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Brassard and Andreas Winter. I also want to thank my family for supporting me in
my scientific endeavours.

i



ii



Abstract

Network information theory is the study of communication problems involving mul-

tiple senders, multiple receivers and intermediate relay stations. The purpose of this

thesis is to extend the main ideas of classical network information theory to the study

of classical-quantum channels. We prove coding theorems for the following commu-

nication problems: quantum multiple access channels, quantum interference channels,

quantum broadcast channels and quantum relay channels.

A quantum model for a communication channel describes more accurately the

channel’s ability to transmit information. By using physically faithful models for the

channel outputs and the detection procedure, we obtain better communication rates

than would be possible using a classical strategy. In this thesis, we are interested

in the transmission of classical information, so we restrict our attention to the study

of classical-quantum channels. These are channels with classical inputs and quantum

outputs, and so the coding theorems we present will use classical encoding and quantum

decoding.

We study the asymptotic regime where many copies of the channel are used in

parallel, and the uses are assumed to be independent. In this context, we can exploit

information-theoretic techniques to calculate the maximum rates for error-free com-

munication for any channel, given the statistics of the noise on that channel. These

theoretical bounds can be used as a benchmark to evaluate the rates achieved by prac-

tical communication protocols.

Most of the results in this thesis consider classical-quantum channels with finite

dimensional output systems, which are analogous to classical discrete memoryless chan-

nels. In the last chapter, we will show some applications of our results to a practical

optical communication scenario, in which the information is encoded in continuous

quantum degrees of freedom, which are analogous to classical channels with Gaussian

noise.
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Résumé

La théorie de l’information multipartite étudie les problèmes de communication

avec plusieurs émetteurs, plusieurs récepteurs et des stations relais. L’objectif de cette

thèse est d’étendre les idées centrales de la théorie de l’information classique à l’étude

des canaux quantiques. Nous allons nous intéresser aux scénarios de communication

suivants: les canaux quantiques à accès multiples, les canaux quantiques à interférence,

les canaux quantiques de diffusion et les canaux quantiques à relais. Dans chacun

des ces scénarios de communication, nous caractérisons les taux de communication

réalisables pour l’envoi d’information classique sur ces canaux quantiques.

La modélisation quantique des canaux de communication est importante car elle

fournit une représentation plus précise de la capacité du canal à transmettre l’information.

En utilisant des modèles physiquement réalistes pour les sorties du canal et la procédure

de détection, nous obtenons de meilleurs taux de communication que ceux obtenus

dans un modèle classique. En effet, l’utilisation de mesures quantiques collectives sur

l’ensemble des systèmes physiques en sortie du canal permet une meilleure extraction

d’information que des mesures indépendantes sur chaque sous-système. Nous avons

choisi d’étudier les canaux à entrée classique et sortie quantique qui constituent une

abstraction utile pour l’étude de canaux quantiques généraux où l’encodage est restreint

au domaine classique.

Nous étudions le régime asymptotique où de nombreuses copies de du canal sont

utilisées en parallèle, et les utilisations sont indépendantes. Dans ce contexte, il est

possible de caractériser les limites absolues sur la transmission d’information d’un canal,

si on connait les statistiques du bruit sur ce canal. Ces résultats théoriques peuvent

être utilisées comme un point de repère pour évaluer la performance des protocoles de

communication pratiques.

Nous considérons surtout les canaux où les sorties sont des systèmes quantiques de

dimension finie, analogues aux canaux classiques discrets. Le dernier chapitre présente

des applications pratiques de nos résultats à la communication optique, où systèmes

physiques auront des degrés de liberté continus. Ce contexte est analogue aux canaux

classiques avec bruit gaussien.
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Notation

Classical Quantum

ya ∈ Y ⇐⇒ |v〉B ∈ HB

symbol from a finite set vector in a Hilbert space

pY ∈ P(Y) ⇐⇒ ρB ∈ D(HB)

probability distribution density matrix ≡ quantum state

pY (y) ≥ 0, ∀y ∈ Y 〈v|ρB|v〉 ≥ 0, ∀|v〉 ∈ HB

∑

y pY (y) = 1 Tr[ρB] = 1, (ρB)† = ρB

pY |X ⇐⇒ {ρBx }, x ∈ X
conditional probability distribution conditional states

≡ classical-classical channel ≡ classical-quantum channel

pXY (x, y) ≡ pX(x)pY |X(y|x) ⇐⇒ θXB ≡∑x pX(x) |x〉〈x|X ⊗ ρBx
joint input-output distribution joint input-output state

pȲ ≡ EX pY |X ⇐⇒ ρ̄B ≡ EX ρBX
average output distribution average output state

1{
yn∈T

(n)
δ

(Ȳ )
} ⇐⇒ Πρ̄ ≡ ΠBn

ρ̄⊗n,δ

indicator function for projector onto the

the output-typical set output-typical subspace

1{
yn∈T

(n)
δ

(Y |xn)
} ⇐⇒ Πxn ≡ ΠBn

ρxn ,δ

indicator function for the conditionally typical

conditionally typical set projector for the state ρB
n

xn

xi
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Chapter 1

Introduction

The central theme of this work is the transmission of information through noisy com-

munication channels. The word information means different things to different people,

so it is worthwhile to begin the discussion with a clear definition of the term. State-

ments like “Canada has an information-based economy” suggest that information is

some kind of commodity that can be shipped on trains for export like oil or lumber.

In the world of digital electronics, the word information is used as a synonym for the

word data as in “How much information can you store on your USB memory stick?”.

In that context, most people would say that a 7MB mp3 file contains just as much

information as a 7MB file full of zeros.

In this work we will use the term information in the sense originally defined by

Claude Shannon [Sha48]. Shannon realized that in order to study the problems of

information storage and information transmission mathematically, we must step away

from the semantics of the messages and focus on their statistics. Using the notions of

entropy, conditional entropy and mutual information, we can quantify the information

content of data sources and the information transmitting abilities of noisy communi-

cation channels.

We can arrive at an operational interpretation of the information content of a data

source in terms of our ability to compress it. The more unpredictable the content of

the data is, the more information it contains. Indeed, if we use WinZip to compress

the mp3 file and the file full of zeros, we will see that the latter will result in a much

smaller zip file, which is expected since a file full of zeros has less uncertainty and, by

1



1.2 Information theory

extension, contains less information.

We can similarly give an operational interpretation of the information carrying

capacity of a noisy communication channel in terms of our ability to convert it into

a noiseless channel. Channels with more noise have a smaller capacity for carrying

information. Consider a channel which allows us to send data at the rate of 1 MB/sec

on which half of the packets sent get lost due to the effects of noise on the channel. It

is not true that the capacity of such a channel is 1 MB/sec, because we also have to

account for the need to retransmit lost packets. In order to correctly characterize the

information carrying capacity of a channel, we must consider the rate of the end-to-

end protocol which converts many uses of the noisy channel into an effectively noiseless

communication channel.

1.1 Information theory

xTx y Rx
 ≡ p(y|x)

Figure 1.1: A point-to-
point channel ≡ pY |X(y|x).

Information theory studies models of communication

which are amenable to mathematical analysis. In order

to model the effects of noise ( ) in a point-to-point com-

munication scenario, we represent the inputs and outputs

of the channel probabilistically. We describe the channel

as a triple (X , pY |X(y|x),Y), where X is the set of possible

symbols that the Transmitter (Tx) can send, Y is the set of possible outputs that the

Receiver (Rx) can obtain and pY |X(y|x) is a conditional probability distribution describ-

ing the channel’s transition probabilities. This model is illustrated in Figure 1.1, where

random variables are pictorially represented as small triangles ( ). For example, the

noiseless binary channel is represented as the triple ({0, 1}, pY |X(y|x) = δ(x, y), {0, 1}).
Using this model of the channel, it is possible to calculate the optimal communica-

tion rates from Transmitter to Receiver in the limit of many independent uses of the

channel [Sha48]. These theoretical results have wide-reaching applications in many ar-

eas of communication engineering but also in other fields like cryptography, computer

science, neuroscience and even economics. So long as a probabilistic model for the

channel at hand is available, we can use this model and the techniques of information

theory to arrive at precise mathematical statements about its suitability for a given

communication task in the limit of many uses of the channel.

2



Chapter 1 : Introduction

1.2 Network information theory

Network information theory is the extension of Shannon’s model of noisy channels to

communication scenarios with multiple senders and multiple receivers [EGC80, CT91,

EGK10]. To model these channels probabilistically, we use multivariate conditional

probability distributions. Some of the most important problems in network information

theory are shown in Figure 1.2, and the relevant class of probability distributions is

also indicated.

x1Tx1

x2Tx2

y Rx

 

 

(a) MAC ≡ p(y|x1, x2)

xTx

y1 Rx1 

y2 Rx2
 

(b) BC ≡ p(y1, y2|x)

x1Tx1

x2Tx2

y1 Rx1
 

 
y2 Rx2

 

 

(c) IC ≡ p(y1, y2|x1, x2)

xTx

y1

Re

 

x1

y Rx
 

 

(d) RC ≡ p(y1, y|x, x1)

Figure 1.2: Classical network information theory studies communication channels with
multiple senders and multiple receivers. These include, among others, (a) multiple access
channels (MACs), (b) broadcast channels (BCs), (c) interference channels (ICs), and (d)
relay channels (RCs).

Each of the above channels is a model for some practical communication scenario.

In the multiple access channel, there are multiple transmitters trying to talk to a sin-

gle base station, and we can describe the tradeoff between the communication rates

that are achievable for the inbound communication links. The broadcast channel is the

dual problem in which a single transmit antenna emits multiple information streams in-

tended for different receivers. We can additionally have a common information stream

intended for both receivers. Coding strategies for broadcast channels involve encodings

that can “mix” the information streams to produce the transmit signal. Interference

channels model situations where multiple independent transmissions are intended, but

crosstalk occurs because the communication takes place in a shared medium. The re-

lay channel is a multi-hop information network. The Relay is assumed to decode the

message during one block of uses of the channel and re-transmit the information it has

decoded during the next block. This allows the Receiver to collectively decode the in-

formation from both the Transmitter and the Relay and achieve better communication

rates than what would be possible with point-to-point codes.

3



1.3 Quantum channels

1.3 Quantum channels

Classical models are not adequate for the characterization of the information carrying

capacity of communication systems in which the information carriers are quantum sys-

tems. Such systems need not be exotic: in optical communication links, the carriers are

photons, which are properly described by quantum electrodynamics and only approx-

imately described by Maxwell’s equations. A more general model for communication

channels is one which takes into account the underlying laws of physics concerning the

encoding, transmission and decoding of information using quantum systems. Quantum

decoding based on collective measurements of all the channel outputs in parallel can be

shown to achieve higher communication rates compared to classical decoding strategies

in which the channel outputs are measured individually.

xTx ρBx Rx
NX→B

Figure 1.3: A point-
to-point classical-quantum
channel {ρx}.

Of particular interest are classical-quantum channel

models, which model the sender’s inputs as classical vari-

ables and the receiver’s outputs as quantum systems. A

classical-quantum channel (X ,NX→B(x)≡ρBx , HB) is fully

specified by the finite set of output states {ρBx } it produces

for each of the possible inputs x ∈ X . Figure 1.3 depicts

a classical-quantum channel, in which the quantum out-

put system is represented by a circle: . Such channels form a useful abstraction

for studying the transmission of classical data over quantum channels. The Holevo-

Schumacher-Westmoreland (HSW) Theorem (see page 32) establishes the maximum

achievable communication rates for classical-quantum channels [Hol98, SW97].

Note that a classical-quantum (c-q) channel corresponds to the use of a quantum-

quantum (q-q) channel in which the sender is restricted to selecting from a finite set

of signalling states. Any code construction for a c-q channel can be augmented with

an optimization over the choice of signal states to obtain a code for a q-q channel. For

this reason, we restrict our study here to that of c-q channels.

The study of quantum channels finds practical applications in optical communi-

cations. Bosonic channels model the quantum aspects of optical communication links.

It is known that optical receivers based on collective quantum measurements of the

channel outputs outperform classical strategies, particularly in the low-photon-number

regime [GGL+04, Guh11, WGTL12]. In other words, quantum measurements are nec-
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Chapter 1 : Introduction

essary to achieve their ultimate information carrying capacity. In [GGL+04] it is also

demonstrated that classical encoding is sufficient to achieve the Holevo capacity of the

lossy bosonic channel, giving further motivation for the theoretical study of classical-

quantum models.

1.4 Research contributions

This thesis presents a collection of results for problems in network information theory

for classical-quantum channels. As we stated before, the results here easily extend to

quantum-quantum channels. The problems considered are illustrated in Figure 1.4.

x1Tx1

x2Tx2

ρBx1,x2 Rx

 

 

(a) QMAC ≡
{
ρBx1,x2

}

x1Tx1

x2Tx2

ρ
B1
x1,x2 Rx1

 

ρ
B2
x1,x2 Rx2

 

(b) QIC ≡
{
ρB1B2
x1,x2

}

xTx

ρB1
x Rx1 

ρB2
x Rx2

 

(c) QBC ≡
{
ρB1B2
x

}

xTx

ρ
B1
x,x1

Re

 

x1

ρBx,x1 Rx
 

 

(d) QRC ≡
{
ρB1B
x,x1

}

Figure 1.4: Network information theory can be extended to channels with quantum out-
puts. We call these “classical-quantum channels,” and consider the following communication
scenarios: (a) multiple access channels (QMACs), (b) interference channels (QICs), (c) broad-
cast channels (QBCs), and (d) relay channels (QRCs).

Most of the results presented in this thesis have appeared in publication. The new

results on the quantum multiple access channel and the quantum interference channel

appeared in [FHS+12], which is a collaboration between Omar Fawzi, Patrick Hayden,

Pranab Sen, Mark M. Wilde and the present author. That paper has been accepted

for publication in the IEEE Transactions on Information Theory. A more compact

version of the same results was presented by the author at the 2011 Allerton confer-

ence [FHS+11]. A follow-up paper on the bosonic quantum interference channel was

presented by the author at the 2011 International Symposium on Information Theory,

thanks to a collaboration with Saikat Guha and Mark M. Wilde [GSW11]. A further

collaboration with Mark M. Wilde led to the publication of [SW12], which describes

two coding strategies for the quantum broadcast channel. Finally, a collaboration with

Mark M. Wilde and Mai Vu led to the development of the coding strategy for the
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quantum relay channel presented in [SWV12]. The last two papers have been accepted

for presentation at the 2012 International Symposium on Information Theory.

Our aim has been to present a comprehensive collection of the state-of-the-art

of current knowledge in quantum network information theory analogous to the review

paper by Cover and El Gamal [EGC80]. Indeed, the current work contains the classical-

quantum extension of many of the results presented in that paper. Towards this aim,

we have chosen to include in the text the statement of several important results by

others. These include a proof of the capacity theorems of the point-to-point c-q chan-

nels different from the original ones due to Holevo, Schumacher and Westmoreland

[Hol98, SW97] and the capacity result for quantum multiple access channel, originally

due to Winter [Win01]. We will also present an alternate achievability proof of the

quantum Chong-Motani-Garg rate region for the QIC, which was originally proved by

Sen [Sen12a].

1.5 Thesis overview

Each of the communication problems covered in this thesis is presented in a separate

chapter, and each chapter is organized in the same manner. The exposition in each

chapter is roughly self-contained, but the ideas developed in Chapter 4 are of key

importance to all other results in the thesis. Chapters 3 through 7 present results

on classical-quantum (c-q) channels where the output systems are arbitrary quantum

states in finite dimensional Hilbert spaces. This class of channels generalizes the class

of classical discrete memoryless channels. The last chapter, Chapter 8, introduces the

basic notions of quantum optics and studies bosonic quantum channels, for which the

output system is a quantum system with continuous degrees of freedom.

Necessary background material on the notion of a classical typical set and its quan-

tum analogue, the quantum typical subspace, is presented in Chapter 2. A more de-

tailed discussion about typicality is presented in the appendix. Appendix A.1 concerns

classical typical sets whereas Appendix B.1 reviews the properties of quantum typical

subspaces, and quantum typical projectors. Of particular importance are conditionally

typical projectors, which are used throughout the proofs in this work.

Our exploration of the classical-quantum world of communication channels begins

in Chapter 3, where we discuss classical and classical-quantum models of point-to-point
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Chapter 1 : Introduction

communication. We will state and prove the capacity result for each class of channels:

Shannon’s classical channel coding theorem (Theorem 3.1) and the Holevo-Schumacher-

Westmoreland theorem (Theorem 3.2) concerning the capacity of the classical-quantum

channel.

Chapter 4 presents results on the quantum multiple access channel (QMAC) and

discusses the different coding strategies that can be employed. The capacity of the

QMAC was established by Winter in [Win01] (Theorem 4.1) using a successive de-

coding strategy. Our contribution to the quantum multiple access channel problem

is Theorem 4.2, which shows that the two-sender simultaneous decoding is possible.

This result and the proof techniques used therein will form key building blocks for the

results in subsequent chapters. The proof of Theorem 4.2 is the result of longstanding

collaboration within our research group.

Chapter 5 will present results on quantum interference channels. These include the

calculation of the capacity region for the quantum interference channel in two special

cases and a description of the quantum Han-Kobayashi rate region [FHS+11, FHS+12].

In that chapter, we also provide an alternate proof of the achievability of the quantum

Chong-Motani-Garg rate region, which was first established by Sen in [Sen12a]. This

new proof is original to this thesis.

Chapter 6 is dedicated to the quantum broadcast channel problem. We prove two

theorems: the superposition coding inner bound (Theorem 6.1), which was first proved

in [YHD11] using a different approach, and the Marton inner bound with no common

message (Theorem 6.2).

In Chapter 7, we will present Theorem 7.1 which is a proof of the partial decode-

and-forward inner bound for the quantum relay channel. The decode-and-forward and

direct coding strategies for the quantum relay channel are also established, since they

are special cases of the more general Theorem 7.1.

Chapter 8 discusses the free-space optical communication interference channel in

the presence of background thermal noise. This is a model for the crosstalk between

two optical communication links. This chapter demonstrates the practical aspect of

the ideas developed in this thesis.

We conclude with Chapter 9 wherein we state open problems and describe avenues

for future research.
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Chapter 2

Background

In this chapter we present all the necessary background material which is essential to

the results presented in subsequent chapters.

2.1 Notation

We will denote the set {1, 2, . . . , n} as [1 : n] or with the shorthand [n]. A random

variable X, defined over a finite set X , is associated with a probability distribution

pX(x) ≡ Pr{X = x}, where the lowercase x is used to denote particular values of

the random variable. Furthermore, let P(X ) denote the set of all probability mass

functions on the finite set X . Conditional probability distributions will be denoted as

pY |X(y|x) or simply pY |X .

In order to help distinguish between the classical systems (random variables) and

the quantum systems in the equations, we use the following naming conventions. Clas-

sical random variables will be denoted by letters near to the end of the alphabet (U ,

W , X1, X2) and denoted as small triangles, , in the diagrams of this thesis. The

triangular shape was chosen in analogy to the 2-simplex ≡ P({1, 2, 3}). Quantum sys-

tems will be named with letters near the beginning of the alphabet (A, B1, B2) and

represented by circles, , in diagrams. The circular shape is chosen in analogy with

the Bloch sphere [LS11].

Consider a communication scenario with one or more senders (female) and one or

more receivers (male). In diagrams, a sender is denoted Tx (short for Transmitter)
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2.2 Notation

and is associated with a random variable X. If there are multiple senders, then each

of them will be referred to as Sender k and associated with a random variable Xk.

Receivers will be denoted as Rx 1, Rx 2 and each is associated with a different output

of the channel. The outputs of a classical channel will be denoted as Y1, Y2, and the

outputs of a quantum channel will be denoted as ρB1 , ρB2 .

The purpose of a communication protocol is to transfer bits of information from

sender to receiver noiselessly. In this respect, the noiseless binary channel from sender

to receiver is the standard unit resource for this task:

(X = {0, 1}, pY |X(y|x) = δ(x, y), Y = {0, 1}) ≡ [c→ c], (2.1)

where we have also defined the more compact notation [c→ c]. We will use [c→ c] to

denote the communication resource of being able to send one bit of classical information

from the sender to the receiver [DHW08]. The square brackets indicate that the re-

source is noiseless. In order to describe multiuser communication scenarios, we extend

this notation with superscripts indicating the sender and the receiver. Thus, in order

to denote the noiseless classical communication of one bit from Sender k to Receiver z

we will use the notation [ck → cz]. The communication resource which corresponds to

the sender being able to broadcast a message to Receiver 1 and Receiver 2 is denoted

as [c→ c1c2]. All the coding theorems presented in this work are protocols for convert-

ing many copies of some noisy channel resource into noiseless classical communication

between a particular sender and a particular receiver as described above.

Codebooks {xn(m)}m∈M are lookup tables for codewords representing a discrete

set of messages M = {1, 2, 3, . . . , |M|} that could be transmitted. A communication

rate R is a real number which describes our asymptotic ability to construct codes

for a certain communication task. We will use the notation |M| = 2nR, and M =

{1, 2, 3, . . . , |M|} ≡ [1 : 2nR], in which 2nR should be interpreted to indicate ⌊2nR⌋.

Let Rn
+ ≡ {~v ∈ Rn | vi ≥ 0, ∀i ∈ [1 : n]} be the non-negative subset of Rn. We

will denote a rate region as R ⊆ Rn
+ and the boundaries of regions as ∂R. We denote

points as P ∈ Rn and denote the convex hull of a set of points {Pi} as conv({Pi}).
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Chapter 2 : Background

2.2 Classical typicality

We present here a number of properties of typical sequences [CT91].

2.2.1 Typical sequences

Consider the random variable X with probability distribution pX(x) defined on a finite

set X . Denote by |X | the cardinality of X . LetH(X) ≡ H(pX) ≡ −∑x pX(x) log2 pX(x)

be the Shannon entropy of pX , and it is measured in units of bits. The binary entropy

function is denoted H2(p0) ≡ −p0 log2(p0) − (1 − p0) log2(1 − p0) ≡ H2(p1), where

p0 ≡ pX(0) and p1 ≡ 1− p0.

Denote by xn a sequence x1x2 . . . xn, where each xi, i ∈ [n] belongs to the finite

alphabet X . To avoid confusion, we use i ∈ [1 : n] to denote the index of a symbol

x in the sequence xn and a ∈ [1, 2, . . . , |X |] to denote the different symbols in the

alphabet X .

Define the probability distribution pXn(xn) on X n to be the n-fold product of pX :

pXn(xn) ≡ ∏n
i=1 pX(xi). The sequence xn is drawn from pXn if and only if each letter

xi is drawn independently from pX . For any δ > 0, define the set of entropy δ-typical

sequences of length n as:

T n
δ (X)≡

{

xn ∈ X n :

∣
∣
∣
∣
− log pXn(xn)

n
−H(X)

∣
∣
∣
∣
≤ δ

}

. (2.2)

Typical sequences enjoy many useful properties [CT91]. For any ǫ, δ > 0, and

sufficiently large n, we have

∑

xn∈T
(n)
δ

(X)

pXn(xn) ≥ 1− ǫ, (2.3)

2−n[H(X)+δ] ≤ pXn(xn)≤ 2−n[H(X)−δ] ∀xn ∈ T (n)
δ (X), (2.4)

[1− ǫ]2n[H(X)−δ] ≤|T (n)
δ (X)|≤ 2n[H(X)+δ]. (2.5)

Property (2.3) indicates that a sequence Xn of random variables distributed ac-

cording to pXn =
∏n pX (identical and independently distributed), is very likely to be

typical, since all but ǫ of the weight of the probability mass function is concentrated
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X n

T (n)
δ (X)

Figure 2.1: The typical set. Property (2.3) implies that draws of a random sequence Xn ∼
pXn ≡ ∏n pX are likely to fall inside the typical set T (n)

δ (X) ⊂ X n with high probability. If
draws from Xn ∼∏n pX are represented as points, then after many draws the typical set will

become darker as the shaded region in the diagram. The probability mass density on T (n)
δ (X)

is approximately uniform: it varies between 2−n[H(X)+δ] and 2−n[H(X)−δ] (Property (2.4)),
and the size of the shaded area will be at most 2n[H(X)+δ] (Property (2.5)). The non-typical

set, X n \ T (n)
δ (X), will have at most ǫ weight in it (Property (2.3)).

on the typical set, which follows from the law of large numbers. Property (2.4) follows

from the definition of the typical set (2.2). The lower bound on the probability of the

typical sequences from (2.4) can be used to obtain an upper bound on the size of the

typical set in (2.5). Similarly the upper bound from (2.4) and equation (2.3) can be

combined to give the lower bound on the typical set in (2.5).

2.2.2 Conditional typicality

Consider now the conditional probability distribution pY |X(y|x) associated with a

communication channel. The induced joint input-output distribution is (X, Y ) ∼
pX(x)pY |X(y|x), when pX(x) is used as the input distribution.

The conditional entropy H(Y |X) for this distribution is

H(Y |X) = H(X, Y )−H(X) =
∑

xa∈X

pX(xa)H(Y |xa). (2.6)

where H(Y |xa) = −∑y pY |X(y|xa) log pY |X(y|xa).

We define the xn-conditionally typical set T (n)
δ (Y |xn) ⊆ Yn to consist of all se-

quences yn which are typically output when the input to the channel is xn:

T (n)
δ (Y |xn)≡

{

yn ∈ Yn :

∣
∣
∣
∣
− log pY n|Xn(yn|xn)

n
−H(Y |X)

∣
∣
∣
∣
≤ δ

}

, (2.7)
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X n

T (n)
δ (X)

Yn

T (n)
δ (Y )

T (n)
δ (Y |xn)

xn

Figure 2.2: Illustration of the conditionally typical set T (n)
δ (Y |xn) and the output-typical

set T (n)
δ (Y ). The “density” of T (n)

δ (Y ), the lightly shaded area, is at least 2−n[H(Y )+δ], and

the size of T (n)
δ (Y ) is at most 2n[H(Y )+δ]. The size of T (n)

δ (Y |xn), the darker shaded region,
is no greater than 2n[H(Y |X)+δ] for an xn picked on average.

with pY n|Xn(yn|xn) =∏n
i=1 pY |X(yi|xi). The definition in (2.7) can be rewritten as:

2−n[H(Y |X)+δ] ≤ pY n|Xn(yn|xn) ≤ 2−n[H(Y |X)−δ], ∀yn ∈ T (n)
δ (Y |xn), (2.8)

for any sequence xn.

Suppose that a random input sequence Xn ∼ pXn =
∏n pX is passed through

the channel pY n|Xn . Then a conditionally typical sequence is likely to occur. More

precisely, we have that for any ǫ, δ > 0, and sufficiently large n the statement is true

under the expectation over the input sequence Xn:

E
Xn

∑

yn∈T
(n)
δ

(Y |Xn)

pY n|Xn(yn|Xn) =
∑

xn

pXn(xn)
∑

yn∈T
(n)
δ

(Y |xn)

pY n|xn(yn|xn)

≥ 1− ǫ. (2.9)

We also have the following bounds on the expected size of the conditionally typical set:

[1− ǫ]2n[H(Y |X)−δ] ≤ E
Xn

∣
∣
∣T (n)

δ (Y |Xn)
∣
∣
∣ ≤ 2n[H(Y |X)+δ]. (2.10)
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2.2.3 Output-typical set

Consider the distribution over symbols y ∈ Y induced by the channel N ≡ pY |X(y|x)
whenever the input distribution is pX(x):

pY (y) ≡
∑

x

pY |X(y|x)p(x) = EXN . (2.11)

We define the output typical set as

T (n)
δ (Y )≡

{

yn ∈ Yn :

∣
∣
∣
∣
− log pY n(yn)

n
−H(Y )

∣
∣
∣
∣
≤ δ

}

, (2.12)

where pY n =
∏n pY . Note that the output-typical set is just a special case of the

general typical set shown in (2.2). The terminology output-typical is introduced to

help with the exposition.

When the input sequences are chosen according to Xn ∼ pXn =
∏n pX , then

output sequences are likely to be output-typical:

E
Xn

∑

yn∈T
(n)
δ

(Y )

pY n|Xn(yn|Xn) ≥ 1− ǫ. (2.13)

An illustration and an intuitive interpretation of (2.9), (2.10) and (2.13) is pre-

sented in Figure 2.2. The expression in (2.9) for the property of the conditionally

typical set T (n)
δ (Y |xn) is the analogue of the typical property (2.3) for T (n)

δ (X). The

interpretation is that the codewords of a random codebook are likely to produce output

sequences that fall within their conditionally typical sets. This property will be used

throughout this thesis to guarantee that the decoding strategies based on conditionally

typical sets correctly recognize the channel outputs. On the other hand, (2.10) gives us

both an upper bound and a lower bound on the size of the conditionally typical set for

a random codebook. Finally, Property (2.13) tells us that the outputs of the channel

which are not output-typical are not likely.
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2.2.4 Joint typicality

Consider now the joint probability distribution pXY (x, y) ∈ P(X ,Y). Let (Xn, Y n) be

a pair of random variables distributed according to the product distribution
∏n pXY .

We define the jointly typical set J (n)
δ (X, Y ) ⊆ X n ×Yn to be the set of sequences

that are typical with respect to the joint probability distribution pXY and with respect

to the marginals pX and pY .

J (n)
δ (X, Y ) ≡







(xn, yn) ∈ X n × Yn

∣
∣
∣
∣
∣
∣
∣

xn ∈ T (n)
δ (X)

yn ∈ T (n)
δ (Y )

(xn, yn) ∈ T (n)
δ (X, Y )







. (2.14)

A multi-variable sequence, therefore, is jointly typical if and only if all the sequences

in the subsets of the variables are jointly typical.

The probability that two random sequences drawn from the marginalsXn ∼∏n pX

and Y n ∼∏n pY are jointly typical can be bounded from above by 2−n[I(X;Y )−δ]. This

is straightforward to see from the definition in (2.14) and the properties of typical sets.

If (xn, yn) is such that xn ∈ T (n)
δ′ (X) and yn ∈ T (n)

δ′ (Y ) then pXn(xn) ≤ 2−n[H(X)−δ′] and

pY n(yn) ≤ 2−n[H(Y )−δ′]. On the other hand, we know that the number of sequences that

are typical according to the joint distribution is no larger than 2n[H(XY )+δ′′]. Combining

these two observations we get:

∑

(xn,yn)∈T
(n)

δ′′
(X,Y )

pXn(xn)pY n(yn) ≤
∣
∣
∣T (n)

δ′′ (X, Y )
∣
∣
∣ 2−n[H(X)−δ′]2−n[H(Y )−δ′]

≤ 2n[H(XY )+δ′′]2−n[H(X)−δ′]2−n[H(Y )−δ′]

= 2−n[I(X;Y )−δ]. (2.15)

Note that the parameter δ = 2δ′+δ′′ is a function of our choice of typicality parameters

for the typical sets.

2.3 Introduction to quantum information

The use of quantum systems for information processing tasks is no more mysterious

than the use of digital technology for information processing. The use of an analog
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to digital converter (ADC) to transform an analog signal to a digital representation

and the use of a digital to analog converter (DAC) to transform from the digital world

back into the analog world are similar to the state preparation and the measurement

steps used in quantum information science. The digital world is sought after because of

the computational, storage and communication benefits associated with manipulation

of discrete systems instead of continuous signals. Similarly, there are benefits associ-

ated with using the quantum world (Hilbert space) in certain computation problems

[Sho94, Sho95]. The use of digital and quantum technology can therefore both be seen

operationally as a black box process with information encoding, processing and readout

steps.

The focus of this thesis is the study of quantum aspects of communication which

are relevant for classical communication tasks. In order to make the presentation

more self-contained, we will present below a brief introduction to the subject which

describes how quantum systems are represented, how information can be encoded and

how information can be read out.

2.3.1 Quantum states

In order to describe the state of a quantum system B we use a density matrix ρB acting

on a d-dimensional complex vector space HB (Hilbert space). To be a density matrix,

the operator ρB has to be Hermitian, positive semidefinite and have unit trace. We

denote the set of density matrices on a Hilbert space HB as D(HB).

A common choice of basis for HB is the standard basis {|0〉, |1〉, . . . , |d− 1〉}:

|0〉 ≡









1

0
...

0









, |1〉 ≡









0

1
...

0









, . . . , |d− 1〉 ≡









0
...

0

1









, (2.16)

which is also known as the computational basis.
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In two dimensions, another common basis is the Hadamard basis:

|+〉 ≡ 1√
2
|0〉+ 1√

2
|1〉, (2.17)

|−〉 ≡ 1√
2
|0〉 − 1√

2
|1〉. (2.18)

The eigen-decomposition of the density matrix ρB gives us another choice of basis

in which to represent the state. Any density matrix can be written in the form:

ρB≡









|eρ;1〉 |eρ;2〉 · · · |eρ;d〉

















λρ;1 0 · · · 0

0 λρ;2 0
...

. . .
...

0 0 · · · λρ;d

















〈eρ;1|
〈eρ;2|
...

〈eρ;d|









, (2.19)

where the eigenvalues λρ;i are all real and nonnegative. In our notation, column vectors

are denoted as kets |eρ;i〉 and the dual (Hermitian conjugate) of a ket is the bra:

〈eρ;i| ≡ |eρ;i〉† (a row vector). We say that ρB is a pure state if it has only a single

non-zero eigenvalue: λρ;1 = 1, λρ;i = 0, ∀i > 1.

Because the density matrix is positive semidefinite and has unit trace (
∑

i λρ;i = 1),

we can identify the eigenvalues of ρB with a probability distribution: pY (y) ≡ λρ;y. A

density matrix, therefore, corresponds to the probability distribution pY (y) over the

subspaces: |eρ;y〉〈eρ;y|. This property will be important when we want to define the

typical subspace for the tensor product state: (ρB)⊗n ≡ ρB1 ⊗ ρB2 ⊗ · · · ⊗ ρBn .

Suppose that we have a two-party quantum state ρAB such that Alice has the

subsystem A and Bob has the subsystem B. The state in Alice’s lab is described by

ρA = TrB[ρ
AB], where TrB denotes a partial trace over Bob’s degrees of freedom.

In order to describe the “distance” between two quantum states, we use the notion

of trace distance. The trace distance between states σ and ρ is ‖σ − ρ‖1 = Tr|σ − ρ|,
where |X| =

√
X†X. Two states that are similar have trace distance close to zero,

whereas states that are perfectly distinguishable have trace distance equal to two.

Two quantum states can “substitute” for one another up to a penalty proportional

to the trace distance between them:
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Lemma 2.1. Let 0 ≤ ρ, σ,Λ ≤ I. Then

Tr [Λρ] ≤ Tr [Λσ] + ‖ρ− σ‖1 . (2.20)

Proof. This follows from a variational characterization of trace distance as the distin-

guishability of the states under an optimal measurement operator M :

‖ρ− σ‖1 ≡ 2 max
0≤M≤I

Tr [M(ρ− σ)]

≥ max
0≤M≤I

Tr [M(ρ− σ)]

①

≥ Tr [Λ(ρ− σ)]

≥ Tr [Λρ]− Tr [Λσ] .

Equation ① follows since the operator Λ, 0 ≤ Λ ≤ 1, is a particular choice of the

measurement operator M .

Most of the quantum systems considered in this document are finite dimensional,

but it is worth noting that there are also quantum systems with continuous degrees of

freedom which are represented in infinite dimensional Hilbert spaces. We will discuss

the infinite dimensional case in Chapter 8, where we consider the quantum aspects of

optical communication.

2.3.2 Quantum channels

By convention we will denote the input state as σ (for sender) and the outputs of the

channel as ρ (for receiver). A noiseless quantum channel is represented by a unitary

operator U which acts on the input state σ by conjugation to produce the output state

ρ = UσU †. General quantum channels are represented by completely-positive trace-

preserving (CPTP) maps NA→B, which accept input states in A and produce output

states in B: ρB = NA→B(σA).

If the sender wishes to transmit some classical message m to the receiver using a

quantum channel, her encoding procedure will consist of a classical-to-quantum encoder

E : m→ σA, to prepare a message state σA ∈ D(HA) suitable as input for the channel.

We call this the state preparation step.
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If the sender’s encoding is restricted to transmitting a finite set of orthogonal states

{σA
x }x∈X , then we can consider the choice of the signal states {σA

x } to be part of the

channel. Thus we obtain a channel with classical inputs x ∈ X and quantum outputs:

ρBx = NX→B(x) ≡ NA→B(σA
x ). A classical-quantum channel, NX→B, is represented

by the set of |X | possible output states {ρBx ≡ NX→B(x)}, meaning that each classical

input of x ∈ X leads to a different quantum output ρBx ∈ D(HB).

2.3.3 Quantum measurement

The decoding operations performed by the receivers correspond to quantum measure-

ments on the outputs of the channel. A quantum measurement is a positive operator-

valued measure (POVM) {Λm}B→M ′

m∈{1,...,|M|} on the system B, the output of which we

denote M ′. The probability of outcome M ′ = m when the state ρB is measured is

given by the Born rule:

Pr{M ′ = m} ≡ Tr[ΛB
mρ

B]. (2.21)

To be a valid POVM, the set of |M| operators Λm must all be positive semidefinite

and sum to the identity: Λm ≥ 0,
∑

m Λm = I.

A quantum instrument {Υk}A→B is a more general operation which consists of a

collection of completely positive (CP) maps such that
∑

k Υk is trace preserving [DL70].

When applied to a quantum state σA, the different elements are applied with probability

pk = Tr
[
Υk(σ

A)
]
resulting in different normalized outcomes ρBk = 1

pk
Υk(σ

A).

2.3.4 Quantum information theory

Many of the fundamental ideas of quantum information theory are analogous to those

of classical information theory. For example, we quantify the information content of

quantum systems using the notion of entropy.

Definition 2.1 (von Neumann Entropy). Given the density matrix ρA ∈ D(HA), the

expression

H(A)ρ = −Tr
(
ρA log ρA

)
(2.22)

is known as the von Neumann entropy of the state ρA.

Note that the symbol H is used for both classical and quantum entropy. The
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2.3 Introduction to quantum information

von Neumann entropy of quantum state ρA with spectral decomposition ρA =
∑

i λi|ei〉〈ei|,
is equal to the Shannon entropy of its eigenvalues.

H(A)ρ = −Tr
(
ρA log ρA

)
= −

∑

i

λi log λi = H({λi}). (2.23)

For bipartite states ρAB we can also define the quantum conditional entropy

H(A|B)ρ ≡ H(AB)ρ −H(B)ρ, (2.24)

where H(B)ρ = −Tr
(
ρB log ρB

)
is the entropy of the reduced density matrix ρB =

TrA
(
ρAB

)
. In the same fashion we can also define the quantum mutual information

I(A;B)ρ ≡ H(A)ρ +H(B)ρ −H(AB)ρ, (2.25)

and in the case of a tripartite system ρABC we define the conditional mutual information

as

I(A;B|C)ρ ≡ H(A|C)ρ +H(B|C)ρ −H(AB|C)ρ (2.26)

= H(AC)ρ +H(BC)ρ −H(ABC)ρ −H(C)ρ. (2.27)

It can be shown that I(A;B|C) is non negative for any tripartite state ρABC . The

formula I(A;B|C) ≥ 0 can also be written in the form

H(AC) +H(BC) ≥ H(C) +H(ABC). (2.28)

This inequality, originally proved in [LR73], is called the strong subadditivity of von

Neumann entropy and forms an important building block of quantum information

theory.

Consider the classical-quantum state ρXB given by:

ρXB =
∑

x∈X

pX(x)|x〉〈x|X ⊗ ρBx . (2.29)
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The conditional entropy H(B|X) of this state is equal to:

H(B|X) =
∑

x∈X

pX(x)H(ρBx ) =
∑

x∈X

pX(x)H(B)ρx . (2.30)

2.4 Quantum typicality

The notions of typical sequences and typical sets generalize to the quantum setting

by virtue of the spectral theorem. Let HB be a dB dimensional Hilbert space and let

ρB ∈ D(HB) be the density matrix associated with a quantum state. We identify the

eigenvalues of ρB with the probability distribution pY (y) = λρ;y and write the spectral

decomposition as:

ρB =

dB∑

y=1

pY (y)|eρ;y〉〈eρ;y|B (2.31)

where |eρ;y〉 is the eigenvector of ρB corresponding to eigenvalue pY (y).

Define the set of δ-typical eigenvalue labels according to the eigenvalue distribution

pY as

T (n)
δ (Y )≡

{

yn ∈ Yn :

∣
∣
∣
∣
− log pY n(yn)

n
−H(Y )

∣
∣
∣
∣
≤ δ

}

. (2.32)

For a given string yn = y1y2 . . . yi . . . yn we define the corresponding eigenvector as

|eρ;yn〉 = |eρ;y1〉 ⊗ |eρ;y2〉 ⊗ · · · ⊗ |eρ;yn〉, (2.33)

where for each symbol yi = b ∈ {1, 2, . . . , dB} we select the bth eigenvector |eρ;b〉.

The typical subspace associated with the density matrix ρB is defined as

An
ρ,δ = span

{

|eρ;yn〉 : yn ∈ T (n)
δ (Y )

}

. (2.34)

The typical projector is defined as

Πn
ρB ,δ =

∑

yn∈T
(n)
δ

(Y )

|eρ;yn〉〈eρ;yn |. (2.35)

Note that the typical projector is linked twofold to the spectral decomposition of (2.31):

the sequences yn are selected according to pY and the set of typical vectors are built
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2.4 Quantum typicality

from tensor products of orthogonal eigenvectors |eρ;y〉.

Properties analogous to (2.3) - (2.5) hold. For any ǫ, δ > 0, and all sufficiently

large n we have

Tr{ρ⊗nΠn
ρ,δ} ≥ 1− ǫ (2.36)

2−n[H(B)ρ+δ]Πn
ρ,δ ≤ Πn

ρ,δρ
⊗nΠn

ρ,δ ≤ 2−n[H(B)ρ−δ]Πn
ρ,δ, (2.37)

[1− ǫ]2n[H(B)ρ−δ] ≤ Tr{Πn
ρ,δ} ≤ 2n[H(B)ρ+δ]. (2.38)

Equation (2.36) tells us that most of the support of the state ρ⊗n is within the

typical subspace. The interpretation of (2.37) is that the eigenvalues of the state ρ⊗n

are bounded between 2−n[H(B)ρ+δ] and 2−n[H(B)ρ−δ] on the typical subspace An
ρ,δ.

Signal states Consider now a set of quantum states {ρBxa
}, xa ∈ X . We perform a

spectral decomposition of each ρBxa
to obtain

ρBxa
=

dB∑

y=1

pY |X(y|xa)|eρxa ;y〉〈eρxa ;y|B, (2.39)

where pY |X(y|xa) is the yth eigenvalue of ρBxa
and |eρxa ;y〉 is the corresponding eigenvec-

tor.

We can think of {ρBxa
} as a classical-quantum (c-q) channel where the input is

some xa ∈ X and the output is the corresponding quantum state ρBxa
. If the channel is

memoryless, then for each input sequence xn = x1x2 · · · xn we have the corresponding

tensor product output state:

ρB
n

xn = ρB1
x1

⊗ ρB2
x2

⊗ · · · ⊗ ρBn
xn
. (2.40)

2.4.1 Quantum conditional typicality

Conditionally typical projector Consider the ensemble {pX(xa) , ρxa
}. The choice

of distributions induces the following classical-quantum state:

ρXB =
∑

xa

pX(xa) |xa〉〈xa|X⊗ρBxa
. (2.41)
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X n

T (n)
δ (X)

xn

HBn

Πρ̄

Πρxn

Figure 2.3: Illustration of a conditionally typical subspace for some sequence xn, and the
output-typical subspace.

We define H(B|X)ρ ≡∑xa∈X
pX(xa)H(ρxa

) to be the conditional entropy of this

state. Expressed in terms of the eigenvalues of the signal states, the conditional entropy

becomes

H(B|X)ρ ≡ H(Y |X) ≡
∑

xa

pX(xa)H(Y |xa), (2.42)

where H(Y |xa) = −∑y pY |X(y|xa) log pY |X(y|xa) is the entropy of the eigenvalue dis-

tribution shown in (2.39).

We define the xn-conditionally typical projector as follows:

Πn
ρB
xn

,δ =
∑

yn∈T
(n)
δ

(Y |xn)

|eρxn ;yn〉〈eρxn ;yn |, (2.43)

where the set of conditionally typical eigenvalues T (n)
δ (Y |xn) consists of all sequences

yn which satisfy:

T (n)
δ (Y |xn)≡

{

yn :

∣
∣
∣
∣
− log pY n|Xn(yn|xn)

n
−H(Y |X)

∣
∣
∣
∣
≤ δ

}

, (2.44)

with pY n|Xn(yn|xn) =∏n
i=1 pY |X(yi|xi).

The states |eρxn ;yn〉 are built from tensor products of eigenvectors for the individual

signal states:

|eρxn ;yn〉 = |eρx1 ;y1〉 ⊗ |eρx2 ;y2〉 ⊗ · · · ⊗ |eρxn ;yn〉, (2.45)

where the string yn = y1y2 . . . yi . . . yn varies over different choices of bases for HB. For

each symbol yi = b ∈ {1, 2, . . . , dB} we select |eρxa ;b〉: the bth eigenvector from the
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eigenbasis of ρxa
corresponding to the letter xi = xa ∈ X .

