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Abstract: Network slicing has become a fundamental property for next-generation networks, espe-
cially because an inherent part of 5G standardisation is the ability for service providers to migrate
some or all of their network services to a virtual network infrastructure, thereby reducing both
capital and operational costs. With network function virtualisation (NFV), network functions (NFs)
such as firewalls, traffic load balancers, content filters, and intrusion detection systems (IDS) are
either instantiated on virtual machines (VMs) or lightweight containers, often chained together to
create a service function chain (SFC). In this work, we review the state-of-the-art NFV and SFC
implementation frameworks and present a taxonomy of the current proposals. Our taxonomy com-
prises three major categories based on the primary objectives of each of the surveyed frameworks:
(1) resource allocation and service orchestration, (2) performance tuning, and (3) resilience and fault
recovery. We also identify some key open research challenges that require further exploration by the
research community to achieve scalable, resilient, and high-performance NFV/SFC deployments in
next-generation networks.

Keywords: network function virtualization; service function chaining; software defined networking;
next-generation networks; SFC frameworks

1. Introduction

With the advent of software-defined networking (SDN) and network function virtu-
alization (NFV), middlebox functionality is increasingly being virtualized and provided
in software, which can reduce power consumption, resource usage, and operational costs
for service providers [1,2]. This paradigm is a departure from the use of hardware middle-
boxes, which are often proprietary, and thus not easily extendable by service providers. By
abstracting network functionalities and implementing them in software, network operators
can create network functions that suit their service level agreement (SLA) and service
models [3].

NFV helps network operators by providing the right environment for the rapid de-
ployment and scaling of virtual network functions (vNFs) [4], which are chained together
in what is known as the service function chaining (SFC) architecture. Unlike the typical
routing technique employed by middleboxes, where packets are simply forwarded directly
from source to destination, SFC routes packets through a chain of network functions before
reaching the destination (depending on the type of service and policy in use). Thus, one
of the major goals of SFC is the flexibility it offers by allowing traffic to traverse diverse
network functions along the service chain.

Heterogeneous network services deployed using SFC and virtual functions are in-
stalled on multiple virtual machines, sometimes combined with containers [5,6], which
are chained together to provide services to users. SFC is generally considered as one of
the important use cases of NFV and SDN architectures [7], which is also made possible
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using a centralised network controller that has a global logical view of the entire network
infrastructure, and handles tasks such as the creation of service chains and orchestration of
traffic between vNFs [8]. In terms of the location of network functions in a service chain, the
virtualized infrastructure can span multiple datacentres, which calls for inter-data-centre
networking or within the same data centre, which results in an intra-data-centre network
(see Section 2.2).

We generally expect the SFCs to be adaptive and dynamic; service chains should have
the feature of readjusting to the unpredictable nature of service requests, and to offer better
quality of service (QoS) for the end user [9,10]. If we consider network security as an
example, such a service may consist of network functions such as firewalls, deep packet
inspection (DPI), intrusion prevention or detection modules installed as software, which
are chained together [11].

Several implementation frameworks have been proposed in the literature, some of
which have been adopted and deployed at a commercial scale, while others are in the
experimental state of development. In this paper, we put together these frameworks while
highlighting their contributions and how they solve research problems associated with
realising NFV/SFC in service provider network environments.

Experts from both academia and industry are putting a lot of effort in the research and
development of SFC. While NFV/SFC has developed over the years, developments in this
domain are so substantial that it makes a survey now quite different and valuable from a
(hypothetical) survey put together a few years ago. Unlike previous surveys in this area,
our work (layout in Figure 1) also shows how SDN, NFV, and SFC are combined in the
provisioning, operations, and management of next-generation networks. We further explain
how our work differs from previous efforts by presenting related surveys in Section 2; thus,
our contributions are threefold:

Paper

Background and
Motivation (II)

Conclusion (VI)

Hybrid vNF Implementation 

vNF and SFC Embedding
SLA enforcement & guarantees 

Resilience in SFC environments 
Traffic steering in SFC 
Dynamic vNF placement 

Resource Allocation & Service Orchestration
Performance tuning
Resilience & fault recovery

SFC Chaining Requirements
Typical SFC Environments

Software-Defined Networking
Network Function Virtualization
Service Function Chaining 

Introduction (I)

SDN, NFV and SFC:
An Overview (III)

NFV and SFC
Frameworks

Taxonomy (IV)

State-of-the-art & Open
Research Challenges

(V)

Figure 1. High-level paper structure.

• We present the vNF chaining requirements (Section 2.1) and how they relate to SFC
implementations in service provider networks, thus some use cases for the SFC
paradigm (Section 2.2) are presented. An overview of the current state-of-the-art
SDN, NFV, and SFC (Section 3) is also presented as the foundation for the frameworks
reviewed in this paper;

• We present a comprehensive survey of the state-of-the-art NFV frameworks for build-
ing and implementing vNFs, particularly frameworks that have been proposed for use
in SFC environments. We also present a taxonomy of SFC implementation frameworks,
focusing on each SFC-related challenge, each one addressing the approaches used
(Section 4);
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• Finally, we identify and discuss the main open research challenges associated with
NFV and SFC environments in the next generation networks (Section 5).

The remainder of this paper is structured as follows: Section 2 presents the background
and motivation of this survey, considering what has been done in the literature and high-
lighting the uniqueness of our approach and reflections on the state of the art approaches.
Section 3 briefly discusses the underlying technological advancements that make NFV
possible. Section 4 contains a taxonomy of the implementation frameworks considered in
this work, classifying the frameworks into three major categories. The problems addressed
by the frameworks are presented in Table 3 (resource allocation and service orchestration),
Table 4 (performance tunning) and Table 5 (resilience and fault recovery) which represent
various aspects of the SFC implementation challenges. We present the state-of-the-art SFC
and highlight the open research challenges of NFV/SFC environments in Section 5. Finally,
Section 6 concludes the paper.

Research Methodology

Our work covers research performed in recent years in the area of NFV/SFC im-
plementation frameworks. The methodology employed involved a critical review of the
relevant contributions in report papers, journals, conference papers, and articles. We sys-
tematically queried the most relevant scholarly databases (IEEE, ACM Digital library, Web
of Science, Scopus, etc.) to get all the required research papers that are relevant to our work.
We started this process with 367 papers, of which 118 papers met our final selection criteria.

We made use of some basic exclusion criteria (Figure 2) such as the exclusion of
papers that were written in languages other than English, papers with no full text, research
papers in duplicates, the year of publication, and the specific area(s) covered such as
focusing on research papers in areas related to NFV, SFC, and SDN in service provider
network environments.

Survey Plan 
Consideration of exclusion

& inclusion criteria

Scholarly Databases

- Web of Science
- ACM Digital Library
- IEEE Xplore
- Scopus
etc.
(P = 367)

Initial screening

- Lack of full text
- Non-English text
- Duplicates
(P = 215)

Review Phase 3 - Analysis
-

- vNF Chaining  
- SFC challenges addressed 

- Related surveys 
- Open challenges 

(P = 118)
 

Review Phase 2
- Year of publication
- Type of article
- Extraction of data
- Relevance to NFV & 
(P = 118)

Findings &
Survey Writing

Conduct Survey
Using analysed data 

P = number of papers

Review Phase 1

- Keywords
- Abstracts
- Titles
- Conclusions
(P = 194)

Figure 2. Paper analysis process.

For the review of papers presented in our proposed taxonomy, we included research
papers that present NFV implementation frameworks with some vNF chaining compo-
nents, representative frameworks that address specific problems in the domain, e.g., vNF
orchestration, traffic steering, SFC resilience, modular SFC deployment, etc. A total of
118 papers were finally selected, which include some notable related surveys, and exper-
imental and theoretical works in NFV/SFC. The papers we have cited in our taxonomy
cover fundamental equivalence classes of the state-of-the-art in NFV/SFC implementa-
tion frameworks.

In addition to the more recent research papers presented in our work, we would
like to note that some of the papers we considered present both the pioneering efforts
for certain equivalence classes of NFV/SFC frameworks and still represent the state-of-
the-art; thus, the most recent works (if any) are incremental to what we have presented.
As a concrete example that justifies some of our choices (based on current literature),
frameworks such as ClickOS [12], OpenNetVM [13], OpenBox [14], Slick [15], SNF [16],
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Metron [17], NetBricks [18], and GNF [19] constitute some of the notable pioneering
efforts in this domain, which are still relevant in designing NFV/SFC frameworks for next
generation networks.

Each of these frameworks represent important aspects such as the use of lightweight
packet processing elements, the use of packet acceleration frameworks, the decoupling
of network infrastructure into control and data-planes, synthesizing packet processing
elements for improved performance, resource allocation, and deploying containerized
network functions at the network edge to support the edge computing paradigm. In terms
of technological advancements and existing works in the literature, we have covered the
core components that are still used in designing and implementing NFV/SFC frameworks
to the best of our knowledge.

2. Background and Motivation

There are several existing studies that focus on the general areas of SDN, NFV, and
SFC, as summarised in Table 1. Each of the related surveys presented in our work explores
different aspects such as NFV implementation problems, traffic steering in SFC, NFV
deployment acceleration, optimal NFV and SFC concepts, design, and taxonomy of NFV
platforms, the placement of network functions, and resource allocation. This section
summarises the key contributions made by existing related surveys and provides the
foundation for our research.

Table 1. Existing NFV/SFC Surveys.

Survey Reference Survey Focus Open Challenges Presented Year

Zoure et al. [20] Network services anomalies in NFV 4 2022
Zhang et al. [21] NFV platforms, design and taxonomy 4 2021

Hamdan et al. [22] Load balancing techniques in SDN 4 2021
Fei et al. [23] NFV deployment acceleration 4 2020

Kaur et al. [24] vNF placement, availability, and load balancing 4 2020
Hantouti et al. [25] Service function, 5G and next-generation networks 4 2020
Bonfim et al. [26] NFV architectures; NFV/SDN design taxonomy 4 2019

Hantouti et al. [27] Traffic steering in SFC; SDN-based chaining evaluation 4 2019

Laghrissi et al. [4] Service placement survey; vNF placement; existing virtual resource
placement solutions Lessons learned 2019

Mirjalily et al. [28] Optimal NFV and SFC concepts 4 2018

Medhat et al. [29] Next Generation Network SFC; SDN approaches in SFC; SFC
implementations Implementation limitations 2017

Bera et al. [30] SDN for IoT 4 2017
Veeraraghavan et al. [31] NFV survey; selected implementation problems and solutions 8 2017

Bhamare et al. [32] Service function chaining; NFV mobility 4 2016
Herrera et al. [1] NFV resource allocation 4 2016

Xie et al. [33] Resource allocation in SFC; Existing NFV SFC RA solutions Lessons learned 2016
Li et al. [7] Network function placement; Selected framework comparison 4 2016

Yang et al. [34] SDN/NFV for mobile and wireless networks 4 2015

As one of the most recent survey works in the NFV/SFC space, Fei et al. [23] focused
their work on the proposals that consider the acceleration of NFV deployments. A taxon-
omy of the surveyed approaches is presented and discussed, which mainly involves the
hardware and software acceleration of NFV deployments. We take a different approach by
considering the state-of-the-art NFV implementation frameworks, especially in scenarios
where network functions are also chained, as in SFCs.

In their work, Zhang et al. [21] presented NFV platform design choices. They presented
three main open issues in NFV: (1) the use of artificial intelligence in NFV, (2) network
slicing, that is, the management of network slices, the communication between slices and
placement of network slices, and (3) the integration of NFV with IoT. The taxonomy of
NFV platforms presented by Zhang et al. consists of prototyping, testing, deployment,
management, execution, and integrated NFV platforms. We take a different approach in
our work by first presenting the requirements that must be met for the chaining of vNFs
and some useful use-cases. This is relevant in understanding the key components involved
in creating service function chains in service provider network environments. Our work
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focuses mainly on NFV frameworks that employ the chaining of network functions for
effective service delivery. In addition to the taxonomy of the frameworks presented, we
also discuss key open research challenges in these environments.

