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Abstract

Background: Network inference is crucial for biomedicine and systems biology. Biological entities and their

associations are often modeled as interaction networks. Examples include drug protein interaction or gene regulatory

networks. Studying and elucidating such networks can lead to the comprehension of complex biological processes.

However, usually we have only partial knowledge of those networks and the experimental identification of all the

existing associations between biological entities is very time consuming and particularly expensive. Many

computational approaches have been proposed over the years for network inference, nonetheless, efficiency and

accuracy are still persisting open problems. Here, we propose bi-clustering tree ensembles as a new machine learning

method for network inference, extending the traditional tree-ensemble models to the global network setting. The

proposed approach addresses the network inference problem as a multi-label classification task. More specifically, the

nodes of a network (e.g., drugs or proteins in a drug-protein interaction network) are modelled as samples described

by features (e.g., chemical structure similarities or protein sequence similarities). The labels in our setting represent the

presence or absence of links connecting the nodes of the interaction network (e.g., drug-protein interactions in a

drug-protein interaction network).

Results: We extended traditional tree-ensemble methods, such as extremely randomized trees (ERT) and random

forests (RF) to ensembles of bi-clustering trees, integrating background information from both node sets of a

heterogeneous network into the same learning framework. We performed an empirical evaluation, comparing the

proposed approach to currently used tree-ensemble based approaches as well as other approaches from the literature.

We demonstrated the effectiveness of our approach in different interaction prediction (network inference) settings.

For evaluation purposes, we used several benchmark datasets that represent drug-protein and gene regulatory

networks. We also applied our proposed method to two versions of a chemical-protein association network extracted

from the STITCH database, demonstrating the potential of our model in predicting non-reported interactions.

Conclusions: Bi-clustering trees outperform existing tree-based strategies as well as machine learning methods

based on other algorithms. Since our approach is based on tree-ensembles it inherits the advantages of

tree-ensemble learning, such as handling of missing values, scalability and interpretability.
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Background
Network representations are ubiquitous in systems biol-

ogy. They can be homogeneous, such as protein protein

interaction ones, or heterogeneous, such as drug pro-

tein interaction or gene regulatory ones. The inference

of those networks, a task often denoted as interaction
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prediction, is of fundamental importance. For example,

drug-protein interaction (DPI) prediction has a substan-

tial role in drug discovery or drug repositioning (i.e.,

the identification of new applications of already exist-

ing drugs) [1]. The analysis of DPI networks can provide

vital information for the understanding of disease mecha-

nisms and cell biochemical processes. In silico predictions

of DPI leverage research in the pharmaceutical domain,

accelerating drug development while diminishing the risk

of failures [2]. Such failures are often extremely expen-

sive, especially when they occur at a late stage of the
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drug discovery process. New interactions between candi-

date drugs and proteins others than their original targets

can also reveal possible side effects of those drugs [3].

Moreover, the identification of new interactions between

approved drugs and proteins contributes to drug repo-

sitioning, revealing new possible applications of already

existing drugs. Furthermore, the deciphering of gene reg-

ulatory networks (GRN) is fundamental for making any

progress in organism functioning and pathology under-

standing [4]. The mapping of the topology of those net-

works can potentially reveal the function of complex

biological processes that take place in an organism and

thereby improve diagnostics and prognostics.

Currently, we have only partial knowledge of those

networks. Despite the effort made and the existing com-

putational approaches for interaction prediction, there is

definitely space for further improvement as accuracy and

efficiency are still open problems. Therefore, there is need

of new effective machine learning methods for network

inference. Machine learning models are an incomparably

useful guide for future in vitro or in vivo experiments and

also reveal latent knowledge about biological networks.

The latter is achieved by using interpretable models, such

as decision tree-based ones.

Generally, machine learning has significantly con-

tributed to systems biology and bioinformatics [5–8], pro-

viding the means to perform predictions and insightful

data analysis. Supervised learning is the domain that has

drawn the greatest attention. The learning models that

fall in this category are built on an input set X and an

output set Y. More precisely, the instances (e.g., genes,

drugs, proteins) are described by input variables and are

also associated with one or more output variables. These

input variables are called features while the output ones

targets or labels. The objective for a supervised learning

method is to learn a function (f : X → Y ) on the features

of a training set of instances able to predict the output

variable [9]. Following the inductive setup, as soon as the

learning procedure is over, the function can be used to

perform predictions for unseen instances. In cases where

the output variable is numeric, the task is called regression

while when it is categorical (i.e., prediction of a class), the

task is called classification. In cases where multiple out-

put variables need to be predicted instead of a single one

the task is denoted as multi-output (multi-target) predic-

tion [10].Multi-target prediction is divided inmulti-target

classification (i.e., the targets have nominal values) or

multi-target regression [11]. In addition, there is another

case which is known as multi-label classification [12, 13].

Multi-label classification can be characterized as a multi-

target regression task where one has only binary target

values, or as a multi-target classification task, having only

two classes (0 and 1). Here, we focus on multi-label clas-

sification and thereby refer to the output variables as

labels.