The following bound on the rank of the conditionally typical projector applies:

Tr{Πn
ρB
xn

,δ} ≤ 2n[H(B|X)ρ+δ]. (2.46)

2.5 Closing remarks

In the next chapter, we will show how the properties of the typical sequences and typical

subspaces can be used to construct coding theorems for classical and classical-quantum

channels.
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Chapter 3

Point-to-point communication

In this chapter we describe the point-to-point communication scenario in which there

is a single sender and a single receiver. In Section 3.1, we review Shannon’s channel

coding theorem and give the details of the achievability proof in order to introduce the

idea of random coding in its simplest form. Our presentation is somewhat unorthodox

since we use only the properties of the conditionally typical sets and not the jointly

typical sets. Though, following this approach allows us to directly generalize our proof

techniques to the quantum case.

In Section 3.2.1 we will discuss the Holevo-Schumacher-Westmoreland (HSW) The-

orem and show an achievability proof. We do so with the purpose of introducing im-

portant background material on the construction of quantum decoding operators. We

show how to construct a decoding POVM defined in terms of the conditionally typical

projectors. Readers interested only in the essential parts should consult Lemma 3.1

and Lemma 3.2, since they will be used throughout the remainder of the text.

3.1 Classical channel coding

The fundamental problem associated with communication channels is to calculate and

formally prove their capacity for information transmission. We can think of the use of

a channel N as a communication resource, of which we have n instances. Each use of

the channel is assumed to be independent, and modelled by the conditional probability

distribution pY |X(y|x), where x and y are elements from the finite sets X , Y . This is
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3.1 Classical channel coding

called the discrete memoryless setting.

Our goal is to study the rate R at which the channel N can be converted into

copies of the noiseless binary channel [c→ c] ≡ δ(x, y), x, y ∈ {0, 1}, which represents

the canonical unit resource of communication. This conversion can be expressed as

follows:

n · N (1−ǫ)−→ nR · [c→ c]. (3.1)

This equation describes a protocol in which n units of the noisy communication resource

N are transformed into nR bits of noiseless transmission, and the protocol succeeds

with probability (1 − ǫ). Note that we allow the communication protocol to fail with

probability ǫ, but ǫ is an arbitrarily small number for sufficiently large n. To prove

that the rate R is achievable, one has to describe the coding strategy and prove that

the probability of error for that strategy can be made arbitrarily small. Usually, the

right hand side in equation (3.1) is measured as the number of different messages

M ≡ {1, 2, . . . , 2nR} ≡ [1 : 2nR] that can be transmitted using n uses of the channel.

One can think of the nR individual bits of the message as being noiselessly transmitted

to the receiver. The channel coding pipeline can then be described as follows:

m

∈ M
E Xn

∈ Xn

Y n

∈ Yn

∏n p(y|x)
D M ′

∈ M

Figure 3.1: Classical channel coding setup. The diagram shows the encoding, transmission
and decoding steps of a communication protocol that uses n copies of the classical channel
N = (X , pY |X(y|x),Y).

The probability of error when sending message m is defined as pe(m) ≡ Pr{M ′ 6=
m}, where M ′ ≡ D ◦ N n ◦ E(m) is the random variable associated with the output of

the protocol. The average probability of error over all messages is

p̄e ≡
1

|M|
∑

m∈M

Pr{M ′ 6= m}. (3.2)

This is the quantity we have to bound when we perform an error analysis of some

coding protocol.

Definition 3.1. An (n,R, ǫ) coding protocol consists of a message set M, where

|M| = 2nR, an encoding map E : M → X n described by a codebook {xn(m)}m∈M,

and a decoding map D : Yn → M such that the average probability of error is bounded
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Chapter 3 : Point-to-point communication

from above as pe ≤ ǫ.

A rate R is achievable if there exists an (n,R− δ, ǫ) coding protocol for all ǫ, δ > 0

as n→ ∞.

3.1.1 Channel capacity

The capacity C of a channel is the maximum of the rates R that are achievable, and

is established in Shannon’s channel coding theorem.

Theorem 3.1 (Channel capacity [Sha48, Fei54]). The communication capacity of a

discrete memoryless channel (X , pY |X(y|x),Y) is given by

C = max
pX

I(X;Y ), (3.3)

where the optimization is taken over all possible input distributions pX(x). The mutual

information is calculated on the induced joint probability distribution

(X, Y ) ∼ pXY (x, y) = pX(x)pY |X(y|x). (3.4)

The proof of a capacity theorem usually contains two parts:

• A direct coding part that shows that for all ǫ, δ > 0, there exists a codebook

E(m) ≡ {xn(m)} of rate R = C − δ and a decoding map D with average proba-

bility of error p̄e ≤ ǫ.

• A converse part that shows that the rate C is the maximum rate possible. A

converse theorem establishes that the probability of error for a coding protocol

(n,C + δ, ǫ) is bounded away from zero (weak converse), or that the probability

of error goes exponentially to 1 (strong converse).

Proof. We give an overview of the achievability proof of Theorem 3.1 in order to in-

troduce key concepts, which will be used in the other proofs in this thesis.

We use a random codebook with 2nR = |M| codewords xn ∈ X n generated inde-

pendently from the product distribution pXn(xn) =
∏n pX(xi). When the sender wants

to send the message m ∈ M, she will input the mth codeword, which we will denote

as xn(m). Let Y n denote the resulting output of the channel. The distribution on the

output symbols induced by the input distribution is pY (y) ≡ ∑

x pY |X(y|x)p(x), and
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3.1 Classical channel coding

define the set of output-typical sequences T (n)
δ (Y ) according to the distribution pY . For

any sequence xn, denote the set of conditionally typical output sequences T (n)
δ (Y |xn).

Given the output of the channel yn, the receiver will use the following algorithm:

1. If yn 6∈ T (n)
δ (Y ), then an error is declared.

2. Return m if yn is an element of the conditionally typical set T (n)
δ (Y |xn(m)).

Report an error if no match or multiple matches are found.

We now define the three types of errors that may occur in the protocol when the

message m is being sent.

(E0): The event that the channel output Y n is not output-typical: {Y n 6∈ T (n)
δ (Y )}.

(E1): The event that the channel output sequence Y n is not in the conditionally typical

set {Y n 6∈ T (n)
δ (Y |xn(m))}, which corresponds to the message m.

(E2): The event that Y n is output-typical and it falls in the conditionally typical set

for another message:

{Y n ∈ T (n)
δ (Y )} ∩

(
⋃

m′ 6=m

{Y n ∈ T (n)
δ (Y |xn(m′)),m′ 6= m}

)

. (3.5)

We can bound the probability of all three events when a random codebook is used,

that is, we will take the expectation over the random choices of the symbols for each

codeword. We define the expectation of an event as the expectation of the associated

indicated random variable.

The bound EXn (E0) ≤ ǫ follows from (2.13). The crucial observation for the proof

is to use the symmetry of the code construction: if the codewords for all the messages

are constructed identically, then it is sufficient to analyze the probability of error for

any one fixed message. We obtain a bound EXn (E1) ≤ ǫ from (2.9).

In order to bound the probability of error event (E2), we will use the classical

packing lemma, Lemma A.1 in Appendix A.2. Using the packing lemma with U = ∅,
we obtain a bound on the probability that the conditionally typical sets for different

messages will overlap. We can thus bound the expectation of the probability of error
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event (E2) as follows:

E
Xn

Pr{(E2)} ≤ |M| 2−n[I(X;Y )−δ].

We can now use the union bound to bound the overall probability of error for our

code as follows:

E
Xn

{p̄e} = E
Xn

Pr{(E0) ∪ (E1) ∪ (E2)}

≤ E
Xn

Pr{(E0)}+ E
Xn

Pr{(E1)}+ E
Xn

Pr{(E2)}

≤ ǫ + ǫ + |M| 2−n[I(X;Y )−δ]

= ǫ + ǫ + 2−n[I(X;Y )−R−δ].

Thus, in the limit of many uses of the channel, we have:

E
Xn

{p̄e} ≤ ǫ′, (3.6)

provided the rate R ≤ I(X;Y )− 2δ.

The last step is called derandomization. If the expected probability of error of

a random codebook can be bounded as above, then there must exist a particular

codebook with p̄e ≤ ǫ′, which completes the proof.

Note that it is possible to use an expurgation step and throw out the worse half

of the codewords in order to convert the bound on the average probability of error p̄e

into a bound on the maximum probability of error p̄max
e = maxm pe(m) [CT91].

3.2 Quantum communication channels

σATx ρB Rx
NA→B

Figure 3.2: A point-
to-point quantum channel
NA→B.

A quantum channel (HA,NA→B,HB) is described as a com-

pletely positive trace-preserving map NA→B which takes a

quantum system in state σA ∈ D(HA) as input and out-

puts a quantum system ρB ∈ D(HB). Figure 3.2 shows an

example of such a channel. In recent years, the techniques
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3.2 Quantum communication channels

of classical information theory have been extended to the

study of quantum channels. For a review of the subject see [Wil11].

In addition to the standard problem of classical transmission of information (de-

noted [c → c]), for quantum channels we can study the transmission of quantum

information (denoted [q → q]). If pre-shared entanglement between Transmitter and

Receiver is available, it can be used in order to improve the communication rates using

an entanglement-assisted protocol. There are multiple communication tasks and differ-

ent capacities associated with each task for any given quantum channel N [BSST99].

Some of the possible communication tasks, along with their associated capacities are:

• Classical data capacity: C(N )

• Quantum data capacity: Q(N )

• Entanglement-assisted classical data capacity: CE-A(N )

• Entanglement-assisted quantum data capacity: QE-A(N )

The latter two are actually equivalent up to a factor of 2, because we can use the

superdense coding and quantum teleportation protocols to convert between them in the

presence of free entanglement [BW92, BBC+93].

In the context of quantum information theory, pre-shared quantum entanglement

between sender and receiver must be recognized as a communication resource. We

denote this resource [qq] and must take into account the rates at which it is consumed

or generated as part of a communication protocol [DHW08]. It is interesting to note

that shared randomness (denoted [cc]), which is the classical equivalent of shared en-

tanglement, does not increase the capacity of point-to-point classical channels.

Classical-quantum channels

xTx ρBx Rx
NX→B

Figure 3.3: A point-to-
point c-q channel {ρx}.

In the previous section we introduced some of the main

communication problems of quantum information theory.

The focus of this thesis will be the study of classical com-

munication ([c → c]) over quantum channels, with no en-

tanglement assistance. For this purpose, we will use the

classical-quantum (c-q) channel model, which corresponds

to the use of a quantum channel where the Sender is restricted to sending a finite

set of signal states {σA
x }x∈X . If we consider the choice of the signal states {σA

x }
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Chapter 3 : Point-to-point communication

to be part of the channel, we obtain a channel with classical inputs x ∈ X and

quantum outputs: NX→B(x) ≡ NA→B(σA
x ). Note that a classical-quantum channel

(X ,NX→B(x) ≡ ρBx , HB) is fully specified by the finite set of output states {ρBx } it

produces for each of the possible inputs x ∈ X . This channel model is a useful ab-

straction for studying the transmission of classical data over quantum channels. Any

code construction for a c-q channel can be augmented with an optimization over the

choice of signal states {σA
x }x∈X to obtain a code for a quantum channel. The Holevo-

Schumacher-Westmoreland Theorem establishes the classical capacity of the classical-

quantum channel [Hol98, SW97]. The strong converse was later proved in [ON99].

3.2.1 Classical-quantum channel coding

The quantum channel coding problem for a point-to-point classical-quantum channel

(X ,NX→B(x)≡ρBx , HB) is studied in the following setting.

m

∈ M
E Xn

∈ Xn

ρB
n

Xn

∈ HBn

N⊗n {
ΛXn(m)

}

M ′

∈ M

Figure 3.4: HSW coding setup.

Let xn(m) ≡ x1x2 · · · xn ∈ X n be the codeword which is input to the channel

when we want to send message m. The output of the channel will be the n-fold tensor

product state:

N⊗n(xn(m)) ≡ ρB
n

xn(m) ≡ ρB1

x1(m) ⊗ ρB2

x2(m) ⊗ · · · ⊗ ρBn

xn(m). (3.7)

To extract the classical information encoded into this state, we must perform a

quantum measurement. The most general quantum measurement is described by a

positive operator-valued measure (POVM) {Λm}m∈M on the system Bn. To be a valid

POVM, the set {Λm} of |M| operators should all be positive semidefinite and sum to

the identity: Λm ≥ 0,
∑

m Λm = I.

In the context of our coding strategy, the decoding measurement aims to distin-

guish the |M| possible states of the form (3.7). The advantage of the quantum coding

paradigm is that it allows for joint measurements on all the outputs of the channel,

which is more powerful than measuring the systems individually.
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We define the average probability of error for the end-to-end protocol as

p̄e ≡
1

|M|
∑

m

Tr
{(
I − ΛBn

xn(m)

)
ρB

n

xn(m)

}
, (3.8)

where the operator
(

I − ΛBn

xn(m)

)

corresponds to the complement of the correct decod-

ing outcome.

Definition 3.2. An (n,R, ǫ) classical-quantum coding protocol consists of a message

set M, where |M| = 2nR, an encoding map E : M → X n described by a codebook

{xn(m)}m∈M, and a decoding measurement (POVM) {Λxn(m)}m∈M such that the av-

erage probability of error is bounded from above as pe ≤ ǫ.

Theorem 3.2 (HSW Theorem [Hol98, SW97]). The classical communication capacity

of a classical-quantum channel (X , ρBx ,HB) is given by:

C(N ) = max
pX

I(X;B)θ (3.9)

where the optimization is taken over all possible input distributions pX , and where

entropic quantities are calculated with respect to the following state:

θXB =
∑

x

pX(x) |x〉〈x|X ⊗ ρBx . (3.10)

The classical-quantum state θXB is the state with respect to which we will calcu-

late mutual information quantities. We call this state the code state and it extends

the classical joint probability distribution induced by a channel, when the input dis-

tribution pX is used to construct the codebook: pX(x)pY |X(y|x). In the case of the

classical-quantum channel, the outputs are quantum systems. Information quantities

taken with respect to classical-quantum states are called “Holevo” quantities in hon-

our of Alexander Holevo who was first to recognize the importance of this expression

by proving that it is an upper bound to the accessible information of an ensemble

[Hol73, Hol79]. Holevo quantities are expressed as a difference of two entropic terms:

I(X;B)θ ≡ H(B)θ −H(B|X)θ ≡ H

(
∑

x

pX(x)ρ
B
x

)

−
∑

x

pX(x)H(ρBx ). (3.11)

Holevo quantities are in some sense partially classical, since the entropies are with

respect to quantum systems, but the conditioning is classical.
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Quantum decoding

When devising coding strategies for classical-quantum channels, the main obstacle

to overcome is the construction of a decoding POVM that correctly identifies the

messages. Using the properties of quantum typical subspaces we can construct a set of

positive operators {Pm}m∈M which, analogously to the classical conditionally typical

indicator functions, are good at detecting (Tr[Pm ρm] ≥ 1 − ǫ) and distinguishing

(Tr[Pm ρm′ 6=m] ≤ ǫ) the output states produced by each message. We can construct a

valid POVM by normalizing these operators:

Λm ≡
(
∑

k

Pk

)−1/2

Pm

(
∑

k

Pk

)−1/2

, (3.12)

so that we will have
∑

m Λm = I. This is known as the square root measurement or

the pretty good measurement [Hol98, SW97].

The achievability proof of Theorem 3.2 is based on the properties of typical sub-

spaces and the square root measurement. We construct a set of unnormalized positive

operators

PBn

m ≡ Πρ̄ Πxn(m) Πρ̄, (3.13)

where Πxn(m) ≡ ΠBn

ρxn(m),δ
is the conditionally typical projector that corresponds to the

input sequence xn(m) and Πρ̄ ≡ ΠBn

ρ̄⊗n,δ is the output-typical projector for the average

output state ρ̄ =
∑

x pX(x)ρ
B
x . The operator “sandwich” in equation (3.13) corresponds

directly to the decoding criteria used in the classical coding theorem. We require the

state to be in the output-typical subspace and inside the conditionally typical subspace

for the correct codeword xn(m). The decoding POVM is then constructed as in (3.12).

By using the properties of the typical projectors, we can show that the probability

of error of this coding scheme vanishes provided R ≤ I(X;B)− δ. An effort has been

made to present the proofs of the classical and quantum coding theorems in a similar

fashion in order to highlight similarities in the reasoning.
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3.3 Proof of HSW Theorem

In this section we give the details of the POVM construction and the error analysis for

the decoder used by the receiver in the HSW Theorem.

Recall the classical-quantum state (3.10), with respect to which our code is con-

structed:

θXB =
∑

x

pX(x) |x〉〈x|X ⊗ ρBx . (3.14)

For each input sequence xn, there is a corresponding δ-conditionally typical pro-

jector: Πxn ≡ ΠBn

ρxn ,δ
.

Define also the average output state ρ̄ ≡ ∑

x pX(x) ρ
B
x , and the corresponding

average-output-typical projector Πρ̄ ≡ ΠBn

ρ̄⊗n,δ.

The Receiver constructs a decoding POVM {Λm}m∈M by starting from the pro-

jector sandwich:

PBn

m ≡ Πρ̄ Πxn(m) Πρ̄, (3.15)

and normalizing the operators:

Λm ≡
(
∑

k

Pk

)−1/2

Pm

(
∑

k

Pk

)−1/2

. (3.16)

The error analysis of a square root measurement is greatly simplified by using the

Hayashi-Nagaoka operator inequality.

Lemma 3.1 (Hayashi-Nagaoka [HN03]). If S and T are operators such that 0 ≤ T

and 0 ≤ S ≤ I, then

I − (S + T )−
1
2 S (S + T )−

1
2 ≤ 2 (I − S) + 4T. (3.17)

If we let S = Pm and T =
∑

m′ 6=m Pm′ in the above inequality we obtain

I − Λm ≤ 2 (I − Pm) + 4
∑

m′ 6=m Pm′ , (3.18)

which corresponds to the decomposition of the error outcome (I − Λm) into two con-

tributions:
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I. The probability that the correct detector does not “click”: (I − Pm). This cor-

responds to the error events (E0) and (E1) in the classical coding theorem.

II. The probability that a wrong detector “clicks”:
∑

m′ 6=m Pm′ . This corresponds to

the error event (E2) in the classical case.

We will show that the average probability of error

p̄e ≡
1

|M|
∑

m

Tr
{(
I − ΛBn

m

)
ρB

n

xn(m)

}
,

will be small provided the rate R ≤ I(X;B) − δ = H(B) −H(B|X) − δ. The bound

follows from the following properties of typical projectors:

Tr[Πxn(m)] ≤ 2n[H(B|X)+δ], (3.19)

Πρ̄ρ̄
⊗n Πρ̄ ≤ 2−n[H(B)−δ]Πρ̄, (3.20)

and reasoning analogous to that used in the classical coding theorem. Note that by

the symmetry of both the codebook construction and the decoder we can study the

error analysis for a fixed message m.

Consider the probability of error when the message m is sent, and let us apply the

Hayashi-Nagaoka operator inequality (Lemma 3.1) to split the error into two terms:

p̄e ≡ Tr
[(
I −ΛBn

m

)
ρB

n

xn(m)

]

≤ 2Tr
[(
I − PBn

m

)
ρB

n

xn(m)

]

︸ ︷︷ ︸

(I)

+ 4
∑

m′ 6=m

Tr
[
PBn

m′ ρB
n

xn(m)

]

︸ ︷︷ ︸

(II)

. (3.21)

We bound the expectation of the average probability of error by bounding the

individual terms.

We now state two useful results, which we need to bound the first error term.

First, recall the inequality from Lemma 2.1 which states that:

Tr [Λρ] ≤ Tr [Λσ] + ‖ρ− σ‖1 , (3.22)

holds for all operators such that 0 ≤ ρ, σ,Λ ≤ I.
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The second ingredient is the gentle measurement lemma.

Lemma 3.2 (Gentle operator lemma for ensembles [Win99]). Let {p(x) , ρx} be an

ensemble and let ρ̄ ≡∑x p(x) ρx. If an operator Λ, where 0 ≤ Λ ≤ I, has high overlap

with the average state, Tr [ Λ ρ̄ ] ≥ 1−ǫ, then the subnormalized state
√
Λρx

√
Λ is close

in trace distance to the original state ρx on average: EX

{∥
∥
∥

√
ΛρX

√
Λ− ρX

∥
∥
∥
1

}

≤ 2
√
ǫ.

We bound the expectation over the code randomness for the first term in (3.21)

as follows:

E
Xn

(I) = E
Xn

Tr
[(
I − PBn

m

)
ρB

n

xn(m)

]

= E
Xn

Tr
[(
I − Πρ̄Πxn(m)Πρ̄

)
ρB

n

xn(m)

]

= 1− E
Xn

{

Tr
[
Πxn(m) Πρ̄ρ

Bn

xn(m)Πρ̄

]
}

①

≤ 1− E
Xn

{

Tr
[
Πxn(m) ρ

Bn

xn(m)

]
+
∥
∥Πρ̄ρ

Bn

xn(m)Πρ̄ − ρB
n

xn(m)

∥
∥
1

}

= 1− E
Xn

Tr
[
Πxn(m) ρ

Bn

xn(m)

]
+ E

Xn

∥
∥Πρ̄ρ

Bn

xn(m)Πρ̄ − ρB
n

xn(m)

∥
∥
1

②

≤ 1− E
Xn

Tr
[
Πxn(m) ρ

Bn

xn(m)

]
+ 2

√
ǫ

③

≤ 1− (1− ǫ) + 2
√
ǫ = ǫ+ 2

√
ǫ.

The inequality ① follows from equation (3.22). The inequality ② follows from Lemma 3.2

and the property of the average output state Tr[Πρ̄ ρ̄
⊗n] ≥ 1 − ǫ. The inequality ③

follows from: EXn Tr
[
ΠXn(m)ρXn(m)

]
≥ 1− ǫ.

The crucial Holevo information-dependent bound on the expectation of the second

term in (3.21) can be obtained by using the quantum packing lemma. The quantum

packing lemma (Lemma B.1) given in Appendix B.2, provides a bound on the amount

of overlap between the conditionally typical subspaces for the codewords in our code

construction and is analogous to the classical packing lemma (Lemma A.1), which

we used to prove the classical channel coding theorem. Note that Lemma B.1 is less

general than the quantum packing lemmas which appear in [HDW08] and [Wil11].

The overall probability of error is thus bounded as

E
Xn
p̄e ≤ 2(ǫ+ 2

√
ǫ) + 4

(
2−n[I(X;B)−2δ −R]

)
, (3.23)
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and if we choose R ≤ I(X;B)− 3δ, the probability of error is bounded from above by

ǫ in the limit n→ ∞.

Example 3.1 (Point-to-point channel). Consider the classical-quantum channel N ≡
({0, 1}, ρBx ,C2), which takes a classical bit as input and outputs a qubit (a two-dimensional

quantum system). Suppose the channel map is the following:

0 → ρ0 ≡ |0〉〈0| =
[

1 0

0 0

]

, 1 → ρ1 ≡ |+〉〈+| =
[

1
2

1
2

1
2

1
2

]

. (3.24)

We calculate the channel capacity for three different measurement strategies: two

classical strategies where the channel outputs are measured independently, and a quan-

tum strategy that uses collective measurements on blocks of n channel outputs. Because

the input is binary, it is possible to plot the achievable rates for all input distributions

pX . See Figure 3.5 for a plot of the achievable rates for these three strategies.

a) Basic classical decoding: A classical strategy for this channel corresponds to

the channel outputs being individually measured in the computational basis:

Λ0 = |0〉〈0|, Λ1 = |1〉〈1|, ΛBn

yn ≡ Λy1 ⊗ Λy2 ⊗ · · · ⊗ Λyn . (3.25)

Such a communication model for the channel is classical since we have Tr
[
ΛBn

yn ρB
n

xn

]
≡

pY n|Xn(yn|xn). More specifically, pY n|Xn(yn|xn) =∏n p
(a)
Y |X(yi|xi), where p

(a)
Y |X(y|x) is a

classical Z-channel with transition probability pz ≡ p
(a)
Y |X(0|1) = Tr[Λ0|+〉〈+|] = 0.5.

The capacity of the classical Z-channel is given by:

C(a)(N ) = max
0≤p0≤1

H
(
(1− p0)(1− pz)

)
− (1− p0)H(pz), (3.26)

where we parametrize in terms of p0 = pX(0). For this model, the capacity achieving

input distribution has p0 = 0.6 and the capacity is C(a) = H2(0.2)− 0.4 ≈ 0.3219.

b) Aligned classical decoding: A better classical model is to use a “rotated” quan-

tum measurement such that the measurement operators are symmetrically aligned with

the channel outputs. The measurement directions −π/8 and π/4 + π/8 are symmet-

ric around the output states |0〉 and |+〉. Define the notation cπ8 = cos(π/8) and

sπ8 = sin(π/8). The measurement along the −π/8 and π/4 + π/8 directions corre-
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3.4 Proof of HSW Theorem

sponds to the following POVM operators:

Λ0 = (cπ8 |0〉 − sπ8 |1〉)(cπ8〈0| − sπ8〈1|) =
[

c2π8
−cπ8sπ8

−sπ8cπ8 s2π8

]

{|0〉,|1〉}

Λ1 = (cπ8 |+〉 − sπ8 |−〉)(cπ8〈+| − sπ8〈−|) =
[

c2π8
−cπ8sπ8

−sπ8cπ8 s2π8

]

{|+〉,|−〉}

where the matrix representations are expressed in the basis indicated in subscript.

Using this measurement on channel outputs ρBx induces a classical channel p
(b)
Y |X

with transition probabilities

p
(b)
Y |X(0|0) = c2π8

, pY |X(1|0) = s2π8
, p

(b)
Y |X(1|1) = c2π8

, pY |X(0|1) = s2π8
, (3.27)

which corresponds to a binary symmetric channel (BSC) with crossover probability

pe = s2π8
= sin2(π/8) and success probability ps = c2π8

. The capacity of this BSC is

given by:

C(b)(N ) = 1−H(ps) = 1−H
(
cos2(π/8)

)
≈ 0.3991. (3.28)

c) Holevo limit: The HSW Theorem tells us the ultimate capacity of this channel

is given by

C(c)(N ) ≡ max
pX

H

(
∑

x

pX(x)ρ
B
x

)

−
∑

x

pX(x)H(ρBx ). (3.29)

In our case, the capacity is achieved using the uniform input distribution. The capacity

for this channel using a quantum measurment is therefore:

C(c)(N ) = H2(cos
2(π/8)) ≈ 0.6009. (3.30)

In general, a collective measurement on blocks of n outputs of the channel are

required to achieve the capacity. This means that the POVM operators {ΛBn

xn } cannot

be written as a tensor product of measurement operators on the individual output

systems. The channel capacity can be achieved using the random coding approach and

the square root measurement based on conditionally typical projectors as shown in the

proof of Theorem 3.2.

38



Chapter 3 : Point-to-point communication

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p
0

b
it
s
 /
 u

s
e

 

 

a) Computational basis classical measurement

b) Symmetric classical measurement

c) Holevo capacity

Figure 3.5: Plot of the achievable rates for the point-to-point channel ρBx given by the
map 0 → |0〉〈0|B, 1 → |+〉〈+|B under three models. The horizontal axis corresponds to the
parameter p0 = pX(0) of the input distribution. The first model treats each output of the
channel as a classical bit Y (a) ∈ {0, 1} corresponding to the output of a measurement in

the computational basis: {Λ(a)
y }y∈{0,1} = {|0〉〈0|, |1〉〈1|}. The mutual information I(X;Y (a))

for all input distributions pX is plotted as a dashed line. Under this model, the channel N
corresponds to a classical Z-channel. A better approach is to use a symmetric measurement
with output denoted as Y (b), which corresponds to a classical binary symmetric channel. The
mutual information I(X;Y (b)) is plotted as a dot-dashed line. The best coding strategy is
to use block measurements. The Holevo quantity H

(∑

x pX(x)ρBx
)
−∑x pX(x)H(ρBx ) for all

input distributions is plotted as a solid line. The capacity of the channel under each model
is given by the maximum of each function curve: C(a)(N ) ≈ 0.3219, C(b)(N ) ≈ 0.3991,
and C(c)(N ) = H2(cos

2(π/8)) ≈ 0.6009. For this particular channel the quantum decoding
strategy leads to a 50% improvement in the achievable communication rates relative to the
best classical strategy.
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3.4 Discussion

This chapter introduced the key concepts of the classical and quantum channel coding

paradigms. The situation considered in Example 3.1 serves as an illustration of the

potential benefits that exist for modelling communication channels using quantum

mechanics.

The key take-away from this chapter is that collective measurements on blocks of

channel outputs are necessary in order to achieve the ultimate capacity of classical-

quantum communication channels, and that classical strategies which measure the

channel outputs individually are suboptimal. The increased capacity is perhaps the

most notable difference that exists between the classical and classical-quantum paradigms

for communication [Gam].

In the remainder of this thesis, we will study multiuser classical-quantum com-

munication models and see various coding strategies, measurement constructions and

error analysis techniques which are necessary in order to prove coding theorems.
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Chapter 4

Multiple access channels

The multiple access channel is a communication model for situations in which multiple

senders are trying to transmit information to a single receiver. To fully solve the

multiple access channel problem is to characterize all possible transmission rates for

the senders which are decodable by the receiver. We will see that there is a natural

tradeoff between the rates of the senders; the louder that one of the senders “speaks,”

the more difficult it will be for the receiver to “hear” the other senders.

4.1 Introduction

x1Tx1

x2Tx2

Y Rx

 

 

Figure 4.1: A classical
multiple access channel.

The classical multiple access channel NX1X2→Y is a triple

(X1×X2,N (x1, x2) ≡ pY |X1X2(y|x1, x2),Y), where X1 and X2

are the input alphabets for the two senders, Y is the output

alphabet and pY |X1X2(y|x1, x2) is a conditional probability

distribution which describes the channel behaviour.

Our task is to characterize the communication rates

(R1, R2) that are achievable from Sender 1 to the receiver

and from Sender 2 to the receiver.

Example 4.1. Consider a situation in which two senders use laser light pulses to

communicate to a distant receiver equipped with an optical instrument and a pho-

todetector. In each time instant, Sender 1 can choose to send either a weak pulse

of light or a strong pulse: X1 = { , }. Sender 2 similarly has two possible inputs
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x1

x2

Rx

Figure 4.2: A real-world multiple access channel N1.

X2 = { , }. The receiver measures the light intensity coming into the telescope, and

we model his reading as the following output space Y = { , , }. The output sig-

nal is the sum of the incoming signals: Y = X1 + X2. We have pY |X1X2( | , ) = 1,

pY |X1X2( | , ) = pY |X1X2( | , ) = 1 and pY |X1X2( | , ) = 1.

The rate pair (R1, R2) = (1, 0) is achievable if we force Sender 2 to always send a

constant input. The resulting channel between Sender 1 and the receiver is a noiseless

binary channel. The rate (0, 1) is similarly achievable if we fix Sender 1’s input. A

natural question is to ask what other rates are achievable for this communication

channel.

Note that the model used to describe the above communication scenario is very

crude and serves only as a first approximation, which we use to illustrate the basic

ideas of multiple access communication. In Section 4.1.2, we will consider more general

models for multiple access channels, which allow the channel outputs to be quantum

systems. In Chapter 8, we will refine the model further by taking into account certain

aspects of quantum optics.

4.1.1 Review of classical results

The multiple access channel is one of the first multiuser communications problems

ever considered [Sha61]. It is also one of the rare problems in network information

theory where a full capacity result is known, i.e., the best known achievable rate region

matches a proven outer bound. The multiple access channel plays an important role
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as a building block for other network communication scenarios.

The capacity region of the classical discrete memoryless multiple access channel

(DM-MAC) was established by Ahlswede [Ahl71, Ahl74a] and Liao [Lia72]. Con-

sider the classical multiple access channel with two senders described by N = (X1 ×
X2, pY |X1X2 ,Y). The capacity region for this channel is given by

CMAC(N ) ≡
⋃

pX1
,pX2







(R1, R2) ∈ R2
+

∣
∣
∣
∣
∣
∣
∣

R1 ≤ I(X1;Y |X2)

R2 ≤ I(X2;Y |X1)

R1 +R2 ≤ I(X1X2;Y )







,

where pX1 ∈ P(X1), pX2 ∈ P(X2) and the mutual information quantities are taken

with respect to the joint input-output distribution

pX1X2Y (x1, x2, y) ≡ pX1(x1)pX2(x2)pY |X1X2(y|x1, x2). (4.1)

Note that the input distribution is chosen to be a product distribution pX1pX2 , which

reflects the assumption that the two senders are spatially separated and act indepen-

dently. We can calculate the exact capacity region of any multiple access channel by

evaluating the mutual information expressions for all possible input distributions and

taking the union.

Example 4.1 (continued). The capacity region for the multiple access channel N1

described in Example 4.1 is given by:

CMAC(N1) =







(R1, R2) ∈ R2
+

∣
∣
∣
∣
∣
∣
∣

R1 ≤ 1

R2 ≤ 1

R1 +R2 ≤ 1.5







. (4.2)

To see how the rate pair (1, 0.5) can be achieved consider an encoding strategy where

each sender generates codebooks according to the uniform probability distribution and

the receiver decodes the messages from Sender 2 first, followed by the messages from

Sender 1. The effective channel from Sender 2 to the receiver when the input of

Sender 1 is unknown corresponds to a symmetric binary erasure channel with erasure

probability 1
2
. This is because when the receiver’s output is “ ” or “ ” there is no

ambiguity about what was sent. The output “ ” could arise in two different ways,

so we treat it as an erasure. The capacity of this channel is 0.5 bits per channel use
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[CT91, Example 14.3.3]. Assuming the receiver correctly decodes the codewords from

Sender 2, the resulting channel from Sender 1 to the receiver is a binary noiseless

channel which has capacity one. To achieve the rate pair (0.5, 1) we must generate

codebooks at the appropriate rates and use the opposite decoding order. The capacity

region is illustrated in the following figure.

Figure 4.3: The capacity region of the adder channel.

The above example illustrates the key aspect of the multiple access channel prob-

lem: the trade off between the communication rates of the senders.

4.1.2 Quantum multiple access channels

The communication model used to evaluate the capacity in Example 4.1 is classical.

We modelled the detection of light intensity in a classical way and ignored details of

the quantum measurement process.

The capacity result of Ahlswede and Liao is therefore a result which depends on

the classical model which we used. Better communication rates might be possible if

we choose to model the quantum degrees of freedom in the communication channel.

In Example 3.1, we saw how the quantum analysis of the detection aspects of the

communication protocol can lead to improved communication rates for point-to-point

channels. In this chapter, we pursue the study of quantum decoding strategies in the

multiple access setting.

44



Chapter 4 : Multiple access channels

x1Tx1

x2Tx2

ρBx1,x2 Rx

 

 

Figure 4.4: A quan-
tum multiple access chan-
nel with two senders. The
output of the channel are
conditional quantum states
NB(x1, x2) ≡ ρBx1,x2

.

A classical-quantum multiple access channel is defined

as the most general map with two classical inputs and one

quantum output:

(
X1×X2,NX1X2→B(x1, x2) ≡ ρBx1,x2

,HB
)
.

Our intent is to quantify the communication rates that

are possible for classical communication from each of the

two senders to the receiver. The main difference with the

classical case is that the decoding operation we will use is a

quantum measurement (POVM). We have to find the rate

region for pairs (R1, R2) such that the following interconversion can be achieved:

n · NX1X2→B (1−ǫ)−→ nR1 · [c1 → c] + nR2 · [c2 → c]. (4.3)

The above expression states that n instances of the channel can be used to carry nR1

classical bits from Sender 1 to the receiver (denoted [c1 → c]) and nR2 bits from

Sender 2 to the receiver (denoted [c2 → c]). The communication protocol succeeds

with probability (1− ǫ) for any ǫ > 0 and sufficiently large n.

The problem of classical communication over a classical-quantum multiple-access

channel was solved by Winter [Win01]. He provided single-letter formulas for the

capacity region, which can be computed as an optimization over the choice of input

distributions for the senders. We will discuss Winter’s result and proof techniques in

Section 4.2.

Note that there exist other quantum multiple access communication scenarios that

can be considered. The bosonic multiple access channel was studied in [Yen05b]. The

transmission of quantum information over a quantum multiple access channel was

considered in [YDH05, Yar05, YHD08]. The quantum multiple access problem has

also been considered in the entanglement-assisted setting [HDW08, XW11]. In this

chapter, as in the rest of the thesis, we restrict our attention to the problem of classical

communication over classical-quantum channels.
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4.1.3 Information processing task

To show that a certain rate pair (R1, R2) is achievable we must construct an end-to-

end coding scheme that the two senders and the receiver can employ to communicate

with each other. In this section we specify precisely the different steps involved in the

transmission process.

Sender 1 will send a messagem1 chosen from the message setM1 ≡ {1, 2, . . . , |M1|}
where |M1| = 2nR1 . Sender 2 similarly chooses a message m2 from a message set

M2 ≡ {1, 2, . . . , |M2|} where |M2| = 2nR2 . Senders 1 and 2 encode their messages as

codewords xn1 (m1) ∈ X n
1 and xn2 (m2) ∈ X n

2 , which are then input to the channel.

The output of the channel is an n-fold tensor product state of the form:

N⊗n(xn1 (m1), x
n
2 (m2)) ≡ ρB

n

xn
2 (m1),xn

2 (m2)
∈ D(HBn

). (4.4)

In order to recover the messages m1 and m2, the receiver performs a positive

operator valued measure (POVM) {Λm1,m2}m1∈M1,m2∈M2
on the output of the channel

Bn. We denote the measurement outputs asM ′
1 andM

′
2. An error occurs whenever the

receiver measurement outcomes differ from the messages that were sent. The overall

probability of error for message pair (m1,m2) is

pe(m1,m2) ≡ Pr {(M ′
1,M

′
2) 6= (m1,m2)}

= Tr
[

(I − Λm1,m2) ρ
Bn

xn
2 (m1)xn

2 (m2)

]

,

where the measurement operator (I − Λm1,m2) represents the complement of the correct

decoding outcome.

Definition 4.1. An (n,R1, R2, ǫ) code for the multiple access channel consists of two

codebooks {xn1 (m1)}m1∈M1 and {xn2 (m2)}m2∈M2 , and a decoding POVM {Λm1,m2},m1 ∈
M1,m2 ∈ M2, such that the average probability of error pe is bounded from above

by ǫ:

pe ≡ 1

|M1||M2|
∑

m1,m2

pe(m1,m2) ≤ ǫ. (4.5)

A rate pair (R1, R2) is achievable if there exists an (n,R1 − δ, R2 − δ, ǫ) quantum

multiple access channel code for all ǫ, δ > 0 and sufficiently large n. The capacity region
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CMAC(N ) is the closure of the set of all achievable rates.

4.1.4 Chapter overview

Suppose we have a two-sender classical-quantum multiple access channel and the two

messages m1 and m2 were sent. This chapter studies the different decoding strategies

that can be used by the receiver in order to decode the messages.

The technique used by Winter to prove the achievability of the rates in the ca-

pacity region of the quantum multiple access channel is called successive decoding. In

this approach, the receiver can achieve one of the corner points of the rate region by

decoding the messages in the order “m1 → m2|m1”. In doing so, the best possible

rate R2 is achieved, because the receiver will have the side information of m1, and by

extensions xn1 (m1), when decoding the message m2. This approach is also referred to as

successive cancellation for channels with continuous variable inputs and additive white

Gaussian noise (Gaussian channels) where the first decoded signal can be subtracted

from the received signal. The other corner point can be achieved by decoding in the

opposite order “m2 → m1|m2”. These codes can be combined with time-sharing and

resource wasting to achieve all other points in the rate region. We will discuss this

strategy in further detail in Section 4.2 below.

Another approach is to use simultaneous decoding which requires no time-sharing.

We denote the simultaneous decoding of the messages m1 and m2 as “(m1,m2)”. As

far as the QMAC problem is concerned the two approaches yield equivalent achievable

rate regions. However, if the QMAC code is to be used as part of a larger protocol

(like a code for the interference channel for example) then the simultaneous decoding

approach is much more powerful.

The main contribution in this chapter is Theorem 4.2 in Section 4.3, which shows

that simultaneous decoding for the classical-quantum multiple access channel with two

senders is possible. This result and the techniques developed for its proof will form the

key building blocks for the subsequent chapters in this thesis. We will also comment

on the difficulties in extending the simultaneous decoding approach to more than two

senders (Conjecture 4.1). In Section 4.4, we will briefly discuss a third coding strategy

for the QMAC called rate-splitting.
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4.2 Successive decoding

Winter found a single-letter formula for the capacity of the classical-quantum multiple

access channel with M senders [Win01]. We state the result here for two senders.

Theorem 4.1 (Theorem 10 in [Win01]). The capacity region for the classical-quantum

multiple access channel (X1 ×X2, ρ
B
x1,x2

,HB) is given by

CMAC =
⋃

pX1
,pX2

{(R1, R2) ∈ R2
+| Eqns. (4.7)-(4.9) } (4.6)

R1 ≤ I(X1;B|X2)θ, (4.7)

R2 ≤ I(X2;B|X1)θ, (4.8)

R1 +R2 ≤ I(X1X2;B)θ, (4.9)

where the information quantities are taken with respect to the classical-quantum state:

θX1X2B ≡
∑

x1,x2

pX1(x1) pX2(x2) |x1〉〈x1|X1 ⊗ |x2〉〈x2|X2 ⊗ ρBx1,x2
. (4.10)

Figure 4.5: The rates achievable by successive decoding correspond to the dominant vertices
of the rate region αp and βp. Rates in between these points can be achieved by time-sharing
between the strategies for the two corners.

For a given choice of input probability distribution p ≡ pX1 , pX2 , the achiev-

able rate region, R(N , p), has the form of a pentagon bounded by the three in-
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equalities in equations (4.7)-(4.9) and two rate positivity conditions. The two domi-

nant vertices of this rate region have coordinates αp ≡ (I(X1;B)θ, I(X2;B|X1)θ) and

βp ≡ (I(X1;B|X2)θ, I(X2;B)θ) and correspond to two alternate successive decoding

strategies. The portion of the line R1 + R2 = I(X1X2;B)θ which lies in between the

points αp and βp will be referred to as the dominant facet.

In order to show achievability of the entire rate region, Winter proved that each

of the corner points of the region is achievable. By the use of time-sharing we can

achieve any point on the dominant facet of the region, and we can use resource wasting

to achieve all the points on the interior of the region. It follows that the entire rate

region is achievable. We show some of the details of Winter’s proof below.

Proof sketch. We will use a random coding approach for the codebook construction and

point-to-point decoding measurements based on the conditionally typical projectors.

Fix the input distribution p = pX1(x1)pX2(x2) and choose the rates so that they

correspond to the rate point αp:

R1 = I(X1;B)θ − δ, R2 = I(X2;B|X1)θ − δ. (4.11)

Codebook construction: Randomly and independently generate 2nR1 sequences

xn1 (m1), m1 ∈
[
1 : 2nR1

]
, according to

n∏

i=1

pX1(x1i). Similarly generate randomly and

independently the codebook {xn2 (m2)}, m2 ∈
[
1 : 2nR2

]
according to

n∏

i=1

pX2(x2i).

Decoding: When the message pair (m1,m2) is sent, the output of the channel will be

ρxn
1 (m1),xn

2 (m2). Let Π
n
ρxn1 (m1),x

n
2 (m2)

,δ be the conditionally typical projector for that state.

In order to define the other typical projectors necessary for the decoding, we define the
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following expectations of the output state:

ρ̄xn
1 (m1) ≡

∑

xn
2

pXn
2
(xn2 ) ρxn

1 (m1),xn
2
=

n⊗

i=1

(
∑

µ

pX2(µ) ρx1i(m1),µ

)

= E
Xn

2

{
ρxn

1 (m1),Xn
2

}
,

ρ̄⊗n≡
∑

xn
1 ,x

n
2

pXn
1
(xn1 ) pXn

2
(xn2 ) ρxn

1 ,x
n
2
=

n⊗

i=1

(
∑

τ,µ

pX1(τ) pX2(µ) ρτ,µ

)

= E
Xn

1 ,X
n
2

{
ρXn

1 ,X
n
2

}
.

The state ρ̄xn
1 (m1) corresponds to the receiver’s output if he treats the codewords of

Sender 2 as noise to be averaged over. The state ρ̄⊗n corresponds to the average output

state for a random code constructed according to pX1pX2 . Let Πn
ρ̄xn1 (m1)

,δ ≡ ΠBn

ρ̄xn1 (m1)
,δ

be the conditionally typical projector for ρ̄xn
1 (m1) and let Πn

ρ̄ ≡ ΠBn

ρ̄⊗n,δ be the typical

projector for the state ρ̄⊗n.