In the survey presented by Hantouti et al. [27], they discussed the traffic steering
approaches used in SFC solutions with SDN. The current traffic steering approaches are
classified into three methods: header-based, tag-based, and programmable switch-based
methods. They concluded by identifying QoS, scalability, security, and management as
some of the challenges in SFC traffic steering. Although their survey is comprehensive in
terms of SDN-based traffic steering in SFC, we focus our work not only on traffic steering
in SFC, but also on the implementation frameworks used to achieve a scalable, resilient,
and high-performance SFC.

Bonfim et al. [26] presented a review of integrated NFV/SDN architectures, where
they considered implementation frameworks that combined NFV and SDN. They identified
vNF scheduling and placement, improving network programmability, and the possibility
of deploying multiple SDN controllers to achieve scalability, security, and standardisa-
tion of SDN/NFV solutions as some of the open challenges. We extend their contribu-
tions by considering proposals that implement NFV/SFC and the challenges that require
further research.

As one of the early attempts in this domain, the survey by Yang et al. [34] explores
the challenges faced in mobile and wireless network (MWN) environments. Their work
carefully describes how software-defined wireless networks (SDWNs) and wireless network
virtualization (WNV) can be used in addressing the challenges of MWN networks.

A survey on SFC was presented by Herrera et al. [1] and Xie et al. [33], where the
authors focused on resource allocation approaches in the literature. Medhat et al. [29]
presented open challenges in service function chaining for next-generation networks. A
taxonomy of prior work was presented, where they classified it into data -and control-plane
SFC solutions. Our survey considers a broader scope by creating a taxonomy that is beyond
control and data-plane solutions, as well as presenting state-of-the-art technologies and
open research challenges.

Bhamare et al. [32] presented a detailed survey of SFC, where the authors identified
optimal resource allocation, dynamic service mapping, and policy enforcement, as some
of the challenges in these environments. Li et al. [7] and Laghrissi et al. [4] focused on
the placement of resources in SFC environments, where the former presented a survey
of network function placement in SFC, and the latter focused on the placement of virtual
resources. In their survey, Hamdan et al. [22] explored the traffic load balancing approaches
used in SDN network environments. Our work presents the relationship between SDN,
NFV, and SFC, as well as a novel taxonomy of implementation frameworks.

Mirjalily et al. [28] presented a survey of SFC and NFV implementation efforts. Some
of the future research directions presented by [28] include SLA and QoS approaches, online
chaining of service functions, availability and resilience of chains, security, and energy
efficiency. Our survey provides a more technical look into the implementation frameworks
by first classifying the state-of-the-art frameworks and the proposed solutions.

The comprehensive survey presented by Bera et al. [30] focus on SDN technologies
employed in network environments such as the data centre, edge, access, and core networks.
They present their findings in relation to IoT use cases. They identified open research
challenges such as platform independence, policy enforcement, mobility management, and
the fully practical implementations of SDN-based solutions in IoT environments.

In their comprehensive survey, Kaur et al. [24] classified SDN/NFV approaches into
availability, placement, and load-balancing solutions. They identified the ordering of
SFCs, resiliency, security, topology configuration, and service placement, as some of the
challenges related to current SFC implementations. We extend this work by (1) creating a
taxonomy that captures state-of-the-art frameworks; (2) presenting frameworks that also
capture the chaining of vNFs, which is key to the design of next-generation networks;
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and (3) presenting more open challenges that are key to achieving scalability of network
functions, resilience, and high performance in NFV/SFC network environments.

The survey carried out by Hantouti et al. [25] on SFC challenges covered frameworks
that proposed to solve challenges such as path selection, orchestration, security, SFC path
composition, QoS, and traffic steering. They concluded by acknowledging that more work
needs to be done in developing related technologies (SDN and NFV). We also consider
frameworks that focus on areas such as resilience, fault recovery, performance tuning, and
resource allocation to extend their contributions.

To the best of our knowledge, we have summarised the key contributions of notable
related surveys and how our work adds to the NFV/SFC domain. Unlike most existing
surveys, our research also presents the detailed requirements for chaining virtual network
functions in service provider environments, including some important use cases. The
taxonomy we created in our work presents the design choices and technologies used for
the implementation of different equivalence classes of NFV/SFC frameworks. This focuses
on the existing problems in the NFV/SFC domain, that is, we categorise the surveyed
frameworks based on their proposed solutions and technological design choices.

Most of the notable related surveys we have presented only discuss the technologies
and open challenges in the NFV or SFC domain. Some exceptions to this are the surveys by
Bonfim et al., which present a taxonomy of NFV/SDN architectures by categorising them
into NFV-side and SDN-side designs, while Zhang et al. presented a taxonomy based on
the life cycle of NFV platforms. Kaur et al. presented a taxonomy based on the optimisation
approaches used in SFC, such as availability, placement, and load balancing. In contrast
to previous surveys, we categorise the surveyed frameworks based on their proposed
solutions and technological design choices.

We carefully describe what each framework has been designed to achieve, what tech-
nology and approach have been used, and what performance (or other quality) benchmarks
have been performed. We have also highlighted the different methods and technologies
used for implementing each framework. In addition to presenting an extensive list of
open research challenges in NFV/SFC, we also discuss some notable early attempts in the
literature aimed at addressing the research challenges identified (Section 5), providing the
reader with knowledge of some existing efforts in this direction.

2.1. SFC Chaining Requirements

When it comes to the chaining of network functions in an SFC environment, the IETF
SFC draft [35] provides an architectural framework that captures all the components that
are required for SFC implementation in service provider networks.

There are some useful assumptions that need to be considered when creating a chain
of network functions: (1) different network functions present their own configuration and
description challenges, thus, creating a generalised description for all service functions
is not trivial; (2) the implementation environment of the network function affects the list
of functions that can exist in a particular domain; (3) the logic employed for the chaining
of service functions is not fixed, that is, it is peculiar to any given administrative domain
and the requirements of service(s) to be delivered to end users; and (4) the invocation of
any service chaining criteria depends on the administrative domain in which the service
functions are deployed [35].

In terms of chaining requirements, although there are domain-specific requirements
that need to be in place when deploying SFCs (based on the network administrative
domain), there are also general requirements for the components that are found in most
SFC deployments [36]. Irrespective of the network environment(s), global components must
be in place. These components are the service classifier, which is placed at the entry point of
the network (to classify ingress flows). Flow classification helps with the decision-making
process of the orchestrator in terms of traffic steering across the service chain.

The service function forwarder (SFF) is another component that forwards received
traffic to the right service function (SF), and can be embedded on a physical network
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component or deployed as a virtual component along the service function path (SFP),
which is based on the classification of ingress traffic performed by the SC [37]. The SFF is
also responsible for handling any return traffic that needs to be forwarded back to a specific
service function or service classifier in the service chain [35].

Another component is the SFC proxy, which is often optional in SFC implementations
and used in scenarios where other components (SF and SFF) are unable to communicate
in the chain [25]. SFC deployments can be fully deployed without the use of any form of
proxy component, that is, when SFC-unaware service functions are not deployed in the
network infrastructure. In situations where SFC-unaware service functions are part of the
service chain, an SFC proxy is used to add or remove encapsulation information; thus,
these are considered as logical components of the SFC architecture [35]. Figure 3 depicts
some of the core components of the IETF SFC architecture.

NETWORK
INFRASTRUCTURE

SF Forwarder (SFF)

SF1

SF2

SFn

SFC-aware 
Service Function

SFC-unaware
Service Function

SFC ProxySFC-Aware 
SF

SFC Encapsulation

SFC-enabled Domain

Network OverlayTransport

SFC Encapsulation

SFC Encapsulation No SFC Encapsulation

Figure 3. IETF SFC Architecture Components.

2.2. Typical SFC Environments

As more network operators continue to adopt network slicing, which serves as the
enabler for next-generation networks, the chaining of virtual network functions for efficient
service delivery has become commonplace. Some common use cases can be found in
today’s service provider networks. Some available common environments are the Gi-LAN
network used by mobile network operators, residential/consumer services, and inter/intra-
data-centre networks. Mobile network operators deploy functions such as traffic optimizers,
firewalls, carrier-grade network address translation (NAT), load balancers, and DPI, at
the core of the network, which is designed for subscribers that access Internet-based
services [38]. Here, we briefly explore these environments.

2.2.1. The Gi-LAN Mobile Core Network

A typical environment in which service function chaining is deployed is the Gi-
LAN network, which is a component of mobile networks used by operators to provide
fine-grained user-specific services such as traffic optimisation, DPI, and firewalls [39].
Gi-LAN implementation by mobile network operators is an emerging use case for SFC
architecture [40]. These services are often chained together and are provided by multiple
vendors, and the traffic is steered to the right service functions, which is aimed at meeting
service level agreements and policy enforcement [41].
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The ability to add or remove a service becomes easier along the processing pipeline,
as per-user services can be created for mobile data monetisation [42]. In terms of imple-
mentation requirements, implementing a service chain that contains a network function
such as NAT, for example, requires that the function is placed on the edge sites, which is
closer to the users requesting the service [43]. Another useful requirement when creating
a service chain in a mobile core environment is the consideration of the SLA agreement
between multiple vendors. For packet classification requirements, the classifier should be
located at the packet gateway. Figure 4 depicts a high-level description of the SFC in mobile
networks, with service functions deployed in the Gi-LAN segment of the network.

INTERNET
DPI, FW,  

NAT,  
Video OptimiserEPC

Gi-LAN

Radio Access Network

Figure 4. Gi-LAN in mobile networks.

2.2.2. Residential and Consumer Services

Because NFV/SDN allows for the provisioning of highly specialised solutions to meet
customers’ quality of service requirements, using the concept of service function chaining,
service providers can steer residential traffic such as parental control and VoIP-related
services. The idea of follow-the-user service deployment in residential environments is an
important use case that is achieved using SFC implementations.

Network operators make use of vCPEs to easily create a chain of services that meet
user requirements [44]. Users in these environments are more likely to make use of web-
based applications that use HTTP as the de facto protocol [43]. One of the requirements
for such deployments is to create a service chain that prioritises security [45]. A typical
example is a service chain which follows the order: firewall > IDS > proxy. Security of
users is a priority and an important requirement, especially in this scenario.

2.2.3. Inter-and Intra-Data-Centre Networks

SFC in the inter/intra DC environment allows for the chaining of virtualized enter-
prise network applications (in the case of intra-data-center) and chaining across multiple
locations, or inter-cloud, in the case of inter-data-centre networking. The ability of service
functions to be instantiated across multiple datacenters (inter-data-centre networking) is a
key requirement for live VM migration. The SFC architecture to be implemented should
be designed to dynamically migrate service functions from one VM/container to another
without disrupting user service requests [46].

Deploying and managing service function chains in an inter-data-center setting in-
curs inter-data-centre bandwidth cost, deployment cost, intra-data-centre cost, and vNF
costs [47]. In these environments, NFs are also used for policy-based routing of cloud
services and enterprise applications [38], which means that service providers can up-sell
their services easily using SFC at the enterprise. This can be achieved by making network
services user-programmable.

3. SDN, NFV, and SFC: An Overview

In service provider networks, the process of creating, deleting, modifying, and steering
traffic in SFCs is carried out efficiently by using SDN and NFV technologies [48]. These
technologies are the key networking paradigms that are at the core of the frameworks
surveyed in our study. In this section, we describe these technologies as they relate to
NFV/SFC implementation frameworks in service provider network environments, thus
showing their interrelation in the operations of next-generation networks. Even though
the chaining of hardware middle-boxes is possible, the use of NFV makes it much easier
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and cheaper [49]. Thus, SDN is employed for orchestrating virtual network functions by
providing a centralised logical control and the creation of service chains.

3.1. Software-Defined Networking

Software-defined networking decouples the control plane from the data plane in the
networking devices. Traditional non-SDN networks often have control and data planes
integrated on a single device, which brings about challenges such as management complex-
ity and scalability issues. Implementing centralised network control using SDN controllers
results in easier service deployment and management [49]. This helps service providers to
easily steer traffic between NFs by scaling across multiple physical machines.