A heterogeneous network (e.g., a drug-protein interac-

tion network) can be formulated as a collection of two

sets of items that interact with each other. Each item set

is described by its own features. Those features compose

the background information in our problem. For example,

in a drug-protein interaction network the two item sets

are the drugs, described by chemical structure similarities,

and target proteins described by protein sequence similar-

ities. The interactions are the links connecting the nodes

of the network and are often represented as a matrix. In

Fig. 1, an example of such a network setting is displayed.

There are mainly two approaches to apply a learning

method in this framework: the local approach [14] and

the global one [15]. Based on the local approach, one

first decomposes the data into different (traditional) fea-

ture sets, solves each set’s learning task separately, and

integrates the results. Following the global approach, the

learning method is adjusted in order to handle the struc-

tured representation directly. A discussion of the two

aforementioned approaches takes place in [16].

In this paper, we handle network inference as a multi-

label classification task, integrating background informa-

tion (i.e., features) from both item sets in the same net-

work framework. The method proposed here is a global

approach, extending multi-output decision tree learning

to the interaction data framework. More specifically, we

propose a tree-ensemble based approach extending the

Fig. 1 Illustration of a (bi-partite) DPI interaction network
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decision tree-based method proposed in [17]. Each tree of

the ensembles is built considering split candidates in both

row and column features and thereby partitions the inter-

action matrix both row-wise and column-wise. A tradi-

tional multi-output tree partitions the interaction matrix

only row-wise (clustering). However, our approach intro-

duces also column-wise partitioning, providing thereby

a bi-clustering of the interaction matrix. This way, we

refer to the proposed method as ensembles of bi-clustering

trees. Moreover, we performed a thorough comparison

study, including traditional global and local tree-ensemble

approaches. Our comparison study complements a previ-

ous one [18], introducing ensembles of bi-clustering trees

to the group of tree-ensemble learning approaches for net-

work inference. For our comparison study, we employed

the extremely randomized trees (ERT) [19] and random

forests (RF) [20]. These two ensemble methods are well

established and also powerful. We discuss differences

between the ERT-based and RF-based methods in our

setting. Next, we extended our evaluation study by com-

paring our approach against effective (not tree-ensemble

based) network inference methods from the literature.

For evaluation purposes, we employed several heteroge-

neous interaction networks, which are publicly available

and act as benchmark datasets in the field. The obtained

results demonstrate the merits of our proposed learning

method. In addition to that, we performed experiments on

two versions (v3.1, v4) of the chemical-protein interaction

database STITCH. We trained our proposed model using

v3.1 and tested it on v4. The performance and application

importance of our model was reaffirmed, as we managed

to predict non-reported interactions in v3.1 that appeared

later in v4.

Related work

Machine learning has been broadly applied to network

inference [4],[21]. Several approaches were based on

matrix factorization [21, 22]. Network inference was han-

dled as a prediction task on DTI networks in [23],

where multiple-kernel learning was used, and [24], where

random walk with restart was employed. In [25], the

authors computed drug-based, target-based, and network

topology-based kernels, addressing next the DTI predic-

tion task employing the regularized least squares clas-

sifier. This approach was extended in [26] to achieve

predictions for new candidate drugs or target proteins.

A semi-supervised method for DTI prediction was pro-

posed in [27]. Similarities between drugs and between

targets were computed and used as input for a robust PCA

model. In [28], drug-target interaction (DTI) prediction

was pursued using only network topology information.

They computed similarities between the nodes of a DTI

network based only on the network structure. In [18],

the authors addressed the problem of network inference

as a supervised learning task. They specifically used ERT

performing a comparison study between three differ-

ent learning strategies and discussed the corresponding

benefits and drawbacks. The multi-label k-nearest neigh-

bor (MLkNN) [29] classifier was used in [30] and [31].

Specifically, in [30], the authors applied clustering on the

targets corresponding features building a second interac-

tion matrix. They referred to this strategy as super-target

clustering. They applied MLkNN on both matrices sepa-

rately and combined the predictions. In [31], a drug side

effect prediction method was proposed where the authors

integrated information from multiple sources and built

individual feature-based predictors. Furthermore, in [32],

a re-ranking gene regulatory network inference strategy

was proposed as a post processing approach that could be

combined with any supervised or unsupervised method.

Many methods also used graph embedding and feature

extraction mechanisms boosting the performance of pre-

dictors such as random forest or neural networks. In [33],

the authors investigated how graph embedding algorithms

contribute to link prediction in biomedical networks. In

[34], a feature set was extracted using graph mining and

then a random forest classifier was applied to predict

interactions. Similarly in [35], the topology of the DTI

network was exploited for feature extraction. The final

predictions were the output of a random forest classifier.

Many studies were presented showing that methods

which combine the outputs of multiple algorithms in a

consensus setting are very effective. Targeting at gene reg-

ulatory network (GRN) inference (reconstruction), a syn-

ergistic strategy enlisting about thirty methods was pre-

sented in [36]. Furthermore, a semi-supervised approach

which combines the predictions made by multiple infer-

ence approaches was proposed in [37]. In that work, the

consensus-based method combined the prediction of the

employed network inference algorithms in a multi-view

setting. Ezzat et al. [38] also tackled DTI prediction with

ensemble learning in a class imbalance aware strategy.

In [39], predictions by several methods were used and

integrated into a learning to rank strategy.