To achieve the rates of αp, the receiver will decode the messages in the order

“m1 → m2|m1” using a successive decoding procedure. The first step is to use a

quantum instrument
{
Υα

m1

}
which acts as follows on any state defined on Bn:

Υα : ψBn −→
∑

m1

|m1〉〈m1|M1 ⊗
(√

Λα
m1
ψBn√

Λα
m1

Tr
[
Λα

m1
ψBn

]

)B′n

. (4.12)

The POVM operators
{
Λα

m1

}
are constructed using the typical projector sandwich

Πn
ρ̄ Πn

ρ̄xn1 (m1)
,δ Π

n
ρ̄ , (4.13)

and normalized using the square root measurement approach in order to satisfy Λα
m1

≥
0,
∑

m1
Λα

m1
= I. The purpose of the quantum instrument is to extract the message

m1 and store it in the register M1, but also leave behind a system in B′n which can be

processed further.

An error analysis similar to that of the HSW theorem shows that the quantum

instrument
{
Υα

m1

}
will correctly decode the message m1 with high probability. This is

because we chose the rate for the m1 codebook to be R1 = I(X1;B)θ−δ. Furthermore,

it can be shown using the gentle operator lemma for ensembles (Lemma 3.2), that the

state which remains in the system B′n is negligibly disturbed in the process.
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The receiver will then perform a second measurement to recover the message m2.

The second measurement is a POVM
{
Λα

m2|m1

}
constructed from the projectors

Πn
ρ̄xn1 (m1)

,δ Π
n
ρxn1 (m1),x

n
2 (m2)

Πn
ρ̄xn1 (m1)

,δ, (4.14)

and appropriately normalized. Note that this measurement is chosen conditionally on

the codeword Xn
1 (m1) that Sender 1 input to the channel. This is because, when the

correct message m1 is decoded in the first step, the receiver can infer the codeword

which Sender 1 input to the channel. Thus, after the first step, the effective channel

from Sender 2 to the receiver is

(Xn
1 , x

n
2 ) → (Xn

1 , ρ
Bn

Xn
1 ,x

n
2
), (4.15)

where Xn
1 is a random variable distributed according to

∏n
i=1 pX1 . This is a setting

in which the quantum packing lemma can be applied. By substituting Un = Xn
1

and Xn = Xn
2 into Lemma B.1, we conclude that if we choose the rate to be R2 =

I(X2;B|X1)θ−δ, then the message m2 will be decoded correctly with high probability.

The rate point βp corresponds to the alternate decode ordering where the receiver

decodes the message m2 first and m1 second. All other rate pairs in the region can

be obtained from the corner points αp and βp by using time-sharing and resource

wasting.

Note that one of the key ingredients in the proof was the use of Lemma 3.2, which

guarantees that the act of decoding m1 does not disturb the state too much. This step

of our quantum decoding procedure may be counterintuitive at a first glance, since

quantum mechanical measurements are usually described as processes in which the

quantum system is disturbed. Any retrieval of data from a quantum system inevitably

disturbs the state of the system, so the second measurement, which the receiver per-

forms on the system B′n, may fail if the first measurement has disturbed the state too

much. The gentle measurement lemma guarantees that very little information distur-

bance to the state occurs when there is one measurement outcome that is very likely.

When the state of the receiver is ρB
n

xn
1 ,x

n
2
, we can be almost certain that the outcome of

the quantum instrument {Υα
m1

} is going to be m1. Therefore, this process leaves the

state in B′n only slightly disturbed.
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The proof technique in Theorem 4.1 generalizes to the case of theM -sender MAC,

which has M ! dominant vertices. Each vertex corresponds to one permutation of the

decode ordering.

4.3 Simultaneous decoding

Another approach for achieving the capacity of the multiple access channel, which does

not use time-sharing, is simultaneous decoding. In the classical version of this decoding

strategy, the receiver will report (m1,m2) if he finds a unique pair of codewordsX
n
1 (m1)

and Xn
2 (m2) which are jointly typical with the output of the channel Y n:

(Xn
1 (m1), X

n
2 (m2), Y

n) ∈ J (n)
ǫ (X1, X2, Y ). (4.16)

Assuming the messages m1 and m2 are sent, we categorize the different kinds of wrong

message decode errors that may occur.

error M̂1 M̂2

(E1) ∗ m2

(E2) m1 ∗
(E12) ∗ ∗

(4.17)

The ∗ in the above table denotes any message other than the one which was sent. The

analysis of the classical simultaneous decoder uses the properties of the jointly typical

sequences and the randomness in the codebooks. Recall that a multi-variable sequence

is jointly typical if and only if all the sequences in the subsets of the variables are

jointly typical. Thus, the condition (Xn
1 (m1), X

n
2 (m2), Y

n) ∈ T (n)
ǫ (X1, X2, Y ) implies

that:

(Xn
1 (m1), Y

n) ∈ T (n)
ǫ (X1, Y ), (4.18)

(Xn
2 (m2), Y

n) ∈ T (n)
ǫ (X2, Y ), (4.19)

Y n ∈ T (n)
ǫ (Y ). (4.20)

Starting from these conditions, it is straightforward to bound the probability of the

different decoding error events using the properties of the jointly typical sequences
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[EGK10].

In the quantum case, we can similarly identify three different error terms, the prob-

abilities of which can be bounded by using the properties of the conditionally typical

projectors. If we can construct a quantum measurement operator that “contains” all

the typical projectors so that we can obtain the appropriate averages of the output

state in the error analysis, then we would have a proof that simultaneous decoding is

possible.

If only things were so simple! The construction of a simultaneous decoding POVM

turns out to be a difficult problem. Despite being built out of the same typical projec-

tors, the operator constructed according to

Λm1,m2 ∝ Πn
ρ̄xn2 (m2)

Πn
ρ̄xn1 (m1)

Πn
ρxn1 (m1),x

n
2 (m2)

Πn
ρ̄xn1 (m1)

Πn
ρ̄xn2 (m2)

, (4.21)

is different from the operator

Λ′
m1,m2

∝ Πn
ρ̄xn1 (m1)

Πn
ρ̄xn2 (m2)

Πn
ρxn1 (m1),x

n
2 (m2)

Πn
ρ̄xn2 (m2)

Πn
ρ̄xn1 (m1)

, (4.22)

because the different typical projectors do not commute in general. In fact, there is

very little we can say about the relationship between the subspaces spanned by the

two averaged typical projectors: Πn
ρ̄xn1 (m1)

and Πn
ρ̄xn2 (m2)

. This is a problem because, for

one of the error terms in the analysis, we would like to have Πn
ρ̄xn2 (m2)

on the “outside”

as in (4.21) so that we can use Property 2.46 of typical projectors to obtain a factor

2nH(B|X2). For another error term, we want Πn
ρ̄xn1 (m1)

to be on the outside as in (4.22)

in order to be able to do the averaging in the alternate order to obtain a term of the

form 2nH(B|X1). Thus it would seem, and originally it seemed so to my colleagues and

me, that the construction of a simultaneous decoding POVM for which we can bound

the probability of all error events might be a difficult task.

Quantum simultaneous decoding actually is possible, and this is what we will

show in this section for the case of the multiple access channel with two senders. Our

proof techniques do not generalize readily to quantum multiple access channels with

more than two independent senders. At the end of this section we will formulate Con-

jecture 4.1 regarding the existence of a simultaneous decoder for three-sender multiple

access channels, which will be required for the proof of Theorem 5.3 in the next chapter.
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Figure 4.6: Simultaneous decoding strategy. Simultaneous decoding of the two messages is
more powerful than successive decoding, because it allows us to achieve any rate pair (R1, R2)
of the capacity region without the need for time-sharing.

Theorem 4.2 (Two-sender quantum simultaneous decoding). Let (X1×X2, ρ
B
x1,x2

,HB)

be a quantum multiple access channel with two senders and a single receiver, and let

p = pX1pX2 be a choice for the input code distribution. Let {Xn
1 (m1)}m1∈{1,...,|M1|}

and {Xn
2 (m2)}m2∈{1,...,|M2|} be random codebooks generated according to the prod-

uct distributions pXn
1

and pXn
2
. There exists a simultaneous decoding POVM

{Λm1,m2}m1∈M1,m2∈M2
, with expected average probability of error bounded from above

by ǫ for all ǫ, δ > 0 and sufficiently large n, provided the rates R1, R2 satisfy the in-

equalities

R1 ≤ I(X1;B|X2)θ, (4.23)

R2 ≤ I(X2;B|X1)θ, (4.24)

R1 +R2 ≤ I(X1X2;B)θ, (4.25)

where the state θX1X2B is defined in (4.10).

The main difference between the coding strategy employed by Winter in the proof

of Theorem 4.1 and Theorem 4.2 above is that the latter does not require the use of

time-sharing. Using the simultaneous decoding approach we can achieve any of the

rates in the QMAC capacity region using a single codebook, whereas time-sharing

requires us to switch between the two codebooks for the vertices. This distinction
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is minor in the context of the multiple access channel problem, but it will become

important in situations where there are multiple receivers as in the compound multiple

access channel and the interference channel. Note that Sen gave an alternate proof of

Theorem 4.2 using a different approach [Sen12a].

Proof of Theorem 4.2. The proof proceeds by random coding arguments using the

properties of projectors onto the typical subspaces of the output states and the square

root measurement.

Consider some choice p = pX1(x1)pX2(x2) for the input distributions.

Codebook construction: Randomly and independently generate 2nR1 sequences

xn1 (m1), m1 ∈
[
1 : 2nR1

]
, according to

n∏

i=1

pX1(x1i). Similarly, generate randomly and

independently the codebook {xn2 (m2)}, m2 ∈
[
1 : 2nR2

]
, according to

n∏

i=1

pX2(x2i).

POVM construction: In order to lighten the notation, the channel output will be

denoted with the shorthand ρm1,m2 ≡ ρxn
1 (m1),xn

2 (m2), when the inputs to the channel

are xn1 (m1) and xn2 (m2). Let Πn
m1,m2

≡ Πn
ρxn1 (m1),x

n
2 (m2)

,δ be the conditionally typical

projector for that state. Consider the following averaged output states:

ρ̄x1 ≡
∑

x2

pX2(x2) ρx1,x2 , (4.26)

ρ̄x2 ≡
∑

x1

pX1(x1) ρx1,x2 , (4.27)

ρ̄ ≡
∑

x1,x2

pX1(x1) pX2(x2) ρx1,x2 . (4.28)

Let Πn
m1

≡ Πn
ρ̄xn1 (m1)

,δ be the conditionally typical projector for the tensor product state

ρ̄m1 ≡ ρ̄xn
1 (m1) defined by (4.26) for n uses of the channel. Let Πn

m2
≡ Πn

ρ̄xn2 (m2)
,δ be the

conditionally typical projector for the tensor product state ρ̄m2 ≡ ρ̄xn
2 (m2) defined by

(4.27) and finally let Πn
ρ̄,δ be the typical projector for the state ρ̄⊗n defined by (4.28).

The detection POVM {Λm1,m2} has the following form:

Λm1,m2≡




∑

m′
1,m

′
2

Pm′
1,m

′
2





− 1
2

Pm1,m2




∑

m′
1,m

′
2

Pm′
1,m

′
2





− 1
2

,
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where

Pm1,m2 ≡ Πn
ρ̄,δ Π

n
m1

Πn
m1,m2

Πn
m1

Πn
ρ̄,δ, (4.29)

is a positive operator which consists of three typical projectors “sandwiched” together.

Observe that the layers of the sandwich go from the more general ones on the outside

to the more specific ones on the inside. Observe also that the conditionally typical

projector Πn
m2

is not included.

The average error probability of the code is given by:

pe ≡
1

|M1||M2|
∑

m1,m2

Tr [(I − Λm1,m2) ρm1,m2 ] . (4.30)

The first step in our error analysis is to make a substitution of the output state

ρm1,m2 with a smoothed version:

ρ̃m1,m2 ≡ Πn
m2
ρm1,m2Π

n
m2
. (4.31)

We do this to ensure that we will have the operator Πn
m2

inside the trace when we

perform the averaging. The term smoothing refers to the fact that we are now coding

for a different channel which has all of the Πn
m2

-atypical subspace removed, i.e., we

remove the “spikes” (the large eigenvalues).

We can use the inequality

Tr[Λρ] ≤ Tr[Λσ] + ‖ρ− σ‖1 (4.32)

from Lemma 2.1, which holds for all operators such that 0 ≤ ρ, σ,Λ ≤ I, in order to

bound the smoothing penalty which we incur as a result of the substitution.

After the substitution step (4.30) and the use of (4.32), we obtain the following

bound on the probability of error:

pe ≤
1

|M1||M2|
∑

m1,m2

[

Tr[(I − Λm1,m2) ρ̃m1,m2 ] + ‖ρ̃m1,m2 − ρm1,m2‖1
]

. (4.33)
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The next step is to use the Hayashi-Nagaoka operator inequality [HN03] (Lemma 3.1):

I − (S + T )−
1
2 S (S + T )−

1
2 ≤ 2 (I − S) + 4T.

Choosing S = Pm1,m2 , T =
∑

(m′
1,m

′
2) 6=(m1,m2)

Pm′
1,m

′
2
, we apply the above operator

inequality to bound the average error probability of the first term in (4.33) as:

pe ≤
1

|M1||M2|
∑

m1,m2

[

2Tr[(I − Pm1,m2) ρ̃m1,m2 ] (4.34)

+ 4
∑

(m′
1,m

′
2) 6=(m1,m2)

Tr
[
Pm′

1,m
′
2
ρ̃m1,m2

]
+ ‖ρ̃m1,m2−ρm1,m2‖1

]

.

The three terms in the summation have an intuitive interpretation. The first term

corresponds to the case when the output state is non-typical, the second term describes

the probability of a wrong message being decoded, and the third term accounts for the

smoothing penalty which we have to pay for using a code designed for the channel

ρ̃m1,m2 on the channel ρm1,m2 .

We apply a random coding argument to bound the expectation of the average error

probability in (4.34). We compute the expected value of the error terms with respect to

the random choice of codebook: {Xn
1 (m1)}, {Xn

2 (m2)}. Recall that in our shorthand

notation, the codewords are not indicated. Thus when we say EXn
1 ,X

n
2
ρm1,m2 , we really

mean EXn
1 ,X

n
2
ρXn

1 (m1),Xn
2 (m2).

A bound on the first term in (4.34) follows from the following argument:

E
Xn

1 ,X
n
2

Tr[Pm1,m2 ρ̃m1,m2 ] =

= E
Xn

1 ,X
n
2

Tr
[
Πn

ρ̄,δ Π
n
m1

Πn
m1,m2

Πn
m1

Πn
ρ̄,δ Πn

m2
ρm1,m2Π

n
m2

]

≥ E
Xn

1 ,X
n
2

Tr
[
Πn

m1,m2
ρm1,m2

]

− E
Xn

1 ,X
n
2

∥
∥Πn

m2
ρm1,m2Π

n
m2

− ρm1,m2

∥
∥
1

− E
Xn

1 ,X
n
2

∥
∥Πn

ρ̄,δρm1,m2Π
n
ρ̄,δ − ρm1,m2

∥
∥
1

− E
Xn

1 ,X
n
2

∥
∥Πn

m1
ρm1,m2Π

n
m1

− ρm1,m2

∥
∥
1
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≥ E
Xn

1 ,X
n
2

Tr
[
Πn

m1,m2
ρm1,m2

]
− 6

√
ǫ

≥ 1− ǫ− 6
√
ǫ. (4.35)

The first inequality follows from (4.32) (Lemma 2.1) applied three times. The second

inequality follows from Lemma 3.2 and the properties of the conditionally typical pro-

jectors: (B.40), (B.41) and (B.42) given in Appendix B.1. The last inequality follows

from equation (B.39).

The same reasoning is used to obtain a bound the expectation of the smoothing-

penalty (the third term in (4.34)).

EXn
1 ,X

n
2
‖ρ̃m1,m2 − ρm1,m2‖1 = EXn

1 ,X
n
2
‖Πn

m2
ρm1,m2Π

n
m2

− ρm1,m2‖1
≤ 2

√
ǫ. (4.36)

The main part of the error analysis consists of obtaining a bound on the second

term in (4.34). This term corresponds to the probability that a wrong message pair

is decoded by the receiver. We split this term into three parts, each representing a

different type of decoding error:

∑

(m′
1,m

′
2) 6=(m1,m2)

Tr
[
Pm′

1,m
′
2
ρ̃m1,m2

]
=

=
∑

m′
1 6=m1

Tr
[
Pm′

1,m2
ρ̃m1,m2

]
(E1)

+
∑

m′
2 6=m2

Tr
[
Pm1,m′

2
ρ̃m1,m2

]
(E2)

+
∑

m′
1 6=m1,m′

2 6=m2

Tr
[
Pm′

1,m
′
2
ρ̃m1,m2

]
. (E12)

We will bound each of these terms in turn.

Bound on (E1) : The expectation over the random choice of codebook for the error

term (E1) is as follows:
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E
Xn

1 ,X
n
2

{(E1)} = E
Xn

1 ,X
n
2

{ ∑

m′
1 6=m1

Tr
[
Pm′

1,m2
ρ̃m1,m2

] }

①
=
∑

m′
1 6=m1

E
Xn

2

{

Tr

[

E
Xn

1

{
Pm′

1,m2

}

E
Xn

1

{ρ̃m1,m2}
]}

=
∑

m′
1 6=m1

E
Xn

2

{

Tr

[

E
Xn

1

{
Pm′

1,m2

}

E
Xn

1

{
Πn

m2
ρm1,m2Π

n
m2

}
]}

=
∑

m′
1 6=m1

E
Xn

2

{

Tr

[

E
Xn

1

{
Pm′

1,m2

}
Πn

m2 E
Xn

1

{ρm1,m2}Πn
m2

]}

②
=
∑

m′
1 6=m1

E
Xn

1 X
n
2

{
Tr
[
Pm′

1,m2
Πn

m2
ρ̄m2Π

n
m2

]}

③

≤ 2−n[H(B|X2)−δ]
∑

m′
1 6=m1

E
Xn

1 X
n
2

{
Tr
[
Pm′

1,m2
Πn

m2

]}

Equation ① follows because the codewords for m′
1 and m1 are independent. Equality ②

comes from the definition of the averaged code state ρ̄m2 ≡ ρ̄xn
2 (m2). The inequality ③

follows from the bound

Πn
m2
ρ̄m2Π

n
m2

≤ 2−n[H(B|X2)−δ]Πn
m2
.

We focus our attention on the expression inside the trace:

Tr
[
Pm′

1,m2
Πn

m2

]
= Tr

[

Πn
ρ̄,δ Π

n
m′

1
Πn

m′
1,m2

Πn
m′

1
Πn

ρ̄,δ Πn
m2

]

④
= Tr

[

Πn
m′

1
Πn

ρ̄,δ Π
n
m2

Πn
ρ̄,δ Π

n
m′

1
Πn

m′
1,m2

]

⑤

≤ Tr
[

Πn
m′

1,m2

]

.

In the first step we substituted the definition of Pm1,m2 from equation (4.29). Equality

④ follows from the cyclicity of trace. Inequality ⑤ follows from

Πn
m′

1
Πn

ρ̄,δΠ
n
m2

Πn
ρ̄,δΠ

n
m′

1
≤ Πn

m′
1
Πn

ρ̄,δΠ
n
m′

1
≤ Πn

m′
1
≤ I. (4.37)
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Next, we obtain the following bound on the expected probability of the term (E1):

E
Xn

1 ,X
n
2

{(E1)} ≤ 2−n[H(B|X2)−δ]
∑

m′
1 6=m1

E
Xn

1 ,X
n
2

{

Tr
[

Πn
m′

1,m2

]}

⑥

≤ 2−n[H(B|X2)−δ]
∑

m′
1 6=m1

2n[H(B|X1X2)+δ]

≤ |M1| 2−n[I(X1;B|X2)−2δ]. (4.38)

Inequality ⑥ follows from the bound

Tr{Πn
m1,m2

} ≤ 2n[H(B|X1X2)+δ]

on the rank of a conditionally typical projector.

Bound on (E2) : We employ a different argument to bound the probability of the

second error term (E2) based on the following fact

Πn
m1,m2

≤ 2n[H(B|X1X2)+δ]Πn
m1,m2

ρBm1,m2
Πn

m1,m2

= 2n[H(B|X1X2)+δ]
√

ρBm1,m2
Πn

m1,m2

√

ρBm1,m2

≤ 2n[H(B|X1X2)+δ]ρBm1,m2
, (4.39)

which we refer to as the projector trick [GLM12]. The first inequality is the standard

lower bound on the eigenvalues of ρBm1,m2
expressed as an operator upper bound on

the projector Πn
m1,m2

. The equality follows because the state and its typical projector

commute. The last inequality follows from 0 ≤ Πn
m1,m2

≤ I.

We now proceed to bound the expectation of the error term (E2).

E
Xn

1 ,X
n
2

{

(E2)
}

= E
Xn

1 ,X
n
2







∑

m′
2 6=m2

Tr
[
Pm1,m′

2
ρ̃m1,m2

]







=
∑

m′
2 6=m2

E
Xn

1

{

Tr

[

E
Xn

2

{
Pm1,m′

2

}

E
Xn

2

{ρ̃m1,m2}
]}

=
∑

m′
2 6=m2

E
Xn

1

{

Tr

[

E
Xn

2

{

Πn
ρ̄,δ Π

n
m1

Πn
m1,m′

2
Πn

m1
Πn

ρ̄,δ

}

E
Xn

2

{ρ̃m1,m2}
]}
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=
∑

m′
2 6=m2

E
Xn

1

{

Tr

[

Πn
ρ̄,δ E

Xn
2

{

Πn
m1

Πn
m1,m′

2
Πn

m1

}

Πn
ρ̄,δE

Xn
2

{ρ̃m1,m2}
]}

We focus our attention on the first expectation inside the trace:

E
Xn

2

{

Πn
m1

Πn
m1,m′

2
Πn

m1

}
①

≤ 2n[H(B|X1X2)+δ]
E
Xn

2

{

Πn
m1
ρBm1,m′

2
Πn

m1

}

= 2n[H(B|X1X2)+δ]Πn
m1 E

Xn
2

{

ρBm1,m′
2

}

Πn
m1

= 2n[H(B|X1X2)+δ]Πn
m1
ρ̄m1Π

n
m1

②

≤ 2n[H(B|X1X2)+δ]2−n[H(B|X1)−δ]Πn
m1

= 2−n[I(X2;B|X1)−2δ]Πn
m1
.

In inequality ① we used the projector trick from (4.39). Inequality ② follows from the

properties of the conditionally typical projector Πn
m1

.

Substituting back into the expression for the error bound, we obtain:

E
Xn

1 ,X
n
2

{(E2)} ≤ 2−n[I(X2;B|X1)−2δ]
∑

m′
2 6=m2

Tr
[
Πn

ρ̄,δΠ
n
m1

Πn
ρ̄,δρ̃m1,m2

]

= 2−n[I(X2;B|X1)−2δ]
∑

m′
2 6=m2

Tr
[
Πn

ρ̄,δΠ
n
m1

Πn
ρ̄,δΠ

n
m2
ρm1,m2Π

n
m2

]

= 2−n[I(X2;B|X1)−2δ]
∑

m′
2 6=m2

Tr
[
Πn

m2
Πn

ρ̄,δΠ
n
m1

Πn
ρ̄,δΠ

n
m2
ρm1,m2

]

③

≤ 2−n[I(X2;B|X1)−2δ]
∑

m′
2 6=m2

Tr[ρm1,m2 ]

≤ 2−n[I(X2;B|X1)−2δ]|M2|. (4.40)

Inequality ③ follows from an argument analogous to (4.37).

Bound on (E12) : We use a slightly different argument in order to bound the

probability of the third error term:

E
Xn

1 ,X
n
2

{

(E12)
}

= E
Xn

1 ,X
n
2







∑

m′
1 6=m1,m′

2 6=m2

Tr
[
Pm′

1,m
′
2
ρ̃m1,m2

]






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①
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]

=
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E
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n
2
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Tr
[

Πn
ρ̄,δ Π
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m′

1
Πn

m′
1,m

′
2
Πn

m′
1
Πn

ρ̄,δ ρ̄⊗n
]}

④

≤ 2−n[H(B)−δ]
∑

m′
1 6=m1,m′

2 6=m2

E
Xn

1 ,X
n
2

{

Tr
[

Πn
m′

1
Πn

m′
1,m

′
2
Πn

m′
1
Πn

ρ̄,δ
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⑤

≤ 2−n[H(B)−δ]
∑

m′
1 6=m1,m′

2 6=m2

E
Xn

1 ,X
n
2

{

Tr
[

Πn
m1,m′

2

]}

⑥

≤ 2−n[H(B)−δ]2n[H(B|X1X2)+δ]
∑

m′
1 6=m1,m′

2 6=m2

1

≤ |M1||M2| 2−n[I(X1X2;B)−2δ]. (4.41)

Equality ① follows from the independence of the codewords. To obtain equality ② we

take the Xn
1 expectation over the state. Inequality ③ follows from Πn

m2
ρ̄m2 Πn

m2
=

√
ρ̄m2 Π

n
m2

√
ρ̄m2 ≤ ρ̄m2 . Inequality ④ is obtained by using the cyclicity of trace to sur-

round the state ρ̄⊗n by its typical projectors and then using the property Πn
ρ̄,δρ̄

⊗nΠn
ρ̄,δ ≤

2−n[H(B)−δ]Πn
ρ̄,δ of the average output-typical projector. Inequality ⑤ follows from

Πn
m′

1
Πn

ρ̄,δ Πn
m′

1
≤ Πn

m′
1
≤ I. Finally, inequality ⑥ follows from the bound on the rank

of the conditionally typical projector.

Combining the bounds from equations (4.35), (4.38), (4.40), (4.41) and the smooth-

ing penalty from (4.36), we get the following bound on the expectation of the average
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error probability:

E
X′n

1 ,X′n
2

{

pe

}

≤ 2
(
ǫ+ 6

√
ǫ
)
+ 2

√
ǫ

+ 4

[

|M1| 2−n[I(X1;B|X2)−2δ] + |M2| 2−n[I(X2;B|X1)−2δ]

+ |M1||M2| 2−n[I(X1X2;B)−2δ]

]

.

Thus, we can choose the message sets sizes to be |M1| = 2n[R1−3δ], and |M2| = 2n[R2−3δ],

the expectation of the average error probability vanishes whenever the rates R1 and

R2 obey the inequalities:

R1 − δ < I (X1;B|X2) ,

R2 − δ < I (X2;B|X1) ,

R1 +R2 − 4δ < I (X1X2;B) .

If the probability of error of a random code vanishes, then there must exist a particular

code with vanishing average error probability, and given that δ > 0 is an arbitrarily

small number, the bounds in the statement of the theorem follow.

We now state a corollary regarding the “coded time-sharing” approach to the

MAC problem [HK81, EGK10]. The main idea is to introduce an auxiliary ran-

dom variable Q distributed according to pQ(q) and use the probability distribution

pQ(q)pX1|Q(x1|q)pX2|Q(x2) for the codebook construction. First we generate a ran-

dom sequence qn ∼ ∏n
i pQ(qi), and then pick the codeword sequences xn1 and xn2 ac-

cording to the distributions pXn
1 |Q

n(xn1 |qn) ≡ ∏n
i=1 pX1|Q(x1i|qi) and pXn

2 |Q
n(xn2 |qn) ≡

∏n
i=1 pX2|Q(x2i|qi).
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4.3 Simultaneous decoding

Corollary 4.1 (Coded time-sharing for QMAC). Suppose that the rates R1 and R2

satisfy the following inequalities:

R1 ≤ I (X1;B|X2Q)θ , (4.42)

R2 ≤ I (X2;B|X1Q)θ , (4.43)

R1 +R2 ≤ I (X1X2;B|Q)θ , (4.44)

where the entropies are with respect to a state θQX1X2B of the following form:

∑

x1,x2,q

pQ(q)pX1|Q(x1|q) pX2|Q(x2|q) |q〉〈q|Q⊗|x1〉〈x1|X1⊗|x2〉〈x2|X2⊗ρBx1,x2
. (4.45)

Then there exists a corresponding simultaneous decoding POVM {Λm1,m2} such that

the expectation of the average probability of error is bounded above by ǫ for all ǫ > 0

and sufficiently large n.

The proof of Corollary 4.1 proceeds exactly as the proof of Theorem 4.2, but all

the typical projectors are chosen conditionally on Qn, and we take the expectation

over Qn in the error analysis. The statement of the QMAC capacity rates using coded

time-sharing will be important for the results in Chapter 5.

4.3.1 Conjecture for three-sender simultaneous decoding

We now state our conjecture regarding the existence of a quantum simultaneous decoder

for a classical-quantum multiple access channel with three senders. We focus on the

case of three senders, because this is the form that will be required in Section 5.3 for

the achievability proof of the quantum Han-Kobayashi achievable rate region [HK81,

Sen12a].

Conjecture 4.1 (Three-sender quantum simultaneous decoder).

Let (X1 × X2 × X3, ρx1,x2,x3 , HB) be a classical-quantum multiple access channel with

three senders. Let pX1 , pX2 and pX3 be distributions on the inputs. Define the fol-

lowing random code: let {Xn
1 (m1)}m1∈{1,...,|M1|} be an independent random codebook

distributed according to the product distribution pXn
1
and similarly and independently

let {Xn
2 (m2)}m2∈{1,...,|M2|} and {Xn

3 (m3)}m3∈{1,...,|M3|} be independent random codebooks

distributed according to product distributions pXn
2
and pXn

3
. Suppose that the rates of
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the codebooks obey the following inequalities:

R1 ≤ I (X1;B|X2X3)ρ ,

R2 ≤ I (X2;B|X1X3)ρ ,

R3 ≤ I (X3;B|X1X2)ρ ,

R1 +R2 ≤ I (X1X2;B|X3)ρ ,

R1 +R3 ≤ I (X1X3;B|X2)ρ ,

R2 +R3 ≤ I (X2X3;B|X1)ρ ,

R1 +R2 +R3 ≤ I (X1X2X3;B)ρ ,

where the Holevo information quantities are with respect to the following classical-

quantum state:

ρX1X2X3B ≡
∑

x1,x2,x3

pX1(x1) pX2(x2) pX3(x3)× (4.46)

|x1〉〈x1|X1 ⊗ |x2〉〈x2|X2 ⊗ |x3〉〈x3|X3 ⊗ ρBx1,x2,x3
.

Then there exists a simultaneous decoding POVM {Λm1,m2,m3}m1,m2,m3
such that the

expectation of the average probability of error is bounded above by ǫ for all ǫ > 0 and

sufficiently large n:

E

{

1

|M1||M2||M3|
∑

m1,m2,m3

Tr
[
(I − Λm1,m2,m3) ρXn

1 (m1),Xn
2 (m2),Xn

3 (m3)

]

}

≤ ǫ,

where the expectation is with respect to Xn
1 , X

n
2 , and X

n
3 .

The importance of this conjecture stems from the fact that it might be broadly use-

ful for “quantizing” other results from classical multiuser information theory [FHS+12].

Indeed, many coding theorems in classical network information theory exploit a simul-

taneous decoding approach (sometimes known as jointly typical decoding) [EGK10].

Also, Dutil and Hayden have recently put forward a related conjecture known as the

“multiparty typicality” conjecture [Dut11a], and it is likely that a proof of Conjec-

ture 4.1 could aid in producing a proof of the multiparty typicality conjecture or vice

versa. The notion of a multiparty quantum typicality also appears in the problem of

universal state merging [BBJ11]. Recent progress towards the proof of this conjecture

can be found in [Sen12b].
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The conjecture naturally extends to M -senders, but we have described the three-

sender case because this is the form that will be required for the Han-Kobayashi strat-

egy discussed in Section 5.3.

4.4 Rate-splitting

Rate-splitting is another approach for achieving the rates of the classical multiple access

channel capacity region [GRUW01] which generalizes readily to the quantum setting

using the successive decoding approach in [Win01].

Lemma 4.1 (Quantum rate-splitting). For a given p = pX1 , pX2, any rate pair (R1, R2)

that lies in between the two corner points of the MAC rate region αp and βp can be

achieved if Sender 2 splits her message m2 into two parts m2u and m2v and encodes

them with a split codebook and a mixing function ({un(m2u)}m2u , {vn(m2v)}m2v , f).

The receiver decodes the messages in the order m2u → m1|m2u → m2v|m1m2u using

successive decoding. The total rate for Sender 2 is the sum R2 = R2u +R2v.

The rate-split codebook consists of two random codebooks generated from pU and

pV and a mixing function such that f(U, V ) = X2 [GRUW01]1. The rate splitting cod-

ing strategy for the two sender quantum multiple access channel consists of a successive

decoding strategy for the following three channels:

(Un, V n, Xn
1 , X

n
2 ) → ρB

n

Xn
1 ,X

n
2
, (4.47)

(Un, V n, Xn
1 , X

n
2 ) → (Un, ρB

n

Xn
1 ,X

n
2
), (4.48)

(Un, V n, Xn
1 , X

n
2 ) → (Un, Xn

1 , ρ
Bn

Xn
1 ,X

n
2
). (4.49)

The codebooks are constructed with the following rates:

R2u = I(U ;B)− δ, (4.50)

R1 = I(X1;B|U)− δ, (4.51)

R2v = I(V ;B|UX1)− δ. (4.52)

1 Alternately, the mixing can be performed using a switch random variable, S, which is a shared
randomness resource (denoted [cc]) between Sender 2 and the receiver [Rim01].
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Observe that the resulting rate pair (R1, R2) = (R1, R2u+R2v) is close to the dominant

facet of the rate region, which is defined as R1 +R2 = I(X1X2|B), since:

R1 +R2 = R2u +R1 +R2v

= I(U ;B)− δ + I(X1;B|U)− δ + I(V ;B|UX1)− δ

= I(X1X2|B)− 3δ.

By varying the choice of the distributions pU and pV and choosing the rates rates of

the split-codebooks appropriately, we can achieve all the rates of the dominant facet,

and therefore all the rates of the region.

The choice of rate split R2u ↔ R2v depends on the properties of the channel for

which we are coding. This dependence limits the usefulness of the rate-splitting strat-

egy in situations where there are multiple receivers. In general, we cannot choose the

rates of the split codebooks such that they will be optimal for two receivers. Receiver

1 whose output is the system ρB1
x1,x2

would want the rates of the codebooks to be set at

(R2u, R2v) = (I(U ;B1), I(V ;B1|UX1)), whereas Receiver 2, with outputs ρB2
x1,x2

would

want to set (R2u, R2v) = (I(U ;B2), I(V ;B2|UX1)). We will comment on this further

in the next chapter.

4.5 Example of a quantum multiple access channel

We now show an example of a simple quantum multiple access channel for which we

can compute the capacity region.

Example 4.2. Consider the channel that takes two binary variables x1 and x2 as

inputs and outputs one of the four “BB84” states. The following table shows the

channel outputs for the different possible inputs.

x1 = 0 x1 = 1

x2 = 0 |0〉B |+〉B
x2 = 1 |−〉B |1〉B
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4.6 Example of a quantum multiple access channel

The classical-quantum state on which we evaluate information quantities is

ρX1X2B ≡
1∑

x1,x2=0

pX1(x1) pX2(x2) |x1〉 〈x1|X1 ⊗ |x2〉 〈x2|X2 ⊗ ψB
x1,x2

,

where ψB
x1,x2

is one of |0〉〈0|, |1〉〈1|, |+〉〈+| or |−〉〈−| depending on the choice of the

input bits x1 and x2. The conditional entropy H (B|X1X2)ρ vanishes for this state

because the state is pure when conditioned on the classical registers X1 and X2. We

choose pX1(x1) and pX2(x2) to be the uniform distribution. This gives the following

state on X1, X2, and B:

ρX1X2B =
1

4

[

|00〉〈00|⊗|0〉〈0|+ |01〉〈01|⊗|−〉〈−|+ |10〉〈10|⊗|+〉〈+|+ |11〉〈11|⊗|1〉〈1|
]

.

From this state we can calculate the reduced density matrix ρX2B = TrX1 [ρ
X1X2B] by

taking the partial trace over the X1 system:

ρX2B =
1

2

[

|0〉〈0|X2⊗ 1
2
(|0〉〈0|+ |+〉〈+|)B + |1〉〈1|X2⊗ 1

2
(|−〉〈−|+ |1〉〈1|)B

]

,

from which we can determine that the conditional entropy H (B|X2)ρ takes its maxi-

mum value of H2(cos
2 (π/8)) when pX1 (x1) and pX2 (x2) are uniform.

Taking the partial trace over X2 we obtain the state

ρX1B =
1

2

[

|0〉〈0|X1⊗ 1
2
(|0〉〈0|+ |−〉〈−|)B + |1〉〈1|X1⊗ 1

2
(|+〉〈+|+ |1〉〈1|)B

]

,

from which we can observe that H(B|X1) = H2(cos
2 (π/8)).

Thus, the capacity region for this channel is:

R1 ≤ H2

(
cos2(π/8)

)
≈ 0.6009,

R2 ≤ H2

(
cos2(π/8)

)
≈ 0.6009,

R1 +R2 ≤ 1.
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Figure 4.7: The capacity region for the multiple access channel in Example 4.2.

4.6 Discussion

This concludes our exposition on the quantum multiple access channel. The techniques

used in the proof of Theorem 4.2 are the tools that will be used throughout the re-

mainder of this thesis. We review them here for the convenience of the reader and in

order to highlight them in isolation from the technicalities in the proof of Theorem 4.2.

The first idea is the POVM construction with layered typical projectors:

Πn
ρ̄,δ Π

n
m1

Πn
m1,m2

Πn
m1

Πn
ρ̄,δ. (4.53)

We call this a projector sandwich. Observe that the more specific projectors are on the

inside. Each of the projectors seems to be necessary in some part of the proof, and

this layering of the projectors ensures that the averaging can be performed.

The second idea that makes the quantum simultaneous decoder possible is the

state smoothing trick, which is to perform the error analysis with the unnormalized

state:

ρ̃m1,m2 ≡ Πn
m2

ρm1,m2 Πn
m2
, (4.54)

which is close to the original state, but has the Xn
2 (m2) non-typical parts of it trimmed

off.
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The third idea is to use equation (B.29) in order to obtain the bound

Πn
m1,m2

≤ 2n[H(B|X1X2)+δ]ρBm1,m2
. (4.55)

We will call this the projector trick [GLM12, Sen12a, FHS+12].

Because of the ah hoc nature of the proof of the two-sender simultaneous decoder,

the ideas from the two-sender case cannot be applied to show that simultaneous de-

coding of three or more messages is possible. The techniques used in the proof are

sufficiently general for the analysis of many problems of quantum network informa-

tion theory: quantum interference channels (Chapter 5), quantum broadcast channels

(Chapter 6), and quantum relay channels (Chapter 7).
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Chapter 5

Interference channels

In an ideal world, when a sender and a receiver wish to communicate, the only obstacle

they face is the presence of the background noise. Real-world communication scenarios,

however, often involve multiple senders and multiple receivers sending information at

the same time and in a shared communication medium. The receivers have to contend

not only with the background noise but also with the interference caused by the other

transmissions. The interference channel (IC) is a model for the effects of this crosstalk,

which occurs whenever a communication channel is shared.

5.1 Introduction

Interference is a big problem for all modern multiuser communication systems. In order

to avoid interference, techniques such as frequency division multiple access (FDMA)

and time division multiple access (TDMA) can be used to ensure that the senders

never transmit at the same time and in the same frequency band. Another approach is

to use code division multiple access (CDMA) and allow users to transmit at the same

time, but their signal power is randomly spread over large sections of the spectrum so

as to make it look like white noise.

Rather than treating the interference as noise, a receiver could instead decode the

interfering signal and then “subtract” it from the received signal in order to reduce

(or even remove) the interference. We call this approach interference cancellation, and

such strategies are the main theme of this chapter.
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Note that the interference channel problem differs from the multiple access channel

problem since in this case the multiple access communication is not intended. A receiver

in the interference channel problem is not required to decode the interfering messages,

but he will be able to achieve better communication rates if he does so. All the decoding

strategies discussed in this chapter use some form of interference cancellation as part

of the decoding strategy.

5.1.1 Applications

The interference channel is an excellent model for many practical communication sce-

narios where medium contention is an issue.

Example 5.1 (Next-generation WiFi routers). Consider two neighbours who want to

connect to their respective WiFi routers. Suppose that the communication happens in

the same frequency band (radio channel). Suppose further that the neighbours’ laptops

are located such that they are close to their neighbour’s WiFi router and far from their

own. In such a situation, the interference signal will be stronger than their own signal.

Because the interference signal is “masking” the intended signal, it would be possible

for the neighbours to decode it, and then cancel its effects. Thus, we see that it can be

to a neighbour’s advantage to decode wireless packets which are not intended for him.

Decoding messages not intended for us can increase the communication rate from the

intended sender. Note that to implement such a strategy in practice would require a

re-engineering of the physical layer of transmission protocols.

Interference also plays an important role in digital subscriber line (DSL) internet

connections. The twisted pair copper wires of the telephone system were not origi-

nally designed to carry high frequency and high bandwidth signals, and so there is a

significant amount of crosstalk on the wires en route to the phone company premises.

Cross-channel interference is in fact the current limiting factor which imposes speed

limits on the order of 30Mb/s. The next generation VDSL technology includes the

G.vector standard, which is essentially an interference cancellation scheme for a vec-

tor additive white Gaussian channel [GC02, OSC+10]. The use of the new G.vector

VDSL standard for interference mitigation will allow speeds of up to 100Mb/s to the

home.

Interestingly, Shannon’s first paper on multiuser communication channels was on

“Two-way communication channels”, which can model the simultaneous transmission
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of information in both directions over a phone line [Sha61]. Shannon anticipated the

importance of NEXT (near-end crosstalk) and FEXT (far-end crosstalk) to communi-

cation systems fifty years in advance. Clearly, he was a man ahead of his times!

5.1.2 Review of classical results

The seminal papers by Carleial [Car78] and Sato [Sat77] defined the interference chan-

nel problem in its present form and established many of the fundamental results. Find-

ing the capacity region of the general discrete memoryless interference channel (DMIC)

is still an open problem, but there are certain special cases where the capacity can be

calculated. For channels with “strong” [Sat81] and “very strong” [Car75] interference,

the full capacity region can be calculated. The capacity-achieving decoding strate-

gies for both of the above special cases require the receivers to completely decode the

interfering messages.

For an arbitrary interference channel, it may only be possible to partially decode

the interfering signal. The Han-Kobayashi rate region RHK, which is achieved by using

partial interference cancellation, is the best known achievable rate region for the general

discrete memoryless interference channel [HK81]. Recently, Chong, Motani and Garg

used a different encoding scheme to obtain an achievable rate region, RCMG, which

contains the Han-Kobayashi rate region [CMG06]. Soon afterwards Kramer proposed

a compact description of the Han-Kobayashi rate region, Rc
HK, which involved fewer

constraints [Kra06]. Han and Kobayashi published a comment regarding the Fourier-

Motzkin elimination procedure used to derive the bounds [HK07], but the question

remained whether the above rate regions are all equivalent or whether one is strictly

larger than the others. The matter was finally settled by Chong, Motani, Garg and

Hesham El Gamal, who showed that all three rate regions are in fact equivalent:

RHK ≡ RCMG ≡ Rc
HK, (5.1)

when the union is taken over all possible input distributions [CMGEG08].

There has been comparatively less work on proving outer bounds on the capacity

region for general discrete memoryless interference channels [Sat77, Car83].
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5.1.3 Quantum interference channels

In this chapter, we apply and extend insights from classical information theory to the

study of the quantum interference channel (QIC):

(X1 ×X2, NX1X2→B1B2(x1, x2) ≡ ρB1B2
x1,x2

, HB1 ⊗HB2), (5.2)

which is a model for a general communication network with two classical inputs and

a quantum state ρB1B2
x1,x2

as output. The classical-quantum interference channel can

model physical systems such as fibre-optic cables and free space optical communication

channels [GSW11].

x1Tx1

x2Tx2

ρ
B1
x1,x2 Rx1

 

ρ
B2
x1,x2 Rx2

 

Figure 5.1: The quan-
tum interference channel
ρB1B2
x1,x2

.

We fully specify a cc-qq interference channel by the set

of output states it produces
{
ρB1B2
x1,x2

}

x1∈X1,x2∈X2
for each pos-

sible combination of inputs. Since Receiver 1 does not have

access to the B2 part of the state ρB1B2
x1,x2

, we model his state

as ρB1
x1,x2

= TrB2

[
ρB1B2
x1,x2

]
, where TrB2 denotes the partial trace

over Receiver 2’s system. Similarly, the output state for Re-

ceiver 2 is given by ρB2
x1,x2

= TrB1

[
ρB1B2
x1,x2

]
.

A classical interference channel with transition probabil-

ity function p(y1, y2|x1, x2) is a special case of the cc-qq chan-

nel where the output states are of the form ρB1B2
x1,x2

=
∑

y1,y2
p(y1, y2|x1, x2)|y1〉〈y1|B1⊗

|y2〉〈y2|B2 where {|y1〉} and {|y2〉} are orthonormal bases of HB1 and HB2 .

5.1.4 Information processing task

The task of communication over an interference channel can be described as follows.

Using n independent uses of the channel, the objective is for Sender 1 to communicate

with Receiver 1 at a rate R1 and for Sender 2 to communicate with Receiver 2 at a

rate R2.