The functional separation of the network infrastructure into control and data planes, as
shown in Figure 5, is the core concept behind SDN. The application layer consists of various
network applications, providing network services that use the Northbound Interfaces for
sending requests to the control plane (centralised logical control). A global view of the
network infrastructure is maintained by an SDN controller such as OpenDaylight [50],
POX [51], RYU https://ryu-sdn.org/ (accessed on 12 December 2021), or a custom-built
controller can be used to manage network functions, which handles requests coming from
the network applications, and sends instructions to the data plane of the network for packet
processing [52].

Figure 5. OpenFlow SDN and P4 data-plane.

Using the southbound application programming interfaces (APIs) and the OpenFlow
protocol, rules are sent down to devices in the data plane of the network, which is respon-
sible for packet processing and forwarding. Although traditional SDN networks use the
OpenFlow protocol to communicate with the network data plane by inserting flow rules
on devices, the network has become more programmable over the years. Programmability
allows network operators to define the processing pipeline and how packets are processed
using high-level languages such as P4 [53].

Figure 5 depicts a high-level comparison of the operation of OpenFlow SDN and pro-
grammable data planes, where P4 programs are written and compiled and then deployed
on programmable switches. This allows for the creation of a highly programmable pipeline,
as opposed to a fixed (less flexible) processing pipeline found in OpenFlow SDN. SDN
and NFV serve as the building blocks for reaching the goal of deploying a chain of virtual
network functions in the service provider network environment.

https://ryu-sdn.org/
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3.2. Network Function Virtualization

The use of proprietary network hardware is expensive for service providers in terms
of procurement, security, configuration, scalability, and maintenance costs. The European
Telecommunications Standards Institute (ETSI) [54] introduced a high-level NFV architec-
tural framework, envisaging the deployment of network functions as software, running
on the network function virtual infrastructure (NFVI), which could be a general-purpose
server. This proposal was introduced to take advantage of hardware virtualisation [55,56].
The deployment of network services has been greatly simplified by NFV, because the cost
of acquiring new hardware middle-boxes is reduced, and several middle boxes can be
virtualized and deployed on single or multiple general-purpose servers.

The ETSI architectural framework for NFV depicted in Figure 6 shows all the important
components that are necessary for deploying NFV. The operations support system (OSS)
and business support system (BSS) directly interact with the vNFs. The vNF component
is the network functionality, for example, a traffic load balancer, a WAN optimizer, and a
firewall, etc. (Table 2). The hardware infrastructure consists of a virtual infrastructure with
virtual computing, storage, and network components. This infrastructure is managed by
the virtual infrastructure manager (VIM), which is responsible for resource allocation and
embedding of virtual network functions on the virtual infrastructure. NFV Orchestrator
(NFVO), which is an integral part of the ETSI NFV framework [54], is responsible for service
orchestration and management [29]. One of the functions of the orchestration layer is the
mapping of virtual network functions in a service chain to available physical resources.
The management and network orchestration (MANO) component is responsible for the
orchestration of vNFs and the chaining of services in a scenario where service function
chaining is used. As shown in the SFC scenario in Figure 7, general-purpose hardware
could be a typical high-performance commercial off-the-shelf (COTS) hardware [54].

Table 2. Commonly used vNFs in NFV.

vNF Functionality

Application gateway Layer 7 traffic management based on application profile
Layer 2 forwarder Packet forwarding based on layer 2 information
Protocol Analyzer Packet classification, based on protocol in use

Flow tracker Storing, displaying and forwarding ingress flows
Layer 3 Switch/Router Traffic routing and switching using IP addresses

Application Firewall Layer 3 and layer 7 packet filtering
Bridge Bridging between two networks or host devices

Carrier Grade NAT IP address translation for WAN connectivity
IDS/IPS Stateful or stateless intrusion detection and prevention

Protocol converter Protocol translation between IPv4 to IPv6
Encryption gateway Packet encapsulation and packet encryption/decryption

ACL User and application level access control
Protocol Accelerators Performance improvements by ISPs

VLAN manager VLAN encapsulation and decapsulation
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Figure 6. ETSI NFV architectural framework.
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Figure 7. Service function chaining scenario.

3.3. Service Function Chaining

The vNFs implemented in NFV constitute the NF forwarding graph, which consists
of network functions connected via logical network links to achieve the goal of packet
processing by the vNFs. SFC is made up of NFs connected in a chain (based on service
requirements and specifications) to deliver end-to-end services to end users [54,57]. A
typical service chain consists of NFs such as a NAT function, a firewall, and a traffic
load balancer. As briefly introduced in Section 2.2, in order for an SFC deployment to be
complete, components such as the service classifier, SFF, Service Function Path, SFC proxy,
and service function need to be in place.

The IETF SFC architecture presented by Halpern et al. [37] shows that the SFCs are
either bidirectional or unidirectional, where packet processing is performed through an
ordered list of service functions in a unidirectional scenario [37]. A bidirectional SFC
scenario requires packet processing elements (SFs) to be placed in both directions of the
service chain. SFCs are deployed as network service graphs with SFs placed carefully
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at different parts of the service chain. The ability to add and remove SFs dynamically
along the service path is essential for the design of any SFC framework. NFV and SDN are
integrated to achieve instantiation, management, and orchestration of service chains [58].

Intelligent service orchestration is important when handling various service functions,
and this can be achieved when the NFV is properly integrated with SDN [59]. Figure 7
depicts a typical SFC scenario with service requests generated by users based on the
application requirements. A classification of the user traffic is carried out by the flow
classifier, which helps in deciding what network function(s) need to be traversed by the
traffic before reaching its destination. In a scenario where the service requests traverse
more than one NF, a service orchestrator is used to create a chain of NFs that forms the final
processing pipeline toward the destination (requested service).

3.4. NFV/SFC and 5G Networks

The chaining of virtual network functions for effective end-to-end service delivery is a
key enabler of Beyond 5G networks [60,61]. Since 5G-enabled networks are characterized
by low latency, programmability, and the support for diverse use-cases of the future,
technologies such as NFV can allow providers to deploy services that are suitable for radio
access networks (RANs) and mobile core networks [60].

By implication, using NFV, SDN, and SFC, service providers can easily provide tailored
solutions that meet customer demands, by carefully orchestrating user-generated traffic
between an ordered list of network functions. As described in Section 2.2, the chaining
of virtual network functions in SFC enables use cases such as the Gi-LAN mobile core
network, residential and customer services, and inter and intra-datacentre networks. Other
important use cases such as self-driving cars, e-healthcare [62], and mixed reality (MR) and
5G-enabled IoT [62,63] are also possible due to the flexibility offered by 5G network slicing.

Efforts such as the work by Morocho et al. [64] focus on showcasing how machine
learning (ML) can be used to leverage the benefits provided by Beyond 5G networks. ML
can be used with enhanced mobile broadband (eMBB) and support future Beyond 5G
applications, that are envisaged to have high data rate requirements. Massive machine-type
communications (mMTC) and ultra-reliable low-latency communications (URLLC) are also
required to provide support for future use cases for Beyond 5G networks [65,66].

Abdelwahab et al. [67] explored how the 5G RAN can be enhanced using NFV, which
could also lead to a reduction in the overall capital expenditure for telecommunications
service providers (TSPs). As detailed in [67], some challenges that are related to 5G
networks such as efficient scalability of vNFs between physical networks, vNF performance
guarantees, and simultaneously supporting the deployment of hardware and virtualized
network functions, can be overcome with the flexibility offered by NFV implementations.

4. NFV and SFC Frameworks Taxonomy

In this section, we present the implementation frameworks proposed for NFV/SFC
deployments.

Some of these implementations are set out to solve specific problems in the SFC do-
main, such as resource allocation and service orchestration, performance tuning, resilience,
and fault recovery. In Section 5, we present and discuss the open challenges that are related
to the implementation frameworks discussed.

Figure 8 depicts a summary of the taxonomy of the frameworks presented in our work.
Resource allocation and service orchestration frameworks deal with the efficient utilization
of available resources, by employing techniques such as synthesizing packet processing
graphs and offloading packet processing tasks onto smart NICs, while ensuring that traffic
is steered to the right network functions in a service chain, and efficiently managing the
life-cycle of network functions.

The frameworks presented under the performance-tuning category are concerned with
improving the overall performance of SFCs by employing techniques such as modular SFC
deployments, the use of lightweight packet processing elements, the use of acceleration
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frameworks for packet processing, and deep learning techniques to improve the overall
chain-wide performance.

The third category in our taxonomy, resilience, and fault recovery, consists of frame-
works that handle the problem of fault tolerance in SFC. These frameworks employ tech-
niques such as network function replication and piggybacking of NF state changes across
service chains to achieve resilience in SFCs.

Each of the presented frameworks strive to achieve diverse objectives and are hence
very often evaluated against different and incompatible baselines. We have therefore chosen
to create a taxonomy of the surveyed frameworks to be able to compare, quantitatively and
qualitatively, the different works in their own contexts. Rather than forcing a comparison
of potentially disjoint performance characteristics between frameworks that could have
led to superficial superiority claims, we have carefully described what each framework
has been designed to achieve, what technology and approach has been used, and what
performance (or other quality) benchmarks have been performed. Frameworks under each
category are discussed next.

NFV/SFC
Implementation

Frameworks

Resource Allocation 
 &  

Service
Orchestration

Performance Tuning
Resilience  

& 
 Fault Recovery

OpenBox [14]
Slick [15]
SNF [16]
Metron [17]
Pishahang [52]
CN-SFC [57]
Eden [70]
E2 [71]
Open Baton [72]
PIaFFE [75]

ClickOS [12]
OpenNetVM [13]
GNF [19]
NetBricks [67]
CoCo [79]
DeepNFV [80]
NetFate [81]
HyperNF [82]
PhantomSFC [83] 
MVMP [84]
MicroNF [85]

Medhat et al. [48]
CN-SFC [76]
FTC [88]
REINFORCE [90]
Hmaity et al. [91]
FtVNF [92]
Nguyen et al. [93]

Figure 8. NFV/SFC frameworks taxonomy.

4.1. Resource Allocation and Service Orchestration Frameworks

The ability to efficiently allocate network, storage, and processing resources in virtual-
ized network environments is key in service provider networks. This is even more so in
NFV/SFC environments, where user traffic type and frequency can either be deterministic
or nondeterministic, bringing the need for the underlying system to provide and allocate
resources efficiently. The chaining of network functions to provide end-to-end services
cannot be achieved without an efficient service orchestration scheme in place [68]. Efforts
such as the work by Sun et al. [69] propose algorithms to handle SFC orchestration, resource
utilization, and optimization. The algorithm proposed by [69] for example, is based on
the breadth-first search (BFS) algorithm, which reduces overall chain-wide latency and
bandwidth consumption. This section presents frameworks that have been designed to
achieve the goal of efficiently allocating resources in NFV/SFC and the orchestration of
network services. We categorically focus on frameworks that handle resource allocation and
service orchestration as the core contributions in this subsection of our work by presenting
the technologies used and the implementation approach employed by the authors. This
has also been summarised in Table 3.
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Table 3. Resource allocation and service orchestration frameworks.

Framework Problem Solution(s) Processing Testbed/PoC

OpenBox [14] vNF provisioning and
orchestration

Lightweight vNFs and
decoupling

control/data plane.
Click Mininet

Slick [15]
Resource management

and efficient traffic
steering

vNF placement. Click Mininet/VM

SNF Framework [16] Resource optimization

Synthesised processing
graphs, stateful NF

management and vNF
performance
optimization.

Click elements Servers with MoonGen
Packet gen

Metron [17] Resource Allocation

Network resource
management and
server resource

utilization.

Click-based OpenFlow Switch and
VM

Eden [70] Service Provisioning
and Orchestration

End-host NFs, packet
offload to NIC and

programmable
data-plane vNF.