Publicly available chemical and biological databases,

such as STRING [40], ChEMBL [41], Gene Ontology [42],

KEGG [43], UniProt [44], DrugBank [45], and STITCH

[46] are crucial for the development of the aforemen-

tioned computational methods. These databases store

vital information and act as sources for the development

of modern machine learning methods.

All the aforementioned methods achieved a fair predic-

tive performance. Nevertheless, there is still much space

for improvement, especially considering the complexity

of the network inference task. There are many types of

networks (e.g., metabolic, drug-target, gene regulatory

networks) and often methods that are focused on one spe-

cific type, for example DTI networks, are not necessarily
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effective when transferred to another type of network.

Here, we propose a broad method that is not restricted

to a specific network type. Moreover, several approaches

proposed over the years (some of them described above)

can be applied only in a transductive strategy [47]. This

means that the test instances are required during the

training of the algorithms. Here, we focus on inductive

models, where the prediction model is built during the

training process and then it can perform predictions for

new data. Our approach is also based on tree-ensembles

inheriting thereby the advantages of tree-ensemble learn-

ing, such as handling of missing values, scalability and

interpretability. Besides predictive accuracy, the proposed

approach also provides an interpretable bi-clustering.

Method
In this section, first a broad view of tree-ensemble learn-

ing andmulti-label classification is given. Next, we discuss

the problem of network inference and traditional tree-

ensemble approaches applied to it. Finally, our proposed

method is presented.

Multi-output tree-ensembles

Decision tree induction algorithms [48] follow a top-

down induction method. The top node is denoted as

the root and it contains the complete training set. The

nodes are recursively split based on a split-test that is

applied to one of the features that describe the instances.

The optimal split features and their corresponding split

points are selected based on a split quality criterion (e.g.,

entropy, variance reduction etc.). The tree growing proce-

dure stops when the data contained in a node is pure w.r.t.

the labels, or when another stopping criterion holds. Then

the node is called a leaf and a label is assigned to it. When

it comes to unseen instances, the labels are obtained by

letting the instances traverse the tree ending up in a leaf

node.

The predictive performance of decision trees is par-

ticularly boosted when they are combined with ensem-

ble methods [20], providing often state-of-the-art results.

Ensembles of trees also cure the unwanted overfitting

effect and are known as more stable models than single

tree-based ones. Two of the most popular tree-ensemble

approaches are the random forests (RF) [20] and the

extremely randomized trees (ERT) [19]. The RF uses boot-

strap replicates of the training set and random selection

of the features describing the samples. More specifically,

each decision tree of the ensemble is constructed on a ran-

dom subset of the training set. Every node of that tree is

split by computing the best possible split among a ran-

dom subset of � selected feature candidates. The final

prediction is yielded as the average of the predictions of

individual trees. The ERT is an extension of RF which

omits bootstrapping and splits every node by selecting

the best possible split from � random ones. Ensembles of

trees are not so easily interpreted as single trees though.

However, there are strategies [49] that can transform an

ensemble of trees to a single tree, preserving therefore the

interpretability value. Tree-ensembles also provide a nat-

ural feature ranking, evaluating this way the contribution

of each feature to the learning process.

Apart from their extension to ensembles, tree-based

models have also been extended towards multi-output

tasks, such as multi-label classification [11, 12]. In a multi-

label classification task, for each instance (e.g., protein)

the set of labels (e.g., interactions) is represented as a vec-

tor of size equal to the total number of labels. Then, the

possible splits are evaluated by calculating the variance

reduction over these vectors, instead of over single val-

ues. Next, the average of the target vectors of the instances

that are present in a leaf is computed. Once the model has

been built, it can be used for prediction of new (unseen)

instances.

Interaction network inference

Let G define a heterogeneous network with two finite sets

of nodes N = {n1, · · · , n|N |} and M = {m1, · · · ,m|M|}.
Each node of the network corresponds to a biological

entity (e.g, drug, gene, protein) and is described by a fea-

ture vector. The links connecting the nodes of the network

represent interactions between the corresponding biolog-

ical entities (e.g., drug-protein interactions). The set of

existing or not existing links of the network are formu-

lated as an interaction matrix Y ∈ ℜ|N |×|M|. Every item

y(i, j) ∈ Y is equal to 1 if an interaction between items ni
and mj holds and 0 otherwise. Networks that are homo-

geneous, such as protein-protein interaction ones, have

two identical sets of nodes (i.e., N = M) and consist a

particular case of the broader framework described above.

Network inference can be treated in a supervised learn-

ing manner and particularly as a classification task on

pairs of nodes. Specifically, the goal is to build a model

that receives pairs of network nodes as input and outputs

a probability that an interaction between these two nodes

exists. Focusing on the inductive setup, the learningmodel

is built on a training set of interacting or non-interacting

pairs of nodes. After the learning model is built, it can be

used to perform predictions for unseen pairs.