If there exists an (n,R1, R2, ǫ)-code for the classical-quantum interference channel,

then the following conversion is possible:

n · NX1X2→B1B2
(1−ǫ)−→ nR1 · [c1 → c1] + nR2 · [c2 → c2].
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Figure 5.2: Diagram showing the parts of a classical-quantum interference channel code for
n copies of the channel. Sender 1 selects a message m1 to transmit (modeled by a random
variable M1), and Sender 2 selects a message m2 to transmit (modeled by M2). Each sender
encodes their message as an n-symbol codeword suitable for transmission over the channel.
The receivers each perform a quantum measurement in order to decode the messages that
their partner sender transmitted.

Note that we are only interested in the communication rates from the sender to the

intended receiver, and we ignore the communication capacity of the crosslinks: [c1 → c2]

and [c2 → c1].

More specifically, Sender 1 chooses a message m1 from a message set M1 ≡
{1, 2, . . . , |M1|} where |M1| = 2nR1 , and Sender 2 similarly chooses a message m2

from a message set M2 ≡ {1, 2, . . . , |M2|} where |M2| = 2nR2 . Senders 1 and 2 en-

code their messages as codewords xn1 (m1) ∈ X n
1 and xn2 (m2) ∈ X n

2 respectively, which

are then input to the channel. The output of the channel is an n-fold tensor product

state of the form:

N⊗n(xn1 (m1), x
n
2 (m2)) ≡ ρ

Bn
1 B

n
2

xn
2 (m1),xn

2 (m2)
∈ D(HBn

1 B
n
2 ). (5.3)

To decode the message m1 intended for him, Receiver 1 performs a positive operator-

valued measure (POVM) {Λm1}m1∈{1,...,|M1|}
on the system Bn

1 , the output of which

we denote M ′
1. For all m1, Λm1 is a positive semidefinite operator and

∑

m1
Λm1 = I.

Receiver 2 similarly performs a POVM {Γm2}m2∈{1,...,|M2|}
on the system Bn

2 , and the

random variable associated with this outcome is denoted M ′
2.

An error occurs whenever Receiver 1’s measurement outcome is different from the

message sent by Sender 1 (M ′
1 6= m1) or Receiver 2’s measurement outcome is different

from the message sent by Sender 2 (M ′
2 6= m2). The overall probability of error for
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message pair (m1,m2) is

pe(m1,m2) ≡ Pr {(M ′
1,M

′
2) 6= (m1,m2)}

= Tr
{

(I − Λm1 ⊗ Γm2) ρ
Bn

1 B
n
2

xn
2 (m1)xn

2 (m2)

}

,

where the measurement operator (I − Λm1 ⊗ Γm2) represents the complement of the

correct decoding outcome.

Definition 5.1. An (n,R1, R2, ǫ) code for the interference channel consists of two code-

books {xn1 (m1)}m1∈M1 and {xn2 (m2)}m2∈M2 , and two decoding POVMs {Λm1}m1∈M1

and {Γm2}m2∈M2
, such that the average probability of error pe is bounded from above

by ǫ:

pe≡
1

|M1||M2|
∑

m1,m2

pe(m1,m2) ≤ ǫ. (5.4)

A rate pair (R1, R2) is achievable if there exists an (n,R1 − δ, R2 − δ, ǫ) quantum

interference channel code for all ǫ, δ > 0 and sufficiently large n. The channel’s capacity

region is the closure of the set of all achievable rates.

Interference channel as two disinterested MAC sub-channels

The quantum interference channel described by (X1 × X2, ρ
B1B2
x1,x2

,HB1 ⊗ HB2) induces

two quantum multiple access (QMAC) sub-channels. More specifically QMAC1 is the

channel to Receiver 1 given by (X1 × X2, ρ
B1
x1,x2

= TrB2

{
ρB1B2
x1,x2

}
,HB1), and QMAC2 is

the channel to Receiver 2 defined by (X1 ×X2, ρ
B2
x1,x2

,HB2). Thus, one possible coding

strategy for the interference channel is to build a codebook for each multiple access

channel that is decodable for both receivers. For this reason, the coding theorems which

we developed for quantum multiple access channels in Chapter 4 will play an important

role in this chapter.

Note however that the IC problem specification does not require that Receiver 1

be able to decode m2 correctly nor does it specify that Receiver 2 needs to be able

to decode the message sent by Sender 1 correctly, though most interesting coding

strategies involve at least partial decoding of the crosstalk messages. If we take the

logical and of the two MAC subtasks, i.e., we require both receivers to be able to

decode the messages from both senders, then this communication task is known as the
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compound multiple access channel problem [Ahl74b].

5.1.5 Chapter overview

In this chapter, we use the theorems from Chapter 4 for quantum multiple access

channels to prove coding theorems for quantum interference channels.

In Section 5.2, we prove capacity theorems for two special cases of the interference

channel. In Theorem 5.1 we calculate the capacity region of the quantum interference

channel with “very strong” interference (see Definition 5.2) using the successive decod-

ing strategy from Theorem 4.1. In Theorem 5.2, we prove the capacity of the channels

with “strong” interference (see Definition 5.3) using the simultaneous decoding strategy

derived in Theorem 4.2.

In Section 5.3 we discuss the quantum Han-Kobayashi coding strategy, where the

messages of the senders are split into two parts so that the receivers can perform

partial interference cancelation [HK81]. The quantum Han-Kobayashi coding strategy

(Theorem 5.3) requires the use of quantum simultaneous decoding for multiple access

channels with three senders which we described in Conjecture 4.1.

The main contribution of this chapter is to show that the rates of the Han-

Kobayashi rate region can be achieved without the need for Conjecture 4.1. We

will show this in Section 5.4, where we present an achievability proof for the quan-

tum Chong-Motani-Garg rate region which only uses the two-message simultaneous

decoding technique from Theorem 4.2. Recall that the Chong-Motani-Garg region is

equivalent to the Han-Kobayashi region.

Note that the achievability of the quantum Chong-Motani-Garg rate region was

first proved by Sen in [Sen12a] using a different error analysis technique based on an

intersection projector and a careful analysis of the geometric properties of the CMG

rate region. The alternate proof given in Section 5.4 uses the simultaneous decoding

techniques developed in Section 4.3 and an interesting geometric argument by Eren

Şaşoğlu [Sas08].

The arguments in Section 5.4 show that we can reduce the decoding requirements

from three-message simultaneous decoding to two-message simultaneous decoding and

still achieve all the rates in the Han-Kobayashi rate region. Perhaps, it might be
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possible to remove the need for a simultaneous decoder altogether. Can the Han-

Kobayashi rate region be achieved using only successive decoding? In Section 5.6, we

discuss the difference between interference channel codes (both classical and quantum)

based on successive decoding and those based on simultaneous decoding. In particular,

we show that rate-splitting strategies based on successive decoding are not a good

choice for interference channel codes, contrary to what has been claimed elsewhere

[Sas08, YP11].

Finally, we obtain Theorem 5.8, which is a quantum analogue of Sato’s outer bound

for the interference channel.

5.2 Capacity results for special cases

In this section, we consider decoding strategies where the receivers decode the messages

from both senders. We show that this decoding strategy is optimal for the special cases

of the interference channel with “very strong” and “strong” interference.

5.2.1 Very strong interference case

If we use a successive decoding strategy at both receivers, and calculate the best possi-

ble rates that are compatible with both receivers’ ability to decode, we obtain an achiev-

able rate region. Consider the decoding strategy where Receiver 1 decodes in the decode

order m2 → m1|m2 and Receiver 2 decodes in the order m1 → m2|m1. In this case,

we know that the messages are decodable for Receiver 1 provided R1 ≤ I(X1;B1|X2)

and R2 ≤ I(X2;B1). Receiver 2 will be able to decode provided R1 ≤ I(X1;B2)

and R2 ≤ I(X2;B2|X1). Thus, the rate pair R1 ≤ min{I(X1;B1|X2), I(X1;B2)},
R2 ≤ min{I(X2;B1), I(X2;B2|X1)} is achievable for the interference channel.

On the other hand, the rate R1 ≤ I(X1;B1|X2) is the optimal rate Receiver 1

could possibly achieve, since this rate corresponds the message m1 being decoded sec-

ond [Win01]. Similarly the rate R2 ≤ I(X2;B2|X1) is an upper bound on the rates

achievable between Sender 2 and Receiver 2.

We now define a special class of interference channels, where the achievable rate

region obtained using the above successive decoding strategy matches the outer bound.
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Definition 5.2 (Very strong interference). An interference channel with very strong

interference [Car75], is such that for all input distributions pX1 and pX2 ,

I (X1;B1|X2) ≤ I (X1;B2) , (5.5)

I (X2;B2|X1) ≤ I (X2;B1) . (5.6)

The information inequalities in (5.5)-(5.6) imply that the interference is so strong,

that it is possible for each receiver to decode the other sender’s message before decod-

ing the message intended for him. These conditions are a generalization of Carleial’s

conditions for a classical Gaussian interference channel [Car75, EGK10].

Thus, we can calculate the exact capacity region for the special case of the classical-

quantum interference channel with very strong interference.

Figure 5.3: The capacity region for a cc-qq quantum interference channel which satisfies
the “very strong” interference conditions (5.5) and (5.6). The figure also shows the capacity
regions for the multiple access channel problems associated with each receiver: QMAC1 and
QMAC2. The capacity region for the IC corresponds to their intersection.
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Theorem 5.1 (Channels with very strong interference). The channel’s capacity region

is given by:

⋃

pQ,pX1|Q
,pX2|Q

{

(R1, R2) ∈ R2
+

∣
∣
∣
∣
∣

R1 ≤ I (X1;B1|X2Q)θ ,

R2 ≤ I (X2;B2|X1Q)θ

}

, (5.7)

where the mutual information quantities are calculated with respect to a state θQX1X2B

of the form:

∑

x1,x2,q

pQ(q)pX1|Q(x1|q) pX2|Q(x2|q) |q〉〈q|Q ⊗ |x1〉〈x1|X1 ⊗ |x2〉〈x2|X2 ⊗ ρBx1,x2
. (5.8)

An intuitive interpretation of this result is the seemingly counterintuitive statement

that, for channels with very strong interference, the capacity is the same as if there

were no interference [Car75].

Proof. We require the receivers to decode the messages for both senders. The average

probability of error for the interference channel code is given by:

pe≡
1

|M1||M2|
∑

m1,m2

pe(m1,m2)

①
= pe(m1,m2)

= Tr
[(
I − ΛBn

1
m1,m2

⊗ ΓBn
2

m1,m2

)
ρ
Bn

1 B
n
2

xn
2 (m1)xn

2 (m2)

]

, (5.9)

where equality ① comes from the symmetry of the codebook construction: it is sufficient

to perform the error analysis for a fixed message pair (m1,m2).

Next, we use the following lemma, which is a kind of operator union bound [ADHW09].

Lemma 5.1. For any operators 0 ≤ PA, QB ≤ I, we have:

(IAB − PA⊗QB) ≤ (IA−PA)⊗IB + IA⊗(IB −QB). (5.10)

Proof of Lemma 5.1. Starting from PA ≤ I and QB ≤ I, we obtain 0 ≤ (I − PA) and

0 ≤ (I −QB) which can be combined to obtain:

0 ≤ (I − PA)⊗ (I −QB)

= IAB − PA ⊗ IB − IA ⊗QB + PA ⊗QB.
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The inequality (5.10) follows by moving the term PA ⊗ QB to the left hand side and

adding a term IAB to both sides.

When applied to the current problem, the inequality (5.10) gives:

(
IB

n
1 B

n
2 − ΛBn

1
m1,m2

⊗ ΓBn
2

m1,m2

)
≤
(
IB

n
1 − ΛBn

1
m1,m2

)
⊗IBn

2 + IB
n
1 ⊗
(
IB

n
2 − ΓBn

2
m1,m2

)
,

which in turn allows us to split expression (5.9) into two terms:

pe= TrBn
1 B

n
2

[(
I − ΛBn

1
m1,m2

⊗ ΓBn
2

m1,m2

)
ρ
Bn

1 B
n
2

xn
2 (m1)xn

2 (m2)

]

,

≤ TrBn
1 B

n
2

[(
I − ΛBn

1
m1,m2

)
ρ
Bn

1 B
n
2

xn
2 (m1)xn

2 (m2)

]

+ TrBn
1 B

n
2

[(
I − ΓBn

2
m1,m2

)
ρ
Bn

1 B
n
2

xn
2 (m1)xn

2 (m2)

]

= TrBn
1

[(
I − ΛBn

1
m1,m2

)
ρ
Bn

1

xn
2 (m1)xn

2 (m2)

]

+ TrBn
2

[(
I − ΓBn

2
m1,m2

)
ρ
Bn

2

xn
2 (m1)xn

2 (m2)

]

.

Each of the above error terms is associated with the probability of error for one of

the receivers. The decoding problem for each receiver corresponds to a multiple access

channel (MAC) problem. We can use the successive decoding techniques from Theo-

rem 4.1 to show that the decoding at the rates R1 ≤ I(X1;B1|X2), R2 ≤ I(X2;B2|X1)

will succeed.

Receiver 1 will decode in the order m2 → m1|m2. During the first decoding step

Receiver 1 decodes the interfering messagem2 and we know that this is possible because

the rate R2 ≤ I(X2;B1), which is guaranteed by (5.5). In the second step, Receiver 1

now decodes the message from Sender 1 given full knowledge of the transmission of

Sender 2, which is possible any rate R1 ≤ I(X1;B1|X2). Receiver 2 decodes in the

order m1 → m2|m1 in order to use full interference cancellation and achieve the rate

R2 ≤ I(X2;B2|X1).

The outer bound follows from the converse part of Theorem 4.1, since the individual

rates are optimal in the two MAC sub-channels [Car75].

Example 5.2. We now consider an example of a cc-qq quantum interference channel

with two classical inputs and two quantum outputs and calculate its capacity region

using Theorem 5.1 [FHS+12]. The “θ-SWAP” channel N : {0, 1}2 → C4 is described
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Figure 5.4: The capacity region of the “θ-SWAP” interference channel for various values
of θ such that the channel exhibits “very strong” interference. The capacity region is largest
when θ gets closer to 2.18, and it vanishes when θ = π/2 because the channel becomes a full
SWAP (at this point, Receiver i gets no information from Sender i, where i ∈ {1, 2}).

by:

00 → |00〉B1B2 , (5.11)

01 → cos (θ) |01〉B1B2 + sin (θ) |10〉B1B2 , (5.12)

10 → − sin (θ) |01〉B1B2 + cos (θ) |10〉B1B2 , (5.13)

11 → |11〉B1B2 . (5.14)

We would like to determine an interval for the parameter θ for which the channel

exhibits “very strong” interference. In order to do so, we need to consider classical-

quantum states of the following form:

ρX1X2B1B2 ≡
1∑

x1,x2=0

pX1(x1) pX2(x2) |x1〉〈x1|X1 ⊗ |x2〉〈x2|X2 ⊗ ψB1B2
x1,x2

, (5.15)

where ψB1B2
x1,x2

is one of the pure output states in (5.11)-(5.14). We should then check

whether the conditions in (5.5)-(5.6) hold for all distributions pX1(x1) and pX2(x2).

We can equivalently express these conditions in terms of von Neumann entropies as
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follows:

H(B1|X2)ρ −H(B1|X1X2)ρ ≤ H(B2)ρ −H(B2|X1)ρ ,

H(B2|X1)ρ −H(B2|X1X2)ρ ≤ H(B1)ρ −H(B1|X2)ρ ,

and thus, it suffices to calculate six entropies for states of the form in (5.15). After

some straightforward calculations, we find that:

H(B1|X1X2)ρ= H(B2|X1X2)ρ = (pX1(0) pX2(1) + pX1(1) pX2(0))H2

(
cos2(θ)

)
,

H(B1)ρ = H2

(
pX1(0) + (pX1(1) pX2(0)− pX1(0) pX2(1)) sin

2 (θ)
)
,

H(B2)ρ = H2

(
pX2(0) + (pX1(0) pX2(1)− pX1(1) pX2(0)) sin

2 (θ)
)
,

H(B2|X1)ρ = pX1(0)H2

(
pX2(1) cos

2 (θ)
)
+ pX1(1)H2

(
pX2(0) cos

2 (θ)
)
,

H(B1|X2)ρ = pX2(0)H2

(
pX1(1) cos

2 (θ)
)
+ pX2(1)H2

(
pX1(0) cos

2 (θ)
)
,

where H2(p) is the binary entropy function. We numerically checked for particular

values of θ whether the conditions (5.5)-(5.6) hold for all distributions pX1(x1) and

pX2(x2), and we found that they hold when θ ∈ [0.96, 2.18] ∪ [4.10, 5.32] (the latter

interval in the union is approximately a shift of the first interval by π). The interval

[0.96, 2.18] contains θ = π/2, the value of θ for which the capacity should vanish because

the transformation is equivalent to a full SWAP (the channel at this point has “too

strong” interference). We compute the capacity region given in Theorem 5.1 for several

values of θ in the interval θ ∈ [π/2, 2.18] (it is redundant to evaluate for other intervals

because the capacity region is symmetric about π/2 and it is also equivalent for the two

π-shifted intervals [0.96, 2.18] and [4.1, 5.32]). Figure 5.4 plots these capacity regions

for several values of θ in the interval [π/2, 2.18].

5.2.2 Strong interference case

The simultaneous decoder from Theorem 4.2 allows us to calculate the capacity region

for the following special case of the quantum interference channel.

Definition 5.3 (Strong interference). A quantum interference channel with strong
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interference [Sat81, CEG87] is one for which the following conditions hold:

I (X1;B1|X2) ≤ I (X1;B2|X2) , (5.16)

I (X2;B2|X1) ≤ I (X2;B1|X1) , (5.17)

for all input distributions pX1 and pX2 .

Figure 5.5: The capacity region for a cc-qq quantum interference channel which satisfies
the “strong” interference conditions (5.16) and (5.17). The figure also shows the capacity
regions for the multiple access channel problems associated with each receiver: QMAC1 and
QMAC2. The capacity region corresponds to the intersection.

Theorem 5.2 (Channels with strong interference). The channel’s capacity region is:

⋃

pQ,pX1|Q
,

pX2|Q







(R1, R2) ∈ R2
+

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

R1 ≤ I(X1;B1|X2Q)θ ,

R2 ≤ I(X2;B2|X1Q)θ ,

R1 +R2 ≤ min

{

I(X1X2;B1|Q)θ
I(X1X2;B2|Q)θ

}







, (5.18)

where the mutual information quantities are calculated with respect to a state θQX1X2B

of the form:

∑

x1,x2,q

pQ(q)pX1|Q(x1|q) pX2|Q(x2|q) |q〉〈q|Q ⊗ |x1〉〈x1|X1 ⊗ |x2〉〈x2|X2 ⊗ ρBx1,x2
. (5.19)

The capacity region is the intersection of the MAC rate regions for the two receivers

which corresponds to the condition that we choose the rates such that each receiver
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can decode both m1 and m2. See Figure 5.5.

Proof. The first part of the proof is analogous to the proof of Theorem 5.1 for the

interference channel with very strong interference. We use Lemma 5.1 to split the error

analysis for the interference channel decoding task into two multiple access channel

decoding tasks, one for each receiver.

The key difference with Theorem 5.1 is that for the strong interference case, we

require the decoders to use the simultaneous decoding approach from Theorem 4.2 and

coded time-sharing codebooks as described in Corollary 4.1. The rate pairs described

by the inequalities in (5.18) are decodable by both receivers. Therefore, these rates are

achievable for the interference channel problem.

The proof of the outer bound for Theorem 5.2 follows from the outer bound in

Theorem 4.1 and an argument similar to the one used in the classical case [CEG87]

(see also [EGK10, page 6–13]).

5.3 The quantum Han-Kobayashi rate region

For general interference channels, the Han-Kobayashi coding strategy gives the best

known achievable rate region [HK81] and involves partial decoding of the interfering

signal. Instead of using a standard codebook to encode her message m1, Sender 1

splits her message into two parts: a personal message m1p and a common message

m1c. Assuming that Receiver 1 is able to decode both of these messages, the net

rate from Sender 1 to Receiver 1 will be the sum of the rates of the split codebooks:

R1 = R1p +R1c. The benefit of using a split codebook1, is that Receiver 2 can decode

Sender 1’s common message m1c and achieve a better communication rate by using

interference cancellation. Because only part of the interfering message is used, we call

this partial interference cancellation. Sender 2 will also split her message m2 into two

parts: m2p and m2c.

Codebook construction: Consider the auxiliary random variablesQ,U1,W1, U2,W2

and the class of Han-Kobayashi probability distributions, PHK , which factorize as

1 Note that the Han-Kobayashi strategy is also referred to as a rate-splitting in the literature.
In this document we reserve this term rate-splitting for the use of a split codebook and successive
decoding as in [GRUW01] and [Rim01].
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pHK(q, u1, w1, x1, u2, w2, x2) = p(q)p(u1|q) p(w1|q)p(x1|u1, w1)p(u2|q)p(w2|q)p(x2|u2, w2),

where p(x1|u1, w1) and p(x2|u2, w2) are degenerate probability distributions that corre-

spond to deterministic functions f1 and f2, fi : Ui×Wi → Xi, which are used to combine

the values of U and W to produce a symbol X suitable as input to the channel.

We generate the random codebooks in the following manner:

• Randomly and independently generate a sequence qn according to
n∏

i=1

pQ(qi).

• Randomly and independently generate 2nR1c sequences wn
1 (m1c),m1c ∈

[
1 : 2nR1c

]

conditionally on the sequence qn according to
n∏

i=1

pW1|Q(w1i|qi).

• Randomly and independently generate 2nR1p sequences un1 (m1p),m1p ∈
[
1 : 2nR1p

]

conditionally on the sequence qn according to
n∏

i=1

pU1|Q(u1i|qi).

• Apply the function f1 symbol-wise to the codewords wn
1 (m1c) and un1 (m1p) to

obtain the codeword xn1 (m1c,m1p).

• We generate the common and personal codebooks for Sender 2 in a similar fashion

and combine them using f2 to obtain xn2 (m2c,m2p).

Decoding: When the split codebooks are used for the interference channel, we are

effectively coding for an interference network with four inputs and two outputs. We

can think of the decoding performed by each of the receivers as two multiple access

channel (MAC) decoding subproblems. We will denote the achievable rate regions for

the MAC sub-problems as R(o,1)
HK and R(o,2)

HK . The task for Receiver 1 is to decode the

messages (m1p,m1c,m2c), and thus the sub-task R(o,1)
HK corresponds to a three-sender

multiple access channel, the rate region for which is described by seven inequalities on

the rate triples (R1p, R1c, R2c). The decoding task for Receiver 2, R(o,2)
HK , is similarly

described by seven inequalities on the rates (R1c, R2c, R2p).

We perform Fourier-Motzkin elimination on the inequalities of the MAC rate re-

gions for the two receivers in order to eliminate the variables R1p, R1c, R2p and R2c

and replacing them with the sum variables

R1 = R1p +R1c, R2 = R2p +R2c. (5.20)

At each step in the Fourier-Motzkin elimination process, we use the information the-
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oretic properties in order to eliminate redundant inequalities. The result is the Han-

Kobayashi rate region.

Theorem 5.3 (Quantum Han-Kobayashi rate region). Consider the region:

Ro
HK

(N ) ≡
⋃

pHK∈PHK

f1,f2

{(R1, R2) ∈ R2| Eqns. (HK1) - (HK9) }

R1 ≤ I(U1W1;B1|W2Q) (HK1)

R1 ≤ I(U1;B1|W1W2Q) + I(W1;B2|U2W2Q) (HK2)

R2 ≤ I(U2W2;B2|W1Q) (HK3)

R2 ≤ I(W2;B1|U1W1Q) + I(U2;B2|W1W2Q) (HK4)

R1 +R2 ≤ I(U1W1W2;B1|Q) + I(U2;B2|W1W2Q) (HK5)

R1 +R2 ≤ I(U1;B1|W2W1Q) + I(U2W2W1;B2|Q) (HK6)

R1 +R2 ≤ I(U1W2;B1|W1Q) + I(U2W1;B2|W2Q) (HK7)

2R1 +R2 ≤ I(U1;B1|W1W2Q) + I(U2W1;B2|W2Q)

+I(U1W1W2;B1|Q) (HK8)

R1 + 2R2 ≤ I(U1W2;B1|W1Q) + I(U2;B2|W2W1Q)

+ I(U2W2W1;B2|Q) (HK9)

where the information theoretic quantities are taken with respect to a state

θU1U2W1W2B1B2 of the form:

∑

q,u1,u2,
w1,w2

pQ(q) pU1|Q(u1|q) pU2|Q(u2|q) pW1|Q(w1|q) pW2|Q(w2|q) |q〉〈q|Q⊗

⊗|u1〉〈u1|U1⊗|u2〉〈u2|U2⊗|w1〉〈w1|W1⊗|w2〉〈w2|W2⊗ρB1B2

f1(u1,w1),f2(u2,w2)

is an achievable rate region provided Conjecture 4.1 holds.

Each of the inequalities (HK1)-(HK9) describes some limit imposed on the personal

or common rates of the two senders. For example, (HK1) corresponds to the maximum

rate at which m1p and m1c can be decoded by Receiver 1 given that he has already

decodedm2c. Other inequalities correspond to mixed bounds, in which one of the terms

comes from a constraint on Receiver 1 and the other from a constraint on Receiver 2.

An example of this is (HK2) which comes from the bound on Receiver 1’s ability to

decode m1p (given m1c and m2c) and a bound from Receiver 2’s ability to decode m1c
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X1

X2

B1

B2

W1

W2

U1

U2

f1

f2

Ŵ1

Û1

Ŵ2

Ŵ2

Û2

Ŵ1

ρ
B1B2

x1,x2

Figure 5.6: The random variables used in the Han-Kobayashi coding strategy. Sender 1
selects codewords according to a “personal” random variable U1 and a “common” random
variable W1. She then acts on U1 and W1 with some deterministic function f1 that outputs
a variable X1 which serves as a classical input to the interference channel. Sender 2 uses a
similar encoding. Receiver 1 performs a measurement to decode both variables of Sender 1
and the common random variable W2 of Sender 2. Receiver 2 acts similarly. The advantage
of this coding strategy is that it makes use of interference in the channel by having each
receiver partially decode what the other sender is transmitting. Theorem 5.3 gives the rates
that are achievable assuming that Conjecture 4.1 holds.

(given m2c and m2p)
2.

Note that the original description of the rate region given by Han and Kobayashi

in [HK81] and later in [HK07] contained two extra inequalities. Chong et al. showed

that these extra inequalities are redundant, and so the best description of RHK involves

only nine inequalities as above [CMGEG08].

Proof. The proof is in the same spirit as the original result of Han and Kobayashi

[HK81]. The first step is to use the Lemma 5.1 to obtain:

(

IB
n
1 B

n
2 − ΛBn

1
m1p,m1c,m2c

⊗ ΓBn
2

m1c,m2c,m2p

)

≤
(

IB
n
1 − ΛBn

1
m1p,m1c,m2c

)

⊗IBn
2 + IB

n
1 ⊗
(

IB
n
2 − ΓBn

2
m1c,m2c,m2p

)

,

which allows us to bound the error analysis for the interference channel task in terms

of the error analysis for two MAC sub-channels. Our result is conditional on Con-

jecture 4.1 for the construction of the decoding POVMs for each MAC sub-channel:
{
Λm1p,m1c,m2c

}
for Receiver 1, and

{
Γm1c,m2c,m2p

}
for Receiver 2.

2 Receiver 2 is not required to decode the common message of Sender 1, but the Han-Kobayashi
strategy does require this condition despite the fact there could be no interference cancellation benefits
for doing so, given that Receiver 2 has already decoded the messages m2c and m2p. This should serve
as a hint that the Han-Kobayashi decoding requirements can be relaxed. We will discuss this further
in the next section.
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At the very least, observe that Theorem 5.3 depends on Conjecture 4.1 for its

proof. While we do not doubt that the conjecture will ultimately turn out to be true,

the fact remains that our result is conditional on an unproven conjecture, which is

somewhat unsatisfactory.

In order to remedy this shortcoming, we searched for other approaches which

could be used to prove that the rates of the quantum Han-Kobayashi rate region are

achievable. First, we proved that the quantum Han-Kobayashi rate region is achievable

for a special class of interference channels where the output states commute. We also

derived an achievable rate region described in terms of min-entropies [Ren05, Tom12],

which is in general smaller than the Han-Kobayashi rate region. These results are

well documented in [FHS+12]. Another approach which we studied is the use of a

rate-splitting and successive decoding approach in order to achieve the rates of the

Han-Kobayashi rate region. We attempted to adapt the results of Şaşoğlu in [Sas08],

which claimed, erroneously, that the rate-splitting strategy can be used in order to

achieve the Chong-Motani-Garg (CMG) rate region. Recall that the Chong-Motani-

Garg rate region is equivalent to the Han-Kobayashi rate region [CMGEG08]. In fact,

as we will see shortly, the Chong-Motani-Garg approach is simply a specific coding

strategy to carry out the Han-Kobayashi partial interference cancellation idea.

The analysis in [Sas08] is in two parts. The first part is a geometric argument,

henceforth referred to as the Şaşoğlu argument, which shows that there is a many-to-one

mapping between the rates of the split codebooks (R1p, R1c, R2c, R2p), and the resulting

rates (R1, R2) for the interference channel task. In the second part of the analysis,

Şaşoğlu describes a strategy for the use of rate-splitting and successive decoding for

the common message. The common-message codebook for one sender is split so as to

accommodate one of the receivers assuming the common-message codebook of the other

sender is not split. However, if both users split their common-message codebooks, the

rates cannot be chosen, in general, so as to achieve all the rates of the Chong-Motani-

Garg rate region. We will comment on this further in Section 5.6.

While rate-splitting and successive decoding turned out to be a dead end in our

quest for the quantum Hon-Kobayashi region, the Şaşoğlu argument and the use of two-

sender simultaneous decoding turns out to be sufficient in order to show the achiev-

ability of the quantum Chong-Motani-Garg rate region. This will be the subject of

Section 5.5 below.
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5.4 The quantum Chong-Motani-Garg rate region

The achievability of the quantum Chong-Motani-Garg (CMG) rate region was recently

proved by Sen using novel geometric ideas for the “intersection subspace” of projectors

and a “sequential decoding” technique [Sen12a]. In this section we will describe the

CMG coding strategy and state Sen’s result in Theorem 5.4. In Section 5.4, we will

provide an alternate proof of this result based on the Şaşoğlu argument [Sas08] and

the two-sender simultaneous decoding techniques from Theorem 4.2.

The differences between the Chong-Motani-Garg coding strategy and the Han-

Kobayashi coding strategy are: (1) the different way the senders’ codebooks are con-

structed and (2) the relaxed decoding requirements for the two receivers. We discuss

these next.

Codebook construction: The codebooks are constructed using the superposition

coding technique, which was originally developed by Cover in the context of the classical

broadcast channel [Cov72]. The idea behind this encoding strategy is to first generate a

set of cloud centers for each common message and then choose the satellite codewords

for the personal messages relative to the cloud centers.

Let Q,W1,W2 be auxiliary random variables and let PCMG be the class of probabil-

ity density functions which factorize as pCMG(q, w1, x1, w2, x2) = p(q) p(w1|q) p(x1|w1, q)

p(w2|q) p(x2|w2, q). To construct the codebook we proceed as follows:

• First randomly and independently generate a sequence qn according to
n∏

i=1

pQ(qi).

• Randomly and independently generate 2nR1c sequences wn
1 (m1c), m1c ∈

[
1 : 2nR1c

]

conditionally on the sequence qn according to
n∏

i=1

pW1|Q(w1i|qi).

• Next, for each message m1c, we randomly and independently generate 2nR1p con-

ditional codewords xn1 (m1p|m1c), m1p ∈
[
1 : 2nR1p

]
, m1c ∈ [2nR1c ] according to the

product conditional probability distribution
n∏

i=1

pX1|W1Q(x1i|w1i(m1c), qi).

• We generate the common and personal codebooks for Sender 2 in a similar fash-

ion. First generate {wn
2 (m2c)}, m2c ∈ [2nR2c ] according to

∏n pW2|Q and then

generate {xn2 (m2p|m2c)}, m2p ∈ [2nR2p ], m2c ∈ [2nR1c ] conditionally on wn
2 (m2c)

according to
∏n pX2|W2Q.
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Decoding for the MAC subproblems: The decoding task for each of the receivers

is associated with a multiple access channel subproblem. We will denote the achievable

rate regions for the MAC sub-problems for a fixed input distribution pCMG ∈ PCMG as

R1
CMG(N , pCMG) and R2

CMG(N , pCMG).

Consider the decoding task for Receiver 1. The messages to be decoded are

(m1p,m1c,m2c), while the effects of the message m2p superimposed on top of the code-

word for m2c are considered as noise to be averaged over. The desired achievable rate

region R1
CMG(N , pCMG) is defined as follows:

R1
CMG(N , pCMG) ,

⋃

p(x1|w1,q)p(w1|q)
p(x2|w2,q)p(w2|q)p(q)

{(R1p, R1c, R2c) ∈ R3
+| Eqns (a1)-(d1) below}

R1p ≤ I (X1;B1|W1W2Q) , I(a1), (a1)

R1p +R1c ≤ I (X1;B1|W2Q) , I(b1), (b1)

R1p +R2c ≤ I (X1W2;B1|W1Q) , I(c1), (c1)

R1p +R1c +R2c ≤ I (X1W2;B1|Q) , I(d1). (d1)

The mutual information quantities are calculated with respect to the following state:

∑

q,w1,
x1,w2

p(q) p(w1|q) p(x1|w1, q) p(w2|q)× (5.21)

|q〉〈q|Q ⊗ |w1〉〈w1|W1 ⊗ |x1〉〈x1|X1 ⊗ |w2〉〈w2|W2 ⊗ ρB1
x1,w2

,

where

ρB1
x1,w2

≡
∑

x2

p(x2|w2) TrB2

[
ρB1B2
x1,x2

]
(5.22)

is the effective code state for Receiver 1. It is the average over the random variable

X2 (since we treat m2p as noise) and the partial trace over the degrees of freedom

associated with Receiver 2.

The rate region for Receiver 2 is similarly described by:

R2
CMG(N , pCMG) ,

⋃

p(x1|w1,q)p(w1|q)
p(x2|w2,q)p(w2|q)p(q)

{(R2p, R2c, R1c) ∈ R3
+| Eqns (a2)-(d2) below} (5.23)
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R2p ≤ I (X2;B2|W1W2Q) , I(a2), (a2)

R2p +R2c ≤ I (X2;B2|W1Q) , I(b2), (b2)

R2p +R1c ≤ I (X2W1;B2|W2Q) , I(c2), (c2)

R2p +R2c +R1c ≤ I (X2W1;B2|Q) , I(d2), (d2)

with respect to a code state in which the variable X1 is treated as noise and a partial

trace over the system B1 is performed.

Observe that the above MAC rate regions are described only by four inequalities,

rather than by seven inequalities like the multiple access channel with three senders

(cf. Conjecture 4.1). Two of the rate constraints do not appear because we are using the

superposition encoding technique and always decodem1c beforem1p. A third inequality

can be dropped if we recognize that Receiver 1 is not really interested in decoding m2c;

he is only decoding m2c to serve as side information which will help him decode the

messages m1c and m1p intended for him. This is called relaxed decoding, and allows

us to drop the constraint associated the decoding of m2c after m1c and m1p [CMG06].

The relaxed decoding approach cannot be applied directly to the quantum case, and so

a different decoding strategy is required [Sen12a]. We postpone the discussion about

the decoding strategies of the receivers until the end of this section.

We are now in a position to describe the Chong-Motani-Garg rate region RCMG,

which is obtained by combining the constraints from R1
CMG and R2

CMG. Recall that,

for the interference channel problem, we are interested in the total rates achievable

between each sender and the corresponding receiver. For Receiver 1, we have a net

rate of R1 = R1c +R1p and similarly for Receiver 2 we have R2 = R2c +R2p. Consider

the projection Π which takes the 4-tuple of rates (R1p, R1c, R2c, R2p) to the space of

net rates (R1, R2):

[

R1

R2

]

=

[

R1p +R1c

R2p +R2c

]

=

[

1 1 0 0

0 0 1 1

]

︸ ︷︷ ︸

Π









R1p

R1c

R2c

R2p









. (5.24)

The Chong-Motani-Garg rate region for the interference channel is obtained by taking

the union over all input distributions of the intersection between the two MAC rate

92



Chapter 5 : Interference channels

regions, followed by the projection Π to obtain:

RCMG(N ) ≡ Π

(
⋃

pCMG∈PCMG

R1
CMG(N , pCMG) ∩ R2

CMG(N , pCMG)

)

. (5.25)

Equivalently, it is possible to compute the intersection of the two MAC rate regions

by performing Fourier-Motzkin elimination on the inequalities from equations (a1)-(d1)

and (a2)-(d2). By taking all possible combinations of the inequalities in the two MAC

subproblems, we obtain the equivalent set of inequalities in the two dimensional space

(R1, R2). The resulting achievable rate region has the following form:

Theorem 5.4 (Quantum Chong-Motani-Garg rate region [Sen12a]). The following

rate region is achievable for the quantum interference channel:

RCMG(N ) ,
⋃

p(x1|w1,q)p(w1|q)
p(x2|w2,q)p(w2|q)p(q)

{(R1, R2) ∈ R2
+| Eqns. (CMG1)-(CMG9) hold. } (5.26)

R1 ≤ I(X1;B1|W2Q) (CMG1)

R1 ≤ I(X1;B1|W1W2Q) + I(X2W1;B2|W2Q) (CMG2)

R2 ≤ I(X2;B2|W1Q) (CMG3)

R1 ≤ I(X1W2;B1|W1Q) + I(X2;B2|W1W2Q) (CMG4)

R1 +R2 ≤ I(X1W2;B1Q) + I(X2;B2|W1W2Q) (CMG5)

R1 +R2 ≤ I(X1;B1|W1W2Q) + I(X2W1;B2Q) (CMG6)

R1 +R2 ≤ I(X1W2;B1|W1Q) + I(X2W1;B2|W2Q) (CMG7)

2R1 +R2 ≤ I(X1W2;B1|Q) + I(X1;B1|W1W2Q) + I(X2W1;B2|W2Q) (CMG8)

R1 + 2R2 ≤ I(X2;B2|W1W2Q) + I(X2W1;B2|Q) + I(X1W2;B1|W1Q) (CMG9)

where the information theoretic quantities are taken with respect to a state of the form

θQW1X1W2X2B1B2 ≡
∑

q,w1,w2,
x1,x2

pQ(q) pW1|Q(w1|q) pW2|Q(w2|q) pX1|W1Q(x1|w1, q) pX2|W2Q(x2|w2, q)

|q〉〈q|Q⊗|w1〉〈w1|W1⊗|w2〉〈w2|W2⊗|x1〉〈x1|X1⊗|x2〉〈x2|X2⊗ρB1B2
x1,x2

.

The classical CMG rate region is known to be equivalent to the Han-Kobayashi
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5.4 The quantum Chong-Motani-Garg rate region

rate region [CMGEG08]. Thus, Sen’s achievability proof for the rates of the Chong-

Motani-Garg rate region is also a proof of the quantum Han-Kobayashi rate region.

Quantum relaxed decoding

Let us consider more closely the relaxed decoding approach that is employed by Re-

ceiver 1 in the classical case. The decoding strategy for Receiver 1 is to use jointly

typical decoding and search the codebooks {wn
1 (m1c)}, {xn1 (m1p|m1c)} and {wn

2 (m2c)}
for messages (m1c,m1p, m̂2c) such that

(

wn
1 (m1c), x

n
1 (m1p|m1c), w

n
2 (m̂2c), Y

n
1

)

∈ J (n)
δ (W1, X1,W2, Y1).

If such messages are found, the decoder will output m1 = (m1c,m1p). This decoding

is relaxed because the above condition can be satisfied for some m̂2c which is not

necessarily the correct m2c transmitted by Sender 2.

The use of the relaxed decoding strategy allows us to drop the following constraint:

R2c ≤ I(W2;B1|W1X1), (5.27)

which corresponds to the message m2c being decoded last, given the side information

of m1c and m1p.

The relaxed decoding strategy does not generalize readily to the case where a quan-

tum decoding is to be performed [Sen12a]. For each message triple (m1c,m1p,m2c), we

could define the measurement {Λm1c,m1p,m2c}, but how does one combine the measure-

ment operators {Λm1c,m1p,m̂2c}, m̂2c ∈ [2nR2c ] to form a “relaxed measurement”? Indeed,

the usual quantum measurements we use are ones that “ask specific questions” and

for which one outcome is more likely than the others. This allows us to use the gen-

tle operator lemma which tells us that the our measurement disturbs the system only

marginally.

Sen sidestepped the difficulty of asking a “vague” question by using two different

decoding strategies depending on which rates we want to achieve. Receiver 1 will

either decode m2c or ignore it altogether. The set of achievable rates for Receiver 1
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(R1p, R1c, R2c) ∈ R3
+ obtained by Sen is described as follows:

R2c ≤ I(W2;B1|X1),

R1p ≤ I(X1;B1|W1W2),

R1c +R1p ≤ I(X1;B1|W2),

R2c +R1p ≤ I(X1W2;B1|W1),

R1c +R2c +R1p ≤ I(X1W2;B1),

OR

R2c ≥ I(W2;B1|X1),

R1p ≤ I(X1 : B1|W1),

R1c +R1p ≤ I(X1;B1).

Note that the region is not convex. To achieve the rates on the left hand side, Sen

developed a novel three-sender simultaneous decoding measurement. The rates on the

right hand side correspond to a disinterested MAC problem, in which the message m2c

will not be decoded. After taking the intersection of the achievable rate regions for

Receiver 1 and Receiver 2 and applying the projection as in (5.25), Sen obtained a

region which is equivalent to the quantum CMG rate region [Sen12a].

In the next section we will describe another route to prove the achievability of the

quantum CMG rate region. We will show that the use of three-sender simultaneous

decoding is not necessary. Each of the receivers will use one of three different decoding

strategies that only require two-sender simultaneous decoding and, in combination,

these decoding strategies achieve all the rates (R1, R2) ∈ RCMG(N , pCMG).

5.5 Quantum CMG rate region via two-sender si-

multaneous decoding

In the original Han-Kobayashi paper [HK81] and the subsequent Chong-Motani-Garg

papers [CMG06, CMGEG08], the decoding strategy is to use the three-sender simulta-

neous decoder. This strategy allows for all possible interference cancellation scenarios.

An example of a specific decoding strategy would be to decode the interference mes-

sage m2c simultaneously with m1c and then decode m1p last using the side information

from both common messages. We denote this (m1c,m2c) → m1p|m1cm2c. Another

example would be to decode m1p and m2c simultaneously after having decoded m1c

first: m1c → (m1p|m1c, m2c|m1c). Simultaneous decoding is a catchall strategy that

subsumes all of the above specific strategies. However, as we saw in Chapter 4, the

existence of a simultaneous decoder for a general three-sender QMAC is still an open
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problem (Conjecture 4.1). It would therefore be desirable to find some specific quan-

tum decoding strategy (or a set of strategies like in [Sen12a]), which can be used to

achieve all the rates of the quantum CMG rate region.

In this section, we will extend the geometrical argument presented in [Sas08], to

do away with the need for the simultaneous decoding of three messages. We will show

that the quantum two-sender simultaneous decoder from Theorem 4.2 is sufficient to

achieve the quantum Han-Kobayashi rate region.

Observe that in equation (5.24) only the sum rate R1c + R1p is of importance for

Receiver 1. The relative values of R1c and R1p are not important — only their sum

(provided that all the inequalities (a1)-(a4) are satisfied). This fact implies that we

are allowed a certain freedom in the way we choose the rates of the codebooks for the

interference channel. We define this freedom more formally as follows:

Definition 5.4 (Rate moving operation). Let pCMG be the probability distribution

used to construct CMG codebooks. Let C and C ′ be two codebooks with rates

C : (R1p, R1c, R2c, R2p) (5.28)

C ′ : (R1p + δ1, R1c − δ1, R2c − δ2, R2p + δ2), (5.29)

such that the rates of both codebooks satisfy all the inequalities (a1)-(d1) and (a2)-(d2),

then they achieve the same rate pair (R1, R2) ∈ RCMG(N , pCMG). Such a transforma-

tion of rate tuples is called a rate moving operation.

In words, we say that to achieve the rate pair (R1, R2) for the interference channel,

we are free to move the rate points so as to decrease the common rates and increase

the personal rates. Intuitively, such a transformation is interesting because decreasing

the common rates will make the decoding task easier overall, since both receivers have

to decode the common messages whereas only a single receiver needs to decode the

personal part. The idea for this rate moving operation is due to Eren Şaşoğlu [Sas08].

To show the achievability of the Chong-Motani-Garg rate region, RCMG(N ), it is

sufficient to show that we can achieve points on the boundary of the region, which

we will denote as ∂RCMG(N ). In fact, it is sufficient to achieve points on the non-

vertical, non-horizontal boundary of the rate region which we will denote ∂′RCMG(N ) ⊆
∂RCMG(N ). This region is illustrated in Figure 5.7 (b). We refer to the facets that
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make up the ∂′RCMG(N ) as the dominant facets of the CMG rate region in analogy

with the dominant facet of the multiple access channel capacity region.