F# vNFs End-hosts and
programmable NICs

E2 Framework [71] NF Scheduling and
management

NF placement, effective
resource allocation,

vNF scaling.
commodity servers Hardware switch and

servers

Open Baton [72] NFV/SFC management
and orchestration

Network slicing,
multi-site orchestration,
vNF fault tolerance and

resource allocation.

VMs OpenStack

Pishahang [73] Service Orchestration Multi-domain
orchestration. VM OpenStack/Kubernetes

PiaFFE [74] vNF orchestration
vNF Offloading to eNF,
improved throughput
and eNF placement.

VM Servers with SmartNIC

4.1.1. Eden Framework

The Eden framework was proposed by Ballani et al. [70] as a framework suitable for
virtual network function provisioning on end-user devices. Eden leverages the concept of
data-plane programmability by implementing NFs on end-user devices written in the F#
language, which is a high-level programming language. Eden comprises three functional
components that work together to handle packet processing tasks: the centralised logical
controller, which is used for service orchestration and for providing a global view of the
infrastructure. The second component is the Stage, which is simply a name for kernel
modules, libraries, or applications on hosts that are used for the classification of packets
before being sent to the Enclave (the third component in Eden).

The Enclave is responsible for handling the functionalities of a programmable data
plane, which can be implemented on NICs, FPGAs, hypervisors, or operating systems.
Eden maintains match-action rules in the Enclave, with traffic association carried out on
the host device by the stage component of the framework. The Enclave is also responsible
for interpreting the bytecode, which is obtained from compiling action functions. Eden still
leaves the open question about where to best deploy the network functions, that is, either
on the user OS or on the programmable NIC. In Section 5, we shed some light on this open
challenge by arguing for a hybrid implementation framework for fast packet processing
and efficient service chain creation in next-generation networks.

4.1.2. E2 Framework

The E2 framework presented by Palkar et al. [71] is designed for the management of
NFV applications and resource allocation, which is achieved without necessarily knowing
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the low-level implementation of the applications. The target environments for the E2 system
are hardware commodity servers and switches in high-performance network environments,
which are typically found in today’s central office locations. E2 implements a manager,
which is responsible for orchestrating communication between the SDN controller and a
cluster of servers.

The E2 framework also manages the placement of NFs using the proposed algorithm
on available servers by monitoring the available resources and efficiently placing NFs to
avoid unnecessary system overheads. Network operators can define their policies using
pipelets, which state the steps involved in processing traffic from a specific class. A directed
acyclic graph (DAG) is a key component of the E2 pipelet, which defines how a class of
traffic is processed by the E2 NFs, with nodes representing physical switch ports or NFs.

The configuration of network functions is done by providing the following inputs:
(i) an API exported by E2 for leveraging optimisation options, (ii) a method for attribute
association, that is, for per-packet and port metadata; (iii) information on the scalability
of the application, that is, whether it can scale across multiple cores or multiple servers,
which gives the E2 framework an idea of how to handle situations of traffic overload, (iv) a
method of splitting traffic across multiple NF instances by considering the constraints of
the target environment; and (v) information on the NF processing capacity in terms of
traffic rate, which helps with placement decisions. E2 provides service providers with the
flexibility of declaring their policies without prior knowledge of the underlying network
function or infrastructure.

4.1.3. Pishahang Framework

Pishahang is a multi-domain service orchestration framework for SFCs, proposed by
Kouchaksaraei et al. [73,75] (with the introduction of dynamic service chaining), which
combines container-based and VM-based vNFs to create a chain of network services. The
framework was implemented across the OpenStack and Kurbenetes domains. In terms of
service description, Pishahang uses two descriptors: the first for describing information
considered to be high level, such as service chaining, microservices, and vNFs, while the
second descriptor focuses on a more fine-grained description of vNFs, such as the required
resources for running the vNFs. Pishahang is a framework that has been built to chain
services across heterogeneous domains.

Pishahang used the SONATA MANO https://www.sonata-nfv.eu/ (accessed on 15
December 2021) framework, which supports the addition of new functionalities following
a microservice-based architecture. Service graphs are translated by the SDN adaptor, which
is sent to the controller, converted to forwarding rules, and installed on switches. To
validate the features of Pishahang in chaining services across multiple domains, VM-based
and container-based forwarders were chained to create an SFC with ICMP packets sent
end-to-end. The use of containers for the deployment of vNFs is yet to be fully developed
because of reasons such as lack of functional isolation, and security.

4.1.4. SNF Framework

SNF is a SFC framework proposed by Katsikas et al. [16], which synthesises SFCs with
the main goal of performance optimisation by eliminating redundancy in packet processing
across the service chain. Typical causes of redundancy are eliminated by the SNF framework
by (i) creating a logical processing entity to handle all chain-wide operations on received
packets, rather than handling network functions as separate processes, (ii) discarding
packets that need to be discarded very early in the service chain; (iii) reducing multiple read
operations by collecting read operations and constructing classes of traffic as a directed
acyclic graph, which is synthesised into a classifier, and (iv) reducing the number of write
operations by modifying traffic classes in a single operation.

The concept of set theory and graphs is employed for traffic classification to achieve
the synthesis of similar network functions to improve the overall performance of the
service chain. Another key feature of the SNF framework is the management of states

https://www.sonata-nfv.eu/
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across multiple network functions in a service chain, which enables the synthesis of stateful
service chains. At any given time, there is a processing core that actively classifies all the
received frames into the required traffic class units. The ingress traffic is hashed using RSS,
which helps to serve bi-directional flows by the same processor and re-writer [16]. Figure 9
depicts the SNF framework on a device with two network cards, where each NIC is tied to
a CPU core.

Service Chain Configurator Service Chain Parser
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NF Specification 
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Topology

Single Read per 
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Single Write per 
 Traffic Class Unit

DISCARD

RD

RDRD

NF  
chain

Early drop after 
 single read

READ  
CHAIN

WRITE 
CHAIN

NF State  
Management

Build Synthesized DAG of Processing Units
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Figure 9. SNF Framework.

4.1.5. Open Baton Framework

The Open Baton framework was proposed by Carella et al. [72] as a framework for
NFV service orchestration and management. The framework has the OpenStack cloud
infrastructure as its underlying platform, which is compliant with the ETSI MANO architec-
tural framework. The key component implemented by Open Baton is the multi-site service
orchestration feature in heterogeneous network environments. Open Baton provides a man-
agement component for handling the life cycle of network functions, including the use of the
JUJU http://openbaton.github.io/documentation/vnfm-juju/ (accessed on 20 December
2021) virtual network manager for interoperability between diverse network functions.

The framework provides support for diverse VIMS, which means there is no need to
rewrite the components of the logic that is responsible for service orchestration. To speed
up the NF instantiation time, drivers are provided for VIMs and VNFMs that support
the deployment of containerized network functions. Scaling of network functions can be
handled at runtime using the auto-scaling component https://github.com/openbaton/aut
oscaling-engine (accessed on 1 January 2022).

Open Baton uses Zabbix http://openbaton.github.io/documentation/zabbix-plugin/
(accessed on 1 January 2022) to monitor network activities and network function status.
The framework handles resource allocation by leveraging the concept of network slicing
using SDN; thus, the extensibility and interoperability of Open Baton makes it ideal as
an orchestration framework for heterogeneous network functions. A fault management
module, together with a management dashboard, makes Open Baton a complete solution
for heterogeneous NFV orchestration.

4.1.6. Metron Framework

Metron is an NFV framework proposed by Katsikas et al. [17], which achieves high
utilisation of commodity servers and underlying network resources. Metrons can offload
some packet processing tasks to the underlying network infrastructure and achieve low
inter-core communication using tag-based hardware dispatching for processing packets.

http://openbaton.github.io/documentation/vnfm-juju/
https://github.com/openbaton/autoscaling-engine
https://github.com/openbaton/autoscaling-engine
http://openbaton.github.io/documentation/zabbix-plugin/


Future Internet 2022, 14, 59 17 of 39

The reduction of inter-core transfers implemented in Metron gives it the capability to
process packets at the speed of the L1 cache. Metron performs stateless packet processing
and classification by leveraging the OpenFlow and P4 protocols.

The problem of having a mismatch between the server and network architecture is also
addressed by tagging packets to be dispatched and switched in the service chain, which
is controlled by the implementation of the ONOS SDN controller. Placement decisions
of synthesised packet processing graphs are carried out accurately and at a low cost by
obtaining the network state. A load-balancing scheme was introduced for servers and CPU
cores [17]. Figure 10 presents an overview of the Metron architecture, with an example
network function chain and execution steps consisting of a firewall and DPI NF.

NFV Server

Metron Controller

Metron Agent

Core 2

Core 1Source

OpenFlow 
Rules 

Installation 

Firewall DPI

Install rules 

Synthesize HW
read/write & stateful

SW operations

Split/merge traffic
classes

Runtime stats 

Service chain

To correct 
 core 

Figure 10. Metron framework overview.

4.1.7. CN-SFC Framework

Dab et al. [76] presented an SDNLess SFC microservice architecture for Cloud-Native
NFV, a framework for cloud-native SFC creation which uses an advanced version of
network service mesh (NSM) https://networkservicemesh.io/ (accessed on 27 December
2021) and Kubernetes (https://kubernetes.io/) (accessed on 2 January 2022) for chaining
cloud-native elements to form a service chain. They considered the use of SFCs in micro-
service architectures and addressed the shortcomings of the NSM architecture, such as its
inability to handle L2 or L3 traffic and the lack of support for advanced routing algorithms.

The cloud-native framework, CN-SFC, was also used to achieve traffic steering by
efficiently load-balancing traffic across the Cloud-native functions (CNFs). An approach
was introduced, which uses the weighted round robin algorithm by maintaining the weights
of Kubernetes pods and distributing traffic based on pods with high weight values. TS-CNF,
which is a traffic steering problem, was modelled and solved as an integer programming
(IP) problem.

In terms of the evaluation of CN-SFC, a Kubernetes cluster was used, which consists
of an NSM control plane, a master node, and two worker nodes. The Docker and the Kind
https://kind.sigs.k8s.io/ (accessed on 28 December 2021) framework were used to run
the cluster. The proposed network-aware traffic steering scheme (NA-TS) was evaluated
by varying the number of flows that need access to the network service in the cluster.
The number of replicas that were used for deploying the VPN and firewall services were
also varied, while UDP and ICMP (to evaluate reachability) packets were generated and
evaluated (jitter and packet loss in the service chain) between the two assigned pods and
those deployed in the cluster. Additional metrics such as the latency of the network and
service instantiation time were also evaluated.

https://networkservicemesh.io/
https://kubernetes.io/
https://kind.sigs.k8s.io/
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4.1.8. Slick Framework

The Slick framework was proposed by Anwer et al. [15], which allows for the pro-
gramming of network functions with a control program that describes how packets can
be processed in a specific traffic set. Traffic flow is specified by applications that provide
information on the elements that need to be traversed by the packets in the network. The
controller deploys the selected processing elements and deploys them on the machine.
The task of resource management in the framework is handled by the slick-run-time,
which ensures that the links and processing elements are not overloaded with packets
beyond capacity.

Network functionalities are placed as software elements, which can be installed dy-
namically or at the initialisation time. Events are sent to the Slick controller by the modular
processing elements; thus, Slick takes care of the placement of network functions and
the steering of traffic between packet processing elements. In terms of evaluation, the
proposed framework was evaluated using a Mininet SDN network emulator with various
network topologies. The controller was run on a separate VM, while the emulator was
run on another VM with 60 SDN switches. Both VMs had eight CPU cores. One of the
goals of Slick, which was achieved, is to maximise bandwidth utilisation between various
network functions.

Slick allows the network programmer to use a high-level language to describe a
module that handles the steering of traffic, as well as the placement of lightweight func-
tions in arbitrary locations along the service chain. Slick does not consider other envi-
ronments, such as the edge of the network; thus, their implementation is restricted to
data-center environments.

