1 � PM2 for the degree of e¢ciency, and again the same order
relative stability�s robustness. Now a periphery-sponsored star centered at the societal
hub is the most e¢cient architecture and the non-empty architecture with a widest
interval where it remains stable or stochastically stable.
When the societal hub is empty the architectures that allow for a greatest �concen-

tration� would achieve the greatest e¢ciency. Such optimal architectures do obviously
exist for each � and each c, but we have failed to obtain any general result in this
respect. This seems to be a di¢cult task given the variety of societal covers.

6 Concluding remarks

We have studied the impact of institutional constraints as modeled by a societal cover
on Bala and Goyal�s (2000a) benchmark two-way �ow model. The notion of societal
cover seems suitable for capturing in a formal and tractable way many factual con-
straints to which we refer generically as �institutional� that can often be observed in
real world situations. Such constraints emerge due to social, cultural, linguistic, eco-
nomic, geographic, etcetera reasons and cannot be ignored in many contexts. Moreover,
any symmetric link-constraining system is proved to be interpretable as the result of a
societal cover.
In this paper, we characterize and study in some detail the structure of stable and
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e¢cient networks under these constraints by extending Bala and Goyal�s approach and
results. In a nutshell, the conclusions when there is no decay can be synthesized by
the equation:

Institutional constraints + Strict stability = Hierarchical organization.

Namely, if there is no decay, the all-encompassing center-sponsored star (when feasible)
is no longer the only stable (in the strict Nash sense) architecture, but center-sponsored
stars continue to be the basic building blocks of stable networks. Moreover, the ar-
chitecture of such stable networks embodies a formal hierarchical principle that yields
oriented diverging trees, the paradigm of hierarchical organization, or �grafted� ori-
ented trees adapted to the constraints imposed by the cover. It is also proved that
simple best response dynamics �work� basically well in this more complicated setting.
They may fail to reach a strict Nash network if incompatible �incomplete� and �almost
stable� hierarchical networks form, but a stable con�guration of payo¤s associated with
an absorbing set of miscoordination proof networks is sure to be reached. Finally, the
impact of decay on the stable architectures and stochastic stability is studied. Although
friction blurs the equation above, it is shown that when the societal hub is not empty,
the star is the most robust architecture, although other stable and stochastically stable
architectures emerge. Moreover, e¢ciency and stability are shown to go basically in
the same direction at least when the societal hub is not empty, the all-encompassing
star centered at the societal hub being the architecture with the most robust stability
(though second to the empty network when c > �) and most e¢cient.
The results obtained with this approach suggest several lines of further research. In

fact, this paper is a �rst step of a research project to explore the e¤ects of institutional
constraints. It may be interesting to further study: (i) an extension of the one-way
�ow model of Bala and Goyal (2000a) similar to the one achieved here for the two-
way �ow model; (ii) the impact of asymmetric link-constraining systems, which make
sense for the one-way and two-way �ow models; (iii) alternative assumptions about
knowledge: here we have assumed that players within each component of the societal
cover have common knowledge of the part of the network within that component,
but it may be interesting to study the e¤ects of further restricting information, which
suggests an interesting scenario for interaction between network and knowledge; (iv)
the e¤ects of heterogeneity combined with institutional constraints. Finally, it could
be interesting to see the impact of institutional constraints as modeled here on Jackson
and Wolinsky�s (1996) model and variants of it based on pairwise stability, given that
in the context of bilateral link formation the societal cover notion provides the most
general link-constraining system.

References

[1] Akerlof, G. A., and R. E. Kranton, 2000. Economics and identity, Quarterly Jour-
nal of Economics, 115 (3), 715�753.

32



[2] Bala, V., 1996, Dynamics of network formation, unpublished notes, McGill Uni-
versity.

[3] Bala, V., and S. Goyal, 2000a, A noncooperative model of network formation,
Econometrica 68, 1181-1229.

[4] Bala, V., and S. Goyal, 2000b, A strategic analysis of network reliability, Review
of Economic Design 5, 205-228.

[5] Bloch, F., and B. Dutta, 2009, Communication networks with endogenous link
strength, Games and Economic Behavior 66, 39-56.

[6] Brewer, M. B., 1991, The social self: On being the same and di¤erent at the same
time, Personality and Social Psychology Bulletin, 17, 475-482.

[7] Brewer, M. B., and W. Gardner, 1996, Who is this �we�? Levels of collective
identity and self representations. Journal of Personality and Social Psychology,
71, 83-93.

[8] Chen, Y., and S. X. Li., 2009, Group identity and social preference, American
Economic Review 99(1) 431-457.

[9] Dev, P., 2010, Choosing �me� and �my friends�. Identity in a non-cooperative net-
work formation game with cost sharing, mimeo.

[10] Feri, F., 2007, Stochastic stability in networks with decay, Journal of Economic
Theory 135, 442-457

[11] Feri, F., and M.A. Meléndez, 2009, Coordination in evolving networks with en-
dogenous decay. University of Innsbruck, Working Papers in Economics and Sta-
tistics 2009-19.

[12] Galeotti, A., S. Goyal and J. Kamphorst, 2006, Network formation with hetero-
geneous players, Games and Economic Behavior 54, 353-372.

[13] Goyal, S., 1993, Sustainable communication networks, Tinbergen Institute Dis-
cussion Paper, 93-250.

[14] Goyal, S., 2007, Connections. An Introduction to the Economics of Networks,
Princeton University Press. Princeton.

[15] Goyal, S., and F. Vega-Redondo, 2005, Network formation and social coordination,
Games and Economic Behavior 50, 178-207.

[16] Hojman, D.A., and A. Szeidl, 2008, Core and periphery in networks, Journal of
Economic Theory 139, 295-309.

33



[17] Jackson, M., 2008, Social and Economic Networks, Princeton University Press.
Princeton.

[18] Jackson, M., 2009, �An overview of social networks and economic applications,�
forthcoming in the The Handbook of Social Economics, edited by J. Benhabib, A.
Bisin, and M.O. Jackson, Elsevier Press.

[19] Jackson, M., and A. Watts, 2002, The evolution of social and economic networks,
Journal of Economic Theory 106, 265-295.

[20] Jackson, M., and A. Wolinsky, 1996, A strategic model of social and economic
networks, Journal of Economic Theory 71, 44-74.

[21] McBride, M., 2006, Imperfect monitoring in communication networks, Journal of
Economic Theory 126, 97-119.

[22] Samuelson, L. 1997, Evolutionary games and equilibrium selection, MIT Press.

[23] Tajfel, H., and J. Turner, 1979, An Integrative Theory of Intergroup Con�ict. In
Stephen Worchel and William Austin, eds., The Social Psychology of Intergroup
Relations, Monterey, CA: Brooks/Cole.Brewer, M. B

[24] Tutte, W. T., 1984, Graph Theory, Addison-Wesley (also in Cambridge University
Press, 2001).

[25] Vega-Redondo, F., 2007, Complex Social Networks, Econometric Society Mono-
graphs, Cambridge University Press.

[26] Watts, A., 2001, A dynamic model of network formation, Games and Economic
Behavior 34, 331-341.

34


	5111.pdf
	Olaizola-ValencianoDP.pdf