We now state the main theorem of this section:

Theorem 5.5 (The dominant facets of the QCMG are achievable). Any rate

pair (R1, R2) ∈ ∂′RCMG(N , pCMG) of the non-horizontal, non-vertical facets

of the CMG rate region is achievable for the quantum interference channel
(
X1 ×X2 , N (x1, x2) ≡ ρB1B2

x1,x2
, HB1 ⊗HB2

)
.

As a corollary of the above theorem, we can say that the quantum Chong-Motani-

Garg rate region is achievable. Any point in the interior of the CMG rate region

RCMG(N , pCMG), is dominated by some point on the non-vertical, non-horizontal dom-

inant facets of the boundary ∂′RCMG(N , pCMG). Therefore, we can achieve all other

points of the rate region by resource wasting.

(a) The CMG achievable rate region. (b) The non-horizontal, non-vertical dominant
facets of the CMG rate region, ∂′RCMG, which
are achievable by two-sender simultaneous de-
coding, are shown in bold.

Figure 5.7: The CMG achievable rate region for a given input distribution
p(q)p(w1, x1|q)p(w2, x2|q) in general has the shape of a heptagon. The region is bounded
by the two rate positivity conditions and each of the other facets corresponds to one of the
inequalities (CMG1)-(CMG9).

The proof of Theorem 5.5 is somewhat long, so we have broken it up into several

lemmas. Below we give a brief sketch of the steps involved:

• In Section 5.5.1, we will discuss the geometry of the achievable rate regions

R1
CMG(N , pCMG) andR2

CMG(N , pCMG) for the two receivers. We state Lemma 5.2,

which identifies the relative placement of the inequalities (a1)-(d1) by using the

97



5.5 Quantum CMG rate region via two-sender simultaneous decoding

properties of mutual information quantities I(a1) through I(d1).

• In Section 5.5.2, we will show that any rate pair (R1, R2) ∈ ∂′RCMG can be

achieved using codebooks with rates that lie either on the (a) or (c) planes of

the MAC rate regions. To show this statement, we will prove Lemma 5.3 which

describes a procedure in which we use rate moving to transfer any rate point on

the (b) or (d) planes to an equivalent rate point on the (a) or (c) planes.

• In Section 5.5.3, we prove that the receivers can use two-sender quantum simul-

taneous decoding to achieve any rate on the planes (a) and (c). More precisely,

there are three possible decode orderings that may be used. Lemma 5.4 shows

that the following three decoding strategies (shown for Receiver 1) are sufficient

to achieve the rates in the CMG rate region:

Case a: (m1c,m2c) → m1p|m1cm2c,

Case c: m1c → (m1p|m1c, m2c|m1c),

Case c’: m1c → m1p|m1c.

5.5.1 Geometry of the CMG rate region

For a general input distribution pCMG, the CMG rate region RCMG(N , pCMG) and the

two MAC subproblem rate regions could take on different shapes depending on the

relative values of the mutual information quantities I(a1), I(b1), I(c1), I(d1), I(a2),

I(b2), I(c2) and I(d2).

In his paper [Sas08], Şaşoğlu develops a powerful intuition for dealing with the

polyhedra that describe their boundaries ∂RCMG(N , pCMG), ∂R1
CMG(N , pCMG) and

∂R2
CMG(N , pCMG). Define the two-dimensional facets a1, b1, c1, d1 which make up the

region boundary. Each facet is a subset of the plane in R3 associated with the equality

condition of inequalities (a1), (b1), (c1) and (d1), which correspond to the rate con-

straints of Receiver 1. The boundary of the region R1
CMG(N , pCMG) can be written as

∂R1
CMG(N , pCMG) = a1 ∪ b1 ∪ c1 ∪ d1.

We can visualize the three dimensional rate region R1
CMG(N , pCMG) as in Figure

5.8 below.

This shape of the rate region is governed by the information-theoretic quantities
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Figure 5.8: The achievable rate region R1
CMG(N , pCMG) and its bounding facets a1, b1, c1,

and d1. Each surface is associated with the equality condition in one of the equations (a1),
(b1), (c1) and (d1) from page 91.

on the right hand side of equations (a1) through (d1). The following relations establish

the geometry of the rate-region R1
CMG(N , pCMG) which hold for any input distribution.

Lemma 5.2 (Geometry of R1
CMG(N , pCMG)). The information-theoretic quantities

from equations (a1), (b1), (c1) and (d1) satisfy the following inequalities:

I(a1) ≤ I(b1) ≤ I(d1), (5.30)

I(a1) ≤ I(c1) ≤ I(d1), (5.31)

I(a1) + I(d1) ≤ I(b1) + I(c1). (5.32)

Geometrically I(a1) ≤ I(b1) indicates that the plane containing b1 intersects the

plane containing a1 in the positive octant. Similarly I(b1) ≤ I(d1) indicates that

the plane containing d1 intersects the plane containing b1 inside R3
+. Equation (5.31)

dictates that the plane containing c1 intersects the plane containing a1 and that the

plane containing d1 intersects the plane of c1. Finally, equation (5.32) states that

I(a1) + I(d1) ≤ I(b1) + I(c1), which means that the rate constraint on the sum 2R1p +

R1c+R2c obtained by adding (a1) and (d1) is tighter than the rate constraint obtained

by adding (b1) and (c1). If we define the sets A = {1p, 1c} and B = {1p, 2c} and ρ(X)

to be the information-theoretic quantities of the right hand side, then equation (5.32)

has a super-modular polymatriod structure ρ(A ∩B) + ρ(A ∪B) ≤ ρ(A) + ρ(B). The

proof of Lemma 5.2 is given in Appendix C.1.
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5.5.2 Şaşoğlu argument

Let the rate pair (R1, R2) ∈ ∂′RCMG(N , pCMG) be part of the non-horizontal, non-

vertical boundary of the two dimensional rate region RCMG(N , pCMG). This rate

pair is associated (non-uniquely) to a pair of points P1 = (R1p, R1c, R2c) and P2 =

(R2p, R2c, R1c) on the boundaries of the respective regionsR1
CMG(N , pCMG) andR2

CMG(N , pCMG).

Claim 5.6. If the two-dimensional rate pair (R1, R2) ∈ ∂′RCMG(N , pCMG) is the pro-

jection of the points P1 = (R1p, R1c, R2c) and P2 = (R2p, R2c, R1c) via the mapping in

(5.24), then P1 ∈ ∂R1
CMG(N , pCMG) and P2 ∈ ∂R2

CMG(N , pCMG).

Suppose that this were not the case — that is, we assume that at least one of

the points, Pi is not on the boundary of its region ∂Ri
CMG(N , pCMG). Suppose, for a

contradiction, that Pi is in the interior of Ri
CMG(N , pCMG), then there must exist a ball

of achievable rates of size δ around Pi. This means that we would be able to increase

the private rate to R′
ip = Rip + δ for some δ > 0. The resulting point P ′

i will be still

be achievable so long as we stay within the region Ri
CMG(N , pCMG). However, such a δ

displacement leads to an increase the sum rate R′
i = R′

ip+R
′
ic = Rip+ δ+Ric = Ri+ δ.

This contradicts our initial assumption that (R1, R2) ∈ ∂′RCMG(N , pCMG). Therefore,

Claim 5.6 must be true, and this means that it is sufficient to show how to achieve all

the rates on the boundary of the rate regions ∂Ri
CMG(N , pCMG) = ai ∪ bi ∪ ci ∪ di.

A priori, we have to consider all possible starting combinations of the points Pi ∈
ai∪bi∪ci∪di. However, using the rate moving operation (Definition 5.4), we can move

any point in bi ∪ di \ ai ∪ ci to an equivalent point in ai ∪ ci as illustrated in Figure 5.9.

Lemma 5.3 (Moving points [Sas08]). Any point Pi that lies on one of the planes

bi∪di \ai∪ ci can be converted to a different point P ′
i on one of the planes ai∪ ci, while

leaving the sum rate (R1, R2) unchanged.

In order to be precise, we have to study the effects of the rate moving operation

on both points P1 and P2 simultaneously. This is because the same rates R1c and R2c

appear in the common coordinates of both P1 and P2. The reasoning behind the proof

of Lemma 5.3 is reminiscent of the argument used to prove Claim 5.6. The details are

given in Appendix C.2.

Lemma 5.3 is important because in the next section we will show how to achieve

the rates in the facets ai and ci using two-sender quantum simultaneous decoding.
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Figure 5.9: Moving points on the b1 and d1 facets to equivalent points on a1 and c1.

This means that we can construct a decoder that achieves all the rates for the quan-

tum Chong-Motani-Garg rate region without the need for a three sender simultaneous

decoder from Conjecture 4.1.

5.5.3 Two-message simultaneous decoding is sufficient for the

rates of the facets ai and ci

In this section we show how to achieve the rates on the a1 and c1 facets using only

two-sender simultaneous decoding.

Lemma 5.4 (Two-simultaneous decoding for a and c planes). Fix an input distri-

bution pCMG ∈ PCMG and let the rate pair (R1, R2) ∈ ∂RCMG(N , pCMG) come from

the rate triples P1 = (R1p, R1c, R2c) ∈ ∂R1
CMG(N , pCMG) and P2 = (R2p, R2c, R1c) ∈

∂R2
CMG(N , pCMG) such that

(P1, P2) ∈ a1 ∪ c1 × a2 ∪ c2. (5.33)

Then the rate (R1, R2) is achievable for the QIC using two-sender quantum simultane-

ous decoding.

Proof. Our analysis is similar to [Sas08], but we are not going to use a rate-splitting

strategy.
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Achieving points in a: Consider a point P1 ∈ a1, which implies

R1p = I (X1;B1|W1W2Q) , (5.34)

R1p +R1c ≤ I (X1;B1|W2Q) , (5.35)

R1p +R2c ≤ I (X1W2;B1|W1Q) , (5.36)

R1p +R1c +R2c ≤ I (X1W2;B1|Q) . (5.37)

We can subtract equation (5.34) from the inequalities below it to obtain a new set

of inequalities

R1p = I (X1;B1|W1W2Q) , (5.38)

R1c ≤ I (W1;B1|W2Q) = I (X1;B1|W2Q)− I (X1;B1|W1W2Q) , (5.39)

R2c ≤ I (W2;B1|W1Q) = I (X1W2;B1|W1Q)− I (X1;B1|W1W2Q) , (5.40)

R1c +R2c ≤ I (W1W2;B1|Q) = I (X1W2;B1|Q)− I (X1;B1|W1W2Q) . (5.41)

Looking at equations (5.39)-(5.41) we see that the rates (R1c, R2c) have the form

of a MAC rate region with inputs W1 ∼ p(w1|q),W2 ∼ p(w2|q) and output B1. We will

perform the decoding in the following order at Receiver 1: (W1,W2) → X1|W1W2.

Consider the quantum channel

w1, w2 → ρB1
w1,w2

, (5.42)

where ρB1
w1,w2

is defined as the average output state assuming superposition encoding of

the random variables x1 and x2 will be performed:

ρB1
w1,w2

≡
∑

x1

∑

x2

p(x1|w1)p(x2|w2)ρ
B1
x1,x2

. (5.43)

The decoding strategy for Receiver 1 when the rates are on the facet a1 correspond

to the use of the two-message simultaneous decoder (Theorem 4.2) on the channel

shown in (5.42).

After the common parts have been decoded, Receiver 1 will use a conditional HSW

decoder to decode the message encoded in X1.
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Achieving points in c: Consider a point P1 ∈ c1, which implies that the con-

straint on the R1p +R2c inequality is tight.

R1p ≤ I (X1;B1|W1W2Q) , (5.44)

R1p +R1c ≤ I (X1;B1|W2Q) , (5.45)

R1p +R2c = I (X1W2;B1|W1Q) , (5.46)

R1p +R1c +R2c ≤ I (X1W2;B1|Q) . (5.47)

If we subtract (5.46) from (5.47) we obtain the following equivalent set of inequalities.

R1p ≤ I (X1;B1|W1W2Q) , (5.48)

R1p +R1c ≤ I (X1;B1|W2Q) , (5.49)

R1p +R2c = I (X1W2;B1|W1Q) , (5.50)

R1c ≤ I (W1;B1|Q) = I (X1W2;B1|Q)− I (X1W2;B1|W1Q) (5.51)

The constraint on the sum rate R1p +R1c imposed by equation (5.49) is less tight

than the sum rate constraint obtained by adding equations (5.48) and (5.51), therefore

we will drop equation (5.49) from the remainder of the argument. The accuracy of this

statement can be verified starting from I(W1;W2|B1) ≥ 0 and rearranging the terms.

See Appendix C.3 for the details.

The decoding strategy depends on the position of the point P1 lying within the c1

plane. We will treat two cases separately.

Case c: Suppose R1p is such that:

I(X1;B1|W1Q) ≤ R1p. (5.52)

If we subtract this lower bound on R1p from equation (5.50) we can obtain an

upper bound on R2c. We also have an upper bound on R1p from (5.48) and a

bound on the sum rate R1p + R2c from (5.50). This gives us the following rate
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constraints:

R1p ≤ I (X1;B1|W1W2Q) , (5.48)

R2c ≤ I (W2;B1|X1Q) = (5.50)− (5.52), (5.53)

R1p +R2c = I (X1W2;B1|W1Q) . (5.50)

R1c ≤ I (W1;B1|Q) (5.54)

Şaşoğlu recognizes the rate constraints on (R1p, R2c) in equations (5.48), (5.53)

and (5.50) to correspond to the dominant facet of a MAC rate region for a channel

with inputs X1 ∼ p(x1|w1, q),W2 ∼ p(w2|q) and output (W1, B1). In other words

we have a special channel where W1 is available as side information for Sender 1

and Receiver 1. The decode order is given by: W1 → (X1|W1, W2|W1).

To achieve rates on the plane c1, Receiver 1 will first use a standard HSW decoder

to decode the message m1c encoded in W1 and then apply the simultaneous

decoding as stated in the following lemma:
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Lemma 5.5 (Conditional simultaneous decoding). Let {wn
1 (ℓ1)}ℓ1∈[2nR1α ] be a codebook

generated according to
∏n pW1, and let {xn1 (m1|wn

1 (ℓ1))}m1∈[2
nR1β ],ℓ1∈[2nR1α ]

be a condi-

tional codebook generated according to
∏n pX1|W1. Similarly for Sender 2, we define

codebooks {wn
2 (ℓ2)}ℓ2∈[2nR2α ] and another {xn2 (m2|wn

2 (ℓ2))}m2∈[2
nR2β ],ℓ2∈[2nR1α ]

generated

according to
∏n pW2 and

∏n pX2|W2. Suppose these codebooks are used on n copies of

the quantum multiple access channel ρx1,x2, resulting in the map:

(W n
1 , X

n
1 ,W

n
2 , X

n
2 ) −→ ρnXn

1 |W
n
1 ,Xn

2 |W
n
2
. (5.55)

Consider the case where W n
1 is known to the receiver, and Xn

2 is considered as noise

(averaged over). This situation corresponds to the following map:

(W n
1 , X

n
1 ,W

n
2 ) −→ (W n

1 , ρ
n
Xn

1 |W
n
1 ,Wn

2
), (5.56)

where we defined ρnXn
1 |W

n
1 ,Wn

2
≡ EXn

2
ρnXn

1 |W
n
1 ,Xn

2 |W
n
2
, or in terms of the channel outputs:

ρnXn
1 |W

n
1 ,Wn

2
=

n⊗

i=1

(
∑

x2

pX2|W2(x2|W2i)ρX1i,x2 .

)

. (5.57)

An achievable rate region for the pair (R1β, R2α) is described by:

R1β ≤ I(X1;B|W1W2), (5.58)

R2α ≤ I(W2;B|X1W1) = I(W2;B|X1), (5.59)

R1β +R2α ≤ I(X1W2;B|W1), (5.60)

where the mutual information quantities are with respect to the state:

θW1X1W2B ≡
∑

w1,x1,w2

p(w1, x1)p(w2)|w1〉〈w1|W1⊗ |x1〉〈x1|X1⊗ |w2〉〈w2|W2⊗ ρBx1,w2
. (5.61)

Proof. The proof is similar to the two-sender MAC simultaneous decoding from The-

orem 4.2.

Case c′: Now suppose that R1p ≤ I(X1;B1|W1Q), then the trivial successive decoding

strategy is sufficient. Receiver 1 will decode in the order W1 → X1.

The decoding for is done sequentially using HSW decoding. Receiver 1 decodes

the message m1c first, followed by m1p. The decoding in this case is similar to
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the successive decoding used in Theorem 4.1. The interfering messages m2c and

m2p are treated as noise.

Thus we see that the combination of Lemma 5.2, Lemma 5.3, and Lemma 5.4 shows

that the quantum Chong-Motani-Garg rate region is achievable using only two-sender

simultaneous decoding.

5.6 Successive decoding strategies for interference

channels

We report on some results concerning achievable rate regions for the interference chan-

nel that use the successive decoding approach.

5.6.1 Time-sharing strategies

In Section 4.2 on the multiple access channel, we saw that a successive decoding strategy

can be used to achieve all the rates on the dominant vertices of the rate region. Recall

that for a fixed choice of encoding distribution p ≡ pX1(x1)pX2(x2), the two-sender

QMAC capacity region has the shape of a pentagon with two extreme points αp ≡
(I(X1;B), I(X2;B|X1)) and βp ≡ (I(X1;B|X2), I(X2;B)), which correspond to the

rates achievable by successive decoding in two different orders. To achieve the rates

in the convex hull of these points, we can use time-sharing between different codes

achieving these rates.

Definition 5.5 (Time-sharing). Given two codebooks C1 and C2 with rates corre-

sponding to rate points αp and βp and a desired rate point P ∈ conv(αp, βp), we will

have

P = tαp + (1− t)βp, (5.62)

for some t ∈ R, which we call the time-sharing parameter. We can achieve the rates of a

point P ∗ ≈ P if we use the rational time-sharing parameter t∗ ≈ t, t∗ ≡ M
N

∈ Q and the

following strategy: during each N block-uses of the channel, use codebook C1 during

M of them and during the remaining N −M uses of the channel, use codebook C2.
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The time-sharing strategy is not well-adapted for the interference channel. This

is because the rates of the corner points of the achievable rate regions for the two

receivers are not necessarily the same. The time-sharing strategy that works for one

of the receivers might not work for the other one.

It is however possible to use successive decoding strategies for an interference chan-

nel in the following way. We start by considering a strategy where both receivers are

asked to decode both messages, i.e., we are dealing with the compound multiple access

channel. Such a strategy defines an achievable rate region known as the “successive

decoding inner bound” for the interference channel (cf. page 6-7 of Ref. [EGK10]).

Consider all possible decode orderings that could be used by the two receivers:

π1 : m2 → m1|m2, π2 : m2,

π1 : m2 → m1|m2, π2 : m1 → m2|m1,

π1 : m1, π2 : m1 → m2|m1,

π1 : m1, π2 : m2.

(5.63)

Using each of these, we can achieve rates arbitrarily close to the following points:

P1 = (I(X1;B1|X2),min{I(X2;B1), I(X2;B2)}), (5.64)

P2 = (min{I(X1;B1|X2), I(X1;B2)},
min{I(X2;B1), I(X2;B2|X1)}), (5.65)

P3 = (min{I(X1;B1), I(X1;B2)}, I(X2;B2|X1)), (5.66)

P4 = (I(X1;B1), I(X2;B2)). (5.67)

We can use time-sharing between these different codes for the interference channel to

obtain all other rates in conv(P1, P2, P3, P4). This achievable rate region is illustrated

in the RHS of Figure 5.10.

5.6.2 Split codebook strategies

We can improve the successive decoding region described in Section 5.6 if we use split

codebooks. Inspired by the Han-Kobayashi strategy we make the senders split their

messages into two parts: the messages of Sender 1 will be m1p and m1c, and the

messages of Sender 2 will be m2p and m2c. As in the Han-Kobayashi strategy, the use
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R1

R2

Simultaneous decoding

R1

R2

Successive decoding

rec. 1 rec. 1

rec. 2 rec. 2

Figure 5.10: These plots show achievable rates regions for the interference channel for si-
multaneous decoding and successive decoding strategies with fixed input distributions. Using
a simultaneous decoding strategy, it is possible to achieve the intersection of the two regions
of the corresponding multiple access channels. Using a successive decoding strategy, we ob-
tain four achievable rate points that correspond to the possible decoding orders for the two
multiple access channels. The solid red and blue lines outline the different multiple access
channel achievable rate regions, and the shaded gray areas outline the achievable rate regions
for the two different decoding strategies.

of the split codebooks induces two three-sender multiple access channels. Receiver 1

is required to decode the set of messages m1p,m1c and m2c using successive decoding,

and there are six different decode orderings he can use.

Let the decoding ordering of Receiver 1 be represented by a permutation π1 on the

set three elements {1p, 1c, 2c}. For example, the successive decoding of the messages

in the order m2c → m1c|m2c → m1p|m1cm2c will be denoted as the permutation π1 =

(2c, 1c, 1p).

We can naturally use all 6×6 pairs of decoding orders to obtain a set of achievable

rate pairs.

Proposition 5.7. Consider the rate point P associated with the decode ordering π1

for Receiver 1 and π2 for Receiver 2:

P =
(

R
(1)
1p +min{R(1)

1c , R
(2)
1c }, min{R(1)

2c , R
(2)
2c }+R

(2)
2p

)

,
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where the rate constraints for Receiver j satisfy

R
(j)
πj(1)

≤ I(Xπj(1);Bj), (5.68)

R
(j)
πj(2)

≤ I(Xπj(2);Bj|Xπj(1)), (5.69)

R
(j)
πj(3)

≤
{

I(Xπj(3);Bj|Xπj(1)Xπj(2)) if πj(3) = jc or πj(3) = jp

∞, otherwise
(5.70)

The rate pair P is achievable for the quantum interference channel, for all permutations

π1 of the set of indices (1p, 1c, 2c) and for all permutations π2 of the set (2p, 2c, 1c).
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Figure 5.11: These two figures plot rate pairs that the senders and receivers in a clas-
sical Gaussian interference channel can achieve using successive decoding and rate-splitting
(SD+RS). The figures compare these rates with those achievable by the Han-Kobayashi (HK)
coding strategy, while also plotting the regions corresponding to the two induced multiple
access channels to each receiver (MAC1 and MAC2). The LHS figure demonstrates that, for
a particular choice of signal to noise (SNR) and interference to noise (INR)[ETW07] parame-
ters (SNR1 = 1.7, SNR2 = 2, INR1 = 3.4, INR2 = 4), successive decoding with rate-splitting
does not perform as well as the Han-Kobayashi strategy. The RHS figure demonstrates that,
for a different choice of parameters (SNR1 = 343, SNR2 = 296, INR1 = 5, INR2 = 5), the
two strategies perform equally well.

The rate region described by the convex hull of the points P is generally smaller

than the Han-Kobayashi region as illustrated in Figure 5.11. Note that the split-

codebook and successive decoding strategy works pretty well in the low interference

regime. An interesting open problem is whether we can achieve all rates of the Han-

Kobayashi region by splitting each sender’s message into more than two parts and

using only successive decoding.
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In particular, we want to know whether the capacity of the interference channel

with strong interference can be achieved using only successive decoding. Alternately,

it would be interesting to prove that successive decoding is not sufficient in order to

achieve all the capacity in the strong interference regime for any number of splits and

any possible decode order.

We know that the time-sharing, rate-splitting [Sas08] and generalized time-sharing

[YP11] strategies do not work for the interference channel, but is it possible to show a

negative result for all successive decoding strategies? This question is explored further

in [FS12].

5.7 Outer bound

We will close this chapter by giving a simple outer bound for the capacity of general

quantum interference channels analogous to the classical result by Sato [Sat77].

Theorem 5.8 (Quantum Sato outer bound[Sav10]). Consider the Sato region defined

as follows:

RSato(N ) ,
⋃

pQ(q)p1(x1|q)p2(x2|q)

{(R1, R2) ∈ R2
+| Eqns (5.72)-(5.74) below }, (5.71)

R1 ≤ I(X1;B1|X2Q)θ, (5.72)

R2 ≤ I(X2;B2|X1Q)θ, (5.73)

R1 +R2 ≤ I(X1X2;B1B2|Q)θ. (5.74)

The entropic quantities are with respect to the state θQX1X2B1B2 ≡
∑

q,x1,x2

pQ(q)p1(x1|q)p2(x2|q) |q〉〈q|Q ⊗ |x1〉〈x1|X1 ⊗ |x2〉〈x2|X2 ⊗ ρB1B2
x1x2

. (5.75)

Then the region RSato(N ) is an outer bound on the capacity region of the quantum

interference channel.

This proof follows from the observation that any code for the quantum interference

channel also gives codes for three quantum multiple access channel subproblems: one

for Receiver 1, another for Receiver 2, and a third for the two receivers considered
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together. We obtain the outer bound in Theorem 5.8 by using the outer bound on the

quantum multiple access channel rates from Theorem 4.1 for each of these channels.

5.8 Discussion

In this chapter we saw how the coding techniques and theorems which we obtained

in Chapter 4 can be applied to prove coding theorems for the quantum interference

channel.

The key takeaway is that interference is not noise, and that it can be advan-

tageous to the receivers to decode messages in which they are not interested. For

Receiver 1, knowing the other user’s transmissions allows him to increase the rate at

which he can decodel going from I(X1;B1) = H(B1)−H(B1|X1) to the improved rate

of I(X1;B1|X2) = H(B1|X2)−H(B1|X1X2).

Because some of our results concerned special cases of the interference channel

problem, it is worthwhile to review our overall progress towards the characterization of

the capacity region of the general quantum interference channel CIC(N ). For general

interference channels we have:

Rsucc(N ) ( Rsim(N ) ( Ro
HK(N ) ≡ RCMG(N ) ⊆ CIC(N ) ⊆ RSato(N ).

In the special case of the interference channel with very strong interference, the

rate region achievable by successive decoding achieves the capacityRsucc(N ) = CIC(N ).

In the special case of strong interference, the rate region achievable by simultaneous

decoding is optimal Rsim(N ) = CIC(N ).

An interesting research question would be to investigate whether splitting the

messages into more than two parts, that is, turning the two-user IC into a multiple-

input multiple-output (MIMO) IC, can improve on the rates that are achievable using

the Han-Kobayashi strategy.

In this chapter, we used the superposition coding technique to construct the code-

books for the CMG coding strategy. We will use this technique again in the next

chapter in the context of the quantum broadcast channel.

111



112



Chapter 6

Broadcast channels

How can a broadcast station communicate separate messages to two receivers using a

single antenna? The two message streams must somehow be “mixed” during the encod-

ing process so that the transmitted codewords will contain the information intended

for both receivers. In this chapter we apply two codebook construction ideas from

the chapter on interference channels to build codebooks for the quantum broadcast

channel.

The Chong-Motani-Garg construction used superposition encoding to encode a

“personal” message (satellite codeword) on top of a “common” message (cloud center).

In Section 6.2 we will use the superposition coding technique to encode a “personal”

message for one of the receivers on top of a “common” message for both receivers. Such

a choice of encoding is well suited for broadcast channels where one of the receivers’

signals is stronger than the other. We can pick the rate of the common message so as to

be decodable by the receiver with the weaker reception, and use the left-over capacity

to the better receiver to transmit a personal message for him. The superposition coding

technique was originally developed in this context [Cov72].

Another approach to constructing the mixing of the information streams is to use

two separate codebooks and an arbitrary mixing function that combines them as in the

Han-Kobayashi coding strategy. The Marton coding scheme presented in Section 6.3

uses this approach.
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6.1 Introduction

The general broadcast communication scenario with two receivers involves the trans-

mission of up to three separate information streams. To illustrate the communication

problem, consider the situation described in Figure 6.1 where the television station

wants to transmit multiple streams of television programming to two separate receivers.

xTx

y1

Rx1

y2

Rx2

Figure 6.1: The broadcast channel. The sender wishes to transmit three separate informa-
tion streams: an English language TV station for Receiver 1, a French language TV station
for Receiver 2 and a weather TV station which is of interest to both receivers.

Suppose that in each block, the antenna has to transmit a common message m ∈
[1 : 2nR] intended for both receivers and personal messages m1 ∈ [1 : 2nR1 ] and m2 ∈
[1 : 2nR2 ] each intended for one of the receivers. The task is therefore described by the

following resource transformation:

n · NX→Y1Y2
(1−ǫ)−→ nR1 · [c→ c1] + nR · [c→ c1c2] + nR2 · [c→ c2].

What are the achievable rate triples (R1, R,R2) for this communication task?

Note that the everyday usage of the word broadcast presumes that only a common

message is to be transmitted to all receivers. If only a common message is to be

transmitted, that is, we are looking for rates of the form (0, R, 0), the broadcast channel

problem reduces to the compound point-to-point channel problem and the capacity is

given by the minimum of the rates achievable for the receivers. In order to make the

problem interesting from the information theory perspective, we have to consider the

case where at least one personal message is to be transmitted.
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6.1.1 Previous work

A wide body of research exists in classical information theory on the study of broadcast

channels. An excellent review of this research is presented in [Cov98]. The broadcast

channel is also covered in textbooks [CT91, EGK11, EGK10]. In the classical case, two

of the best known strategies for transmitting information over broadcast channels are

superposition coding [Cov72, Ber73, KM77] and Marton over-binning using correlated

auxiliary random variables [Mar79]. Sections 6.2 and 6.3 of this chapter are dedicated

to the generalization of these coding strategies to classical-quantum broadcast channels.

6.1.2 Quantum broadcast channels

Previous work on quantum broadcast channels includes [YHD11, GSE07, DHL10].

In [YHD11], the authors consider both classical and quantum communication over

quantum broadcast channels and prove a superposition coding inner bound similar to

our Theorem 6.1. There has also been research on quantum broadcast channels in two

other settings: quantum-quantum channels [DHL10] and bosonic broadcast channels

[GSE07]. The Marton rate region for the quantum-quantum broadcast channel was

developed in [DHL10]. The authors use decoupling techniques [ADHW09, AHS08,

Dup10] in order to show the Marton achievable rate region with no common message

for quantum communication1.

xTx

ρB1
x Rx1 

ρB2
x Rx2

 

Figure 6.2: A quantum
broadcast channel ρB1B2

x .

We define a classical-quantum-quantum broadcast chan-

nel as the triple:

(X ,N (x) ≡ ρB1B2
x ,HB1B2), (6.1)

where x is a classical letter in an alphabet X and ρB1B2
x is

a density operator on the tensor product Hilbert space for

systems B1 and B2. The model is such that when the sender

inputs a classical letter x, Receiver 1 obtains system B1, and

Receiver 2 obtains system B2. Since Receiver 1 does not have access to the B2 part

of the state ρB1B2
x , we model his state as ρB1

x = TrB2

[
ρB1B2
x

]
, where TrB2 denotes the

1 Note that the well known no cloning theorem of quantum information precludes the possibility of
a quantum common message: [q → q1q2], where the quantum information of some system controlled
by the sender is faithfully transferred to two receivers. See [YHD11] for more comments on this issue.

115



6.1 Introduction

partial trace over Receiver 2’s system.

6.1.3 Information processing task

The task of communication over a broadcast channel is to use n independent instances

of the channel in order to communicate classical information to Receiver 1 at a rate R1,

to Receiver 2 at a rate R2, and to both receivers at a rate R. More specifically, the

sender chooses a triple of messages (m1,m,m2) ∈ [1 : 2nR1 ] × [1 : 2nR] × [1 : 2nR2 ],

and encodes these messages into an n-symbol codeword xn(m1,m,m2) ∈ X n suitable

as input for the n channel uses.

The output of the channel is a quantum state of the form:

N⊗n(xn(m1,m,m2)) ≡ ρ
Bn

1 B
n
2

xn(m1,m,m2)
∈ D(HBn

1 B
n
2 ), (6.2)

where ρ
Bn

1 B
n
2

xn ≡ ρB11B21
x1

⊗ · · · ⊗ ρB1nB2n
xn

. To decode the common message m and the

message m1 intended specifically for him, Receiver 1 performs a POVM {Λm1,m}, m1 ∈
[1, . . . , |M1|], m ∈ [1, . . . , |M|], on the system Bn

1 , the output of which we denote

(M ′
1,M

′). Receiver 2 similarly performs a POVM {Γm,m2}, m2 ∈ {1, . . . , |M2|}, m ∈
[1, . . . , |M|] on the system Bn

2 , and his outcome is denoted (M ′′,M ′′
2 ).

An error occurs whenever either of the receivers decodes one of the messages in-

correctly. The probability of error for a particular message triple (m1,m,m2) is

pe(m1,m,m2) ≡ Tr
{

(I − Λm1,m ⊗ Γm,m2) ρ
Bn

1 B
n
2

xn(m1,m,m2)

}

,

where the measurement operator (I − Λm1,m ⊗ Γm,m2) represents the complement of

the correct decoding outcome.

Definition 6.1. An (n,R1, R,R2, ǫ) classical-quantum broadcast channel code consists

of a codebook {xn(m1,m,m2)}, m1 ∈ M1, m ∈ M, m2 ∈ M2 and two decoding

POVMs {Λm1,m}m1∈M1,m∈M and {Γm,m2}m∈M,m2∈M2
such that the average probability

of error pe is bounded from above as

pe ≡
1

|M1||M||M2|
∑

m1,m,m2

pe(m1,m,m2) ≤ ǫ. (6.3)

We say that a rate pair (R1, R,R2) is achievable if there exists an (n,R1 − δ, R− δ, R2 − δ, ǫ)
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quantum broadcast channel code for all ǫ, δ > 0 and sufficiently large n.

A broadcast channel code with no common message is a special case of the above

communication task where the rate of the common message is set to zero: (n,R1, 0, R2, ǫ).

Alternately, we could choose not to send a personal message for Receiver 2 and ob-

tain codes of the form (n,R1, R, 0, ǫ), which is known as the broadcast channel with a

degraded message set [KM77].

6.1.4 Chapter overview

In this chapter, we derive two achievable rate regions for classical-quantum broad-

cast channels by exploiting the error analysis techniques developed in the context

of quantum multiple access channels (Chapter 4) and quantum interference channels

(Chapter 5).

In Section 6.2, we establish the achievability of the rates in the superposition

coding rate region (Theorem 6.1). We use a quantum simultaneous decoder at one

of the receivers. Yard et al. independently proved the quantum superposition coding

inner bound [YHD11], but our proof is arguably simpler and more in the spirit of its

classical analogue [EGK10].

In Section 6.3 we prove that the quantum Marton rate region with no common

message is achievable (Theorem 6.2). The Marton coding scheme is based on the

idea of over-binning and using correlated auxiliary random variables [Mar79]. The

sub-channels to each receiver are essentially point-to-point, but it turns out that the

projector trick technique seems to be necessary in our proof. The Marton coding

scheme gives the best known achievable rate region for the classical-quantum broadcast

channel.

6.2 Superposition coding inner bound

One possible strategy for the broadcast channel is to send a message at a rate that is

low enough that both receivers are able to decode. Furthermore, if we assume that

Receiver 1 has a better reception signal, then the sender can encode a further message

superimposed on top of the common message that Receiver 1 will be able to decode
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given the common message. The sender encodes the common message at rate R using a

codebook generated from a probability distribution pW (w) and the additional message

for Receiver 1 at rate R1 using a conditional codebook with distribution pX|W (x|w).
This is known as the superposition coding strategy [Cov72, Ber73].

Theorem 6.1 (Superposition coding inner bound). Let W be an auxiliary ran-

dom variable, let p = pX|W (x|w)pW (w) be an arbitrary code distribution and let

(X , ρB1B2
x ,HB1B2) be a classical-quantum broadcast channel. The superposition coding

rate region RSC(N , p) consists of all rate pairs (R1, R) such that:

R1 ≤ I(X;B1|W )θ, (6.4)

R ≤ I(W ;B2)θ, (6.5)

R1 +R ≤ I(X;B1)θ, (6.6)

is achievable for the quantum broadcast channel. The information quantities are with

respect to a state θWXB1B2 of the form:

∑

w,x

pW (w)pX|W (x|w) |w〉〈w|W ⊗ |x〉〈x|X ⊗ ρB1B2
x . (6.7)

The superposition coding strategy allows us to construct codes for the broadcast

channel of the form (n,R1, R, 0, ǫ), which have no personal message for Receiver 2. The

task is therefore described as follows:

n · NX→B1B2
(1−ǫ)−→ nR1 · [c→ c1] + nR · [c→ c1c2], (6.8)

where [c→ c1c2] denotes the noiseless transmission of one bit to both receivers.

Proof. The new idea in the proof is to exploit superposition coding and a quantum

simultaneous decoder for the decoding of the first receiver [Cov72, Ber73] instead of

the quantum successive decoding used in [YHD11]. We use a standard HSW decoder

for the second receiver [Hol98, SW97].

Codebook generation. We randomly and independently generate 2nR sequences

wn(m) according to the product distribution
n∏

i=1

pW (wi). For each sequence wn(m),

we then randomly and conditionally independently generate 2nR1 sequences xn(m1,m)

according to the product distribution:
n∏

i=1

pX|W (xi|wi(m)).
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POVM Construction for Receiver 1. We now describe the POVM that Receiver 1

employs in order to decode the transmitted messages. First consider the state we

obtain from (6.7) by tracing over the B2 system:

ρWXB1 =
∑

w,x

pW (w) pX|W (x|w) |w〉〈w|W ⊗ |x〉〈x|X ⊗ ρB1
x .

Consider the following two averaged states:

σ
Bn

1
wn ≡

∑

xn

pXn|Wn(xn|wn) ρ
Bn

1
xn =

n⊗

i=1

(
∑

x

pX|W (x|wi) ρ
B1
x

)

= EXn|wn

{

ρ
Bn

1
Xn

}

,

ρ̄⊗n ≡
∑

wn,xn

pWn(wn)pXn|Wn(xn|wn) ρ
Bn

1
xn =

n⊗

i=1

(
∑

w,x

p(w)p(x|w) ρB1
x

)

= E
Wn,Xn

{

ρ
Bn

1
Xn

}

.

We now introduce the following shorthand notation to denote the conditionally typical

projectors with respect to the output state ρ
Bn

1

Xn(m1,m) and the two averaged states

defined above:

ΠXn(m1,m) ≡ Π
Bn

1
ρXn(m1,m),δ

, ΠWn(m) ≡ Π
Bn

1
σWn(m),δ

, Π ≡ Π
Bn

1
ρ,δ .

Receiver 1 will decode using a POVM {Λm1,m} defined as the square root measurement:

Λm1,m ≡
(
∑

k1,k

Pk1,k

)− 1
2

Pm1,m

(
∑

k1,k

Pk1,k

)− 1
2

, (6.9)

based on the following positive operators:

Pm1,m ≡ Π ΠWn(m) ΠXn(m1,m) ΠWn(m) Π. (6.10)

Note the projector sandwich structure with the more specific projectors on the

inside. We have seen this previously in the construction of the simultaneous decoder

POVM for the quantum multiple access channel.

POVM Construction for Receiver 2. Consider now the state in equation (6.7)

from the point of view of Receiver 2. If we trace over the X and B1 systems, we obtain
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the following state:

ρWB2 =
∑

w

pW (w) |w〉〈w|W ⊗ σB2
w ,

where σB2
w ≡∑x pX|W (x|w) ρB2

x . Define also the state

ρ̄ ≡
∑

w,x

pW (w)pX|W (x|w) ρB2
x . (6.11)

The second receiver uses a standard square root measurement:

Λm ≡
(
∑

k

Pk

)− 1
2

Pm

(
∑

k

Pk

)− 1
2

, (6.12)

based on the following positive operators:

PBn
2

m = Π
Bn

2
ρ̄,δ ΠB2

σWn(m),δ
Π

Bn
2

ρ̄,δ , (6.13)

where the above projectors are typical projectors defined with respect to the states

σ
Bn

2

Wn(m) and ρ̄
⊗n.

Error analysis for Receiver 1. We now analyze the expectation of the average error

probability for the first receiver with the POVM defined in (6.9):

E
Xn,Wn

{

1

M1M2

∑

m1,m

Tr
{(
I − ΓBn

1
m1,m

)
ρB1

Xn(m1,m)

}
}

=
1

M1M2

∑

m1,m

E
Xn,Wn

{

Tr
{(
I − ΓBn

1
m1,m

)
ρB1

Xn(m1,m)

}}

.

Due to the above exchange between the expectation and the average and the symmetry

of the code construction (each codeword is selected randomly and independently), it

suffices to analyze the expectation of the average error probability for the first message

pair (m1 = 1,m = 1), i.e., the last line above is equal to EXn,Wn

{

Tr
{(

I − Γ
Bn

1
1,1

)

ρB1

Xn(1,1)

}}

.

Using the Hayashi-Nagaoka operator inequality (Lemma 3.1 on page 34), we obtain
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the following upper bound on this term:

E
Xn,Wn

{

Tr
[(

I − Γ
Bn

1
1,1

)

ρB1

Xn(1,1)

]}

≤ 2 E
Xn,Wn

{

Tr
{

(I − P1,1) ρ
B1

Xn(1,1)

}}

+ 4
∑

(m1,m) 6=(1,1)

E
Xn,Wn

{

Tr
{

Pm1,m ρB1

Xn(1,1)

}}

. (6.14)

We begin by bounding the term in the first line above. Consider the following

chain of inequalities:

E
Xn,Wn

{

Tr
{

Π′
1,1ρ

B1

Xn(1,1)

}}

= E
Xn,Wn

{

Tr
{

Π ΠWn(1)ΠXn(1,1) ΠWn(1) Π ρB1

Xn(1,1)

}}

≥ E
Xn,Wn

{

Tr
{

ΠXn(1,1) ρB1

Xn(1,1)

}}

− E
Xn,Wn

{∥
∥
∥ρB1

Xn(1,1) − Π ρB1

Xn(1,1) Π
∥
∥
∥
1

}

− E
Xn,Wn

{∥
∥
∥ρB1

Xn(1,1) − ΠWn(1) ρ
B1

Xn(1,1) ΠWn(1)

∥
∥
∥
1

}

≥ 1− ǫ− 4
√
ǫ,

where the first inequality follows from the inequality

Tr {Λρ} ≤ Tr {Λσ}+ ‖ρ− σ‖1 , (6.15)

which holds for all ρ, σ, and Λ such that 0 ≤ ρ, σ,Λ ≤ I. The second inequality follows

from the gentle operator lemma for ensembles (see Lemma 3.2) and the properties of

typical projectors for sufficiently large n.

We now focus on bounding the second term of (6.14). We can expand this term

as follows:

∑

(m1,m) 6=(1,1)

E
Xn,Wn

{

Tr
{

Pm1,mρ
B1

Xn(1,1)

}}

=
∑

m1 6=1

E
Xn,Wn

{

Tr
{

Pm1,1 ρ
B1

Xn(1,1)

}}

(E1)

+
∑

m1,
m 6=1

E
Xn,Wn

{

Tr
{

Pm1,m ρB1

Xn(1,1)

}}

. (E2)

We will now compute the expectation of the first the term, (E1), with respect to
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the code randomness:

E
Xn,Wn

{(E1)} =
∑

m1 6=1

E
Xn,Wn

{

Tr
{

Pm1,1 ρ
B1

Xn(1,1)

}}

=
∑

m1 6=1

E
Xn,Wn

Tr
{

Π ΠWn(1) ΠXn(m1,1) ΠWn(1) Π ρB1

Xn(1,1)

}

≤ 2n[H(B1|WX)+δ]
∑

m1 6=1

E
Xn,Wn

{

Tr
[

Π ΠWn(1)ρXn(m1,1)ΠWn(1)Π ρB1

Xn(1,1)

]}

= 2n[H(B1|WX)+δ]
∑

m1 6=1

E
Wn

{

Tr[ΠWn(1) E
Xn|Wn

{
ρXn(m1,1)

}
ΠWn(1)

Π E
Xn|Wn

{

ρB1

Xn(1,1)

}

Π ]

}

= 2n[H(B1|WX)+δ]
∑

m1 6=1

E
Wn

{
Tr
{
Π ΠWn(1)σWn(1) ΠWn(1) Π σWn(1)

}}

≤ 2n[H(B1|WX)+δ] 2−n[H(B1|W )−δ]
∑

m1 6=1

E
Wn

{
Tr
{
Π ΠWn(1) Π σWn(1)

}}

≤ 2n[H(B1|WX)+δ] 2−n[H(B1|W )−δ]
∑

m1 6=1

E
Wn

{
Tr
{
σWn(1)

}}

≤ 2−n[I(X;B1|W )−2δ] |M1|,

The first inequality is due to the projector trick inequality which states that:

ΠXn(m1,1) ≤ 2n[H(B1|WX)+δ] ρB1

Xn(m1,1)
. (6.16)

The second inequality follows from the properties of typical projectors:

ΠWn(1)σWn(1) ΠWn(1) ≤ 2−n[H(B1|W )−δ]ΠWn(1). (6.17)

We now consider the expectation of the second term (E2) with respect to the

random choice of codebook.