4.1.9. Openbox Framework

The OpenBox framework proposed by Bremler et al. [14] is a framework for the man-
agement, development, and deployment of vNFs. OpenBox abstracts network functions
as packet processing graphs, which represent the behaviour of typical network functions,
such as a firewall, DPI, and NAT. Processing graphs are implemented using the elements of
the click router framework [77], specifically for firewall, web cache, load balancer, and IPS.

To improve performance, OpenBox introduced a graph merging algorithm to merge
the abstracted NF processing graphs, which reduces per-packet latency by minimising the
number of processing blocks that need to be traversed by packets. The graph merging
process starts by normalising the graphs into trees to avoid the convergence of paths, and
the resulting trees are concatenated in the right order of packet processing by the network
functions (to ensure chain-wide correctness of the processing pipeline).

There are three major components that make up the OpenBox framework: OpenBox
Applications, OpenBox Controller (OBC), OpenBox Service Instances, and OBIs, which
constitute the OpenBox data-plane. Packet processing graphs are sent down to the OBI
data plane (which can be implemented in hardware or software) from the controller, which
in turn receives information about the packet processing capabilities of the OBIs. The
communication between the OpenBox controller and the data plane is handled by the
OpenBox protocol, which defines packet processing blocks for building vNFs.

The controller is used by OpenBox to achieve multi-tenancy, smart NF placement,
and NF scaling, in addition to steering traffic to the right vNF. This component of the
OpenBox framework provides network application developers with a layer of abstraction
for creating applications that have a specific packet processing graph and logic. The
OpenBox framework was evaluated using service chain configurations and pipelined
network function scenarios, with both scenarios yielding much higher throughput when
compared with scenarios without OpenBox. To cater to the resilience of network functions,
the authors merged multiple NFs together to create a single processing pipeline, which
provides higher throughput to one of the network functions at off-peak times of the second
NF in the merged processing graph, yielding a throughput that is 20% better than the naive
merge approach.
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4.1.10. Piaffe Framework

PIaFFE, a Place-as-you-go in-network framework for flexible embedding of vNFs,
is a placement framework proposed by Mafioletti et al. [74], which achieves multilevel
chaining and placement of vNFs implemented on SmartNICs. The overall aim of the
PIaFFE framework is to maximise throughput and achieve minimum latency by embedding
network functions (eNFs) on in-network processors. These embedded network function
implementations reduce server CPU utilisation on end-hosts, increase throughput to line
rate speeds, and reduce latency.

A PoC which was implemented on two physical servers was achieved by chaining
three network functions for authentication, IDS, and firewall functionality. PIaFFE reduces
host load by performing full or partial vNF offloading while consolidating multilevel
chaining. PIaFFE made use of the P4 programming language to steer traffic to vNFs
or eNFs, depending on what function has been embedded as an eNF. This decision is
determined by the P4 hash table or bloom filter, which has been implemented using a P4
Data Structure (P4DS).

4.2. Performance Tuning Frameworks

Improving the performance of virtual network functions, either as standalone func-
tions or as part of a service function chain, helps network operators reduce service instanti-
ation costs [78], and the optimal use of available resources. In this subsection, we present
frameworks that focus on optimising the performance of network functions in a service
chain. Most frameworks that are designed to optimise performance devise mechanisms
that can achieve goals such as reducing network function deployment and provisioning
time, maximising the throughput of network applications and reducing latency (Table 4).
We would like to note that there are several efforts in the literature that focus on optimising
network functions using diverse technologies and implementation methodologies. We
present the state-of-the-art equivalence classes of frameworks in this category by explaining
the design, technology, methodology, and results obtained by each framework.

4.2.1. Coco Framework

CoCo is an NFV framework proposed by Meng et al. [79], which was designed for the
deployment of modularized service function chains (MSFCs). One of the major goals of the
proposal is the consolidation of processing elements collocated on a VM and handling the
placement of the modularized SFC to minimise packet transfer overhead between VMs. The
authors designed a placement scheme that selects the right SFC elements for consolidation
using performance and resource-aware placement. Fairness is achieved between several
NFs tied to a single CPU core using a run-time scheduler implemented in CoCo.

In terms of scalability, CoCo can utilise a push-aside scheme specifically designed
to handle reduction in performance, which might arise due to scaling elements. Unlike
most existing NF scalability approaches that start up a VM when there is a need to scale,
which leads to more overhead in terms of latency, the push aside algorithm reduces the
need for inter-VM hop creation. Rather than creating a new replica (as used by traditional
vNF scalability solutions), the CoCo framework adds more resources to elements that
are overloaded.

In terms of performance evaluation, the efficiency of resource utilisation and the reduc-
tion in the cost of transferring packets across the service chain are the two major benefits
of the CoCo framework. Throughput and CPU utilisation were measured with CoCo
implemented using Docker containers to allow for the consolidation of processing elements;
thus, Open vSwitch was employed as the virtual switch for VM-VM communication. The
results show that CoCo can improve performance by approximately 45.5% and a 2.46X
reduction in packet transfer overhead.
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Table 4. Performance tuning frameworks.

Framework Problem Solution(s) Processing Testbed/PoC

ClickOS [12] Middlebox
optimization

Optimized packet processing and
Zen-based VM optimization. Click Xen-based hypervisor

OpenNetVM [13] VNF performance
optimization

DPDK-enabled vNFs, containerised
NFs, kernel by-pass packet

processing and line-rate packet
processing.

Containers DPDK-enabled hosts
and containers

NetBricks [18] NF performance
optimization

Zero-copy isolation and memory
level isolation. VM Physical servers

GNF [19] Edge vNF
deployments

Lightweight vNFs and edge service
chains CN Host with CNs

CoCo Framework [79] Modular SFC

Optimization of modular SFCs,
effective resource allocation,

resource-aware placement, vNF
fault tolerance and optimized

run-time scheduler.

Containers Commodity servers

DeepNFV [80] NFV SFC
performance

Deep learning for QoS and traffic
optimization, lightweight

containerised vNFs and Edge NF
deployments.

Containers GNF framework

NetFate [81] Edge NFV
deployments

Active NF/VM migration and open
PaaS platform. VM Commodity servers

and virtual switches

HyperNF [82] NFV SFC
performance

Reduced I/O sync overheads,
hypercall-based I/O in VM context

and vNF scalability.
VM VALE switches and

VMs

PhantomSFC [83] Resource
optimization

Service/Control decoupling,
reduced latency and improved

throughput.
VMs VM/DPDK

MVMP [84] NFV SFC
performance

Improved throughput, lightweight
vNFs, vNF fault tolerance and vNF

replication.
Containers DPDK, Container,

Virtual Switch

MicroNF [85] NFV/SFC
performance

Optimal NF placement, reduced
inter-NF latency, vNF performance

optimization and scalability and fair
scheduling of vNFs.

Containers Docker and VMs

4.2.2. Deepnfv Framework

DeepNFV is a lightweight NFV framework proposed by Li et al. [80], which was
designed specifically for edge network deployments, with the aim of minimising the
packet processing tasks at the core of the network by offloading to edge network functions.
DeepNFV is built on the GNF framework [19], which uses lightweight docker containers
to build network functions for the edge. The key components of the proposed framework
are the deep learning models employed and the infrastructure layer, which handles the
interaction between network links and devices.

DeepNFV uses deep learning to enhance tasks such as the optimisation of QoS param-
eters, classification of traffic, and analysis of network links. Similar to the GNF framework,
DeepNFV was built to support the idea of moving network processing elements as close to
the data source as possible (edge computing). As a use case for the DeepNFV framework,
network traffic analysis functionality was considered by the authors by generating basic
images from network traffic. A traffic analysis-containerized network function was used
for the analysis and classification of images using deep learning models.

To demonstrate the traffic analysis use case, the DeepNFV framework starts by splitting
the received traffic into discrete components, which are stored as PCAP files, and the second
step involves the modification of the packet headers to trim the header length or remove
unimportant fields from the packets. The modified PCAP files are cleaned to remove
duplicates before being converted into image data. The resulting images are processed by
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the CNN model and sent to the next network function in the chain for further action(s). The
ability of the framework to classify images and the performance of the network functions at
the edge of the network were evaluated, and improved performance in terms of precision
and efficiency was recorded.

4.2.3. Micronf Framework

The MicroNF framework was proposed by Meng et al. [85] as a framework for the
deployment of modularized service chains, using a centralised controller for service chain
graph reconstruction and redundant NF reuse. Service providers describe the MSFC to
be deployed by clearly defining how the elements are interconnected. This is followed by
processing the MSFC using graph reconstruction and the identification of any dependencies
by elements, with the aim of reusing elements where possible. The reordered MSFC is
optimally placed with the goal of reducing the latency between processing elements.

The major goals of the framework are to (i) efficiently reuse elements that have similar
configurations in the processing pipeline by first addressing the problem of dependency
between different elements, (ii) solve the problem of VM to VM connection using a virtual
switch in an optimal fashion, (iii) shorten the service chain length, and reduce packet
processing costs, where necessary.

In terms of the scalability of NFs, MicroNF implements run-time scaling algorithms,
which ensure minimal inter-NF latency along the service chain. The problem of select-
ing processing elements that are ideal for consolidation is also handled by the MicroNF
framework, in addition to a placement algorithm that prioritises high performance. The
speed of packet processing between diverse elements is also considered by the proposed
resource scheduler, which ensures that the workload is efficiently shared among available
processing elements [85].

4.2.4. Netbricks Framework

NetBricks is an NFV framework proposed by Panda et al. [18], which offers a platform
for building and running virtual network functions that provide software isolation between
NFs. The NetBricks framework differs from other approaches by (1) limiting the set of
processing modules to core functionalities, which helps to reduce the number of modules
that network application developers must deal with, and (2) allowing the customization
of modules using user-defined functions, which makes the modules more flexible and
optimised for better network function(s) performance.

NetBricks eliminates overheads resulting from context-switching by enforcing memory-
level isolation in software and reducing I/O related overheads by introducing zero-copy
software isolation [18]. Using zero-copy isolation, the cost of packet I/O is greatly reduced
by NetBricks, which means that chains of network functions can be run as a single process.

NetBricks provides a major distinction in providing fault and memory isolation for NF
implementations by utilising operators designed for parsing, de-parsing, transforming, and
filtering packets. In addition to packet operators, the framework also provides abstractions
for processing byte-streams, abstractions for control flow, and for state and scheduled
events. To evaluate the performance of the NetBricks framework, two example network
functions were used: the first is a simple network function that decrements the TTL of a
packet and discards any packet that has a TTL of 0, and the second is a stripped down
implementation of the Maglev load balancer [86], which splits ingress traffic among servers
and also provides failure recovery for back-end servers.

The measurements evaluated include simple NF overheads, array bound overheads,
and how general the NetBricks programming abstractions can be. For the latter part
of the evaluations, that is, the programming abstractions, five network functions were
implemented: NAT, firewall, Maglev load balancer, and a Snort-like NF that performs
signature matching on ingress packets. Improved performance was observed for scenarios
where (1) CPU cores and chain lengths were varied, (2) the load was varied with respect
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to CPU cycles and chain length, and (3) throughput measurements for single network
functions with a variable number of CPU cycles for multiple isolation approaches.

4.2.5. Hypernf Framework

HyperNF is a high-performance NFV platform proposed by Yasukata et al. [82], which
aims to properly utilise commodity server resources while scaling the number of network
functions hosted by servers. The problem space addressed by HyperNF includes resource
allocation, efficient utilisation, and high throughput when using everyday commodity
servers to deploy virtual network functions.

The proposed framework is aimed at large NF deployments, where utilisation is
maximised for better throughput. The use of hypervisor-based I/O is employed, which
helps reduce synchronisation overhead. HyperNF was designed using three core design
objectives: (i) CPU cores are not reserved entirely for virtual I/O operations, thus providing
high flexibility in terms of utilisation, (ii) proper accountability for virtual I/O tasks on
respective VMs, thus offering a cohesive resource allocation strategy, and (iii) VM switches
should not be used for packet switching; instead, the data path of software switches is
exported to the hyper-visor for the purpose of forwarding and switching of packets.