The prediction of the interactions in networks is not

as straight-forward as in traditional classification tasks

where one has a single set of instances. When it comes to

networks, one can perform predictions where the test is

a pair of unknown instances (e.g., drugs, proteins, genes)

and predictions where one of two instances is included

in the learning procedure. Predicting pairs of unknown

instances is a greatly more difficult task. In particular, the

prediction framework of our problem is displayed in Fig. 2

[17]. The (Ln × Lm) corresponds to the interaction matrix
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Fig. 2 The prediction setting of an interaction network

(i.e., Y) which we assume is available during the training

process. As one considers supervised learning, the mining

setting can be divided into 3 sub-settings.

• Test rows - Learned columns (Tn × Lm): predictions

regarding unknown (new) row instances and column

instances that have been included in the learning

procedure.
• Learned rows - Test columns (Ln × Tm): predictions

regarding row instances that have been included in

the learning procedure and unknown (new) column

instances.
• Test rows - Test columns (Tn × Tm): predictions

regarding unknown (new) row instances and

unknown (new) column instances.

Traditional tree-ensembles for network inference

As mentioned in the introduction, there are two

approaches to apply a learning technique in the network

framework, the local approach [14] and the global one

[15]. LetXn ∈ ℜ|N |×|Dn| be the representation of theN set

of nodes and Xm ∈ ℜ|M|×|Dm| be the representation of the

M set of nodes.

In the local approach, one multi-output classifier is built

over nodes N and another multi-output classifier is built

over nodes M. The outputs of the two classifiers are

integrated yielding the final predictions.

In the global approach, only one classifier is built,

incorporating the two interactive sets in a unified frame-

work. Traditionally, a single-output classifier is built over

the Cartesian product of the two sets of nodes, Xg ∈
ℜ(|N |∗|M|)×(|Dn|+|Dm|). In Fig. 3, a representation of the two

settings is illustrated.

Ensembles of bi-clustering trees

A multi-label driven extension of single decision trees for

interaction prediction was presented in [17]. Here, we

present the ensemble extension of our previous model.

The input of our model consists of pairs of instances and

the task is to predict a value of interest that is related to it.

The bi-clustering inferred by a single tree is illustrated in

Fig. 4 [17]. We originally build our model in the ERT set-

ting but other ensemble strategies, such as RF, can be also

applied. An important element in RF is the bootstrapping.

In a global network setting one can perform bootstrap-

ping on the samples that correspond to the rows of the

interaction matrix, the columns, both rows and columns

(blocks), or specific elements. Each tree in our ensem-

ble grows considering as split-candidates for every node a

random sub-set of both row and column features (i.e., fea-

tures associated with the two instance sets) and therefore

splitting the interaction (label) matrix both horizontally

and vertically. The optimal split is picked aiming to max-

imize impurity (Var) reduction on interaction matrix Y,

following the split selection strategy of ERT. In every node

of the tree, when the split test is on a feature that cor-

responds to a row instance (e.g., a drug) then Var =∑M
j Var(Yj). When the split test is on a feature that cor-

responds to a column instance (e.g., a target protein) then

Var =
∑N

i Var(YT
i ), where M, N, and YT are the num-

ber of column instances, row instances, and the transpose

matrix of Y, respectively. The partitioning of the interac-

tion (label) matrix both horizontally and vertically deducts

a bi-clustering [50] of the network. Each tree of the ensem-

ble yields predictions that are averaged to generate the

final predictions.

An important part of the tree-ensemble learning pro-

cess is how to assign labels to the tree leaves. This is also

known as the prototype function. In traditional trees the

prototype function considers the majority class assigned

Fig. 3 A description of the two learning approaches. Left the global single output and right the local multiple output approach
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Fig. 4 Illustration of a bi-clustering tree along with the corresponding interaction matrix that is partitioned by that tree. Let φr and φc be the features

of the row and column instances respectively

to the training instances present in the leaf for classifica-

tion, or the average of their target values for regression.

The prediction for test instances is obtained by sorting

them through the tree into a leaf node. In our bi-clustering

tree method the prototype function differentiates the

prediction returned in the leaves based on the predic-

tion context. The followed labeling strategy is displayed in

Fig. 5 [17]. More specifically, in Tn × Lm the submatrix

corresponding to the leaf is averaged vertically, generating

a label vectorW while in Ln ×Tm horizontally, generating

a label vector WT . For Tn × Tm, the strategy of averag-

ing all values in a leaf is followed. When it comes to new

data and more specifically pairs of instances where the

row-instance ni /∈ Ln and the column instance mj ∈ Lm,

one can be certain that the new pair will end up in a leaf

(partition of the interaction matrix) that is associated with

the mj ∈ Lm. Then, the yielded prediction for the pair is

the wk ∈ W that corresponds to mj. However, in tree-

ensemble strategies such as random forests that adopt

bootstrapping, this specific labeling mechanism can not

hold as the column instance mj ∈ Lm may belong to the

Fig. 5 Illustration of the labeling strategy that is followed. Prediction

of an interaction between a new row instance and a column instance

included in learning

out-of-bag instances. What we propose thereby in such

cases is to ignore bootstrapping in the construction of the

prototype function. This means that bootstrapping can be

used for the growing of the trees but then the whole train-

ing set should be used in the computation of the prototype

function.