E
Xn,Wn

{(E2)} =
∑

m1,
m 6=1

E
Xn,Wn

{

Tr
{

Pm1,m ρB1

Xn(1,1)

}}

=
∑

m1,
m 6=1

E
Xn,Wn

{

Tr
[

ΠΠWn(m)ΠXn(m1,m)ΠWn(m)Π ρB1

Xn(1,1)

]}
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=
∑

m1,
m 6=1

Tr

[

E
Xn,Wn

{

ΠWn(m) ΠXn(m1,m) ΠWn(m)

}

Π E
Xn,Wn

{

ρB1

Xn(1,1)

}

Π

]

=
∑

m1,
m 6=1

Tr

{

E
Xn,Wn

{
ΠWn(m)ΠXn(m1,m)ΠWn(m)

}
Πρ̄⊗nΠ

}

≤ 2−n[H(B1)−δ]
∑

m1,
m 6=1

Tr

[

E
Xn,Wn

{
ΠWn(m)ΠXn(m1,m)ΠWn(m)

}
Π

]

= 2−n[H(B1)−δ]
∑

m1,
m 6=1

E
Xn,Wn

Tr
[
ΠXn(m1,m)ΠWn(m)ΠΠWn(m)

]

≤ 2−n[H(B1)−δ]
∑

m 6=1, m1

E
Xn,Wn

{
Tr
{
ΠXn(m1,m)

}}

≤ 2−n[H(B1)−δ] 2n[H(B1|WX)+δ] |M1||M2|
= 2−n[I(WX;B1)−2δ] |M1||M2|
= 2−n[I(X;B1)−2δ] |M1||M2|.

The equality I(WX;B1) = I(X;B1) follows from the way the codebook is constructed

(the quantum Markov chain W − X − B). This completes the error analysis for the

first receiver.

Error analysis for Receiver 2. The proof for the second receiver is analogous to

the point-to-point HSW theorem. The following bound holds for the expectation of

the average error probability for the second receiver if n is sufficiently large:

E
Xn,Wn

{

1

|M2|
∑

m

Tr
{(
I − ΛBn

2
m

)
ρ
Bn

2

Xn(m1,m)

}
}

= E
Wn

{

1

|M2|
∑

m

Tr

{
(
I − ΛBn

2
m

)

E
Xn|Wn

{

ρ
Bn

2

Xn(m1,m)

}}
}

= E
Wn

{

1

|M2|
∑

m

Tr
{(
I − ΛBn

2
m

)
σ
Bn

2

Wn(m)

}
}

≤ 2
(
ǫ+ 2

√
ǫ
)
+ 4

[
2−n[I(W ;B2)−2δ] |M2|

]
.

Putting everything together, the joint POVM performed by both receivers is of
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the form: Γ
Bn

1
m1,m ⊗ Λ

Bn
2

m′ , and the expectation of the average error probability for both

receivers is bounded from above as

E
Xn,Wn

1

|M1||M2|
∑

m1,m

Tr
{(
I − ΓBn

1
m1,m

⊗ ΛBn
2

m

)
ρ
Bn

1 B
n
2

Xn(m1,m)

}

≤ E
Xn,Wn

{

1

|M1||M2|
∑

m1,m

Tr
{(
I − ΓBn

1
m1,m

)
ρ
Bn

1

Xn(m1,m)

}
}

+ E
Xn,Wn

{

1

|M1||M2|
∑

m1,m

Tr
{(
I − ΛBn

2
m

)
ρ
Bn

2

Xn(m1,m)

}
}

≤ 4ǫ+ 12
√
ǫ+ 4

[
2−n[I(W ;B2)−2δ] |M2|

]

4
[
2−n[I(X;B1|W )−2δ] |M1|+ 2−n[I(X;B1)−2δ] |M1||M2|

]
,

where the first inequality uses the operator union bound from Lemma 5.1:

IB
n
1 B

n
2 − ΓBn

1
m1,m

⊗ ΛBn
2

m ≤
(
IB

n
1 B

n
2 − ΓBn

1
m1,m

⊗ IB
n
2
)
+
(
IB

n
1 B

n
2 − IB

n
1 ⊗ ΛBn

2
m

)
.

Thus, as long as the sender chooses the message sizes |M1| and |M2| such that |M1| ≤
2n[I(X;B1|W )−3δ], |M2| ≤ 2n[I(W ;B2)−3δ], and |M1||M2| ≤ 2n[I(X;B1)−3δ], then there exists

a particular code with asymptotically vanishing average error probability in the large

n limit.

Taking the union over all possible choices of input distribution pWX(w, x) gives us

the superposition coding inner bound: RSC(N ) ≡ ⋃pWX
RSC(N , pWX).

6.3 Marton coding scheme

We now prove that the Marton inner bound is achievable for quantum broadcast chan-

nels. The Marton scheme depends on auxiliary random variables U1 and U2, binning,

and the properties of strongly2 typical sequences and projectors.

2 The notion of strong typicality or frequency typicality differs from the entropy typicality we have
used until now. See [Wil11, Section 14.2.3].
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Chapter 6 : Broadcast channels

Theorem 6.2 (Marton inner bound). Let {ρB1B2
x } be a classical-quantum broadcast

channel and let x = f(u1, u2) be a deterministic function. The following rate region is

achievable:

R1 ≤ I(U1;B1)θ,

R2 ≤ I(U2;B2)θ, (6.18)

R1 +R2 ≤ I(U1;B1)θ + I(U2;B2)θ − I(U1;U2)θ,

where the information quantities are with respect to the state:

θU1U2B1B2 =
∑

u1,u2

p(u1, u2)|u1〉〈u1|U1 ⊗ |u2〉〈u2|U2 ⊗ ρB1B2

f(u1,u2)
.

The coding scheme in Theorem 6.2 is a broadcast channel code with no common

message: (n,R1, 0, R2, ǫ). The information processing task is described by:

n · NX→B1B2
(1−ǫ)−→ nR1 · [c→ c1] + nR2 · [c→ c2]. (6.19)

Proof. Consider the classical-quantum broadcast channel {N (x) ≡ ρB1B2
x }, and a de-

terministic mixing function: f : U1×U2 → X . Using the mixing function as a pre-coder

to the broadcast channel N , we obtain a channel N ′ defined as:

N ′(u1, u2) ≡ ρB1B2

f(u1,u2)
≡ ρB1B2

u1,u2
. (6.20)

Codebook construction. Define two auxiliary indices ℓ1 ∈ [1 : L1], L1 = 2n[I(U1;B1)−δ]

and ℓ2 ∈ [1 : L2], L2 = 2n[I(U2;B2)−δ]. For each ℓ1 generate an i.i.d. random sequence

un1 (ℓ1) according to pUn
1
(un1 ). Similarly we choose L2 random i.i.d. sequences un2 (ℓ2)

according to pUn
2
(un2 ). Partition the sequences un1 (ℓ1) into 2nR1 different bins Bm1 .

Similarly, partition the sequences un2 (ℓ2) into 2nR2 bins Cm2 . For each message pair

(m1,m2), the sender selects a sequence
(
un1 (ℓ1), u

n
2 (ℓ2)

)
∈ (Bm1 × Cm2) ∩ An

pU1U2
,δ, such

that each sequence is taken from the appropriate bin and the sender demands that they

are strongly jointly typical and otherwise declares failure. The codebook xn(m1,m2)

is deterministically constructed from
(
un1 (ℓ1), u

n
2 (ℓ2)

)
by applying the function xi =

f(u1i, u2i).

Transmission. Let (ℓ1, ℓ2) denote the pair of indices of the joint sequence (u
n
1 (ℓ1), u

n
2 (ℓ2))

which was chosen as the codeword for message (m1,m2). Expressed in terms of these
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indices the output of the channel is

ρ
Bn

1 B
n
2

un
1 (ℓ1),u

n
2 (ℓ2)

=
⊗

i∈[n]

ρB1B2

f(u1i(ℓ1),u2i(ℓ2))
≡ ρℓ1,ℓ2 . (6.21)

Define the following average states for Receiver 1:

ωB1
u1

≡
∑

u2

pU2|U1(u2|u1)ρB1
u1,u2

, ρ̄ ≡
∑

u1

p(u1)ω
B1
u1
. (6.22)

Decoding. The detection POVM for Receiver 1, {Λℓ1}ℓ1∈[1,...,L1]
, is constructed by

using the square-root measurement as in (3.12) based on the following combination of

strongly typical projectors:

Π′
ℓ1
≡ Πn

ρ̄,δ Πun
1 (ℓ1)

Πn
ρ̄,δ. (6.23)

The outcome of the measurement will be denoted L′
1. The projectors Πun

1 (ℓ1)
and Πn

ρ̄,δ

are defined with respect to the states ωun
1 (ℓ1)

and ρ̄⊗n given in (6.22). Note that we use

strongly typical projectors in this case as defined in [Wil11, Section 14.2.3]. Knowing

ℓ1 and the binning scheme, Receiver 1 can deduce the message m1 from the bin index.

Receiver 2 uses a similar decoding strategy to obtain ℓ2 and infer m2.

Error analysis. An error occurs if one (or more) of the following events occurs.

(E0): An encoding error occurs whenever there is no jointly typical sequence in Bm1 ×
Cm2 for some message pair (m1,m2).

(E1): A decoding error occurs at Receiver 1 if L′
1 6= ℓ1.

(E2): A decoding error occurs at Receiver 2 if L′
2 6= ℓ2.

The probability of an encoding error (E0) is bounded like in the classical Mar-

ton scheme [Mar79, EGK10, Cov98]. To see this, we use Cover’s counting argument

[Cov98]. The probability that two random sequences un1 , u
n
2 chosen according to

the marginals are jointly typical is 2−nI(U1;U2) and since there are 2n[I(U1;B1)−R1] and

2n[I(U2;B2)−R2] sequences in each bin, the expected number of jointly typical sequences

that can be constructed from each combination of bins is

2n[I(U1;B1)−R1]2n[I(U2;B2)−R2]2−nI(U1;U2). (6.24)
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Thus, if we choose R1 +R2 + δ ≤ I(U1;B1) + I(U2;B2)− I(U1;U2), then the expected

number of strongly jointly typical sequences in Bm1 × Cm2 is much larger than one.

To bound the probability of error event (E1), we use the Hayashi-Nagaoka operator

inequality (Lemma 3.1):

Pr(E1) =
1

L1

∑

ℓ1

Tr [(I − Λℓ1)ρℓ1,ℓ2 ]

≤ 1

L1

∑

ℓ1

(

2Tr
[
(I − Πn

ρ̄,δΠun
1 (ℓ1)

Πn
ρ̄,δ)ρℓ1,ℓ2

]

︸ ︷︷ ︸

(T1)

+ 4
∑

ℓ′1 6=ℓ1

Tr
[
Πn

ρ̄,δΠun
1 (ℓ

′
1)
Πn

ρ̄,δρℓ1,ℓ2
]

︸ ︷︷ ︸

(T2)

)

.

Consider the following lemma [Wil11, Property 14.2.7].

Lemma 6.1. When un1 (ℓ1) and un2 (ℓ2) are strongly jointly typical, the state ρℓ1,ℓ2 is

well supported by both the averaged and conditionally typical projector in the sense

that: Tr
[
Πn

ρ̄,δ ρℓ1,ℓ2
]
≥ 1− ǫ, ∀ℓ1, ℓ2, and Tr

[
Πun

1 (ℓ1)
ρℓ1,ℓ2

]
≥ 1− ǫ, ∀ℓ2,

To bound the first term (T1), we use the following argument:

1− (T1) = Tr
[
Πn

ρ̄,δΠun
1 (ℓ1)

Πn
ρ̄,δ ρℓ1,ℓ2

]

= Tr
[
Πun

1 (ℓ1)
Πn

ρ̄,δρℓ1,ℓ2Π
n
ρ̄,δ

]

≥ Tr
[
Πun

1 (ℓ1)
ρℓ1,ℓ2

]
− ‖Πn

ρ̄,δρℓ1,ℓ2Π
n
ρ̄,δ − ρℓ1,ℓ2‖1

≥ (1− ǫ)− 2
√
ǫ, (6.25)

where the inequalities follow from (6.15) and Lemma 6.1. This use of Lemma 6.1

demonstrates why the Marton coding scheme selects the sequences un1 (ℓ1) and u
n
2 (ℓ2)

such that they are strongly jointly typical.

To bound the second term, we begin by applying a variant of the projector trick

from (6.16). For what follows, note that the expectation EU1,U2 over the random code
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is with respect to the product distribution pUn
1
(un1 )pUn

2
(un2 ):

E
U1,U2

{(T2)} = E
U1,U2







∑

ℓ′1 6=ℓ1

Tr
[
Πn

ρ̄,δΠUn
1 (ℓ′1)

Πn
ρ̄,δ ρℓ1,ℓ2

]







≤ 2n[H(B1|U1)+δ]
E

U1,U2







∑

ℓ′1 6=ℓ1

Tr
[
Πn

ρ̄,δ ωℓ′1
Πn

ρ̄,δ ρℓ1,ℓ2
]






.

We continue the proof using averaging over the choice of codebook and the properties

of typical projectors:

= 2n[H(B1|U1)+δ]
E
U2

∑

ℓ′1 6=ℓ1

Tr

[

Πn
ρ̄,δ E

U1

{
ωℓ′1

}
Πn

ρ̄,δ E
U1

{ρℓ1,ℓ2}
]

= 2n[H(B1|U1)+δ]
E
U2

∑

ℓ′1 6=ℓ1

Tr

[

Πn
ρ̄,δ ρ̄ Πn

ρ̄,δ E
U1

{ρℓ1,ℓ2}
]

≤ 2n[H(B1|U1)+δ]2−n[H(B1)−δ]
E

U1,U2

∑

ℓ′1 6=ℓ1

Tr
[
Πn

ρ̄,δ ρℓ1,ℓ2
]

≤ 2n[H(B1|U1)+δ]2−n[H(B1)−δ]
E

U1,U2

∑

ℓ′1 6=ℓ1

1

≤ |L1| 2−n[I(U1;B1)−2δ].

Therefore, if we choose 2nR1 = |L1| ≤ 2n[I(U1;B1)−3δ], the probability of error will go to

zero in the asymptotic limit of many channel uses. The analysis of the event (E2) is

similar.

6.4 Discussion

We established two achievable rate regions for the classical-quantum broadcast channel.

In each case a fundamentally different coding strategy was used.

The superposition coding strategy is a very powerful coding technique for encod-

ing two “layers” of messages in the same codeword. Recall that the codebooks in

the Chong-Motani-Garg coding strategy were also constructed using the superposition

coding technique. In the next chapter, we will use this technique to build codes for the

relay channel.
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The binning strategy used in the Marton scheme is also applicable more widely.

It can be used every time two uncorrelated messages must be encoded into a single

codeword. From the point of view of Receiver 1, the messages intended for Receiver 2

are seen as random noise. By using the correlated variables (U1, U2) ∼ p(u1, u2) to con-

struct the codebooks we can obtain better rates than would be possible if independent

codebooks were used. This is because the “noise” codewords are now correlated with

the messages for Receiver 1 and thus helping him with the communication task.

Note that the above two techniques can be combined to give the quantum Marton

coding scheme with a common message [Tak12].
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Chapter 7

Relay channels

Suppose that a source wishes to communicate with a remote destination and that a

relay station is available which can decode the messages transmitted by the source

during one time slot and forward them to the destination during the next time slot.

With the relay’s help, the source and the destination can improve communication rates

because the destination can decode the intended messages in parallel from the channel

outputs during two consecutive time slots. In this way, useful information is received

both from the source and the relay.

xS

y1

R

 

x1

y D
 

 

Figure 7.1: The classi-
cal relay channel.

The discrete memoryless relay channel is a probabilistic

model for a communication scenario with a source, a destina-

tion and a cooperative relay station. The channel is modelled

as a two-input two-output conditional probability distribution

p(y1, y|x, x1), (7.1)

where x is the input of the source, y1 and x1 are the received

symbol and transmitted symbol of the relay, and y is the out-

put at the destination. This relay channel model is very gen-

eral and contains many of the other ideas presented in this thesis. The transmission

of the source towards the relay and the destination is a kind of broadcast channel,

whereas the decoding at the destination is an instance of the multiple access channel.

These correspondences can inform our choice of coding strategies, but in order to take

full advantage of the communication network we must build a relay channel code which

aims to achieve the best overall rate from the source to the destination.
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7.1 Introduction

In this chapter, we will review some of the coding strategies for the classical relay

channel and then show that the partial decode-and-forward strategy can be applied

to the classical-quantum relay channel. Note that we depart from the usual naming

conventions for senders and receivers. We do so because both the source and the relay

act as senders in our scenario, so more specific identifiers are necessary.

7.1 Introduction

Consider two villages located in a valley that wish to establish a communication link

between them using a direct link and also with the help of a radio tower on a nearby

mountain peak. We can setup a relay station on the tower, which decodes the messages

from the source village and retransmits them towards the destination village. Assuming

the villagers only have access to point-to-point communication technologies, they now

have two obvious options. Either they send information on the direct transmission

link, or they use full relaying, where all their communication happens via the tower.

In the first case, the tower is not used at all and in the second case the direct link is

not used at all.

It is worthwhile to examine the exact timing associated with the information flow

in the latter scenario, since it is the first appearance of a multi-hop communication

protocol. Let us assume that the source wants to send the string “constitution” to

the destination. Assume that we use codewords of size n, and that each character is

encoded in a separate codeword. The source and the relay have transmit codebooks

{Xn
s (a)}, {Xn

r (a)}, a ∈ ASCII.

The direct transmission strategy will make 12n uses of the channel. The trans-

missions of the source will be [Xn
s (c), X

n
s (o), X

n
s (n), . . . , X

n
s (n)] in each block. The

relay will transmit a fixed codeword during this time. The destination will simply

use a point-to-point decoder to extract the messages. The rate achievable using this

strategy is given by:

R ≤ sup
p(x),x1

I(X;Y |X1 = x1). (7.2)

The full relaying strategy will use the channel 13n times, where the need for an

extra block of transmission is introduced by the decoding delay at the relay. During the

13 blocks, the transmissions of the source will be [Xn
s (c), X

n
s (o), X

n
s (n), . . . , X

n
s (n), ∅],
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whereas the transmissions of the relay are one block behind: [∅, Xn
r (c), X

n
r (o), . . . ,

Xn
r (o), X

n
r (n)]. The source simply has no more messages to send during block 13,

whereas the relay has no information to forward during the first block, so both parties

will stay silent during these different times. The rates that are achievable by this

approach are:

R ≤ sup
p(x),p(x1)

min{I(X1;Y ), I(X;Y1|X1)}. (7.3)

This corresponds to the minimum of the point-to-point capacities of the two legs of

the transmission. Note that the second mutual information term is conditional on X1,

since the relay knows its own transmit signal.

Surely a better strategy must exist than the ones described above. How can we

use both the direct link and the relayed link at the same time?

7.1.1 Classical relay channel coding strategies

Two important families of coding strategies exist for relay channels: compress and

forward and decode and forward [CEG79, EGK10].

In compress-and-forward strategies, the relay does not try to decode the message

from his received signal Y n
1 , but simply searches for a close sequence Ŷ n

1 chosen from

a predetermined compression codebook. To continue the example from the previous

section, suppose that the relay’s decoding simply tries to determine whether the trans-

mitted message is a vowel or a consonant. This partial information about the message

is then forwarded to the destination during the next block, encoded into a codeword

xn1 (s), s ∈ {consonant, vowel} to serve as side-information for the decoding at the

destination.

Compress and forward strategies are appropriate in situations where the direct link

between the source and the destination is stronger than the link from the source to

the relay. In such a situation it would be disadvantageous to require that the messages

from the source be fully decoded by the relay. Still, if the relay decodes something

and forwards this information to the destination, better rates are achievable than if we

simply chose to not use the relay as in the direct coding approach [EGK10].

In a decode-and-forward strategy, each of the transmitted messages is decoded by

the relay and retransmitted during the next block. Using this strategy, the destination
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can decode useful information both from the source and the relay. In this way we could

achieve the maximum possible throughput to the destination I(X,X1;Y ).

There are at least three decoding strategies that can be used by the destination:

backwards decoding, sequential decoding with binning at the relay, or collective decod-

ing of consecutive output blocks of the channel (joint decoding). All three decoding

techniques for the decode-and-forward strategy achieve the same rate:

R ≤ max
p(x,x1)

min{ I(X,X1;Y ), I(X;Y1|X1)}. (7.4)

We will focus on the collective decoding strategy.

To illustrate the collective decoding strategy let us consider again the situation in

which the source village is transmitting the string “constitution” to the destination

village. The transmission will take 13 block-uses of the channel. Figure 7.2 illustrates

the flow of information for the character n which happens during the third and fourth

block-uses of the channel. During the third and the fourth transmission blocks, the

destination has collected the output variables (Y n
(3), Y

n
(4)) and will perform a decoding

operation on both outputs collectively. The rate I(X,X1;Y ) is obtained from the

decomposition I(X,X1;Y ) = I(X;Y |X1)+ I(X1;Y ), where the second term will come

from the probability of making a mistake when decoding xn1(4)(n) from Y n
(4) and the first

terms comes from the probability of wrongly decoding xn(3)(n) from Y n
(3).

xn(3)(n|o)S

Y n
1(3):

R

n

xn1(3)(o)

Y n
(3) D

n, o

o

(a) During block 3, the relay will transmit its
codeword “o”, which we assume was received
in the previous block. The source transmits
a codeword xn(n|o) which is chosen from a
coherent codebook.

xn(4)(s|n)S

Y n
1(4):

R

s

xn1(4)(n)

Y n
(4) D

s, n

n

(b) During block 4, the relay will transmit
its codeword for “n”, which we assume was
received in the previous block. The source
transmits a codeword xn(s|n).

Figure 7.2: Information flow in the relay network during the third and fourth transmission
blocks of the string “constitution”.
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Observe that the optimization in (7.4) is taken over all joint input distributions

pXX1(x, x1), which would seem to contradict the assumption that the source and the

relay are different parties and cannot synchronize their encoding. Recall that in the

multiple access channel problem, the assumption that the senders act independently

translated to the optimization over all product distributions pX1(x1)pX2(x2) in (4.6).

The change from pX(x)pX1(x1) to pXX1(x, x1) is allowed because the source uses

a coherent codebook. The codewords for the relay are chosen according to pX1(x1),

whereas the codewords for the sender are chosen according to pX|X1(x|x1) conditional
on the codeword of the relay. But how could the source possibly know what the relay

will be transmitting during each time instant? No telepathic abilities are necessary —

only optimism. The source knows what the relay will be transmitting because, if the

protocol is working, it should be the codeword from the previous block.

The partial decode-and-forward strategy differs from the decode-and-forward strat-

egy in that it requires the relay to decode only part of the message from the source

[CEG79]. The idea is similar to the partial interference cancellation strategy used by

Han and Kobayashi for the interference channel [HK81], which is its contemporary.

7.1.2 Quantum relay channels

xTx

ρ
B1
x,x1

Re

 

x1

ρBx,x1 Rx
 

 

Figure 7.3: The quan-
tum relay channel ρB1B

x,x1
.

A classical-quantum relay channel N is a map with two

classical inputs x and x1 and two output quantum sys-

tems B1 and B. For each pair of possible input symbols

(x, x1) ∈ X × X1, the channel prepares a density operator

ρB1B
x,x1

defined on the tensor-product Hilbert space HB1 ⊗HB:

ρB1B
x,x1

≡ NXX1→B1B(x, x1), (7.5)

where B1 is the relay output and B is the destination output.

7.1.3 Chapter overview

In this chapter we develop the partial decode-and-forward strategy for classical-quantum

relay channels [SWV12]. This partial decoding at the relay is a more general strategy
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than the full decode-and-forward strategy in the same way that the partial interfer-

ence cancellation strategy for the interference channel (the Han-Kobayashi strategy)

was more general than a full interference cancellation strategy.

Our results are the first extension of the quantum simultaneous decoding tech-

niques used in [FHS+12, Sen12a] to multi-hop networks. The decoding is based on

a novel “sliding-window” quantum measurement (see [Car82, XK05]) which involves

a collective measurement on two consecutive blocks of the output in order to extract

information from both the Sender and the relay.

The next section will describe the coding strategy in more detail and state our

results. The proof is given in Section 7.3.

7.2 Partial decode-and-forward strategy

The idea for the code construction is to use a split codebook strategy where the source

decomposes the message set into the Cartesian product of two different sets L and M.

We can think of the set L consisting of common messages that both the relay and

the destination decode, while the set M consists of personal messages that only the

destination decodes.

In the context of our coding strategy, we analyze the average probability of error

at the relay:

p̄Re ≡ 1

|L|
∑

ℓj

Tr
{(

I − Γ
Bn

1(j)

ℓj

)

ρ
Bn

1(j)

ℓj

}

,

and the average probability of error at the destination:

p̄De ≡ 1

|M||L|
∑

mj ,ℓj

Tr
[(

I − Λ
Bn

(j)
Bn

(j+1)

mj ,ℓj

)

ρ
Bn

(j)
Bn

(j+1)

mj ,ℓj

]

. (7.6)

The operators
(
I − Γℓj

)
and

(
I − Λmj ,ℓj

)
correspond to the complements of the correct

decoding outcomes.

Definition 7.1. An (n,R, ǫ) partial decode-and-forward code for the quantum relay

channel consists of two codebooks {xn(mj, ℓj)}mj∈M,ℓj∈L and {xn1 (ℓj)}ℓj∈L and decoding

POVMs
{
Γℓj

}

ℓj∈L
(for the relay) and

{
Λmj ,ℓj

}

mj∈M,ℓj∈L
(for the destination), such that
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the average probability of error is bounded from above as pe = p̄Re + p̄De ≤ ǫ.

A rate R is achievable if there exists an (n,R− δ, ǫ) quantum relay channel code

for all ǫ, δ > 0 and sufficiently large n.

The theorem below captures the main result of this chapter.

Theorem 7.1 (Partial decode-and-forward inner bound). Let {ρx,x1} be a cc-qq relay

channel as in (7.5). Then a rate R is achievable, provided that the following inequality

holds:

R ≤ max
p(u,x,x1)

min

{

I(XX1;B)θ ,

I(U ;B1|X1)θ + I(X;B|X1U)θ

}

, (7.7)

where the information quantities are with respect to the classical-quantum state

θUXX1B1B ≡
∑

x,u,x1

p(u, x, x1) |u〉〈u|U ⊗ |x〉〈x|X ⊗ |x1〉〈x1|X1 ⊗ ρB1B
x,x1

. (7.8)

Our code construction employs codebooks {xn1}, {un}, and {xn} generated accord-

ing to the distribution p(x1)p(u|x1)p(x|u, x1). We split the message for each block into

two parts (m, ℓ) ∈ M×L such that we have R = Rm+Rℓ. The relay fully decodes the

message ℓ and re-encodes it directly (without using binning) in the next block. The

destination exploits a “sliding-window” decoding strategy [Car82, XK05] by perform-

ing a collective measurement on two consecutive blocks. In this approach, the message

pair (mj, ℓj) sent during block j is decoded from the outputs of blocks j and j + 1,

using an “and-measurement.”

7.3 Achievability proof

We divide the channel uses into many blocks and build codes in a randomized, block-

Markov manner within each block. The channel is used for b blocks, each indexed by

j ∈ {1, . . . , b}. Our error analysis shows that:

• The relay can decode the message ℓj during block j.

• The destination can simultaneously decode (mj, ℓj) from a collective measure-

ment on the output systems of blocks j and j + 1.

The error analysis at the relay is similar to that of the Holevo-Schumacher-Westmoreland

theorem [Hol98, SW97]. The message ℓj can be decoded reliably if the rate Rℓ obeys
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the following inequality:

Rℓ ≤ I (U ;B1|X1)θ . (7.9)

The decoding at the destination is a variant of the quantum simultaneous decoder

from Theorem 4.2. To decode the message (mj, ℓj), the destination performs a “sliding-

window” decoder, implemented as an “and-measurement” on the outputs of blocks j

and j + 1. This coding technique does not require binning at the relay or backwards

decoding at the destination [Car82, XK05].

In this section, we give the details of the coding strategy and analyze the probability

of error for the destination and the relay.

Codebook construction. Fix a code distribution p(u, x, x1) = p(x1)p(u|x1)p(x|x1, u)
and independently generate a different codebook for each block j as follows:

• Randomly and independently generate 2nRℓ sequences xn1 (ℓj−1), ℓj−1 ∈
[
1 : 2nRℓ

]
,

according to
n∏

i=1

p(x1i).

• For each xn1 (ℓj−1), randomly and independently generate 2nRℓ sequences un(ℓj, ℓj−1),

ℓj ∈
[
1 : 2nRℓ

]
according to

n∏

i=1

p (ui|x1i(ℓj−1)).

• For each xn1 (ℓj−1) and each corresponding un(ℓj, ℓj−1), randomly and indepen-

dently generate 2nRm sequences xn(mj, ℓj, ℓj−1), mj ∈
[
1 : 2nRm

]
, according to

the distribution:
n∏

i=1

p
(
xi|x1i(ℓj−1) , ui(ℓj, ℓj−1)

)
.

Transmission. The transmission of (mj, ℓj) to the destination happens during

blocks j and j +1 as illustrated in Figure 7.4. At the beginning of block j, we assume

that the relay has correctly decoded the message ℓj−1. During block j, the source inputs

the new messages mj and ℓj, and the relay forwards the old message ℓj−1. That is,

their inputs to the channel for block j are the codewords xn(mj, ℓj, ℓj−1) and x
n
1(ℓj−1),

leading to the following state at the channel outputs:

ρ
(j)
mj ,ℓj ,ℓj−1

≡ ρ
Bn

1(j)
Bn

(j)

xn(mj ,ℓj ,ℓj−1),xn
1 (ℓj−1)

.
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During block j +1, the source transmits (mj+1, ℓj+1) given ℓj, whereas the relay

sends ℓj, leading to the state:

ρ
(j+1)
mj+1,ℓj+1,ℓj

≡ ρ
Bn

1(j+1)
Bn

(j+1)

xn(mj+1,ℓj+1,ℓj),xn
1 (ℓj)

.

Our shorthand notation is such that the states are identified by the messages that they

encode, and the codewords are implicit.

xn(2)(n, s, o)S

Y n
1(2):

R

s

xn1(2)(o)

Y n
(2) D

n, s, o

o

(a) During block 2, the relay will
transmit its codeword xn1(2)(o). We
assume “o” was correctly decoded
by the relay during the previous
block. The source transmits a
codeword xn(2)(n, s, o).

xn(3)(t, i, s)S

Y n
1(3):

R

i

xn1(3)(s)

Y n
(3) D

t, i, s

s

(b) During block 3, the re-
lay will transmit its codeword
xn1(3)(s), which encodes the mes-
sage ℓ2 =“s” transmitted by the
source during block 2. The
source transmits the codeword
xn(3)(t, i, s).

Figure 7.4: Information flow in the relay network during the second and third trans-
mission blocks of the string “co ns ti tu ti on” when using the partial decode-and-
forward strategy. The messages for each block (two characters) are encoded by the
Sender using a codebook xn(mj , ℓj , ℓj−1) during block j. The messages pairs (mj , ℓj)
for the seven uses of the channel are: {(c, o), (n, s), (t, i), (t, u), (t, i), (o, n), (∅, ∅)} The
source codebook depends on the current message pair (mj , ℓj) as well as the mes-
sage ℓj−1 of the previous block, so the transmitted codewords during the seven blocks
are: {xn(1)(c, o, ∅), xn(2)(n, s, o), xn(3)(t, i, s), xn(4)(t, u, i), xn(5)(t, i, u), xn(6)(o, n, i), xn(7)(∅, ∅, n)} and
{xn1(1)(∅), xn1(2)(o), xn1(3)(s), xn1(4)(i), xn1(5)(u), xn1(6)(i), xn1(7)(n)}.

7.3.1 Decoding at the destination

We now determine a decoding POVM that the destination can perform on the output

systems spanning blocks j and j + 1. The destination is trying to recover messages ℓj

and mj given knowledge of ℓj−1.

First let us consider forming decoding operators for block j+1. Consider the state
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obtained by tracing over the systems X, U , and B1 in (7.8):

θX1B =
∑

x1

p(x1) |x1〉〈x1|X1 ⊗ τBx1
,

where τBx1
≡∑u,x p(x|x1, u) p(u|x1) ρBx,x1

. Also, let τ̄B denote the following state: τ̄B ≡
∑

x1
p(x1) τ

B
x1
. Corresponding to the above states are conditionally typical projectors

of the following form:

Π(j+1)
τℓj

≡ Π
Bn

(j+1)

τxn1 (ℓj)
,δ, Π

(j+1)
τ̄ ≡ Π

Bn
(j+1)

τ̄⊗n,δ ,

which we combine to form the positive operator:

P
Bn

(j+1)

ℓj
≡ Π

(j+1)
τ̄ Π(j+1)

τℓj
Π

(j+1)
τ̄ , (7.10)

that acts on the output systems Bn
(j+1) of block j + 1.

Let us now form decoding operators for block j. Define the conditional typical

projector for the state ρ
(j)
mj ,ℓj ,ℓj−1

as

Π(j)
ρmj,ℓj |ℓj−1

≡ Π
Bn

(j)
ρxn(mj,lj ,lj−1),x

n
1 (lj−1),δ

. (7.11)

The state obtained from (7.8) by tracing over X and B1 is

θUX1B =
∑

u,x1

p(u|x1) p(x1) |u〉〈u|U ⊗ |x1〉〈x1|X1 ⊗ ρ̄Bu,x1
,

where ρ̄Bu,x1
≡∑x p(x|x1, u) ρBx,x1

. We can trace out over U as well to obtain the doubly

averaged state ¯̄ρBx1
≡∑u,x p(x|x1, u) p(u|x1) ρBx,x1

.

The following conditionally typical projectors will be used in the decoding:

Π
(j)
ρ̄ℓj |ℓj−1

≡ Π
Bn

(j)

ρ̄un(lj ,lj−1),x
n
1 (lj−1)

,δ, Π
(j)
¯̄ρ|ℓj−1

≡ Π
Bn

(j)

¯̄ρxn1 (lj−1)
,δ.

We can then form a positive operator “sandwich”:

P
Bn

(j)

mj ,ℓj |ℓj−1
≡ Π

(j)
¯̄ρ|ℓj−1

Π
(j)
ρ̄ℓj |ℓj−1

Π(j)
ρmj,ℓj |ℓj−1

Π
(j)
ρ̄ℓj |ℓj−1

Π
(j)
¯̄ρ|ℓj−1

. (7.12)

Finally, we combine the positive operators from (7.10) and (7.12) to form the “sliding-
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window” positive operator:

P
Bn

(j)
Bn

(j+1)

mj ,ℓj |ℓj−1
= P

Bn
(j)

mj ,ℓj |ℓj−1
⊗ P

Bn
(j+1)

ℓj
, (7.13)

from which we can build the destination’s measurement Λ
Bn

(j)
Bn

(j+1)

mj ,ℓj |ℓj−1
using the square-root

normalization. This measurement is what we call the “and-measurement.”

Error analysis at the destination. In this section, we prove that the desti-

nation can correctly decode the message pair (mj, ℓj) by employing the measurement

{ΛBn
(j)

Bn
(j+1)

mj ,ℓj |ℓj−1
} on the output state ρ

(j)
mjℓjℓj−1

⊗ρ(j+1)
mj+1ℓj+1ℓj

spanning blocks j and j + 1. The

average probability of error for the destination is given in (7.6). For now, we consider

the error analysis for a single message pair (mj, ℓj):

p̄De ≡ Tr
[(

I −Λ
Bn

(j)
Bn

(j+1)

mj ,ℓj |ℓj−1

)

ρ
(j)
mjℓjℓj−1

⊗ρ(j+1)
mj+1ℓj+1ℓj

]

.

≤ 2 Tr
{(

I − P
Bn

(j)
Bn

(j+1)

mj ,ℓj |ℓj−1

)

ρ
(j)
mjℓjℓj−1

⊗ρ(j+1)
mj+1ℓj+1ℓj

}

(I)

+ 4
∑

(ℓ′j ,m′
j) 6=(ℓj ,mj)

Tr
{

P
Bn

(j)
Bn

(j+1)

m′
j ,ℓ

′
j |ℓj−1

ρ
(j)
mjℓjℓj−1

⊗ρ(j+1)
mj+1ℓj+1ℓj

}

, (II)

where we used the Hayashi-Nagaoka inequality (Lemma 3.1) to decompose the error

operator (I−Λ
Bn

(j)
Bn

(j+1)

mj ,ℓj |ℓj−1
) into two components: (I) a term related to the probability that

the correct detector does not “click”: (I−PBn
(j)

Bn
(j+1)

mj ,ℓj |ℓj−1
), and (II) another term related to

the probability that a wrong detector “clicks”:
∑

(ℓ′j ,m′
j)
P

Bn
(j)

Bn
(j+1)

m′
j ,ℓ

′
j |ℓj−1

,
(
ℓ′j,m

′
j

)
6= (ℓj,mj).

These two errors are analogous to the classical error events in which an output sequence

yn is either not jointly typical with the transmitted codeword or happens to be jointly

typical with another codeword.

We will bound the expectation of the average probability of error EUnXnXn
1

{
p̄De
}
by

bounding the expectation of the average probability for the two error terms: EUnXnXn
1
{(I)}

and EUnXnXn
1
{(II)}.

The first term (I) is bounded by using the properties of typical projectors and the

operator union bound from Lemma 5.1, which allows us to analyze the errors for the

two blocks separately. Because 0 ≤ P
Bn

(j)

mj ,ℓj |ℓj−1
≤ I and 0 ≤ P

Bn
(j+1)

ℓj
≤ I, we have:

(

I − P
Bn

(j)

mj ,ℓj |ℓj−1
⊗PBn

(j+1)

ℓj

)

≤
(

I − P
Bn

(j)

mj ,ℓj |ℓj−1

)

+
(

I − P
Bn

(j+1)

ℓj

)

. (7.14)
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We use the definition of P
Bn

(j)
Bn

(j+1)

mj ,ℓj |ℓj−1
from (7.13) and the inequality (7.14) to obtain:

Tr
[(

I − P
Bn

(j)
Bn

(j+1)

mj ,ℓj |ℓj−1

)

ρ
(j)
mjℓjℓj−1

⊗ρ(j+1)
mj+1ℓj+1ℓj

]

= Tr
[(

I − P
Bn

(j)

mj ,ℓj |ℓj−1
⊗PBn

(j+1)

ℓj

)

ρ
(j)
mjℓjℓj−1

⊗ρ(j+1)
mj+1ℓj+1ℓj

]

≤ Tr
[(

I − P
Bn

(j)

mj ,ℓj |ℓj−1

)

ρ
(j)
mj ,ℓj ,ℓj−1

]

︸ ︷︷ ︸

α

Tr
[

ρ
(j+1)
mj+1,ℓj+1,ℓj

]

︸ ︷︷ ︸

=1

+

+ Tr
[

ρ
(j)
mj ,ℓj ,ℓj−1

]

︸ ︷︷ ︸

=1

Tr
[(

I − P
Bn

(j+1)

ℓj

)

ρ
(j+1)
mj+1,ℓj+1,ℓj

]

︸ ︷︷ ︸

β

,

where we defined the error terms α and β associated with block j and block (j + 1).

We proceed to bound the term β as follows:

β = Tr
[(

I − P
Bn

(j+1)

ℓj

)

ρ
(j+1)
mj+1,ℓj+1,ℓj

]

= Tr
[(

I − Π
(j+1)
τ̄ Π(j+1)

τℓj
Π

(j+1)
τ̄

)

ρ
(j+1)
mj+1,ℓj+1,ℓj

]

= 1− Tr
[

Π
(j+1)
τ̄ Π(j+1)

τℓj
Π

(j+1)
τ̄ ρ

(j+1)
mj+1,ℓj+1,ℓj

]

≤ 1− Tr
[

Π(j+1)
τℓj

ρ
(j+1)
mj+1,ℓj+1,ℓj

]

+
∥
∥
∥Π

(j+1)
τ̄ ρ

(j+1)
mj+1,ℓj+1,ℓj

Π
(j+1)
τ̄ − ρ

(j+1)
mj+1,ℓj+1,ℓj

∥
∥
∥
1
,

where the inequality follows from Lemma 2.20. We will analyze the terms labeled α

and β separately.

By taking the expectation over the code randomness, we obtain the upper bound:

E
UnXnXn

1

{β} = 1− E
Xn

1

Tr

[

Π(j+1)
τℓj

E
UnXn|Xn

1

{

ρ
(j+1)
mj+1,ℓj+1,ℓj

}]

+ E
UnXnXn

1

∥
∥
∥Π

(j+1)
τ̄ ρ

(j+1)
mj+1,ℓj+1,ℓj

Π
(j+1)
τ̄ − ρ

(j+1)
mj+1,ℓj+1,ℓj

∥
∥
∥
1

≤ 1− (1− ǫ) + 2
√
ǫ.

The inequality follows from EUnXn|Xn
1

{

ρ
(j+1)
mj+1,ℓj+1,ℓj

}

= τℓj , the properties of typical

projectors: EXn
1
Tr[Π

(j+1)
τℓj

τℓj ] ≥ 1− ǫ, Tr[Π
(j+1)
τ̄ τ̄ ] ≥ 1− ǫ and Lemma 3.2.

The error term α is bounded in a similar fashion.
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We can split the sum in the second error term (II) as follows:

∑

(ℓ′j ,m′
j) 6=(ℓj ,mj)

Tr
[

P
Bn

(j)
Bn

(j+1)

m′
j ,ℓ

′
j |ℓj−1

ρ
(j)
mjℓjℓj−1

⊗ρ(j+1)
mj+1ℓj+1ℓj

]

=
∑

m′
j 6=mj

Tr
[

P
Bn

(j)
Bn

(j+1)

m′
j ,ℓj |ℓj−1

ρ
(j)
mjℓjℓj−1

⊗ρ(j+1)
mj+1ℓj+1ℓj

]

︸ ︷︷ ︸

(A)

+
∑

l′j 6=lj , m′
j

Tr
[

P
Bn

(j)
Bn

(j+1)

m′
j ,ℓ

′
j |ℓj−1

ρ
(j)
mjℓjℓj−1

⊗ρ(j+1)
mj+1ℓj+1ℓj

]

︸ ︷︷ ︸

(B)

.

We now analyze the two terms (A) and (B) separately.

Matching ℓj, wrong mj. Assuming ℓj is decoded correctly, we show that the mes-

sage mj will be decoded correctly provided Rm < I(X;B|UX1) = H(B|UX1) −
H(B|UXX1)− δ. We will use the following properties of typical projectors:

Π(j)
ρm′

j
,ℓj |ℓj−1

≤2n[H(B|UXX1)+δ]ρ
(j)

m′
j ,ℓj ,ℓj−1

, (7.15)

Π
(j)
ρ̄ℓj |ℓj−1

ρ̄
(j)
ℓj ,ℓj−1

Π
(j)
ρ̄ℓj |ℓj−1

≤2−n[H(B|UX1)−δ]Π
(j)
ρ̄ℓj |ℓj−1

. (7.16)

Consider the first term:

(A) =
∑

m′
j 6=mj

Tr
[

P
Bn

(j)
Bn

(j+1)

m′
j ,ℓj |ℓj−1

ρ
(j)
mjℓjℓj−1

⊗ρ(j+1)
mj+1ℓj+1ℓj

]

=
∑

m′
j 6=mj

Tr
[(

P
Bn

(j)

m′
j ,ℓj |ℓj−1

⊗PBn
(j+1)

ℓj

)

ρ
(j)
mj ,ℓj ,ℓj−1

⊗ρ(j+1)
mj+1,ℓj+1,ℓj

]

≤
∑

m′
j 6=mj

Tr
[

P
Bn

(j)

m′
j ,ℓj |ℓj−1

⊗IBn
(j+1) ρ

(j)
mj ,ℓj ,ℓj−1

⊗ ρ
(j+1)
mj+1,ℓj+1,ℓj

]

=
∑

m′
j 6=mj

Tr
[

P
Bn

(j)

m′
j ,ℓj |ℓj−1

ρ
(j)
mj ,ℓj ,ℓj−1

]

=
∑

m′
j 6=mj

Tr

[

Π
(j)
¯̄ρ|ℓj−1

Π
(j)
ρ̄ℓj |ℓj−1

①
︷ ︸︸ ︷

Π(j)
ρm′

j
,ℓj |ℓj−1

Π
(j)
ρ̄ℓj |ℓj−1

︸ ︷︷ ︸

②

Π
(j)
¯̄ρ|ℓj−1

ρ
(j)
mj ,ℓj ,ℓj−1

]
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We now upper bound expression ① using (7.15) and take the conditional expectation

with respect to Xn:

E
Xn|UnXn

1

{

ρ
(j)

m′
j ,ℓj ,ℓj−1

}

= ρ̄
(j)
ℓj ,ℓj−1

,

which is independent of the state ρ
(j)
mj ,ℓj ,ℓj−1

since m′
j 6= mj. The resulting expression

in ② has the state ρ̄
(j)
ℓj ,ℓj−1

sandwiched between its typical projector on both sides, and

so we can use (7.16). After these steps, we obtain the upper bound:

E
Xn|UnXn

1

{(A)} ≤ 2n[H(B|XUX1)+δ] 2−n[H(B|UX1)−δ]×
× E

Xn|UnXn
1

∑

m′
j 6=mj

Tr
[

Π
(j)
¯̄ρ|ℓj−1

Π
(j)
ρ̄ℓj |ℓj−1

Π
(j)
¯̄ρ|ℓj−1

ρ
(j)
mj ,ℓj ,ℓj−1

]

≤ 2n[H(B|XUX1)+δ]2−n[H(B|UX1)−δ]
∑

m′
j 6=mj

Tr
[

ρ
(j)
mj ,ℓj ,ℓj−1

]

≤ |M| 2−n[I(X;B|UX1)−2δ]. (7.17)

The second inequality follows because each operator inside the trace is positive semidef-

inite and less than or equal to the identity.