HyperNF was evaluated for scenarios involving a baseline setup using the VALE [86]
switch for inter-VM communication, with each VM tied to a single CPU core, and second,
a scenario that consolidates network functions in a shared CPU environment by varying
the number of VMs (CPU cores are shared among the firewall VMs deployed using a
round-robin scheme). Both scenarios outperformed the split and merge schemes compared
with HyperNF. Other tests carried out include resource allocation, NFV throughput, and
SFC chain composition. A chain of 50 NFs can achieve a delay as low as 2 ms, which makes
the framework ideal for SFC deployments.

4.2.6. Netfate Framework

NetFate was proposed by Lombardo et al. [81] as a framework that supports the
deployment of network functions at the network edge and data centre infrastructure. The
main elements of the NetFate framework are simply the clients, which receive or generate
packets, and the CPE nodes, which hosts the network functions for clients to connect to
the infrastructure.

The orchestrator contains an SDN controller for handling communication with Open-
Flow switches, an NFV coordinator for handling VM life-cycle and hypervisor-VM com-
munication, and an orchestration engine which collects statistics about available devices,
connected clients, and network services. Each time ingress packets are received, the orches-
trator (i) takes a decision on which NFVI can host the NF based on defined SLA, (ii) carries
out the migration or instantiation of VMs for hosting the NFs in (i), (iii) creates a virtual
service path for connecting VMs that host the NFs, (iv) forward ingress flows based on
defined routing policies, and (v) terminating unused VMs, thus making resources available.

The Proof of Concept employed for the evaluation of NetFate comprises client devices
and nodes that represent network access points, a controller, and an orchestrator which also
authenticates and authorises users. This was made possible by the implementation of two
firewall network functions at CPE nodes, where migration efficiency is measured while
moving from one CPE node to the other. The NetFate framework is ideal for customer
premise equipment network function deployments; thus, its performance in terms of
provider equipment implementation is yet to be evaluated.

4.2.7. Clickos Framework

ClickOS was proposed by Kohler et al. [12], which uses the elements from the Click
software router [77] to achieve lightweight middlebox packet processing. This runs on
Linux VMs and an XEN-based https://xenproject.org/users/virtualization/ (accessed on
4 December 2021) optimised platform. To achieve domain isolation, each click middlebox
is run on a separate Linux VM, which provides memory isolation. ClickOS achieves high

https://xenproject.org/users/virtualization/
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performance in terms of network I/O by making the following changes to the Xen network
pipe: (i) replacing the OvS backend switch, which makes it easier to map VM memory, (ii)
moving the netback driver to the control plane, which serves as a communication medium
with the netfront driver, and (iii) modifying the netfront driver of the VM to allow the
mapping of ring buffers. The framework presented some useful modifications to the Xen
backend and frontend modules to achieve faster data transmission rates.

The evaluation results show that ClickOS speeds up networking for Xen-based VMs by
applying several well-known optimisation approaches, such as removing unnecessary data
paths and batching of processes. The performance of the ClickOS switch was measured,
in addition to metrics such as boot time, memory footprint, throughput, delay, chaining,
scalability, and middle-box state insertion. An increased throughput from 8 Kp/s to
344 Kp/s was achieved by changing the driver settings, receiving grants for buffers at the
initialisation time, and re-use the buffers for all packets. The VALE switch, which is an
in-kernel virtual switch in Linux that allows for scalability in terms of the number of ports
and throughput, was replaced by Open vSwitch.

4.2.8. Opennetvm Framework

The OpenNetVM framework was developed by Zhang et al. [13] as a framework that
is ideal for high-performance vNF deployments using the Intel Dataplane Development Kit
(DPDK) https://www.dpdk.org/ (accessed on 8 December 2021) and Docker Containers
https://www.docker.com/ (accessed on 17 December 2021). To achieve high-speed packet
I/O transfer, OpenNetVM implements zero-copy to reduce the I/O overhead associated
with copying packets from the NIC for processing in the user space. Packets are DMA’d
directly from the NIC to a shared memory space, which is accessible to DPDK-based
network functions supported by the framework.

As depicted in Figure 11, a shared memory space is created by the manager, which
stores the metadata information, list of service chains, and flow tables. Dependencies are
encapsulated in Docker containers that host the network functions; thus, packet transfer
between NFs is handled by the TX and RX threads that carry useful descriptors. High-speed
packet processing is also made possible by utilising the DPDK poll-mode driver rather
than interrupts.

In terms of NF-to-NF communication, OpenNetVM uses a centralised logical controller,
which communicates using the OpenFlow protocol to orchestrate NF activities. The network
function manager is responsible for managing memory and the NF life-cycle by handling
inter-NF communication and sending keepalive messages. The transfer of packets between
the NICs and NFs is also handled by the manager using the TX and RX threads. Network
functions are either implemented using DPDK or as a user-space container process, which
are tied to specific CPU cores in both scenarios. The framework was evaluated using
metrics such as the scalability of multiple ports, overflow of the flow director, performance
of service chains, and the flexibility of the framework can steer packets, which yields a
much better performance when compared with ClickOS, especially in terms of throughput
with variable chain length.

4.2.9. Phantomsfc Framework

PhantomSFC was proposed by Castanho et al. [83], which is an SFC framework aimed
at decoupling the underlying network from the service plane. The design was implemented
to be transport-independent, network agnostic, elastic, and maintains a small footprint
by considering end-to-end throughput and latency. The PhantomSFC framework is based
on the IETF SFC reference architecture presented by [37], which comprises a classifier, an
SFF, SF, and a proxy component. NSH, which was standardised by [87], was used as the
encapsulation protocol for SFCs in PhantomSFC.

Components such as proxies, forwarders, and classifiers are deployed as vNFs, and
a centralised SDN controller is employed for the realisation of chain configuration and
instantiation. Tasks involving chain configuration, such as creating a new chain and

https://www.dpdk.org/
https://www.docker.com/
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removing and modifying configuration rules in proxies, classifiers, and forwarders are
carried out by the logically centralised controller. Using PhantomSFC, resources can be
scaled by SPs based on service demands; thus, the PoC evaluation of PhantomSFC achieved
improvements in throughput, jitter, and latency, using the DPDK application.

Mgr RX & TX Rings

NIC 2

NF  
Container 2

NF  
Container 3

NF  
Container 1

NIC 1

Shared Memory

NF Manager (DPDK)

RX TX

PacketPacket

R T R T R T

TX

Service chains and ring buffers

Figure 11. OpenNetVM framework.

4.2.10. GNF Framework

The Glasgow Network Functions (GNF) framework was proposed by Cziva et al. [19]
as an open and lightweight implementation framework for network functions in OpenFlow
network environments. GNF, which is a container-based framework, achieves low overhead
in terms of performance, high NF reuse, and fast deployment speed, when compared to
most NFV deployments. To achieve the routing of traffic in a typical NFV scenario, policies
can be implemented by adding entries or by adding a middle-box in the path of the traffic.
These two approaches have drawbacks that the GNF framework attempts to eliminate.

GNF achieves dynamic placement of network functions by simply rerouting the traffic
to the server with the requested NF, which allows service providers to utilise the same hosts
when handling network and compute functions, thus minimising the overall infrastructural
costs. Using the OpenFlow protocol, GNF can match ingress packets to the match-action
table before routing packets to the specified destination.

For ease of network function deployment and management, GNF provides a user
interface for global control and view of the network, a manager, GLANF router, and agent.
The life cycle of network functions is handled by the GLANF Manager, which makes use of
the OpenDaylight SDN controller for performing tasks such as creating, starting, stopping,
and deleting primitives (Figure 12). Tasks such as resource allocation are also handled by
the manager, which allocates network functions to hosts that have available resources.

To evaluate and demonstrate the performance of the GNF framework, six network
functions were deployed: a wire, which routes packets from its ingress to egress ports, an
HTTP filter, traffic control, a load balancer, intrusion detection, and a firewall, which is
based on iptables. Figure 12 depicts the GNF framework, with packets sent from VM1 to
VM2, which are sent via the network functions on the GLANF system and to target hosts.
The performance of GNF was also compared to ClickOS [12], which shows a significant
improvement from 3.6 Gb/s to 13.8 Gb/s packet processing speeds, this also holds true as
the number of chained containerised vNFs are increased.
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Figure 12. GNF architecture.

4.2.11. MVMP Framework

The NFV platform proposed by Zheng et al. [84], i.e., the Multiple Virtual Middlebox
Platform (MVMP) is a high performance framework that has been built using the Intel
DPDK platform and Docker containers. The three major components of the proposed
MVMP framework are (i) abstracted virtual devices, (ii) a control plane, and (iii) a shared
memory space. Packet processing by NFs is achieved by an abstraction layer that supports
the deployment of multiple NFs on a single hypervisor. Network functions are run in
user space as processes, which makes them lightweight, thus requiring fewer resources for
packet processing. Packets are polled directly from the NIC using the DPDK poll mode
driver and sent to several network functions, which also adds to the fast packet processing
speed of the proposed framework.

In terms of implementation and evaluation, network functions were implemented and
chained together, and the service chain performance was evaluated and compared with the
OpenNetVm [13] framework, which yields 3x better throughput as the number of network
functions is increased in the chain, with an overhead of approximately 4% with regard to
network function isolation.

4.3. Resilience and Fault Recovery Frameworks

The resilience of virtual network functions to link, node, and chain-wide failures
has been addressed using diverse technologies and methodologies in the literature. The
state of all network functions (active and standby) in a chain is vital when creating a
resilience mechanism; thus, building a fault-tolerant middlebox and service chain becomes
imperative [88]. Different frameworks make use of various mechanisms to detect faults,
fix them, and resume normal packet processing operations with as little downtime as
possible [89]. This section presents equivalence classes of frameworks that focus on the
resilience or survivability of virtual network functions in a service chain (Table 5), by
explaining the design choices and implementation technology used.
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Table 5. Resilience and fault recovery frameworks.

Framework Problem Solution(s) Processing Testbed/PoC

Medhat et al. [48] SFC Resilience Runtime traffic reroute for fail-over
and fault recovery. VM OpenStack/OpenDalight

CN-SFC [76] Traffic Steering NSM and network-aware steering. Containers Kubernetes

FTC [88] SFC resilience
Chain-wide vNF fault tolerance,

vNF state piggybacking and
resource management.

Click Server cluster

REINFORCE [90] SFC failures

Single and multiple nodes failure
recovery, remote and local

redundancy, link and node failure
detection.

Containers Physical servers

Hmaity et al. [91] SFC Resilience and
placement Single Link/Node failures. VM ILP Models

FtVNF [92] NF fault tolerance
Slave and Master vNFs deployment,

vNF failure recovery and fault
tolerance.

Click Commodity servers

Nguyen et al. [93] SFC Resilience Controller-independent HA scheme. VM OpenFlow/OpenStack

4.3.1. Reinforce Framework

Kulkarni et al. [90] proposed REINFORCE, a framework for achieving resiliency of
DPDK-based NFs, which provides the check-pointing of applications that reduce the state
of network functions to be replicated. REINFORCE provides failure recovery of network
functions across the entire chain, with the detection of node and link failures within the
shortest possible time. Packet processing overhead is minimised by the separation of
network function behaviour into deterministic and non-deterministic, thus committing to
check-pointing the states of standby NFs in non-deterministic scenarios.

REINFORCE emphasises stateful network functions, which maintain the state of
connections either globally or per-flow. The characterisation of state information enables
the framework to decide whether flow updates are deterministic, which helps with the
synchronisation of NFs that operate in a particular chain. The use of lazy check-pointing
of the NF state and the replay of packets is used by REINFORCE to speed up the process
of recovering from failures. Figure 13 depicts the architecture of the framework in which
a chain-wide symmetry is maintained by nodes. NFV nodes can host multiple network
functions, which can either be part of a service chain or a complete chain in a single NFV
node. The NF manager is able to access the shared memory pool, while the process of
time-stamping ingress packets is carried out at the beginning of the chain, and sent to the
next NFV after logging.