Data
We first employed 6 datasets [18], that represent hetero-

geneous interaction networks. These are publicly avail-

able benchmark datasets that are often used in related

studies. The interactions in those datasets are repre-

sented as binary values. Moreover, we extracted a subset

of the STITCH database [46] in two versions (v3.1, v4)

in order to validate the performance of the proposed

approach. The summary of the datasets and their char-

acteristics is shown in Table 1. It contains the number of

row instances, column instances, and their corresponding

feature sizes. Information about the number and pro-

portion of existing interactions in each network is also

disclosed.

In particular:

• E. coli regulatory network (ERN) [51]. This

heterogeneous network consists of 179256 pairs of

154 transcription factors (TF) and 1164 genes of E.

coli (154 × 1164 = 179256). The feature vectors that

Table 1 The datasets used in the evaluation procedure

Dataset |N| × |M| |Features| |interactions|

ERN 1164 × 154 445 − 445 3293/179256 (1.8%)

SRN 1821 × 113 1685 − 1685 3663/205773 (1.7%)

DPI-E 664 × 445 664 − 445 2926/295480 (1%)

DPI-IC 204 × 210 204 − 210 1476/42840 (3.4%)

DPI-GR 95 × 223 95 − 223 635/21185 (3%)

DPI-NR 26 × 54 26 − 54 90/1404 (6.4%)

CPIv3.1 2154 × 2458 2154 − 2458 138513/5294532 (2.6%)

CPIv4 2154 × 2458 2154 − 2458 258618/5294532 (4.9%)
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represent the two sets consist of 445 expression

values.
• S. cerevisiae regulatory network (SRN) [52]. This

heterogeneous network is composed by interactions

between TFs and their target S. cerevisiae genes. It is

composed of 205773 pairs of 1821 genes and 113 TFs.

The input features are 1685 expression values.
• Drug–protein interaction networks (DPI) [53].

The datasets in [53] correspond to 4 drug-protein

interaction networks where the interactions between

drugs and target proteins are represented as binary

values. The target proteins correspond to 4

pharmaceutically useful categories: nuclear receptors

(NR), G-protein-coupled receptors (GR), ion

channels (IC), and enzymes (E). The drugs related

features are the similarities of their chemical

structure. The feature vectors associated with the

target proteins consist of similarities based on the

alignment of protein sequences. Those sequence

similarities were measured using the normalized

Smith-Waterman score.
• Compound–protein association network. We

extracted another dataset that corresponds to a

chemical–protein interaction (CPI) network (human)

from the STITCH database [46]. In particular, we

extracted two datasets corresponding to the same

network, as it appears in versions 3.1 and v4 of the

STITCH database. Interactions in STITCH are

derived from lab experiments, knowledge in manually

curated databases, text mining techniques applied to

literature, and computational predictions. The

cumulative scores that correspond to whether an

interaction between two nodes exists is depicted in

range from 0 to 1. Here, we have converted these

numeric values to binary, setting to 1 all the non-zero

values. We filtered the database based on frequency

of interactions, extracting only a subset of 2154

compounds and 2458 proteins. We extracted

characteristics for both chemical compounds and

proteins and used them as features to learn our

model. The input feature vectors for proteins

represent the similarity with all proteins in terms of

sequence. The similarities between the proteins were

computed as s(xpi, xpj) = sim(xpi,xpj)√
|xpi|∗

√
|xpj|

, where

sim(xpi, xpj) is the pairwise global alignment score

between sequences xpi and xpj. The input feature

vectors for chemicals represent the similarity with all

chemicals in terms of their structure. After collecting

the SMILES strings of the chemical compounds

present in our dataset we generated corresponding

FP2 fingerprints using Open Babel [54], an open

source cheminformatics toolbox. Next, we computed

compound similarities as s(xi, xj) = |xi∩xj|
|xi∪xj| .

Results
Evaluation metrics

The metrics that were used are the area under precision

recall curve (AUPR) and the area under the receiver oper-

ating characteristic curve (AUROC). A PR curve is defined

as the Precision ( TP
TP+FP ) against the Recall (

TP
TP+FN ) at var-

ious thresholds. A ROC curve is defined as the true pos-

itive rate ( TP
TP+FN ) against the false positive rate ( FP

FP+TN )

at various thresholds. The true-positive rate is equal to

recall. True-positive rate is also denoted as sensitivity

while false-positive rate is also denoted as (1 - speci-

ficity). The aforementioned measures were employed in a

micro-average setup.

A common attribute of biomedical interaction networks

is the presence of sparsity. As reflected in Table 1, the

existing interactions average around 3%. This means that

only 3% of the labels (i.e., items of the interaction matrix)

are equal to 1 and the rest 97% are equal to 0. The

corresponding classification task is therefore particularly

imbalanced. It has been shown that AUPR is more infor-

mative than AUROC when it comes to highly imbalanced

classification problems [55, 56]. This is based on that

AUROC rewards true negative predictions (leading to a

low false positive rate), which are easy to obtain in very

sparse datasets, whereas AUPR focuses on recognizing the

positive labels. The employment of AUPR and AUROC in

biomedical networks was also investigated in [57].

Evaluation protocol

We start our evaluation study by comparing the ensemble

of bi-clustering trees (eBICT) to the two traditional tree-

ensemble approaches used for interaction prediction in

networks, namely global single output (GLSO) and local

multiple-output (LOCMO) [18]. Afterwards, we com-

pare eBICT to two powerful methods in DTI prediction.