Wrong ℓj (and thus wrong mj). We obtain the requirement R ≡ Rℓ + Rm ≤
I(XX1;B) = I(X1;B)+I(UX;B|X1) from the “and-measurement” and the following

inequalities:

E
UnXnXn

1

Tr[Π(j+1)
τℓj

] ≤ 2n[H(B|X1)+δ], (7.18)

Π
(j+1)
τ̄ τ̄ Π

(j+1)
τ̄ ≤ 2−n[H(B)−δ]Π

(j+1)
τ̄ , (7.19)

E
UnXnXn

1

Tr[Π(j)
ρmj,ℓj |ℓj−1

] ≤ 2n[H(B|UXX1)+δ], (7.20)

Π
(j)
¯̄ρ|ℓj−1

¯̄ρ
(j)
|ℓj−1

Π
(j)
¯̄ρ|ℓj−1

≤ 2−n[H(B|X1)−δ]Π
(j)
¯̄ρ|ℓj−1

. (7.21)
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Consider the following term:

(B) =
∑

ℓ′j 6=ℓj ,m′
j

Tr
[

P
Bn

(j)
Bn

(j+1)

m′
j ,ℓ

′
j |ℓj−1

ρ
(j)
mjℓjℓj−1

⊗ρ(j+1)
mj+1ℓj+1ℓj

]

=
∑

ℓ′j 6=ℓj ,m′
j

Tr
[(

P
Bn

(j)

m′
j ,ℓ

′
j |ℓj−1

⊗PBn
(j+1)

ℓ′j

)

ρ
(j)
mjℓjℓj−1

⊗ρ(j+1)
mj+1ℓj+1ℓj

]

=
∑

ℓ′j 6=ℓj ,m′
j

Tr
[

P
Bn

(j)

m′
j ,ℓ

′
j |ℓj−1

ρ
(j)
mj ,ℓj ,ℓj−1

]

︸ ︷︷ ︸

(B1)

Tr
[

P
Bn

(j+1)

ℓ′j
ρ
(j+1)
mj+1,ℓj+1,ℓj

]

︸ ︷︷ ︸

(B2)

.

We want to calculate the expectation of the term (B) with respect to the code ran-

domness EUnXnXn
1
. The random variables in different blocks are independent, and so

we can analyze the expectations of the factors (B1) and (B2) separately.

Consider first the calculation in block j, which leads to the following bound on the

expectation of the factor (B1):

E
UnXnXn

1

{(B1)} = E
UnXnXn

1

{

Tr
[

P
Bn

(j)

m′
j ,ℓ

′
j |ℓj−1

ρ
(j)
mj ,ℓj ,ℓj−1

]}

= E
UnXnXn

1

Tr




Π

(j)
ρ̄ℓ′

j
|ℓj−1

Π
(j)
ρm′

j
,ℓ′
j
|ℓj−1

Π
(j)
ρ̄ℓ′

j
|ℓj−1

×
Π

(j)
¯̄ρ|ℓj−1

ρ
(j)
mj ,ℓj ,ℓj−1

Π
(j)
¯̄ρ|ℓj−1





= E
Xn

1

Tr









E
UnXn|Xn

1

{Π(j)
ρ̄ℓ′

j
|ℓj−1

Π(j)
ρm′

j
,ℓ′
j
|ℓj−1

Π
(j)
ρ̄ℓ′

j
|ℓj−1

}×

Π
(j)
¯̄ρ|ℓj−1

E
UnXn|Xn

1

{

ρ
(j)
mj ,ℓj ,ℓj−1

}

︸ ︷︷ ︸

③

Π
(j)
¯̄ρ|ℓj−1









= E
Xn

1

Tr








E
UnXn|Xn

1

{Π(j)
ρ̄ℓ′

j
|ℓj−1

Π(j)
ρm′

j
,ℓ′
j
|ℓj−1

Π
(j)
ρ̄ℓ′

j
|ℓj−1

}×

Π
(j)
¯̄ρ|ℓj−1

¯̄ρ
(j)
|ℓj−1

Π
(j)
¯̄ρ|ℓj−1

︸ ︷︷ ︸

④








≤ 2−n[H(B|X1)−δ]
E

UnXnXn
1

Tr
[

Π
(j)
ρ̄ℓ′

j
|ℓj−1

Π
(j)
ρm′

j
,ℓ′
j
|ℓj−1

Π
(j)
ρ̄ℓ′

j
|ℓj−1

Π
(j)
¯̄ρ|ℓj−1

]

≤ 2−n[H(B|X1)−δ]
E

UnXnXn
1

Tr

[

Π(j)
ρm′

j
,ℓ′
j
|ℓj−1

]

≤ 2−n[H(B|X1)−δ]
E

UnXnXn
1

2n[H(B|X1UX)+δ]

= 2−n[I(UX;B|X1)−2δ].
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The result of the expectation in ③ is ¯̄ρ
(j)
|ℓj−1

, and we can bound the expression in ④

using (7.21). The first inequality follows because all the other terms in the trace are

positive semidefinite operators less than or equal to the identity. The final inequality

follows from (7.20).

Now we consider the expectation of the second term:

E
UnXnXn

1

{(B2)} = E
UnXnXn

1

{

Tr
[

P
Bn

(j+1)

ℓ′j
ρ
(j+1)
mj+1,ℓj+1,ℓj

]}

= Tr

[

E
UnXnXn

1

{

P
Bn

(j+1)

ℓ′j

}

E
UnXnXn

1

{

ρ
(j+1)
mj+1,ℓj+1,ℓj

}]

= Tr

[

E
UnXnXn

1

{

P
Bn

(j+1)

ℓ′j

}

τ̄⊗n

]

= E
UnXnXn

1

Tr

[

Π
(j+1)
τ̄ Π(j+1)

τℓ′
j

Π
(j+1)
τ̄ τ̄⊗n

]

= E
UnXnXn

1

Tr

[

Π(j+1)
τℓ′

j

Π
(j+1)
τ̄ τ̄⊗nΠ

(j+1)
τ̄

]

≤ 2−n[H(B)−δ]
E

UnXnXn
1

Tr

[

Π(j+1)
τℓ′

j

Π
(j+1)
τ̄

]

≤ 2−n[H(B)−δ]2n[H(B|X1)+δ] = 2−n[I(X1;B)−2δ].

Combining the upper bounds on (B1) and (B2) gives our final upper bound:

E
UnXnXn

1

{(B)} = E
UnXnXn

1

∑

ℓ′j 6=ℓj ,m′
j

(B1)× (B2)

≤
∑

ℓ′j 6=ℓj , m′
j

2−n[I(UX;B|X1)−2δ] × 2−n[I(X1;B)−2δ]

≤ |L||M| 2−n[I(X1;B)+I(UX;B|X1)−4δ]. (7.22)

By choosing the size of message sets to satisfy equations (7.17) and (7.22), the expec-

tation of the average probability of error at the destination becomes arbitrarily small

for n sufficiently large.
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7.3.2 Decoding at the relay

In this section we give the details of the POVM construction and the error analysis for

the decoding at the relay.

POVM Construction. During block j, the relay wants to decode the message ℓj

encoded in un(ℓj, ℓj−1), given the knowledge of the message ℓj−1 from the previous

block. Consider the state obtained by tracing over the systems X and B in (7.8):

θUX1B1 =
∑

u,x1

p(u|x1) p(x1) |u〉〈u|U ⊗ |x1〉〈x1|X1 ⊗ σB1
u,x1

,

where σB1
u,x1

≡∑x p(x|x1, u) TrB
[
ρB1B
x,x1

]
. Further tracing over the system U leads to the

state

θX1B1 =
∑

x1

p(x1) |x1〉〈x1|X1 ⊗ σ̄B1
x1
,

where σ̄x1 ≡∑u p(u|x1) σB1
u,x1

. Corresponding to the above conditional states are con-

ditionally typical projectors of the following form

Πσℓj |ℓj−1
≡ Π

Bn
1(j)

σ
un(ℓj ,ℓj−1),xn1 (ℓj−1)

, Πσ̄|ℓj−1
≡ Π

Bn
1(j)

σ̄
xn1 (ℓj−1)

.

The relay constructs a square-root measurement {Γℓj |ℓj−1
} using the following positive

operators:

P
Bn

1(j)

ℓj |ℓj−1
≡ Πσ̄|ℓj−1

Πσℓj |ℓj−1
Πσ̄|ℓj−1

. (7.23)

Error analysis. In this section we show that during block j the relay will be able

to decode the message ℓj from the state ρ
Bn

1(j)

xn(mj ,lj ,lj−1),xn
1 (lj−1)

, provided the rate Rℓ <

I(U ;B1|X1) = H(B1|X1) − H(B1|UX1) − δ. The bound follows from the following

properties of typical projectors:

Tr[Πσℓj |ℓj−1
] ≤ 2n[H(B1|UX1)+δ], (7.24)

Πσ̄|ℓj−1
σ̄ Πσ̄|ℓj−1

≤ 2−n[H(B1|X1)−δ]Πσ̄|ℓj−1
.. (7.25)
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Recall that the average probability of error at the relay is given by:

p̄Re ≡ 1

|L|
∑

ℓj

Tr
{(

I − Γ
Bn

1(j)

ℓj |ℓj−1

)

ρ
Bn

1(j)

mj ,ℓj ,ℓj−1

}

.

We consider the probability of error for a single message ℓj and begin by applying

the Hayashi-Nagaoka operator inequality (Lemma 3.1) to split the error into two terms:

p̄Re ≡ Tr
[(

I −Γ
Bn

1(j)

ℓj |ℓj−1

)

ρ
Bn

1(j)

mj ,ℓj ,ℓj−1

]

≤ 2Tr
[(

I − P
Bn

1(j)

ℓj |ℓj−1

)

ρ
Bn

1(j)

mj ,ℓj ,ℓj−1

]

︸ ︷︷ ︸

(I)

+ 4
∑

ℓ′j 6=ℓj

Tr
[

P
Bn

1(j)

ℓ′j |ℓj−1
ρ
Bn

1(j)

mj ,ℓj ,ℓj−1

]

︸ ︷︷ ︸

(II)

.

We will bound the expectation of the average probability of error by bounding the

individual terms. We bound the first term as follows:

(I) = Tr
[(

I − P
Bn

1(j)

ℓj |ℓj−1

)

ρ
Bn

1(j)

mj ,ℓj ,ℓj−1

]

= Tr
[(

I − Πσ̄|ℓj−1
Πσℓj |ℓj−1

Πσ̄|ℓj−1

)

ρ
Bn

1(j)

mj ,ℓj ,ℓj−1

]

= 1− Tr
[

Πσ̄|ℓj−1
Πσℓj |ℓj−1

Πσ̄|ℓj−1
ρ
Bn

1(j)

mj ,ℓj ,ℓj−1

]

≤ 1− Tr
[

Πσℓj |ℓj−1
ρ
Bn

1(j)

mj ,ℓj ,ℓj−1

]

+
∥
∥
∥Πσ̄|ℓj−1

ρ
Bn

1(j)

mj ,ℓj ,ℓj−1
Πσ̄|ℓj−1

− ρ
Bn

1(j)

mj ,ℓj ,ℓj−1

∥
∥
∥
1
,

where the inequality follows from Lemma 2.20.

By taking the expectation over the code randomness we obtain the bound

E
UnXnXn

1

(I) = 1− E
UnXn

1

Tr

[

Πσℓj |ℓj−1
E

Xn|UnXn
1

{

ρ
Bn

1(j)

mj ,ℓj ,ℓj−1

}]

+ E
UnXnXn

1

∥
∥
∥Πσ̄|ℓj−1

ρ
Bn

1(j)

mj ,ℓj ,ℓj−1
Πσ̄|ℓj−1

− ρ
Bn

1(j)

mj ,ℓj ,ℓj−1

∥
∥
∥
1

= 1− E
UnXn

1

Tr
[

Πσℓj |ℓj−1
σℓj ,ℓj−1

]

+ E
UnXnXn

1

∥
∥
∥Πσ̄|ℓj−1

ρ
Bn

1(j)

mj ,ℓj ,ℓj−1
Πσ̄|ℓj−1

− ρ
Bn

1(j)

mj ,ℓj ,ℓj−1

∥
∥
∥
1

≤ 1− E
UnXn

1

Tr
[

Πσℓj |ℓj−1
σℓj ,ℓj−1

]

+ 2
√
ǫ

≤ 1− (1− ǫ) + 2
√
ǫ = ǫ+ 2

√
ǫ.
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The first inequality follows from Lemma 3.2 and the property

E
UnXn

1

Tr
[

Πσ̄|ℓj−1
σ̄
]

≥ 1− ǫ. (7.26)

The second inequality follows from:

E
UnXn

1

Tr
[

Πσℓj |ℓj−1
σℓj ,ℓj−1

]

≥ 1− ǫ. (7.27)

To bound the second term we proceed as follows:

E
UnXnXn

1

{(II)} = E
UnXnXn

1

∑

ℓ′j 6=ℓj

Tr
[

P
Bn

1(j)

ℓ′j |ℓj−1
ρ
Bn

1(j)

mj ,ℓj ,ℓj−1

]

= E
Xn

1

∑

ℓ′j 6=ℓj

Tr

[

E
UnXn|Xn

1

{

P
Bn

1(j)

ℓ′j |ℓj−1

}

E
UnXn|Xn

1

{ρB
n
1(j)

mj ,ℓj ,ℓj−1
}
]

= E
Xn

1

∑

ℓ′j 6=ℓj

Tr

[

E
UnXn|Xn

1

{

P
Bn

1(j)

ℓ′j |ℓj−1

}

σ̄|ℓj−1

]

.

The expectation can be broken up because ℓ′j 6= ℓj and thus the Un codewords are

independent. We have also used

E
UnXn|Xn

1

{

ρ
Bn

1(j)

mj ,ℓj ,ℓj−1

}

= σ̄|ℓj−1
. (7.28)

We continue by expanding the operator P
Bn

1(j)

ℓ′j |ℓj−1
as follows:

= E
UnXnXn

1

∑

ℓ′j 6=ℓj

Tr

[

Πσ̄|ℓj−1
Πσℓ′

j
|ℓj−1

Πσ̄|ℓj−1
σ̄|ℓj−1

]

= E
UnXnXn

1

∑

ℓ′j 6=ℓj

Tr







Πσℓ′
j
|ℓj−1

Πσ̄|ℓj−1
σ̄|ℓj−1

Πσ̄|ℓj−1
︸ ︷︷ ︸

⑤







≤ E
UnXnXn

1

∑

ℓ′j 6=ℓj

Tr

[

Πσℓ′
j
|ℓj−1

2−n[H(B1|X1)−δ]Πσ̄|ℓj−1

]

≤ 2−n[H(B1|X1)−δ]
E

UnXnXn
1

∑

ℓ′j 6=ℓj

Tr

[

Πσℓ′
j
|ℓj−1

]
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≤ 2−n[H(B1|X1)−δ]
E

UnXnXn
1

∑

ℓ′j 6=ℓj

2n[H(B1|UX1)+δ]

≤ |L| 2−n[I(U ;B1|X1)−2δ].

The first inequality follows from using (7.25) on the expression ⑤. The second inequality

follows from the fact that Πσ̄|ℓj−1
is a positive semidefinite operator less than or equal

to the identity. More precisely we have

Tr

[

Πσℓ′
j
|ℓj−1

Πσ̄|ℓj−1

]

= Tr

[

Πσℓ′
j
|ℓj−1

Πσ̄|ℓj−1
Πσℓ′

j
|ℓj−1

]

≤ Tr

[

Πσℓ′
j
|ℓj−1

I Πσℓ′
j
|ℓj−1

]

= Tr

[

Πσℓ′
j
|ℓj−1

]

.

The penultimate inequality follows from (7.24).

Thus if we choose Rℓ ≤ I(U ;B1|X1) − 3δ, we can make the expectation of the

average probability of error at the relay vanish in the limit of many uses of the channel.

Proof conclusion. Note that the gentle operator lemma for ensembles is used

several times in the proof. First, it is used to guarantee that the effect of acting with

one of the projectors from the “measurement sandwich” does not disturb the state

too much. Furthermore, because each of the output blocks is operated on twice: we

depend on the gentle operator lemma to guarantee that the disturbance to the state

during the first decoding stage is asymptotically negligible if the correct messages are

decoded.

7.4 Discussion

In this chapter, we established the achievability of the rates given by the partial decode-

and-forward strategy, thus extending the study of classical-quantum channels to multi-

hop scenarios.

The new techniques from this chapter are the use of the coherent codebooks and the

and-measurement, which collectively decodes messages from two blocks of the output

of the channel.
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We obtain the decoding-and-forward inner bound as a corollary of Theorem 7.1.

Corollary 7.1 (Decode-and-forward strategy for quantum relay channel). The rates

R satisfying

R ≤ max
p(x,x1)

min{ I(X,X1;B)θ, I(X;B1|X1)θ} (7.29)

where the mutual information quantities are taken with respect to the state

θXX1B1B =
∑

x,x1

pX|X1(x|x1)pX1(x1)
︸ ︷︷ ︸

pX,X1

|x〉〈x|X ⊗ |x1〉〈x1|X1 ⊗ ρB1B
x,x1

. (7.30)

are achievable for quantum relay channels by setting X = U in Theorem 7.1.

Note also that setting the x1 to a fixed input in Theorem 7.1 would give us a

quantum direct coding inner bound similar to the one from equation (7.2).

An interesting open question is to determine a compress-and-forward strategy for

the quantum setting. This could possibly involve combining results from quantum

source coding and quantum channel coding [DHW11, WS12].

Another avenue for research would be to consider quantum communication and en-

tanglement distillation scenarios on a quantum relay network. Further research in this

area would have applications for the design of quantum repeaters [CGDR05, Dut11b].
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Chapter 8

Bosonic interference channels

Optical communication links form the backbone of the information superhighway which

is the Internet. A single optical fiber can carry hundreds of gigabits of data per sec-

ond over long distances thanks to the excellent light-transmission properties of glass

materials. Free-space optical communication is also possible at rates of hundreds of

megabits per second [TNO02].

An optical communication system consists of a modulated source of photons, the

optical channel (or more generally the bosonic channel, since photons are bosons), and

an optical detector. Figure 4.2 on page 42 illustrates an example of such a communi-

cation system.

As information theorists, we are interested in determining the ultimate limits on

the rates for communication over such channels. For each possible combination of the

optical encoding and optical decoding strategies, we obtain a different communication

model for which we can calculate the capacity. More generally, we are interested in

the ultimate capacity of the bosonic channel as permitted by the laws of physics. For

this purpose we must optimize over all possible encoding and decoding strategies, both

practical and theoretical.

In this chapter we present a quantum treatment of a free-space optical interfer-

ence channel. We consider the performance of laser-light encoding (coherent light) in

conjunction with three detection strategies: (1) homodyne, (2) heterodyne, and (3)

joint detection. In Section 8.1, we will introduce some basic notions of quantum optics

which are required for the remainder of the chapter. In Section 8.2 we will discuss
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previous results on bosonic quantum channels and describe the known capacity formu-

las for point-to-point free-space bosonic channels for the three detection strategies. In

Section 8.3 we define the bosonic interference channel model and calculate the capacity

region for the special cases of “strong” and “very strong” interference for each detection

strategy. We also establish the Han-Kobayashi achievable rate regions for homodyne,

heterodyne and joint detection.

8.1 Preliminaries

8.1.1 Gaussian channels

We begin by introducing some notation. Define the real-valued Gaussian probability

density function with mean µ and variance σ2 as follows:

NR(x;µ, σ
2) ≡ 1√

2πσ2
e

−(x−µ)2

2σ2 ∈ P(R). (8.1)

Define also the circularly symmetric complex-valued Gaussian distribution

NC(z;µ, σ
2)≡ 1

2πσ2
e

−|z−µ|2

2σ2 ≡ 1√
2πσ2

e
−(x−Re{µ})2

2σ2
1√
2πσ2

e
−(y−Im{µ})2

2σ2 ∈ P(C), (8.2)

where we identify z = x + iy and assume that the variance parameter is real-valued

σ2 ∈ R. Note also that in the complex-valued case, the quantity σ2 represents the

variance per real dimension; a variable Z ∼ NC(µ, σ
2) will have variance Var{Z} ≡

EZ [|Z − µ|2] = 2σ2.

The additive white Gaussian noise (AWGN) channel is a communication model

where the input and output are continuous random variables and the noise is Gaussian.

Let X be the random variable associated with the input of the channel. Then the

output variable Y will be:

Y = X + Z, (8.3)

where Z ∼ NR(0, N) is a Gaussian random variable with zero-mean and variance N .

As in the discrete memoryless case, we can use a codebook {xn(m)}, m ∈ [1 : 2nR],

with codewords generated randomly and independently according to a probability den-

sity function
∏n pX(x). Furthermore we impose an average power constraint on the
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codebook:

E
Xn

{

1

n

n∑

i=1

X2
i

}

≤ P. (8.4)

The channel capacity is calculated using the differential entropy, h : P(R) → R,

which plays the role of the Shannon entropy for continuous random variables. We know

from Shannon’s channel capacity theorem (Theorem 3.1) that a rate R is achievable

provided it is less than the mutual information of the joint probability distribution

induced by the input distribution and the channel: (X, Y ) ∼ pXpY |X . For any choice

of input distribution pX , the following rate is achievable:

R ≤ I(X;Y ) = h(Y )− h(Y |X)

= h(Y )− h(X + Z|X)

= h(Y )− h(Z|X)

= h(Y )− h(Z). (8.5)

The last equality follows because the noise Z is assumed to be independent of the input

X. It can be shown that a Gaussian distribution with variance P is the optimal choice

of input distribution [CT91]. Furthermore, when we choose X ∼ NR(0, P ) it is possible

to compute the above expression exactly and obtain the capacity:

C =
1

2
log2

(

1 +
P

N

)

[bits/use]. (8.6)

We will refer to the ratio P/N as the signal to noise ratio. We sometimes abbreviate

this expression as: γ(SNR) ≡ 1
2
log2 (1 + SNR). The above formula is one of the great

successes of classical information theory.

The Gaussian multiple access channel is defined as:

Y =
√
αX1 +

√

βX2 + Z, (8.7)

where α, β ∈ R are the gain coefficients and Z ∼ NR(0, N) is an additive Gaussian noise

term with average power N . When input power constraints EXn
1

{
1
n

∑n
i=1X

2
1i

}
≤ P1
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and EXn
2

{
1
n

∑n
i=1X

2
2i

}
≤ P2 are imposed, the capacity region is given by:

CMAC≡







(R1, R2) ∈ R2
+

∣
∣
∣
∣
∣
∣
∣

R1 ≤ I(X1;Y |X2)=
1
2
log2

(
1 + αP1

N

)

R2 ≤ I(X2;Y |X1)=
1
2
log2

(
1 + βP2

N

)

R1 +R2 ≤ I(X1X2;Y ) = 1
2
log2

(
1 + αP1+βP2

N

)







.

Each of the constraints on the capacity region has an intuitive interpretation in terms

of signal to noise ratios. In this context, we also have the expression I(X1;Y ) =
1
2
log2

(

1 + αP1

N+βP2

)

, in which the unknown codewords of the second transmitter are

treated as contributing to the noise.

8.1.2 Introduction to quantum optics

Photons are excitations of the electromagnetic field. We say that photons are bosons

because they obey Bose-Einstein statistics: they are indistinguishable particles that

are symmetric under exchange1. Multiple bosons with the same energy can occupy the

same quantum state. This is in contrast with fermions which obey Pauli’s exclusion

principle. Bosonic channels are channels in which the inputs and the outputs are

bosons.

In this section, we will introduce some background material on quantum optics

which is needed for the rest of the presentation in this chapter. Recall that the states

of quantum systems are described by density operators σ, ρ ∈ D(H), where H is a

Hilbert space. Unitary quantum operations act by conjugation, so that by applying U

to σ we obtain ρ = UσU † as output. The expectation value of some operator Â when

the system is in the state ρ is denoted 〈Â〉 = Tr[Âρ].

Let ρ0 = |0〉〈0| be the vacuum state of one mode of the electromagnetic field. We

define â† to be the creation operator for that mode. Applying â† to the vacuum state

we obtain the first excited state:

|1〉〈1| = â†|0〉〈0|â, (8.8)

and this process can be iterated to create further excitations in the field. The Hermi-

tian conjugate of the creation operator is the annihilation operator which takes away

1 The wave function describing two photons p1 and p2 is even under exchange of the two particles:
ψ(p1, p2) = ψ(p2, p1).
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excitations from the field. More generally, we have

a|n〉 = √
n |n− 1〉, (8.9)

a†|n〉 =
√
n+ 1 |n+ 1〉. (8.10)

(8.11)

The state space |0〉〈0|, |1〉〈1|, |2〉〈2|, |3〉〈3|, . . . is known as Fock space and it is infinite

dimensional. The creation and annihilation operators obey the commutation relation

[â, â†] = 1.

The real part and the imaginary part of the operator â are defined as the x quadra-

ture and the p quadrature:

X̂ =
â+ â†√

2
, P̂ =

â− â†

i
√
2
, (8.12)

and we have [X̂, P̂ ] = i.

If we want to measure how many excitations are in the field, we use the number

operator N̂ = â†â. If the field is in excitation level n, the expected number of excitations

will be:

〈N̂〉 = Tr
[
â†â|n〉〈n|

]
= n. (8.13)

The Hamiltonian that describes one non-interacting mode of the electromagnetic

field is given by:

Ĥ = ~ω

(

â†â+
1

2

)

. (8.14)

The Hamiltonian is important because it gives the time evolution operator U(t) ≡ eiĤt

and the energy of the system: Eρ ≡ 〈Ĥ〉 = Tr[Ĥρ]. Observe that the system has

energy even when it is in the vacuum state:

E0 = Tr[Ĥ|0〉〈0|] = 〈0|Ĥ|0〉 = ~ω〈0|
(

â†â+
1

2

)

|0〉 = ~ω

2
. (8.15)

This is known as the zero-point energy or vacuum energy.
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8.1.3 Coherent states

A composite system exhibits coherence if all its components somehow coincide with

each other. This could be either coincidence in time, space coherence, phase coherence

or quantum coherence. An example of the latter is the process of stimulated emission

of photons which occurs inside a laser. All new photons are created exactly “in phase”

with the other photons inside the laser. Over time the number of photons in the laser

will grow, but they will all have the same frequency, phase and polarization.

The coherent state |α〉 describes an oscillation of the electromagnetic field. In

general α ∈ C and we have α = |α|eiφ, where |α| is the amplitude of the oscillation

and φ is the initial phase. In the Fock basis, the coherent state |α〉 is written as:

|α〉 = e−
|α|2

2

∞∑

n=0

αn

√
n!
|n〉 (8.16)

= e−
|α|2

2

[

|0〉 + |α|eiφ|1〉 +
|α|2√
2
e2iφ|2〉 +

|α|3√
6
e3iφ|3〉 + · · ·

]

. (8.17)

The output of a laser is coherent light: the excitations at all energy levels will have

the same phase. Coherent states remain coherent over time: |α(t)〉 ≡ U(t)|α〉 =

eiωt/2||α|ei(φ−ωt)〉.

A coherent state can also be defined in terms of the unitary displacement operator

which acts as:

|α〉 = D(α)|0〉 = exp
(
αâ† − α∗â

)
|0〉. (8.18)

Note that in some respect D(α) is similar to the creation operator â†, since it creates

excited states from the vacuum state.

8.2 Bosonic channels

Point-to-point optical communication using laser-light modulation in conjunction with

direct-detection and coherent-detection receivers has been studied in detail using the

semiclassical theory of photodetection [GK95]. This approach treats light as a classical

electromagnetic field, and the fundamental noise encountered in photodetection is the

shot noise associated with the discreteness of the electron charge.
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These semiclassical treatments for systems that exploit classical-light modulation

and conventional receivers (direct, homodyne, or heterodyne) have had some success,

but we should recall that electromagnetic waves are quantized, and the correct assess-

ment of systems that use non-classical light sources and/or general optical measure-

ments requires a full quantum-mechanical framework [Sha09]. There are several recent

theoretical studies on the point-to-point [GGL+04, Guh11], broadcast [GSE07] and

multiple-access [Yen05a] bosonic channels. These studies have shown that quantum

communication rates (Holevo rates) surpass what can be obtained with conventional

receivers. For the general quantum channel, attaining Holevo information rates may

require collective measurements (a joint detection) across all the output systems of the

channel.

Before stating our results on the bosonic interference channel, we will briefly review

some results on point-to-point bosonic channels in the next subsection.

8.2.1 Channel model

The free-space optical communication channel is a physically realistic model for the

propagation of photons from transmitter to receiver. We assume that a transmitter

aperture of size At is placed at a distance L from a receiver aperture of size Ar, and

that we are using λ-wavelength laser light for the transmission.

Figure 8.1: The free-space optical communication channel. Two apertures of area At and
Ar are placed L distance apart. The channel decomposes into different modes of propagation.
We model the channel as a transformation from an annihilation operator on the transmit side
to an annihilation operator at the receiver side.
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To analyze the communication capacity of the bosonic channel, we can decompose

the problem into finding the capacity for each of the spatial modes of propagation,

which will in general have different transmissivity coefficients η. In the far-field prop-

agation regime, which is when we have AtAr/(λL)
2 ≪ 1, only two orthogonal spatial

modes (one for each polarization degree of freedom) will have significant power trans-

missivity. We will analyze the channel for a single mode (one choice of polarization).

The channel input is an electromagnetic field mode with annihilation operator â,

and the channel output is another mode with annihilation operator b̂. The channel

map is described by:

b̂ =
√
η â +

√

1− η ν̂, (8.19)

in which ν̂ is associated with the noise of the environment and the parameter η, 0 ≤
η ≤ 1, models the channel transmissivity.

We say that a channel is pure-loss if the environmental noise ν̂ is in the vacuum

state |0〉〈0|. A channel has thermal noise if the mode ν̂ is in the thermal state:

ρt =

∫

d2α
exp (−|α|2/NB)

πNB

|α〉〈α|, (8.20)

which is Gaussian mixture of coherent states with average photon number NB > 0.

One can also write the thermal state in the number basis as follows:

ρt =
1

NB + 1

∞∑

n=0

(
NB

NB + 1

)n

|n〉〈n|. (8.21)

8.2.2 Encoding

We will use coherent state encoding of the information at the transmitter. The code-

book consists of tensor products of vacuum states displaced randomly and indepen-

dently by an amount drawn from a distribution pα:

αn ∼
n∏

pα → |α1α2 · · ·αn〉 ≡ D(α1)|0〉 ⊗D(α2)|0〉 ⊗ · · · ⊗D(αn)|0〉.

This encoding strategy is chosen because it is simple to implement in practice, and

also because it is known that it suffices to achieve the ultimate capacity of the bosonic

channel [GGL+04].
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When homodyne detection will be used at the receiver, we will encode the infor-

mation using only the x quadrature. The displacements are chosen according to:

α ∼ NR (0, NS) . (8.22)

The distribution is chosen so that it satisfies the constraint on the average number

of input photons 〈|α|2〉 ≤ NS, which is the quantum analogue of the input power

constraint for the AWGN channel.

For heterodyne and joint detection, we will use both quadratures and choose the

displacements according to a circularly-symmetric complex-valued Gaussian distribu-

tion:

α ∼ NC (0, NS/2) . (8.23)

8.2.3 Homodyne detection

Homodyne detection consists of combining on a beamsplitter the incoming light and

a local oscillator signal and measuring the resulting difference of the intensities. By

tuning the relative phase between the incoming signal and the local oscillator it is

possible to measure the incoming photons in any quadrature.

When coherent state encoding is used with displacement values chosen as in (8.22)

and homodyne detection is used, the resulting channel is Gaussian:

Y =
√
ηα + Zhom,

where Zhom ∼ NR (0, (2(1− η)NB + 1) /4). The “+1” term in the noise variance arises

physically from the zero-point fluctuations of the vacuum.

We can now use the general formula for the capacity of the AWGN channel from

(8.6) to obtain the capacity with homodyne detection:

Chom =
1

2
log

(

1 +
4ηNS

2(1− η)NB + 1

)

bits/use. (8.24)
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8.2.4 Heterodyne detection

The heterodyne detection strategy attempts to measure the incoming light in both

quadratures. The sender inputs a coherent state |α〉 with α ∈ C. Heterodyne detection

of the channel output results in a classical complex Gaussian channel, where the receiver

output is a complex random variable Y described by:

Y =
√
ηα + Zhet, (8.25)

where Zhet ∼ NC (0, ((1− η)NB + 1)/2). The capacity formula for this choice of detec-

tion strategy is given by:

Chet = log

(

1 +
ηNS

(1− η)NB + 1

)

bits/use. (8.26)

The factor of 1/2 in the noise variances is due to the attempt to measure both quadra-

tures of the field simultaneously [Sha09].

8.2.5 Joint detection

The capacity of the single-mode lossy bosonic channel with thermal background noise

is thought to be equal to the channel’s Holevo information:

χ ≡ g(ηNS + (1− η)NB)− g((1− η)NB) bits/use, (8.27)

where NS and NB are the mean photon numbers per mode for the input signal and the

thermal noise, and g(N) ≡ (N + 1) log (N + 1)−N log (N) is the entropy of a thermal

state with mean photon number N . The latter formula is easily obtained from (8.21):

h(ρt) = −Tr[ρt log ρt]

= −
∞∑

n=0

1

N + 1

(
N

N + 1

)n

log

(
1

N + 1

(
N

N + 1

)n)

=
∞∑

n=0

1

N + 1

(
N

N + 1

)n [

− n logN + (n+ 1) log(N + 1)

]

= (N + 1) log(N + 1)−N logN = g(N).
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This capacity formula from equation (8.27) assumes a long-standing conjecture regard-

ing the minimum-output entropy of the thermal noise channel [GGL+04, GHLM10].

It is known that joint-detection (collective) measurements over long codeword

blocks are necessary to achieve the rates in equation (8.27) for both the pure-loss

and the thermal-noise lossy bosonic channel [Guh11, WGTL12]. Note, however, that

quantum states of light are not necessary to achieve the rate χ; coherent-state encoding

is sufficient.

10
−2

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

N
S
 [average photon number]

R
 [

b
it
s
 /

 u
s
e

]

 

 

Homodyne detection

Heterodyne detection

Joint detection (Holevo rate)

Figure 8.2: The achievable rates for the different decoding strategies: homodyne, hetero-
dyne and joint detection in the low photon number regime 0.01 ≤ 〈|α|2〉 = NS ≤ 100. The
channel has η = 0.9 and NB = 1. The joint detection strategy outperforms the classical
strategies in which the outputs of the channel are measured individually, cf. Figure 3.5.

The rates achievable by the three different detection strategies are illustrate in Fig-

ure 8.2, and on this we conclude our review of point-to-point bosonic communication.

In the next section, we consider the bosonic interference channel with thermal-noise,

particularly in the context of free-space terrestrial optical communications.

8.3 Free-space optical interference channels

Consider now a scenario similar to the one described in Figure 8.1, but now assume

that there are two senders and two receivers. Sender 1 modulates her information on

the first spatial mode of the transmitter-pupil, and Receiver 1 separates and demod-

ulates information from the corresponding receiver-pupil spatial mode. With perfect
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spatial-mode control at the transmitter and perfect mode separation at the receiver, the

orthogonal spatial modes can be thought of as independent parallel channels with no

crosstalk. However, imperfect (slightly non-orthogonal) mode generation or imperfect

mode separation can result in crosstalk (interference) between the different channels.

We will model the bosonic interference channel as a passive linear mixing of the

input modes along with a thermal environment adding zero-mean, isotropic Gaussian

noise. The channel model is given by:

b̂1 =
√
η11â1 +

√
η21â2 +

√
η̄1ν̂1, (8.28)

b̂2 =
√
η12â1 −

√
η22â2 +

√
η̄2ν̂2, (8.29)

where η11, η12, η21, η22, η̄1, η̄2 ∈ R+,
√
η11η12 =

√
η21η22, η̄1 ≡ 1 − η11 − η21, and η̄2 ≡

1− η12 − η22. The following conditions ensure that the network is passive:

η11 + η12 ≤ 1, η11 + η21 ≤ 1, η22 + η21 ≤ 1, η22 + η12 ≤ 1.

We constrain the mean photon number of the transmitters â1 and â2 to be NS1 and NS2

photons per mode, respectively. The environment modes ν̂1 and ν̂2 are in statistically

independent zero-mean thermal states with respective mean photon numbers NB1 and

NB2 per mode [Sha09].

8.3.1 Detection strategies

For a coherent state encoding and coherent2 detection at both receivers, the above

model is a special case of the Gaussian interference channel, and we can study its

capacity regions in various settings by applying the known classical results from [Car75,

Sat81] and [HK81].

If the senders prepare their inputs in coherent states |α1〉 and |α2〉, with α1, α2 ∈ R,

and both receivers perform x-quadrature homodyne detection on their respective modes,

the result is a classical Gaussian interference channel [Sha09], where Receivers 1 and

2We refer to both homodyne and heterodyne strategies as coherent strategies.
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2 obtain respective conditional Gaussian random variables Y1 and Y2 distributed as

Y1 ∼ NR (
√
η11α1 +

√
η21α2, (2η̄1NB1 + 1) /4) ,

Y2 ∼ NR (
√
η12α2 +

√
η22α1, (2η̄2NB2 + 1) /4) ,

where the “+1” term in the noise variances arises physically from the zero-point fluctu-

ations of the vacuum. Suppose that the senders again encode their signals as coherent

states |α1〉 and |α2〉, but this time with α1, α2 ∈ C, and that the receivers both perform

heterodyne detection. This results in a classical complex Gaussian interference chan-

nel [Sha09], where Receivers 1 and 2 detect respective conditional complex Gaussian

random variables Z1 and Z2, whose real parts are distributed as

Re {Zm} ∼ NR (µm, (η̄mNBm
+ 1)/2) , (8.30)

wherem ∈ {1, 2}, µ1 ≡ √
η11 Re {α1}+√

η21 Re {α2}, µ2 ≡ √
η12 Re {α1}+√

η22 Re {α2},
and the imaginary parts of Z1 and Z2 are distributed with the same variance as

their real parts, and their respective means are
√
η11 Im {α1} +

√
η21 Im {α2} and

√
η12 Im {α1} +

√
η22 Im {α2}. The factor of 1/2 in the noise variances is due to the

attempt to measure both quadratures of the field simultaneously [Sha09].

8.4 Very strong interference case

Recall the setting of the interference channel which we discussed in Section 5.2.1, where

the crosstalk between the communication links is so strong that the receivers can fully

decode the interfering signal and “subtract” it from the received signal to completely

cancel its effects. The conditions in (5.5) and (5.6) translate to the following ones for

the case of coherent-state encoding and coherent detection:

η21
η22

≥ 4iη11NS1 + 2iη̄1NB1 + 1

2iη̄2NB2 + 1
,

η12
η11

≥ 4iη22NS2 + 2iη̄2NB2 + 1

2iη̄1NB1 + 1
,
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and the capacity region becomes

R1 ≤
1

2i
log

(

1 +
4iη11NS1

2iη̄1NB1 + 1

)

, (8.31)

R2 ≤
1

2i
log

(

1 +
4iη22NS2

2iη̄2NB2 + 1

)

, (8.32)

where i = 1 for homodyne detection and i = 0 for heterodyne detection.
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Figure 8.3: Capacity regions for coherent-state encodings and coherent detection, and
achievable rate regions for coherent-state encodings and joint detection receivers—both with
η11 = η22 = 1/16 and η12 = η21 = 1/2 (“very strong” interference for coherent detection). The
LHS displays these regions in a low-power regime with NS1 = NS2 = 1 and NB1 = NB2 =
1, and the RHS displays these regions in a high-power regime where NS1 = NS2 = 100.
Homodyne detection outperforms heterodyne detection in the low-power regime because it
has a reduced detection noise, while heterodyne detection outperforms homodyne detection
in the high-power regime because its has an increased bandwidth.

We can also consider the case when the senders employ coherent-state encodings

and the receivers employ a joint detection strategy on all of their respective channel

outputs. The conditions in (5.5) and (5.6) readily translate to this quantum setting

where we now consider B1 and B2 to be quantum systems, and the information quan-

tities in (5.5) and (5.6) become Holevo informations. The conditions in (5.5) and (5.6)

when restricted to coherent-state encodings translate to:

g(η22NS2 + η̄2NB2)− g(η̄2NB2) ≤ g(η21NS2 + η11NS1 + η̄1NB1)− g(η11NS1 + η̄1NB1) ,

g(η11NS1 + η̄1NB1)− g(η̄1NB1) ≤ g(η12NS1 + η22NS2 + η̄2NB2)− g(η22NS2 + η̄2NB2) .

where g(N) ≡ (N + 1) log (N + 1) − N log (N) is the entropy of a thermal state with
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Chapter 8 : Bosonic interference channels

mean photon number N .

An achievable rate region is then

R1 ≤ g(η11NS1 + η̄1NB1)− g(η̄1NB1) ,

R2 ≤ g(η22NS2 + η̄2NB2)− g(η̄2NB2) .

These rates are achievable using a coherent-state encoding, but are not necessarily

optimal (though they would be optimal if the minimum-output entropy conjecture

from Refs. [GGL+04, GHLM10] were true). Nevertheless, these rates always beat the

rates from homodyne and heterodyne detection. Figure 8.3 shows examples of the

achievable rate regions for a bosonic interference channel with very strong interference.

Both the low-power and high-power regimes are considered. Observe that the relative

superiority of homodyne and heterodyne detection depend on power constraint and

that the joint detection strategy always outperforms them.

8.5 Strong interference case

Sato [Sat81] determined the capacity of the classical Gaussian interference channel

under “strong” interference. Theorem 5.2 from Chapter 5 gives us the capacity region

for quantum interference channels with strong interference. We will now apply these

results in the context of the bosonic interference channel.

The conditions for a channel to exhibit “strong” interference are given in equations

(5.16) and (5.17), and they translate to the following ones for coherent-state encoding

and coherent detection:

η21
η22

≥ 2iη̄1NB1 + 1

2iη̄2NB2 + 1
,

η12
η11

≥ 2iη̄2NB2 + 1

2iη̄1NB1 + 1
,
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8.6 Han-Kobayashi rate regions

and the capacity region becomes:

R1 ≤
1

2i
log

(

1 +
4iη11NS1

2iη̄1NB1 + 1

)

, (8.33)

R2 ≤
1

2i
log

(

1 +
4iη22NS2

2iη̄2NB2 + 1

)

, (8.34)

R1 +R2 ≤
1

2i
min







log
(

1 + 4i
η11NS1

+η21NS2

2iη̄1NB1
+1

)

,

log
(

1 + 4i
η22NS2

+η12NS1

2iη̄2NB2
+1

)






, (8.35)

where again i = 1 for homodyne detection and i = 0 for heterodyne detection.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

R1

R
2

Strong interference

Joint

Hom.

Het.

Figure 8.4: The figure depicts the “strong” interference capacity regions in the high-power
regime for homodyne and heterodyne detection, and joint detection. The channel in the
figure is in the high-power regime: NB1 = NB2 = 1, η11 = η22 = 0.3, η21 = η12 = 0.6, and
NS1 = NS2 = 100. Heterodyne detection outperforms homodyne detection in this case.

We can also compute the achievable rate region using the joint detection strategy.

Figure 8.4 displays the different capacity and achievable rate regions when a free-space

interference channel exhibits “strong” interference.

8.6 Han-Kobayashi rate regions

The Han-Kobayashi rate region is the largest known achievable rate region for the

classical interference channel [HK81]. The region was described in Theorem 5.3, and

in Section 5.5 we established the achievability of the Chong-Motani-Garg, which is

equivalent to the Han-Kobayashi rate region.
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The Han-Kobayashi coding strategy readily translates into a strategy for coherent-

state encoding and coherent detection. Sender m shares the total photon number NSm

between her personal message and her common message. Let λm be the fraction of

signal power that Sender m devotes to her personal message, and let λ̄m ≡ (1 − λm)

denote the remaining fraction of the signal power that Senderm devotes to her common

message.

When Receiver 1 uses homodyne detection to decode the messages, we can identify

the following components that are part of his received signal:

λ1η11NS1 = power of own personal message, (8.36)

λ̄1η11NS1 = power of own common message, (8.37)

η11NS1 = total own signal power, (8.38)

η21NS2 = total interference power, (8.39)

λ̄2η21NS2 = useful part of interference (other’s common), (8.40)

λ2η21NS2 = non-useful interference (other’s personal), (8.41)

N1 =
1
4
(2η̄1NB1 + 1) = noise power, (8.42)

Similar expressions exist for Receiver 2.