4.3.2. FTC Framework

Ghaznavi et al. [88] presented a framework for fault-tolerant chaining (FTC). FTC uses
a different approach, which opposes existing solutions where middle-box snapshots are
taken for the purpose of replicating state, or approaches where the state of middle-boxes is
stored in a fault-tolerant data store. The design requirements of the FTC framework are
(i) correctness of middlebox recovery, (ii) quick recovery from failures with low processing
overhead, and (iii) efficient use of servers hosting middleboxes. Middlebox state informa-
tion is added to the packets as they traverse the SFC chain, which is replicated in the host
servers. The deployment of fault-tolerant chains is handled by the ONOS controller, which
serves as a centralised orchestrator for the management of NF and chain life cycles.

To achieve fault tolerance, FTC makes use of replicas, which comprise data and control
plane modules for interacting with the orchestrator. New threads are spawned by the
control module in fail-over scenarios [88]. To optimise the amount of memory used for
service replication, updates that have been added to the standby middleboxes are removed.
FTC middleboxes are built using Click [77] elements that interact with the ONOS controller.
Parameters such as replication factor, time required for failure recovery, throughput, and
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latency were all measured while varying the length of the service chains deployed first
in a cluster of 12 servers and second on distributed servers on the cloud. The FTC was
compared with FTMB [94] and NF, which is a baseline framework designed with no fault
tolerance. FTC produces a much higher throughput (with an increase in service chain size)
with a chain-wide overhead that is less than that obtained with FTMB.

SDN Controller NFV Orchestrator

Pkt Out Pkt IN PktOut
Pkt IN

Predecessor NFV Node NFV Node

Active NFs Standby NFs Active NFs Standby NFs

Shared Memory Pool Shared Memory Pool

TimeStamp Packet Logger TimeStamp Packet Logger

Figure 13. REINFORCE framework.

4.3.3. Hmaity et al.

Hmaity et al. [91] presented a solution that uses integer linear programming to solve
the problem of link and node failures in service chains. They modelled the physical
infrastructure using a directed network graph, with representations for physical devices
with the ability to host virtual network functions and links. The latencies of physical links
and packet processing latency by vNFs are also represented in the model of the physical
network topology. The other components that were modelled are the service chains and
the vNFs, which are considered as abstract components that can process ingress packets
before forwarding to the next vNF or host device.

The constraints considered for the proposed model are (i) node capacity and link
latency, which capture the current state of a node, the capacity of the link in use, the
latency and the highest number of virtual machines that can be hosted by a particular
node; (ii) constraints related to routing, such as the location of virtual links in the physical
network, to ensure that routing paths are made available on the right physical node; and
(iii) constraints related to the placement of vNFs on physical devices, by ensuring that
active and standby vNFs are not collocated on the same node.

The proposed models were evaluated using two example service chains, that is, a
chain consisting of a web service and another service chain that models online gaming,
where the impacts on node capacity and latency were considered. To solve the formulated
ILP model, a bandwidth of 100 kbit/s was set for the online gaming service chain, while
50 kbit/s was set for the web service scenario. Latencies of 500 ms and 60 ms were set for
the service chains. The proposed and solved models showed that achieving SFC resilience
requires additional (redundant) nodes of approximately 107%. Although the proposed
solution serves as a good mechanism that can handle link and node failures in service
chains, it lacks the ability to provide shared protection against failures.

4.3.4. Resilient SFCs—Medhat et al.

Medhat et al. [48] proposed an OpenStack and OpenDaylight-based environment to
deploy and orchestrate resilient SFCs in cloud environments. The proposed framework
follows the ETSI NFV model, which is capable of traffic rerouting, in the case of faults
occurring at runtime. The authors proposed an extension to the ETSI NFV framework for
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SFC orchestration and management, with the implementation of a service chain consisting
of two firewall network functions in standby and active modes.

They used the Open Baton framework [72] as the NFVO, which uses a messaging
queue to communicate with the SFC orchestrator (the OpenDaylight SDN Controller), and
the Zabbix network monitoring tool. Service function failure is simulated by abruptly
terminating the process running the NF, then the Open Baton Fault Management Sys-
tem (FMS) switches to the standby network function, and the failed NF is recovered by
the Orchestrator.

4.3.5. OpenFlow Fault Recovery

The framework proposed by Nguyen et al. [93] used the OpenFlow group table to
provide a quick fault recovery and fast fail-over scheme. Their proposal eliminates the use
of a centralised logical controller by exploiting the use of the OpenFlow group table for
managing service function chains. Fault recovery and detection were implemented in local
OpenFlow switches, which utilise an OF group table.

The need to contact the controller or NFV-MANO in the event of a failure is eliminated,
which saves time on fault notification and recovery. The framework was tested using
OpenStack and OF, with two vFirewall functions deployed for redundancy, which showed
a reduction in SFC packet loss and an improvement in link throughput, as well as quick
failure recovery. We briefly explain the aspects of SFC resilience that require further
attention from the research community in Section 5.4.

5. State-of-the-Art and Open Challenges

The challenges that the classified frameworks in Section 4 try to solve and the ap-
proach used are presented in Tables 3–5. This captures the proposed solutions, the packet
processing element(s) used, and the test bed or proof of concept employed by the authors.
In this section, we present some key aspects of SFC implementations, where we focus on
the open challenges (depicted in Figure 14) and highlight some of the existing efforts to
solve the problems presented.

Open Research
Challenges

VNF and SFC
Embedding

Dynamic VNF
placement

Optimal and sub-optimal placement
Subscribers classification
Chain-wide lightweight VNF
placement on edge networks

Multi-tenant SFC traffic steering
Programmable data-plane VNFs
NSH-enabled switch support

Diverse NFV frameworks 
Data-plane and user-space NFs
Faster service deployments

VNF reusability
Link, node and chain-wide failure
recovery
NF redundancy overhead reduction

VNF embedding on edge devices
Chain-wide NF scalability
Distributed VNE problem(s)

Service provider guarantees
Diverse latency violation thresholds
Meeting subcribers' QoS
requirements 

Hybrid VNF
Implementation

SLA enforcement
and guarantees

Resilience in SFC
environments

Traffic steering in
SFC

Figure 14. State-of-the-art and open research challenges.
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5.1. Hybrid vNF Implementation

There are diverse frameworks for implementing virtual network functions in service
provider network environments, which can be used to implement network functions at the
data plane of the network, using virtual switching technologies such as OpenvSwitch [95]
or P4 [53]. Virtual network functions can also be implemented in the user space, using
unikernels [96], virtual machines [97], GPUs [98], or containers [13].

Because NFV and SDN allow for the creation of chains of network functions for effi-
cient packet processing, it is ideal to create a processing pipeline that supports fast service
delivery and efficient use of available resources by service providers to support future net-
works. Creating a service function chain (SFC) currently involves the chaining of network
functions that are either implemented at the data plane or as user-space functions and are
often carried out using network functions that are built using the same framework to create
processing elements. The current data-plane technology does not easily provide support
for operations such as the manipulation of floating-point values [99] or security modules.

Thus, the resource-constrained nature of the data plane also poses some limitations
in terms of implementing resource-hungry network functions. We question the way in
which network functions are currently implemented (including the composition of the
network functions that create a service chain) and seek to argue for a hybrid implementation
approach that combines user-space and data-plane components to create a chain of network
functions along the processing pipeline.

It is correct to state that diverse frameworks have their constraints and benefits, and
a hybrid implementation framework will leverage the benefits of both user space and
data plane by composing processing pipelines using diverse frameworks. A hybrid NF
implementation framework combines the available resources in the user space and the fast
processing speed of the network data plane, with the aim of reducing end-to-end latency
and improving packet throughput and CPU utilisation.

Van et al. [100] proposed a hybrid NFV framework for building low-latency and high-
throughput vNFs using XDP. Simple operations are handled by the XDP program, whereas
complex operations are handled by a user-space program. Three example NFs were chained
(with two SFCs) using OpenStack. The performance of the framework was measured using
throughput, latency, and CPU utilisation. They also considered the performance of the
DPDK when interconnecting multiple vNFs. Their framework separates packet processing
into fast and slow paths, with less complex NFs (simple LB and flow statistics) handled by
the slow path, whereas vNFs that require complex processing are handled by the fast path.
A use case example is a load balancer, which can be implemented in XDP if it uses a simple
hash algorithm and is implemented using the hybrid approach if the NF is sophisticated.

Van et al. [101] used an extended Berkeley packet filter (eBPF), which is a Linux kernel
framework that provides flexible kernel-level manipulation of packet processing pipelines.
Their proposal was designed with the goal of having simple tasks handled by the kernel
and complex NFs implemented in the user space. Two vNFs were built to test the proposed
architecture: a dynamic traffic load balancer and a DPI network function. Compared to
OpenFlow, the kernel-user interaction time is reduced with eBPF, which also provides
better programmability options at the data plane.

Efforts such as HYPER [102] focus on creating a hybrid NFV framework that can
leverage softwarized network functions and implementations on hardware devices, without
considering whether the network functions are deployed at the network data plane or in
the user space. Marcuzzo et al. [103] proposed a framework for offloading parts of a virtual
network function to a programmable data plane.

The proposed architecture can offload specified components of a network function,
and at the same time provide support in situations where NF offloading is not desirable.
The management component of the framework comprises: (1) an interface for service
providers (the user module), which can be used by users to initiate or stop an offload
request; (2) a module for translating offload code that has been compiled for installation
on data-plane programmable devices, (3) a module that serves as the offload manager,



Future Internet 2022, 14, 59 30 of 39

for handling compiled offload code and communication with the NFV component; and
(4) NFV and SDN modules for handling connections to the controller, topological data, and
flow rule installation (SDN module), while communication with the offload agents on the
network functions is handled by the NFV module.

Although the proposal presented by Marcuzzo et al. [103] aims to push some compo-
nents of network functions down to the data plane of the network, it is not entirely a hybrid
framework that composes packet processing pipelines from diverse NFV frameworks. Sim-
ilarly, refs. [100–102] attempted to solve the problem of data plane and user-space packet
processing using network functions built from the same framework(s).

5.2. vNF and SFC Embedding

Embedding virtual network functions on physical infrastructure is at the core of the
creation of service function chains in service provider networks. Different authors have
proposed solutions to solve the problems of vNF and SFC embedding. Reddy et al. [104]
on embedding vNFs employed a mixed-integer linear programming (MILP) model, which
handles the problem as a resource optimisation problem, where the scalability of the
proposed model was enhanced using a variable neighbourhood search heuristic.

Pei et al. considered the embedding of SFCs in distributed cloud environments, with
the aim of embedding service requests by reducing overheads. They approached the service
chain embedding problem by formulating a binary integer programming (BIP) mechanism,
which introduces algorithms aimed at the optimisation of the number of network functions
that are placed along the service chain.

The survey of heuristic solutions for solving the virtual network embedding (VNE)
problem presented by Cao et al. [105] captures some recent efforts that focus on embed-
ding virtual network functions on substrate networks. Their work categorised heuristic
algorithms for solving the VNE problem into (1) dynamic or static, (2) distributed or cen-
tralised, and (3) redundant or concise. Static VNE algorithms require less computation
than dynamic solutions, which depends on the complexity of the substrate network and
the virtual network function in use.

In their work, Sun et al. [106] proposed an energy-aware routing and adaptive delayed
shutdown (EAR-ADS) model that supports the deployment of SFCs in a dynamic manner.
Their proposed solution considers a practical scenario where overall deployment cost is
minimized as well as balanced energy consumption by servers. Shutdown delays of servers
are also reduced, which minimizes the effect of energy fluctuations associated with most
network environments. The results presented show a huge reduction in energy costs and
the overall stability of the network also improves.