Although we have initially developed our model in the

extremely randomized trees (ERT) setting we also com-

pare our bi-clustering tree approach in a random forests

(RF) setting for completeness. All methods were vali-

dated in terms of predictive performance. The methods

are compared in all three prediction settings (i.e., Tn×Lm,

Ln × Tm, and Tn × Tm). The comparison was performed

independently for every setting.

In Tn × Lm and Ln × Tm a 10-fold cross validation (CV )

setting on nodes (i.e., CV on row instances and CV on col-

umn instances of the network, respectively) was applied.

In Tn × Tm, a CV setting on blocks of row and column

instances was applied, excluding one row fold and one col-

umn fold from the learning set, and using their combined

interactions as test set. Due to the sparsity of the data, 10-

fold CV in Tn × Tm was burdensome as there were folds

containing only zeros and thereby a 5-foldCV setting over

blocks of row and column instances (i.e., 5 × 5 = 25

folds) was employed. For all settings and tree-ensemble
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Table 2 AUPR and AUROC results for the compared methods. The tree-ensemble setting is the ERT

AUPR Tn × Lm Ln × Tm Tn × Tm

Data eBICT GLSO LOCMO eBICT GLSO LOCMO eBICT GLSO LOCMO

ern 0.397 0.397 0.404 0.043 0.041 0.043 0.048 0.047 0.035

dpie 0.645 0.638 0.626 0.303 0.294 0.309 0.175 0.163 0.179

dpii 0.544 0.535 0.541 0.327 0.326 0.33 0.073 0.07 0.074

dpig 0.239 0.24 0.234 0.345 0.329 0.318 0.084 0.083 0.073

dpin 0.385 0.362 0.395 0.507 0.506 0.513 0.106 0.105 0.106

srn 0.157 0.158 0.17 0.028 0.03 0.028 0.022 0.024 0.018

Avg 0.395 0.388 0.395 0.259 0.254 0.257 0.085 0.082 0.081

AUROC Tn × Lm Ln × Tm Tn × Tm

ern 0.845 0.849 0.856 0.603 0.594 0.602 0.729 0.721 0.645

dpie 0.873 0.865 0.87 0.825 0.835 0.815 0.719 0.713 0.684

dpii 0.824 0.82 0.824 0.793 0.789 0.8 0.582 0.566 0.54

dpig 0.662 0.654 0.659 0.854 0.85 0.848 0.655 0.658 0.601

dpin 0.625 0.61 0.614 0.786 0.777 0.78 0.578 0.572 0.535

srn 0.794 0.796 0.807 0.544 0.54 0.532 0.551 0.568 0.497

Avg 0.771 0.766 0.772 0.734 0.731 0.735 0.636 0.633 0.584

Best values appear in boldface

algorithms 100 trees were used and no tree-pruning was

applied.

Comparison results

The compared tree-ensemble methods, eBICT, GLSO and

LOCMO, were first evaluated in an ERT ensemble strat-

egy and the results are presented in Table 2. As it can

be observed, eBICT outperforms the compared models in

most cases. More specifically, eBICT demonstrates over-

all superior predictive performance in terms of AUPR in

all settings and slightly inferior AUROC results only in

Ln × Tm and Tn × Lm. We next evaluated the proposed

approach in a RF ensemble setting. When it comes to

bootstrapping, we applied bootstrapping on instances cor-

responding to both rows and columns of the interaction

matrix. As reflected in Table 3, eBiCT outperforms both

Table 3 AUPR and AUROC results for the compared methods. The tree-ensemble setting is the RF

AUPR Tn × Lm Ln × Tm Tn × Tm

Data eBICT GLSO LOCMO eBICT GLSO LOCMO eBICT GLSO LOCMO

ern 0.399 0.386 0.404 0.049 0.047 0.055 0.065 0.052 0.052

dpie 0.613 0.607 0.6 0.32 0.302 0.323 0.175 0.155 0.167

dpii 0.518 0.5 0.496 0.341 0.324 0.342 0.065 0.068 0.07

dpig 0.233 0.226 0.219 0.35 0.318 0.329 0.085 0.077 0.069

dpin 0.39 0.333 0.367 0.502 0.481 0.495 0.105 0.1 0.095

srn 0.149 0.133 0.168 0.028 0.032 0.025 0.023 0.023 0.018

Avg 0.384 0.364 0.376 0.265 0.251 0.262 0.086 0.079 0.079

AUROC Tn × Lm Ln × Tm Tn × Tm

ern 0.836 0.846 0.857 0.602 0.645 0.61 0.763 0.732 0.642

dpie 0.831 0.87 0.868 0.819 0.826 0.819 0.736 0.712 0.675

dpii 0.792 0.817 0.814 0.808 0.799 0.801 0.579 0.573 0.529

dpig 0.574 0.692 0.655 0.853 0.863 0.855 0.639 0.641 0.589

dpin 0.511 0.661 0.583 0.75 0.775 0.774 0.59 0.567 0.505

srn 0.812 0.779 0.806 0.518 0.569 0.532 0.558 0.558 0.496

Avg 0.726 0.778 0.764 0.725 0.746 0.732 0.644 0.631 0.573

Best values appear in boldface
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GLSO and LOCMO in terms of AUPR in all three predic-

tion settings. The AUROC results obtained by eBICT are

inferior in Ln × Tm and Tn × Lm. However, it should be

highlighted that AUPR is more informative than AUROC

when it comes to highly imbalanced classification prob-

lems [55–57].