The ability to dynamically reconfigure the embedded network functions makes the
dynamic VNE algorithm ideal for next-generation networks [107]. Unlike the distributed
VNE problem, the centralised problem makes use of a single-substrate infrastructure for
embedding virtual network functions in future network environments. Computation in
the distributed VNE algorithm is carried out by two or more substrate networks, which
leads to improved scalability and the elimination of a single point of failure. Concise VNE
heuristic algorithms are concerned with the exact number of substrate networks that are
required to meet the SLA involved in embedding the virtual networks. The disadvantage
of this approach is the lack of a guarantee for failure recovery. Redundant VNE solutions
provide a provision for failure recovery by reserving the substrate network resources.

We believe that this remains an open challenge for the research community. Next-
generation networks are generally envisaged to be completely softwarized, which should
make the deployment of network functions doable at the network edge, which is closer to
the point of traffic generation. The creation of chains of network functions is also seen as one
of the major aspects of next-generation networks, which raises the question of embedding
network functions on multiple commodity servers or embedding all functions on a single
physical server for the creation of service chains. Questions such as the scalability of
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such functions in the chain and the dynamic embedding of network functions, based on
application profiles and QoS requirements, still need to be addressed.

5.3. SLA Enforcement and Guarantees

There is very little work currently in the literature that considers the enforcement of
policies and SLAs by service providers, which revolves around finding out what service
providers can guarantee in a NFV/SFC environment. Based on the recent literature, we
argue that being able to adapt the QoS to frequent network changes is still a challenge in
SFC environments for next-generation networks, and the ability to assess and visualise
QoS requirements and parameters [108] will help in satisfying the long-term vision of
SFC deployments.

Wang et al. [109] presented a QoE-driven service chain deployment, which also pro-
vides latency prediction features. Their focus was on improving the overall QoE for the
user by reducing the number of rejections and waiting time experienced by users when
accessing services. According to Herbaut et al. [110], Content Delivery Network (CDN)
providers can negotiate the SLA with the vNF provider by requesting the creation of virtual
CDN (vCDN) instances. An example is a CDN providing video streaming services such
as YouTube or NetFlix. The focus of the SLA agreement between the CDN and the vNF
provider in this scenario will be on the bandwidth and delay requirements of the service
that is being provided.

Sun et al. [111] proposed SLA-NFV, which is an SLA-aware framework that focuses
on the SLAs of the tenants (service subscribers). Their framework leverages a hybrid
infrastructure, programmable hardware, and software, with the goal of enhancing the
capability of NFV in handling different SLAs. The experimental results show that SLA-
NFV, which creates a hybrid NFV, reduces latency by approximately 60% when compared to
a software service chain. Their work did not consider a solution that helps service providers
meet the diverse SLA requirements needed for the operation of next-generation networks.

5.4. Resilience in SFC Environments

Although our work considered efforts in the literature that try to solve the problem
of resilience in NFV and SFC, resilience and fault tolerance are still major concerns in
SFC environments, especially where the focus is on vNF reusability [112]. Achieving
cost-effective resilience is still an open challenge in SFC implementation frameworks, and
there are unanswered questions for future research which include how SFCs respond to
failure conditions such as links between SFFs. The failure of the virtual network functions
themselves is an aspect that needs to be considered as a long term vision that requires
further research, that is, with the consideration of having redundant SFs along the SFP to
handle failure scenarios.

Synthesising network processing graphs or service chains is another approach that
is employed to achieve high availability in SFC, as well as the use of a multi-path routing
approach [113]. As indicated by Mirjalily et al. [28], simple approaches such as the use of
traffic load balancers can help with dynamic re-routing of traffic to alternate processing
pipelines in SFC environments. However, an efficient load-balancing algorithm that tracks
device states and available resources needs to be implemented, which goes beyond the
basic round-robin algorithm that is commonly deployed in today’s network environments.

Approaches such as the work by Ghaznavi et al. [88] try to provide SFC resilience
and at the same time eliminate the need for NF replication, in order to reduce overhead.
This is achieved by collecting and piggybacking NF state changes as packets traverse the
service chain; thus, the overhead is reduced because the entire network function is not
replicated to a standby node. A key challenge with proposals that employ the use of service
replication is the amount of overhead incurred with redundant backup links, nodes, and
service chains; thus, the efficient implementation of a high-availability failure mechanism
is still a research challenge that requires further attention.
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5.5. Traffic Steering in SFC

From the related literature on SFC traffic steering, we believe that the ability to dy-
namically steer traffic to the edge of the network, which adapts to network changes, is
still required and desirable for the operation of next-generation networks. We also argue
that having a functional programmable data-plane, which is a core component of future
networks, can solve the problem of always having to install flow rules on virtual switches
to steer traffic.

The ability to obtain the current network state and dynamically update the current
service function path in real time requires more work to achieve better traffic steering
in SFC for next-generation networks. Other factors such as delivery time, measuring
virtual machines’ (along the service path) usage, latency, and delay [114], are some of the
considerations still open for further research with respect to service path selection in SFCs.

Our review of some related literature on SFC traffic steering also shows that the
inter-operability between traffic steering techniques is still a challenge, as different service
providers employ traffic steering approaches that best meet their business requirements.
Multi-tenant networks also require a scalable traffic-steering scheme for SFC, as future
networks are envisaged to be more heterogeneous in nature [115]. As it relates to steering
traffic in SFC environments, service functions need to have support for SFC encapsulation
protocols and headers.

Traffic steering types can be classified into three categories: header-based methods,
tag-based methods, and programmable switch-based methods, which deal with the re-
classification of flows and network isolation, where traffic forwarding depends on the
configurations sent from the SDN controller to the switches. Tag-based steering methods
make use of MAC addresses, VLANs, and MPLS tags to steer incoming traffic. Header-
based methods use the network service header (NSH), service chain header (SCH), IP
option field, and segmented routing header [27].

Medhat et al. [29] identified the absence of network service header (NSH) capability in
switches as one of the challenges with traffic steering in SFC environments. Some proposals
include the use of MAC addresses and tags to steer traffic in a service chain. Having virtual
switches, such as Open vSwitch (OvS), which supports NSH capability, would allow for
better traffic tagging and steering.

5.6. Dynamic vNF Placement

Most of the current approaches used in vNF placement, presented in Section 4, create
a scenario in which all users contribute to a single latency violation threshold, which
is common to all users. In line with the long term vision of next generation networks,
an improved approach will help providers with different groups of applications such as
VoIP/telephony users with a latency violation threshold, which should be lower than the
threshold assigned to other classes of applications with less sensitive requirements in terms
of latency. One justification that supports this argument is the much-anticipated rise in the
number of end users with unique service requirements [57], which will affect the way in
which vNFs are deployed in the future..

The placement of virtual Network Functions (vNFs) affects the latency between users
and the vNFs, and thus we believe that a better placement design needs to be implemented
for future networks, which prioritises the reduction in the negative effects of performance
change, caused by the “hop-by-hop” movement of users between different vNFs. We argue
that the cost implications of placing service functions in the SFC still need to be addressed,
which is one of the open challenges in this domain. Other related challenges include creating
placement schemes that consider parameters such as subscriber preferences, infrastructure
properties, and delivery time.

Bhamare et al. [116] presented a novel fair weighted scheduling (FWS) solution for the
scheduling of microservices in multi-cloud environments for the optimal creation of service
function chains. Their proposed solution considers delays and SLA-related costs in deploy-
ing service function chains. They were able to reduce the overall turnaround time while
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considering the total network delays and variable loads. The solution was compared to the
standard biased greedy approach, which showed a notable increase in performance. The au-
thors acknowledge the need for further investigations into microservices-related challenges
such as security, fault tolerance, load balancing, and distributed data management.

Chai et al. [117] proposed a parallel placement scheme, PP-DRL, which uses deep
reinforcement learning (DRL) to deploy SFCs optimally with minimal resource costs. They
also used DRL to determine the right servers that could host service functions by collecting
the characteristics of user requests as state information. They first used DRL to calculate
the number of virtual machines and to find servers that can be used for hosting vNFs. The
location of the end users is not prioritised in the scheme.

In their work, Laghrissi et al. [97] presented an efficient tool, which they called the
“Network Slice Planner”, for spatio-temporal simulation of mobile service usage, to max-
imise QoS for the users. They modified the classic predictive algorithm after presenting
a set of existing placement algorithms. The performance of the enhanced predictive al-
gorithm was compared with existing vNF placement algorithms, which showed slightly
better results. Although they modelled the behaviour of the end users (in terms of traffic
types), their proposed solution does not prioritise the placement of vNFs at the edge of
the network.

Bhamare et al. [11] explain how the optimal placement of vNFs across multiple clouds
is a problem which, when solved, can help in the optimization of parameters such as cost,
network delay, and bandwidth. After presenting the components of an SFC environment,
they presented an analytical model for the placement of service functions in multi-cloud
network environments. Their work considers delays to end-users, QoS, and SLA. They
employed an ILP approach to obtain the optimal solution, which was achieved by setting
up an objective function and applicable constraints.

Cziva et al. [118] considered the placement of vNFs in a distributed-edge NFV environ-
ment with dynamic orchestration and re-calculation of vNF placement. They formulated
and solved the edge vNF placement problem using the fundamentals of the optimal stop-
ping theory (OST). They presented a time-optimized scheduler for optimal placement of
vNFs at the edge of the network, and considered an undirected network graph comprising
hosts, links between hosts, and users on the network. An assumption was made by the
authors that resources on the hosts are finite and that links have a physical limit when it
comes to bandwidth along the path.

6. Conclusions

The concept of service function chaining evolves as service providers continue to ex-
plore the benefits of deploying streamlined services for end users. Several approaches have
been proposed in the literature for deploying network function virtualisation and solving
different problems that involve chaining such network functions to meet user requirements.

In this work, we presented NFV environments and the requirements for chaining
network functions for effective service delivery.

We conducted a comprehensive survey focusing on the NFV frameworks that also
support the chaining of virtual network functions. We created a taxonomy of SFC implemen-
tation frameworks, a classification of the problems they attempted to solve, and discussed
the open research challenges in SFC environments. The taxonomy presented separates
the frameworks into three main categories: resource allocation and service orchestration,
performance tuning, resilience, and fault recovery.

Important challenges that require further attention from the research community
include the implementation of a hybrid NFV framework which can leverage processing
resources from heterogeneous environments, including the orchestration of diverse vNFs.
Other open challenges that should be addressed to support future networks are the op-
timisation of dynamic traffic steering in SFC, the efficient placement of heterogeneous
network functions from diverse vendors, meeting SLA guarantees by service providers,
and vNF/SFC embedding on commodity servers. All the open research challenges we
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have presented describe the problem, the importance of addressing each problem, explain
the subcomponents of the problem (also depicted in Figure 14), how each of the identified
problems relate to the operation of next generation networks, and discuss prominent at-
tempts to tackling them. Our work provides researchers in the NFV/SFC domain a clear
picture of what has been achieved so far and the areas that require further research in order
for the long term vision of service function chaining to be achieved.
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Abbreviations
The following abbreviations are used in this manuscript:

Abbreviation Meaning
API Application programming interface
CAPEX Capital expenditure
CL Classifier
CNF Cloud-native function
DMA Direct memory access
DPI Deep packet inspection
eNF embedded network function
ETSI European Telecommunication Standards Institute
FPGA Field-programmable gate array
EPC Evolved packet core
ITU International telecommunication union
IDS Intrusion detection system
ILP Integer linear programming
IoT Internet of Things
IPS Intrusion prevention system
PCAP Packet capture
PoC Proof of concept
RSS Receive side scaling
SC Service Chain
SDN Software-defined networking
SFF Service function forwarder
SP Service provider
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SF Service function
SFCC Service function chaining controller
MAC Media access control
ML Machine learning
NAT Network address translation
NFV Network function virtualization
NSH Network service header
NFVI NFV infrastructure
NFVO NFV Orchestrator
NS Network service
NFF Network function forwarder
OF OpenFlow
OPEX Operational expenditure
QoS Quality of service
QoE Quality of experience
vCPE virtual customer premises equipment
VNE Virtual network embedding
VoIP Voice over Internet Protocol
vNF Virtual network function
VNFC Virtual network function component
SFC Service function chaining
VIM Virtual infrastructure manager
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