Furthermore, it should be highlighted that both ERT-

based and RF-based eBICT performs better than its com-

petitors in the most difficult task of predicting interac-

tions between pairs of totally unseen instances (i.e., Tn ×
Tm). Apart from predictive performance, eBICT is better

applicable on Tn × Tm than LOCMO. eBICT is trained

over Ln × Lm and it can perform predictions for all three

settings directly. On the contrary, as pointed out in [17],

every time an unseen pair of instances arrives (i.e., Tn ×
Tm) LOCMO has to train two new models, posing a seri-

ous disadvantage to the on-line application of LOCMO as

well as other local approaches following the same strategy.

Comparison with other approaches from literature

Although we focus on tree-ensemble learning, we

extended our evaluation study by comparing our approach

against two effective network inference methods from the

literature. More specifically, we compared eBICT against

[26] and [30] following the same strategy as above. Both

[26] and [30] were originally proposed for inferring DTI

networks. The method in [26] is denoted as BLM-NII and

is a kernel-based local approach. Here, we used the rbf

kernel as proposed in the original paper and selected the

linear combination weight (α parameter) from a range

of {0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5} through a 5-fold CV

inner tuning process. The method in [30] is denoted as

super target clustering (STC). It uses MLkNN in a tar-

get clustering-driven strategy. The optimal number of

nearest neighbors in STC was selected from a range of

{3, 5, 7, 9, 11} through 5-fold CV inner tuning.

The obtained AUPR and AUROC results are pre-

sented in Table 4. It is shown that eBICT outperforms

the compared approaches in terms of both AUPR and

AUROC, reaffirming thereby its effectiveness.

Predicting associations between compounds and proteins

We also investigated the performance of eBICT by

extracting a subset of the chemical compound associa-

tion database STITCH. More specifically, we employed

the specific dataset in two versions. The first derives from

STITCH v3.1 and the second from STITCH v4. There are

many links in the compound protein network that are not

reported in v3.1 but exist in v4.We train ourmethod using

the interaction matrix that corresponds to v3.1 and evalu-

ate the predictions using the matrix of v4. The purpose of

this experiment is to investigate whether the application of

the proposed learning approach and more specifically the

inferred bi-clustering can reveal not-yet-reported associ-

ations between existing nodes of a network (i.e., Ln × Lm
setting).

As in Tn×Lm and Ln×Tm settings the multi-label struc-

ture of the matrix was preserved both in the tree-growing

step and leaf-labelling step of the learning process. The

experiment in detail was as follows: First, we trained

eBICT in v3.1 and re-labelled the interactions between the

existing nodes based on the inferred bi-clustering. This

Table 4 AUPR and AUROC results for the compared methods

AUPR Tn × Lm Ln × Tm Tn × Tm

Data eBICT BLM − NII STC eBICT BLM − NII STC eBICT BLM − NII STC

ern 0.397 0.401 0.378 0.043 0.03 0.032 0.048 0.029 0.029

dpie 0.645 0.489 0.635 0.303 0.217 0.233 0.175 0.047 0.122

dpii 0.544 0.338 0.542 0.327 0.245 0.294 0.073 0.075 0.054

dpig 0.239 0.168 0.197 0.345 0.277 0.294 0.084 0.033 0.06

dpin 0.385 0.373 0.351 0.507 0.476 0.48 0.106 0.079 0.06

srn 0.157 0.126 0.133 0.028 0.032 0.032 0.022 0.019 0.02

Avg 0.395 0.316 0.373 0.259 0.213 0.228 0.085 0.047 0.058

AUROC Tn × Lm Ln × Tm Tn × Tm

ern 0.845 0.861 0.842 0.603 0.552 0.549 0.729 0.579 0.571

dpie 0.873 0.832 0.823 0.825 0.823 0.729 0.719 0.571 0.602

dpii 0.824 0.749 0.773 0.793 0.777 0.767 0.582 0.569 0.533

dpig 0.662 0.527 0.528 0.854 0.815 0.835 0.655 0.472 0.508

dpin 0.625 0.622 0.553 0.786 0.8 0.807 0.578 0.532 0.423

srn 0.794 0.832 0.8 0.544 0.532 0.505 0.551 0.493 0.518

Avg 0.771 0.737 0.72 0.734 0.717 0.699 0.636 0.536 0.526

Best values appear in boldface
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can be interpreted as performing predictions for the train-

ing set. Next, we compare the new labels to the labels

of v4, investigating to what extent newly identified node

associations are reported in the more recent version of

the same database (v4). Here, as we focus on identifying

non-reported interactions, wemeasure the links originally

labeled as 0 in v3.1. These links can be either 0 or 1 in v4.

Specifically, 3.5% of the links that are 0 in v3.1 appear as

non-zero in v4.

First we measure the prediction (re-labeling) perfor-

mance in terms of AUROC and AUPR and then we

precisely check the top 20 associations identified by our

method. Note that the proposed approach outputs a prob-

ability and not just binary values, therefore those top asso-

ciations correspond to the links with the highest probabil-

ity.More precisely, this set of 20 top predicted associations

corresponds to a probability threshold of 0.65 in our algo-

rithm. The experiment yielded an AUROC value equal

to 0.626 and an AUPR equal to 0.079. It is interesting to

observe that all our top 20 predicted associations were

present in v4. As explained above, those associations were

not reported in v3.1 (labelled as 0).

Another interesting point is that originally STITCHpro-

vides non-binary interaction data. The interaction scores

in STITCH are in a range between 0 and 1. The scores

stem from lab experiments, information from manually

curated databases and computational approaches such as

text mining. Thus, not all of those predicted associations

can be translated into true molecular interactions. We

also repeated the same experiment taking into account

the actual scores in the STITCH database. In more detail,

we trained eBICT based on numeric scores of v3.1. This

way the problem can be interpreted as a more general

multi-target regression task. The pair trifluoperazine and

calmodulin-3 (not reported in v3.1) appears as the most

probable compound protein association. The score of this

pair in STITCH v4 is 0.907. This prediction can be also

verified by searching through STITCH v5 and Drugbank

where hard evidence is present (i.e., evidence stemming

from manually curated databases). The full set of the 20

predicted associations is included as supplemental mate-

rial [see Additional file 1].

Discussion
In this paper we presented a novel tree-ensemble strat-

egy to address the problem of network inference which

is also known as interaction prediction or link predic-

tion. We built our method, ensemble of bi-clustering trees

(eBICT), upon our former approach presented in [17].

eBICT successfully transfers the traditional tree-ensemble

learning setting, such as extremely randomized trees or

random forests to the global network setting. Network

inference is treated as a multi-label classification task,

or more generally a multi-target prediction task, where

different from the traditional setting, the labels are also

characterized by features. In eBICT the tree-models are

built on both instance and label corresponding features,

partitioning thereby the interaction matrix (label space)

both row-wise and column-wise. Thus, eBICT provides

also an interpretable bi-clustering along with interaction

prediction.

The work presented here focuses on interaction pre-

diction and therefore a thorough comparison analysis

between bi-clustering techniques would fall out of the

scope of the specific study. The proposed method was

compared against other tree-ensemble based network

inference strategies which act as direct competitors. We

also compared the proposed method against powerful

(not tree-ensemble based) network inference approaches

from the literature.

Throughout the recent years, many network inference

methods were proposed. Themajority was based on either

synergistic learning strategies, where several classifiers

were applied on the data and their outputs were aggre-

gated to yield the final predictions, or feature extraction

methodologies, where graphmining and other embedding

methods were applied to extract new features that subse-

quently boosted the performance of common classifiers.

It has to be highlighted that this kind of network infer-

ence methods are not considered as competitors to our

method. On the contrary, eBICT can be applied in combi-

nation with the aforementioned approaches. For example,

eBICT can be added to the models employed by a syner-

gistic approach or it can be boosted by feature extraction

techniques, replacing commonmodels (e.g., RF) which are

usually used.

Finally, we evaluated eBICT in different prediction set-

tings, using both benchmark network datasets and an

extracted compound protein association network. The

obtained results affirmed the effectiveness of the pro-

posed method. As eBICT is a tree-ensemble method, it

adopts all the advantages of decision tree based learn-

ing. It is scalable, computationally efficient, interpretable,

and capable of handling missing values. In contrast to the

majority of methods developed for network inference, our

method is also an inductive approach, which means that

after the training process is over, the predictive function

which has been built, can be used to perform predic-

tions for new data. This way, no re-training is needed

in case of new instances, for example new chemical

compounds acting as drug-candidates. Moreover, storing

the feature vectors of the training instances is also not

necessary.

Conclusion & FutureWork
In this paper we have proposed a new tree-ensemble

learning method, namely bi-clustering tree ensembles, for

inferring interaction networks. The proposed approach is



Pliakos and Vens BMC Bioinformatics          (2019) 20:525 Page 11 of 12

based on multi-label classification exploiting the multi-

label structure of the interaction matrix, both in the part

of tree-building and labeling. We performed a thorough

evaluation study comparing our method to its direct tree-

ensemble competitors. We validated the performance of

our method in different interaction prediction settings

and the obtained results affirmed its merits. The potential

of our approach was reaffirmed by successfully revealing

non-reported links in a previous version of a compound

protein association network. Conclusively, the proposed

method should be considered in network inference tasks,

especially where interpretable models are desired.

An interesting topic for future research would be to

build our approach on other tree-ensemble mechanisms

and perform relevant comparisons. A comparison study

between the bi-clustering inferred by our method and

state of the art bi-clustering methods would be also an

interesting topic of future research. In the future, the pre-

sented learning method should also be applied to large

scale networks, performing this way in silico predictions

which could be subsequently validated in the lab.

Supplementary information
Supplementary information accompanies this paper at

https://doi.org/10.1186/s12859-019-3104-y.

Additional file 1: This file provides further information on our top

reported associations from the STITCH dataset.
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