Consider now the inequalities (HK1)-(HK9) which define the Han-Kobayashi rate

region (see page 87). When we evaluate each of the mutual informations for the signal

and noise quantities (8.36) - (8.42), we obtain the Han-Kobayashi achievable rate region

for the bosonic interference channel:

R1 ≤ γ

(
η11NS1

λ2η21NS2 +N1

)

(BHK1)

R1 ≤ γ

(
λ1η11NS1

λ2η21NS2 +N1

)

+ γ

(
λ̄1η12NS1

λ1η12NS1 +N2

)

(BHK2)

R2 ≤ γ

(
η22NS2

λ1η12NS1 +N2

)

(BHK3)

R2 ≤ γ

(
λ2η22NS2

λ1η12NS1 +N2

)

+ γ

(
λ̄2η21NS2

λ2η21NS2 +N1

)

(BHK4)

R1 +R2 ≤ γ

(
η11NS1 + λ̄2η21NS2

λ2η21NS2 +N1

)

+ γ

(
λ2η22NS2

λ1η12NS1 +N2

)

(BHK5)
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8.7 Han-Kobayashi rate regions

R1 +R2 ≤ γ

(
η22NS2 + λ̄1η12NS1

λ1η12NS1 +N2

)

+ γ

(
λ1η11NS1

λ2η21NS2 +N1

)

(BHK6)

R1 +R2 ≤ γ

(
λ1η11NS1 + λ̄2η21NS2

λ2η21NS2 +N1

)

+ γ

(
λ2η22NS2 + λ̄1η12NS1

λ1η12NS1 +N2

)

(BHK7)

2R1 +R2 ≤ γ

(
η11NS1 + λ̄2η21NS2

λ2η21NS2 +N1

)

+ γ

(
λ1η11NS1

λ2η21NS2 +N1

)

+ γ

(
λ2η22NS2 + λ̄1η12NS1

λ1η12NS1 +N2

)

(BHK8)

R1 + 2R2 ≤ γ

(
η22NS2 + λ̄1η12NS1

λ1η12NS1 +N2

)

+ γ

(
λ2η22NS2

λ1η12NS1 +N2

)

+ γ

(
λ1η11NS1 + λ̄2η21NS2

λ2η21NS2 +N1

)

(BHK9)

Note the shorthand notation used γ(x) = 1
2
log2(1 + x).
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Figure 8.5: The figure depicts the achievable rate regions by employing a Han-Kobayashi
coding strategy for homodyne and heterodyne detection. The channel parameters are NS1 =
NS2 = 100, NB1 = NB2 = 1, η11 = η22 = 0.8, and η21 = η12 = 0.1. All of these regions are
with respect to a 10%-personal, 90%-common Han-Kobayashi power split.

We can also calculate the shape of the Han-Kobayashi achievable rate region if the

senders employ coherent-state encodings and the receivers exploit heterodyne or joint

detection receivers. A statement of the inequalities for the other detection strategies

has been omitted, because they are similar to (BHK1)-(BHK9). Figure 8.5 shows the

relative sizes of the Han-Kobayashi rate regions achievable with coherent detection and

joint detector for a particular choice of input power split: λm = 0.1, λ̄m = 0.9.
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Chapter 8 : Bosonic interference channels

8.7 Discussion

The semiclassical models for free-space optical communication are not sufficient to

understand the ultimate limits on reliable communication rates, for both point-to-

point and multiuser bosonic channels. We presented a quantum-mechanical model

for the free-space optical interference channel and determined achievable rate regions

using three different decoding strategies for the receivers. We also determined the

Han-Kobayashi inner bound for homodyne, heterodyne and joint detection.

Several open problems remain for this line of inquiry. We do not know if a coherent-

state encoding is in fact optimal for the free-space interference channel—it might

be that squeezed state transmitters could achieve higher communication rates as in

[Yen05a]. One could also evaluate the ergodic and outage capacity regions based on

the statistics of ηij, which could be derived from the spatial coherence functions of the

stochastic mode patterns under atmospheric turbulence.
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Chapter 9

Conclusion

The time has come to conclude our inquiry into the problems of quantum network

information theory. We will use this last chapter to summarize our results and highlight

the specific contribution of this thesis. We will also discuss open problems and avenues

for future research.

9.1 Summary

The present work demonstrates clearly that many of the problems of classical network

information theory can be extended to the study of classical-quantum channels. Orig-

inally, we set out to investigate the network information theory problems discussed in

[EGC80]. It is fair to say that we have been successful on that front, since we man-

aged to develop coding strategies for multiple access channels (Chapter 4), interference

channels (Chapter 5), broadcast channels (Chapter 6) and relay channels (Chapter 7),

in the classical-quantum setting.

Our proof techniques are a mix of classical and quantum ideas. On the classical side

we have the standard tools of information theory like averaging, conditional averaging

and the use of the properties of typical sets. On the quantum side we saw how to build

a projector sandwich, which contains many layers of conditionally typical projectors,

how to incorporate state smoothing, which cuts out non-typical eigenvalues of a state,

and the winning combination of the square root measurement and the Hayashi-Nagaoka

operator inequality.
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9.2 New results

Above all, it is the quantum conditionally typical projectors that played the biggest

role in all our results. Conditionally typical projectors are truly amazing constructs,

since they not only give us a basis in terms of which to analyze the quantum outputs,

but also tell us exactly in which subspace we are likely to find the output states on

average.

9.2 New results

Some of the results presented in this thesis have previously appeared in publications

and some are original to this thesis. We will use this section to highlight the new

results.

The first contribution is the establishment of the classical/quantum packing lem-

mas using conditionally typical sets/projectors. While these packing lemmas are not

new in themselves, the proofs presented highlight the correspondences between the

indicator functions for the classical conditionally typical sets and, their quantum coun-

terparts, the conditionally typical projectors. The quantum packing lemma is an effort

to abstract away the details of the quantum decoding strategy into a reusable compo-

nent as is done in [EGK10].

It is the author’s hope that the classical and quantum packing lemmas presented

in this work, along with their proofs, can serve as a bridge for classical information

theorists to cross over to the quantum side. Alternately, we can say that there is only

one side and interpret the move from classical Shannon theory to quantum Shannon

theory as a type of system upgrade. Indeed, the change from indicator functions for the

conditionally typical sets to conditionally typical projectors can be seen in terms of the

OSI layered model for network architectures: quantum coding techniques are a change

in physical layer (Layer 1) protocols while the random coding approach of the data

link layer (Layer 2) stays the same. Note that this analogy only works for the classical

communication problem, and that quantum communication and entanglement-assisted

communication are completely new problems in quantum Shannon theory, which have

no direct classical analogues.

The main original contribution of this thesis is the achievability proof for the

quantum Chong-Motani-Garg rate region, which requires only two-sender simultane-

ous decoding. By the equivalence Ro
HK(N ) ≡ RCMG(N ), we have established the
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achievability of the quantum Han-Kobayashi rate region. We can therefore close the

book on the original research question which prompted our investigation more than

two years ago.

An interesting open problem is to prove Conjecture 4.1 on the simultaneous de-

coding for the three-sender quantum multiple access channels. This result would be a

powerful building block for multiuser quantum Shannon theory.
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Appendix A

Classical channel coding

This appendix contains the proof of the classical packing lemma (Section A.2) and a

brief review on some of the properties of typical sets.

A.1 Classical typicality

In Section 2.2, we presented a number of properties of typical sequences and typical

sets that were used in the proof of the classical coding theorem. The reader is invited

to consult [CT91] and [Wil11] for the proofs.

In this section, we review the properties of conditionally typical sets in a more

general setting where an additional random variable Un is present. This is the setting

of the classical packing lemma, which will be stated and proved in Section A.2.

Consider the probability distribution pU(u)pX|U(x|u) ∈ P(U ,X ) and the chan-

nel N = (U × X , pY |XU(y|x, u), Y). Let (Un, Xn) be distributed according to the

product distribution
∏n

i=1 pU(ui)pX|U(xi|ui). Let Y n denote the random variable that

corresponds to the output of the channel when the inputs are (Un, Xn).
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Un
∏n

pU

∈ Un

Xn

∈ Xn

∏n pX|U

Y n

∈ Yn

Nn ≡
∏n pY |XU

Figure A.1: An illustration of the conditional dependence between the random variables
(Un, Xn, Y n).

Conditionally typical sets

The input random variables (Un, Xn) ∼ ∏n
i=1 pU(ui)pX|U(xi|ui) and the channel N

induce the following joint distribution:

(Un, Xn, Y n) ∼
n∏

i=1

pU(ui)pX|U(xi|ui)pY |XU(yi|xi, ui). (A.1)

This corresponds to the assumption that the channel is memoryless, that is, the noise

in the n uses of the channel is independent pY n|XnUn =
∏n pY |XU .

For any δ > 0, define two sets of entropy conditionally typical sequences:

T (n)
δ (Y |xn, un)≡

{

yn∈Yn :

∣
∣
∣
∣
− log pY n|XnUn(yn|xn, un)

n
−H(Y |X,U)

∣
∣
∣
∣
≤ δ

}

, (A.2)

T (n)
δ (Y |un) ≡

{

yn ∈ Yn :

∣
∣
∣
∣
− log pY n|Xn(yn|un)

n
−H(Y |U)

∣
∣
∣
∣
≤ δ

}

, (A.3)

where H(Y |U) = −∑x pU(u)pY |U(y|u) log pY |U(y|u) is the conditional entropy of the

distribution pY |U(y|u) =
∑

x pX|U(x|u)pY |XU(y|x, u).

By the definition of these typical sets, we have that the following bounds on the

probability of the sequences within these sets:

2−n[H(Y |X,U)+δ] ≤ pY n|Xn,Un(yn|xn, un) ≤ 2−n[H(Y |X,U)−δ] ∀yn ∈ T (n)
δ (Y |xn, un),

2−n[H(Y |U)+δ] ≤ pY n|Un(yn|un) ≤ 2−n[H(Y |U)−δ] ∀yn ∈ T (n)
δ (Y |un), (A.4)

for any sequences un and xn.

The channel outputs are likely to be conditionally typical sequences. More pre-
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cisely, we have that for any ǫ, δ > 0, and sufficiently large n the expectations under Un

and Xn|Un obey the bounds:

E
Un

E
Xn|Un

∑

yn∈T
(n)
δ

(Y |Xn,Un)

pY n|XnUn(yn|Xn, Un) ≥ 1− ǫ, (A.5)

E
Un

∑

yn∈T
(n)
δ

(Y |Un)

pY n|Un(yn|Un) ≥ 1− ǫ. (A.6)

Furthermore, we have the following bounds on the size of these conditionally typical

sets:

∣
∣
∣T (n)

δ (Y |Xn, Un)
∣
∣
∣ ≤ 2n[H(Y |X,U)+δ], (A.7)

∣
∣
∣T (n)

δ (Y |Un)
∣
∣
∣ ≤ 2n[H(Y |U)+δ].

Conditionally typical sets

Equations (A.4) and (A.7) will play a key role in the proof of the classical packing

lemma in the next section. We restate these equations here in the language of indicator

functions for the single and double conditionally typical sets:

pY n|Un(yn|un) 1{

yn∈T
(n)
ǫ (Y |Un)

} ≤ 2−n[H(Y |U)−δ] 1{

yn∈T
(n)
ǫ (Y |Un)

}, (A.4′)

and

∑

yn∈Yn

1{

yn∈T
(n)
ǫ (Y |xn,un)

} ≤ 2n[H(Y |X,U)+δ]. (A.7′)

A.2 Classical packing lemma

The packing lemma is a powerful tool for proving capacity theorems [EGK10]. We

give a proof of a packing lemma which, instead of the usual jointly typical sequences

argument, uses the properties of conditionally typical sets. This non-standard form of

the packing lemmas is preferred because it highlights the similarities with its quantum

analogue, the quantum conditional packing lemma stated in Appendix B.2.
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A.2 Classical packing lemma

Lemma A.1 (Classical conditional packing lemma). Let pU(u)pX|U(x|u) ∈ P(U ,X )

be an arbitrary code distribution, and let N = (U ×X , pY |XU(y|x, u), Y) be a channel.

Let (Un, Xn, X̃n) be distributed according to
∏n

i=1 pU(ui)pX|U(xi|ui)pX|U(x̃i|ui). Let Ỹ n

denote the random variable that corresponds to the output of the channel when the

inputs are (Un, X̃n). Define E2 to be the event that the output Ỹ n will be part of the

conditionally typical set T (n)
ǫ (Y |Xn, Un), given that it is part of the output-typical set

Ỹ n ∈ T (n)
ǫ (Y |Un). We have that

E
Un,

Xn,X̃n

Pr
Ỹ n|X̃n

{E2} =

= E
Un

E
Xn

E
X̃n

Pr
Ỹ n|X̃n

{{

Ỹ n ∈ T (n)
ǫ (Y |Xn, Un)

}

∩
{

Ỹ n ∈ T (n)
ǫ (Y |Un)

}}

≤ 2−n[I(X;Y |U)−δ(ǫ)]. (A.8)

Consider the random codebook {Xn(m)}, m ∈ [1 : 2nR] generated randomly and

independently according to
∏n

i=1 pX|U(xi|ui). There exists δ(ǫ) → 0 as ǫ→ 0 such that

the probability that the conditionally typical decoding will misinterpreting the channel

output for Xn(m) incorrectly as produced by Xn(m′) for some m′ 6= m, that is,

Y n(m) ≡ N n(Un, Xn(m)), Y n(m) ∈ T (n)
ǫ (Y |Xn(m′), Un) and Y n(m) ∈ T (n)

ǫ (Y |Un),

vanishes as n → ∞, if R < I(X;Y |U) − δ(ǫ), where the mutual information is

calculated on the induced joint probability distribution (U,X, Y ) ∼ pUXY (u, x, y) =

pY |XU(y|x, u)pX|U(x|u)pU(u).

The description of the error event in the conditional packing lemma contains four

sources of randomness. First we have Un ∼ ∏n pU , then there are two independent

draws from
∏n pX|U to produce Xn and X̃n. Finally, the channel-randomness produces

Ỹ n = N n(Un, X̃n). The fact that X̃n and Xn are conditionally independent given Un

implies that Ỹ n and Xn are also conditionally independent given Un. The situation is

illustrated in Figure A.2.

Proof. We give an argument based on the properties of the output-typical sequences

and a cardinality bound on the conditionally typical sets. Assume that the output

sequence Ỹ n = N n(Un, X̃n) is output-typical (∈ T (n)
ǫ (Y |Un)), and happens to also

fall in the conditionally typical set for some other codeword T (n)
ǫ (Y |XnUn). This is
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Un
∏n

pU

Xn
∏n pX|U

X̃n

∏n pX|U

Ỹ n

∈ Yn

∏n pY |XU

1{

T
(n)
ǫ (Y |Un)

}

1{

T
(n)
ǫ (Y |Xn,Un)

}

AND 1{E2}

Figure A.2: The classical packing lemma. Two random codewords Xn and X̃n are drawn
randomly and independently conditional on a third random variable Un. Assume that the
random variable Un is also available at the receiver. What is the chance that the output
of the channel which corresponds to X̃ and Un will falsely be recognized to be in the set of
outputs which are likely to come from inputs: Xn and Un? The receiver performs two tests

on the output sequence Ỹ n: (1) test membership in T (n)
ǫ (Y |Un) and (2) test membership in

T (n)
ǫ (Y |Xn, Un). If both these are successful, the outcome will be a misidentification error E2.

described by the following event:

E2 =
{

Ỹ n ∈ T (n)
ǫ (Y |XnUn)

}

∩
{

Ỹ n ∈ T (n)
ǫ (Y |Un)

}

. (A.9)

Now consider the expectation of the probability of the event E2 under the code

randomness:

E
Un

E
Xn

E
X̃n

Pr {E2} =

= E
Un

E
Xn|Un

E
X̃n|Un

Pr
Ỹ n|X̃nUn

{{

Ỹ n ∈ T (n)
ǫ (Y |XnUn)

}

∩
{

Ỹ n ∈ T (n)
ǫ (Y |Un)

}}

= E
Un

E
Xn|Un

E
X̃n|Un

E
Ỹ n|X̃nUn

1{
Ỹ n∈T

(n)
ǫ (Y |XnUn)

} · 1{
Ỹ n∈T

(n)
ǫ (Y |Un)

}

= E
Un

E
Xn|Un

∑

x̃n

∑

ỹn

pXn(x̃n|Un)pY n|XnUn(ỹn|x̃n, Un)1{
ỹn∈T

(n)
ǫ (Y |XnUn)

}1{
ỹn∈T

(n)
ǫ (Y |Un)

}

①
= E

Un
E

Xn|Un

∑

ỹn

pY n|Un(ỹn|Un) 1{
ỹn∈T

(n)
ǫ (Y |XnUn)

} · 1{
ỹn∈T

(n)
ǫ (Y |Un)

}

②

≤ E
Un

E
Xn|Un

∑

ỹn

2−n[H(Y |U)−δ′(ǫ)] 1{
ỹn∈T

(n)
ǫ (Y |XnUn)

} · 1{
ỹn∈T

(n)
ǫ (Y |Un)

}

③

≤ 2−n[H(Y |U)−δ′(ǫ)]
E
Un

E
Xn|Un

∑

ỹn

1{
ỹn∈T

(n)
ǫ (Y |XnUn)

}

= 2−n[H(Y |U)−δ′(ǫ)]
∑

un,xn

pUnXn(un, xn)
∑

ỹn

1{
ỹn∈T

(n)
ǫ (Y |xnun)

}
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= 2−n[H(Y |U)−δ′(ǫ)]
∑

un,xn

pUnXn(un, xn)
∣
∣
∣T (n)

ǫ (Y |xnun)
∣
∣
∣

④

≤ 2−n[H(Y |U)−δ′(ǫ)] 2n[H(Y |XU)+δ′′(ǫ)]

= 2−n[I(X;Y |U)−δ(ǫ)].

The equality ① follows from the definition of the conditional output distribution:

pY n|Un(ỹn|un) =
∑

x̃n

pXn|Un(x̃n|un)pY n|XnUn(ỹn|x̃n, un). (A.10)

Inequality ② follows from the fact that sequence Ỹ n is conditionally output-typical,

which means that p(yn|un) ≤ 2−n[H(Y |U)−δ]. Inequality ③ is the consequence of drop-

ping an indicator, since in this way we could only be enlarging the set. Inequality ④

follows from (A.4).

The second statement in the packing lemma follows from the independence of

the codewords and the union bound. Let the random codebook {Xn(m)}, m ∈ [1 :

2nR] be generated randomly and independently according to
∏n

i=1 pX|U(xi|Ui). Define

{E2(m′|m)} to be the event that the channel output when message m is sent, Y n(m) =

N n(Un, Xn(m)) happens to fall in the conditionally typical set for some other codeword

T (n)
ǫ (Y |Xn(m′), Un) and is also output-typical (∈ T (n)

ǫ (Y |Un)).

E2(m′|m) ≡
{{
Y n(m) ∈ T (n)

ǫ (Y |Xn(m′), Un)
}
∩
{
Y n(m) ∈ T (n)

ǫ (Y |Un)
}}
. (A.11)

If we define (E2) to be the total probability of misidentifications of this kind, we

get:

Pr{(E2)} = Pr

{
⋃

m′∈M,m′ 6=m

E2(m′|m)

}

⑤

≤
∑

m′∈M,m′ 6=m

Pr{E2(m′|m)}

⑥
=

∑

m′∈M,m′ 6=m

Pr{E2}

≤
∑

m′∈M,m′ 6=m

2−n[I(X;Y |U)−δ(ǫ)]

≤ |M|2−n[I(X;Y |U)−δ(ǫ)]
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= 2−n[I(X;Y |U)−R−δ(ǫ)].

Inequality ⑤ uses the union bound. Inequality ⑥ is true because the all the codewords

of the codebook are picked independently.

Thus if we choose R < I(X;Y )− δ(ǫ), the probability of error will tend to zero as

n→ ∞.

The reader is now invited to review the Notation page (xi) in the beginning of

the thesis. This table can be used as a bridge from classical information theory to

the quantum information theory. In Appendix B, we will discuss the properties of

conditionally typical projectors and prove a quantum packing lemma which follows

exactly the same reasoning as in the classical packing lemma.

183



184



Appendix B

Quantum channel coding

The first part of this appendix defines the quantum typical subspaces and conditionally

typical projectors associated with a quantum multiple access channel problem. The

second part of the appendix is the statement of the quantum packing lemma which is

a direct analogue of the classical packing lemma presented in Appendix A.2.

B.1 Quantum typicality

The concepts of entropy, and entropy-typical sets generalize to the quantum setting

by virtue of the spectral theorem. Let HB be a dB dimensional Hilbert space and let

ρB ∈ D(HB) be the density matrix associated with a quantum state. The spectral

decomposition of ρB is denoted ρB = UΛU † where Λ is a diagonal matrix of positive

real eigenvalues that sum to one. We identify the eigenvalues of ρB with the probability

distribution pY (y) = Λyy and write the spectral decomposition as:

ρB =

dB∑

y=1

pY (y)|eρ;y〉〈eρ;y|B (B.1)

where |eρ;y〉 is the eigenvector of ρB corresponding to eigenvalue pY (y). The von Neu-

mann entropy of the density matrix ρB is

H(B)ρ = −Tr{ρB log ρB} = H(pY ). (B.2)
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Define the set of δ-typical eigenvalues according to the eigenvalue distribution pY

T n
pY ,δ≡

{

yn ∈ Yn :

∣
∣
∣
∣
− log pY n(yn)

n
−H(Y )

∣
∣
∣
∣
≤ δ

}

. (B.3)

For a given string yn = y1y2 . . . yi . . . yn we define the corresponding eigenvector as

|eρ;yn〉 = |eρ;y1〉 ⊗ |eρ;y2〉 ⊗ · · · ⊗ |eρ;yn〉, (B.4)

where for each symbol where yi = b ∈ {1, 2, . . . , dB} we select the bth eigenvector |eρ;b〉.

The typical subspace associated with the density matrix ρB is defined as

An
ρ,δ = span{|eρ;yn〉 : yn ∈ T n

pY ,δ}. (B.5)

The typical projector is defined as

Πn
ρB ,δ =

∑

yn∈T n
p,δ

|eρ;yn〉〈eρ;yn |. (B.6)

Note that the typical projector is linked twofold to the spectral decomposition of (B.1):

the sequences yn are selected according to pY and the set of typical vectors are build

from tensor products of orthogonal eigenvectors |eρ;y〉.

Properties analogous to (2.3) – (2.5) hold. For any ǫ, δ > 0, and all sufficiently

large n we have

Tr{ρ⊗nΠn
ρ,δ} ≥ 1− ǫ (B.7)

2−n[H(B)ρ+δ]Πn
ρ,δ ≤ Πn

ρ,δρ
⊗nΠn

ρ,δ ≤ 2−n[H(B)ρ−δ]Πn
ρ,δ, (B.8)

[1− ǫ]2n[H(B)ρ−δ] ≤ Tr{Πn
ρ,δ} ≤ 2n[H(B)ρ+δ]. (B.9)

The interpretation of (B.8) is that the eigenvalues of the state ρ⊗n are bounded between

2−n[H(B)ρ−δ] and 2−n[H(B)ρ+δ] on the typical subspace An
ρ,δ.

Signal states Consider now a set of quantum states {ρxa
}, xa ∈ X . We perform the

spectral decomposition of each ρxa
to obtain

ρBxa
=

dB∑

y=1

pY |X(y|xa)|eρxa ;y〉〈eρxa ;y|B, (B.10)
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where pY |X(y|xa) is the yth eigenvalue of ρBxa
and |eρxa ;y〉 is the corresponding eigenvec-

tor.

We can think of {ρxa
} as a classical-quantum (c-q) channel where the input is

some xa ∈ X and the output is the corresponding quantum state ρxa
. If the channel is

memoryless, then for each input sequence xn = x1x2 · · · xn we have the corresponding

tensor product output state:

ρB
n

xn = ρB1
x1

⊗ ρB2
x2

⊗ · · · ⊗ ρBn
xn

=
n⊗

i=1

ρBi
xi
. (B.11)

To avoid confusion with the indices, we use i ∈ [n] to denote the index of a symbol x in

the sequence xn and a ∈ [1, . . . , |X |] to denote the different symbols in the alphabet X .

Conditionally typical projector Consider the ensemble {pX(xa) , ρxa
}. The choice

of distributions induces the following classical-quantum state:

ρXB =
∑

xa

pX(xa) |xa〉〈xa|X⊗ρBxa
. (B.12)

We can now define the conditional entropy of this state as

H(B|X)ρ ≡
∑

xa∈X

pX(xa)H(ρxa
), (B.13)

or equivalently, expressed in terms of the eigenvalues of the signal states, the conditional

entropy becomes

H(B|X)ρ ≡ H(Y |X) ≡
∑

xa

pX(xa)H(Y |xa), (B.14)

where H(Y |xa) = −∑y pY |X(y|xa) log pY |X(y|xa) is the entropy of the eigenvalue dis-

tribution shown in (B.10).

We define the xn-conditionally typical projector as follows:

Πn
ρB
xn

,δ =
∑

yn∈T n

ρB
n

xn
,δ

|eρxn ;yn〉〈eρxn ;yn |, (B.15)

where the set of conditionally typical eigenvalues T n
ρB

n

xn
,δ

consists of all sequences yn
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which satisfy:

T n
ρB

n

xn
,δ
≡
{

yn :

∣
∣
∣
∣
− log pY n|Xn(yn|xn)

n
−H(Y |X)

∣
∣
∣
∣
≤ δ

}

, (B.16)

with pY n|Xn(yn|xn) =∏n
i=1 pY |X(yi|xi).

The states |eρxn ;yn〉 are built from tensor products of eigenvectors for the individual

signal states:

|eρxn ;yn〉 = |eρx1 ;y1〉 ⊗ |eρx2 ;y2〉 ⊗ · · · ⊗ |eρxn ;yn〉,

where the string yn = y1y2 . . . yi . . . yn varies over different choices of bases for HB. For

each symbol yi = b ∈ {1, 2, . . . , dB} we select |eρxa ;b〉: the bth eigenvector from the

eigenbasis of ρxa
corresponding to the letter xi = xa ∈ X .

Analogous to the three properties (B.7), (B.8) and (B.9), the conditionally typical

projector obeys:

EXn Tr
[

ρBXn Πn
ρB
Xn ,δ

]

≥ 1− ǫ (B.17)

2−n[H(B|X)ρ+δ]Πn
ρB
xn

,δ ≤Πn
ρB
xn

,δ
ρBxn Πn

ρB
xn

,δ
≤ 2−n[H(B|X)ρ−δ]Πn

ρB
xn

,δ, (B.18)

[1− ǫ]2n[H(B|X)ρ−δ] ≤ EXn Tr
[

Πn
ρB
Xn ,δ

]

≤ 2n[H(B|X)ρ+δ]. (B.19)

MAC code Consider now a quantum multiple access channel (X1 ×X2, ρ
B
x1,x2

,HB)

and two input distributions pX1 and pX2 . Define the random codebooks {Xn
1 (m1)}m1∈M1

and {Xn
2 (m2)}m2∈M2 generated from the product distributions pXn

1
and pXn

2
respec-

tively. The choice of distributions induces the following classical-quantum state ρX1X2B

∑

xa,xb

pX1(xa) pX2(xb) |xa〉〈xa|X1⊗|xb〉〈xb|X2⊗ρBxaxb
. (B.20)

and the averaged output states:

ρ̄xa
≡
∑

xb

pX2(xb) ρxa,xb
, (B.21)

ρ̄xb
≡
∑

xa

pX1(xa) ρxa,xb
, (B.22)

ρ̄ ≡
∑

xa,xb

pX1(xa) pX2(xb) ρxa,xb
. (B.23)
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The conditional quantum entropy H(B|X1X2)ρ is:

H(B|X1X2)ρ =
∑

xa∈X1,xb∈X2

pX1(xa)pX2(xb)H(ρxa,xb
), (B.24)

and using the average states we define:

H(B|X1)ρ =
∑

xa∈X1

pX1(xa)H(ρ̄xa
), (B.25)

H(B|X2)ρ =
∑

xb∈X2

pX2(xb)H(ρ̄xb
), (B.26)

H(B)ρ = H(ρ̄). (B.27)

Similarly to equation (B.15) and for each message pair (m1,m2) we define the

conditionally typical projector for the encoded state ρBxn
1 (m1)xn

2 (m2)
to be Πn

ρB
xn1 (m1)x

n
2 (m2)

,δ
.

From this point on, we will not indicate the messages m1, m2 explicitly, because the

codewords are constructed identically for each message.

Analogous to (2.46), the following upper bound applies:

EXn
1 X

n
2
Tr{Πn

ρB
Xn

1 Xn
2
,δ} ≤ 2n[H(B|X1X2)ρ+δ], (B.28)

and we can also bound from below the eigenvalues of the state ρBxn
1 x

n
2
as follows:

2−n[H(B|X1X2)ρ+δ]Πn
ρB
xn1 xn2

,δ ≤ Πn
ρB
xn1 xn2

,δρ
B
xn
1 x

n
2
Πn

ρB
xn1 xn2

,δ ≤ 2−n[H(B|X1X2)ρ−δ]Πn
ρB
xn1 xn2

,δ. (B.29)

We define conditionally typical projectors for each of the averaged states:

ρ̄x1 → Πn
ρ̄B
xn1

,δ, (B.30)

ρ̄x2 → Πn
ρ̄B
xn2

,δ, (B.31)

ρ̄→ Πn
ρ̄B ,δ. (B.32)

These projectors obey the standard eigenvalue upper bounds when acting on the states
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with respect to which they are defined:

2−n[H(B|X1)ρ+δ]Πn
ρ̄B
xn1

,δ ≤ Πn
ρ̄B
xn1

,δρ̄xn
1
Πn

ρ̄B
xn1

,δ ≤ 2−n[H(B|X1)ρ−δ]Πn
ρ̄B
xn1

,δ, (B.33)

2−n[H(B|X2)ρ+δ]Πn
ρ̄B
xn2

,δ ≤ Πn
ρ̄B
xn2

,δρ̄xn
2
Πn

ρ̄B
xn2

,δ ≤ 2−n[H(B|X2)ρ−δ]Πn
ρ̄B
xn2

,δ, (B.34)

2−n[H(B)ρ+δ]Πn
ρ̄B ,δ ≤ Πn

ρ̄B ,δ ρ̄
B Πn

ρ̄B ,δ ≤ 2−n[H(B)ρ−δ]Πn
ρ̄B ,δ. (B.35)

We have the following bounds on the rank of the conditionally typical projectors:

Tr{Πn
ρ̄B
Xn

1
,δ } ≤ 2n[H(B|X1)ρ+δ], (B.36)

Tr{Πn
ρ̄B
Xn

2
,δ } ≤ 2n[H(B|X2)ρ+δ], (B.37)

Tr{Πn
ρ̄B ,δ } ≤ 2n[H(B)ρ+δ]. (B.38)

The encoded state ρBXn
1 X

n
2
is well supported by all the typical projectors on average:

EXn
1 X

n
2

[

Tr{Πn
ρB
Xn

1 Xn
2
,δ ρ

B
Xn

1 X
n
2
}
]

≥ 1− ǫ, (B.39)

EXn
1 X

n
2

[

Tr{Πn
ρ̄B
Xn

1
,δ ρ

B
Xn

1 X
n
2
}
]

≥ 1− ǫ, (B.40)

EXn
1 X

n
2

[

Tr{Πn
ρ̄B
Xn

2
,δ ρ

B
Xn

1 X
n
2
}
]

≥ 1− ǫ, (B.41)

EXn
1 X

n
2

[

Tr{Πn
ρ̄B ,δ ρ

B
Xn

1 X
n
2
}
]

≥ 1− ǫ. (B.42)
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B.2 Quantum packing lemma

Lemma B.1. Let pU(u)pX|U(x|u) ∈ P(U ,X ) be an arbitrary code distribution, and let

N = (U ×X , ρu,x,HB) be a classical-quantum channel. Let (Un, Xn, X̃n) be distributed

according to
∏n

i=1 pU(ui)pX|U(xi|ui)pX|U(x̃i|ui). Consider the channel N ′ defined by the

following map:

N ′ : (un, xn) →
(
un, ρB1

u1,x1
⊗ ρB2

u2,x2
⊗ · · · ⊗ ρBn

un,xn
︸ ︷︷ ︸

ρB
n

un,xn

)
, (B.43)

where un is available as side information to the receiver and the sender. Define the

state ρ̄un = EXn|unN ′(un, Xn) and the conditionally typical projectors ΠBn

ρ̄un
for the state

ρ̄B
n

un and ΠBn

ρun,xn
for the state ρB

n

un,xn.

We want to measure the expectation of the overlap between ρB
n

Un,X̃n and the operator

ΠBn

ρ̄Un
ΠBn

ρUn,Xn
ΠBn

ρ̄Un
associated with some (Un, Xn). We define this quantity to be:

E2 = Tr
[

ΠBn

ρ̄un
ΠBn

ρun,xn
ΠBn

ρ̄un
ρB

n

Un,X̃n

]

. (B.44)

Then E2 can be bounded as follows:

E
Un

E
Xn|Un

E
X̃n|Un

E2 ≤ 2−n[I(X;B|U)−δ(ǫ)]. (B.45)

Let the random codebook {Xn(m)}, m ∈ [1 : 2nR] be generated randomly and in-

dependently according to
∏n

i=1 pX|U(xi|Ui). Then there exists δ(ǫ) → 0 as ǫ → 0 such

that the expectation of the total overlap between conditionally typical output spaces can

be bounded from above as follows:

(E2) ≡
∑

m′∈M,m′ 6=m

E
Un

E
Xn(m)|Un

E
Xn(m′)|Un

Tr
[

ΠBn

ρ̄Un
ΠBn

ρUn,Xn(m′)
ΠBn

ρ̄Un
ρB

n

Un,Xn(m)

]

≤ |M|2−n[I(X;Y |U)−δ(ǫ)]. (B.46)

Thus if we choose R < I(X;B|U)−δ(ǫ), the quantity (E2) will tend to zero as n→ ∞.

To bound the expectation of the second term, define X̃(m) and Xn(m′) to be the

two random codewords assigned to messages m and m′ respectively.
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Un
∏n

pU

Xn
∏n pX|U

X̃n

∏n pX|U
ρB

n

Un,X̃n

∈ HBn

∏n pY |XU

Πρ̄Un ΠρUn,Xn Πρ̄Un E2

Figure B.1: The quantum packing lemma. Two random codewords Xn and X̃n are drawn
randomly and independently conditional on a third random variable Un. Assume that the
random variable Un is also available at the receiver. What is the chance that the output
of the channel which corresponds to X̃ and Un will falsely be recognized to be in the set of
outputs which are likely to come from inputs Xn and Un?

E
Un

E
Xn|Un

E
X̃n|Un

E2 = E
Un

E
Xn|Un

E
X̃n|Un

Tr
[

ΠBn

ρ̄Un
ΠBn

ρUn,Xn
ΠBn

ρ̄Un
ρB

n

Un,X̃n

]

= E
Un

E
Xn|Un

Tr

[

ΠBn

ρ̄Un
ΠBn

ρUn,Xn
ΠBn

ρ̄Un E
X̃n|Un

{ρBn

Un,X̃n}
]

①
= E

Un
E

Xn|Un
Tr
[

ΠBn

ρ̄Un
ΠBn

ρUn,Xn
ΠBn

ρ̄Un
ρ̄Un

]

= E
Un

E
Xn|Un

Tr
[

ΠBn

ρUn,Xn
ΠBn

ρ̄Un
ρ̄UnΠBn

ρ̄Un

]

②

≤ 2−n[H(B|U)−δ]
E
Un

E
Xn|Un

Tr
[

ΠBn

ρUn,Xn
ΠBn

ρ̄Un

]

③

≤ 2−n[H(B|U)−δ]
E
Un

E
Xn|Un

Tr
[

ΠBn

ρUn,Xn

]

④

≤ 2−n[H(B|U)−δ]2n[H(B|U,X)+δ]

= 2−n[I(X;Y |U)−δ(ǫ)].

Equation ① is true by the definition EX̃n|Un{ρBn

Un,X̃n} = ρ̄Un . The inequality ② uses
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the eigenvalue bound as in (B.18). The inequality ③ follows from

Tr
[

ΠBn

ρUn,Xn
ΠBn

ρ̄Un

]

= Tr
[

ΠBn

ρUn,Xn
ΠBn

ρ̄Un
ΠBn

ρUn,Xn

]

≤ Tr
[

ΠBn

ρUn,Xn
I ΠBn

ρUn,Xn

]

= Tr
[

ΠBn

ρUn,Xn

]

.

The inequality ④ follows from bound on the expected rank of the conditionally typical

projector like in (B.19).

Applications

Holevo-Schumacher-Westmoreland (HSW) Theorem

Given a channel (X , ρx,H), if we set:

• U = ∅

• pU(u)pX|U(x|u) = pX(x)

• ρun,xn = ρxn

• ΠBn

ρ̄un
ΠBn

ρun,xn
ΠBn

ρ̄un
= Πρ̄ΠρxnΠρ̄,

then the quantum packing lemma tells us how many conditionally typical subspaces

we can pack inside the output-typical subspace before they start to overlap too much.

Successive decoding for the quantum multiple access channel

Given a quantum multiple access channel (X1 ×X2, ρx1,x2 ,H), we set:

• U = X1

• pU(u)pX|U(x|u) = pX1(x1)pX2(x2)

• ρun,xn = ρxn
1 ,x

n
2

• ΠBn

ρ̄un
ΠBn

ρun,xn
ΠBn

ρ̄un
= Πρ̄xn1

Πρxn1 ,xn2
Πρ̄xn1

,

to obtain the bound on the rate R2 when using the successive decoding m1 → m2|m1.
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Superposition coding

Consider the situation in which superposition encoding is used to encode two messages

ℓ and m in a codebook suitable for the channel (X , ρx,H):

{W n(ℓ)} ∼ pWn(wn), {Xn(ℓ,m)} ∼
n∏

i=1

pX|W (xi|wi(ℓ)) .

Consider the following substitutions:

• U = W

• pU(u)pX|U(x|u) = pW (w)pX|W (x|w)

• ρun,xn = ρxn

• ΠBn

ρ̄un
ΠBn

ρun,xn
ΠBn

ρ̄un
= Πρ̄wnΠρxnΠρ̄wn .

The packing lemma gives us a bound on the error associated with decoding a wrong

message m (the satellite message) given that we correctly decoded ℓ (the cloud center).
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Miscellaneous proofs

This appendix contains a series of proofs which were omitted from the text in Sec-

tion 5.4 in order to make it more readable.

C.1 Geometry of Chong-Motani-Garg rate region

We will now prove the inequalities from Lemma 5.2 on the geometry ofR1
CMG(N , pCMG),

the multiple access channel for Receiver 1 in the Chong-Motani-Garg coding strategy.

This inequality structure is important for the geometrical observations of the Şaşoğlu

argument.

Proof of Lemma 5.2. If we expand the shorthand notation of equations (5.30) through

(5.32) we obtain the following inequalities.

I(X1;B1|W1W2Q) ≤ I(X1;B1|W2Q) ≤ I(X1W2;B1|Q), (C.1)

I(X1;B1|W1W2Q) ≤ I(X1W2;B1|W1Q) ≤ I(X1W2;B1|Q), (C.2)

I(X1;B1|W1W2Q) + I(X1W2;B1|Q) ≤ I(X1;B1|W2Q) + I(X1W2;B1|W1Q). (C.3)

Observe that W2 is independent from W1 and X1 thus

H(X1W2) = H(X1) +H(W2), H(W1W2) = H(W1) +H(W2). (C.4)
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Also, since X1 is obtained from W1, we have H(X1) = H(X1W1) and we can add or

subtract the random variable W1 next to X1 as needed without changing the entropy.

The get the first part of the inequality (5.30), we observe

I(X1;B1|W1W2) = I(X1;B1W2|W1)

= H(X1W1) +H(B1W2W1)−H(X1B1W2W1)−H(W1)

−H(W1W2) +H(W1W2)

= H(X1) + [H(B1W2W1)−H(W1W2)]−H(X1B1W2W1)

−H(W1) +H(W1) +H(W2)

≤ H(X1) + [H(B1W2)−H(W2)]−H(X1B1W2W1) +H(W2)

= [H(X1) +H(W2)] +H(B1W2)−H(X1B1W2W1)−H(W2)

= I(X1;B1|W2),

where inequality follows from H(B1|W1W2) ≤ H(B1|W2) (conditioning cannot increase

entropy).

The second part of inequality (5.30), follows from a similar observation using

H(B1|W2) ≤ H(B1).

I(X1;B1|W2) = H(X1W2) +H(B1W2)−H(X1B1W2)−H(W2)

= H(X1W2) + [H(B1W2)−H(W2)]−H(X1B1W2)

≤ H(X1W2) + [H(B1)]−H(X1B1W2)

= I(X1W2;B1).

For the first part of (5.31) we repeat the above argument but with extra condi-
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tioning on the W1 system.

I(X1;B1|W1W2) =

= H(X1W1W2) +H(B1W1W2)−H(X1B1W1W2)−H(W1W2)

= H(X1W1W2) + [H(B1W1W2)−H(W1W2)]−H(X1B1W1W2)

≤ H(X1W2) + [H(B1|W1)]−H(X1B1W1W2)

= H(X1W2) +H(B1W1)−H(X1B1W1W2)−H(W1)

= H(X1W1W2) +H(B1W1)−H(X1B1W1W2)−H(W1)

= I(X1W2;B1|W1).

For the second part of (5.31) we have

I(X1W2;B1|W1) = H(X1W1W2) +H(B1W1)−H(X1B1W1W2)−H(W1)

= H(X1W2) + [H(B1W1)−H(W1)]−H(X1B1W2)

≤ H(X1W2) +H(B1)−H(X1B1W2)

= I(X1W2;B1).

Finally for inequality (5.32) we need to use the strong subadditivity relation

H(B1W1W2) +H(B1) ≤ H(B1W1) +H(B1W2). (C.5)

The steps are

I(X1;B1|W1W2) + I(X1W2;B1) =

= H(X1W1W2) +H(B1W1W2)−H(X1B1W1W2)−H(W1W2)

+H(X1W2) +H(B1)−H(X1B1W2)

= [H(B1W1W2) +H(B1)] +H(X1W1W2)−H(X1B1W1W2)−H(W1)−H(W2)

+H(X1W2)−H(X1B1W2)

≤ [H(B1W1) +H(B1W2)] +H(X1W1W2)−H(X1B1W1W2)−H(W1)−H(W2)

+H(X1W2)−H(X1B1W2)

= H(X1W1W2) +H(B1W1)−H(X1B1W1W2)−H(W1)

+H(X1W2) +H(B1W2)−H(X1B1W2)−H(W2)

= I(X1W2;B1|W1) + I(X1;B1|W2).
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C.2 Detailed explanation concerning moving points

This completes the proof of Lemma 5.2.

C.2 Detailed explanation concerning moving points

In Section 5.5.2 we used Lemma 5.3 to show that we can move any point on the (b) or

(d) planes to an equivalent point on the (a) or (c) planes. We now give the proof.

Proof. We have to show how to move any point in bi∪di \ai∪ ci to an equivalent point

in ai ∪ ci. Because the rates R1c and R2c appear in the coordinates of both P1 and P2,

we cannot move each point independently. Indeed Şaşoğlu points out that the points

P1 and P2 are coupled by the common rates.

A priori, we have to consider all possible starting combinations the points However,

using the following observations we can restrict the number of possibilities significantly.

1. If P1 ∈ b1 \ a1, then P2 ∈ a2 ∪ b2.
The fact that P1 ∈ b1 \ a1 implies that equation (b1) is tight

R1p +R1c = I(b1), (C.6)

and (a1) is loose

R1p < I(a1). (C.7)

Then there exists δ > 0 such that the point P ′
1 = (R1p+δ, R1c−δ, R2c) ∈ R1

CMG(p).

Suppose for a contradiction that P2 was originally in (c2 ∪ d2) \ (a1 ∪ b1). The

decrease in R1c associated with the move from P1 to P ′
1, will have allowed us

to increase the one of the rates for Receiver 2 which is a contradiction since

we assumed the R2 = R2c + R2p was optimal. More specifically, if P2 ∈ c2, or

P2 ∈ d2, then we would be allowed to increase R2p by δ, to obtain P ′
2 = (R2p +

δ, R2c, R1c − δ), resulting in the operating point (R1, R2 + δ) which contradicts

the assumption that the initial rate pair (R1, R2) was on the boundary of RCMG.

Thus, if P1 ∈ b1 \ a1, then P2 must be in a2 ∪ b2.

2. If P1 ∈ d1 \ (a1 ∪ b1 ∪ c1) then P2 ∈ a2.

Again consider moving the rates to obtain P ′
1 = (R1p+δ, R1c−δ, R2c) ∈ d1 \ (a1∪
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b1∪c1), then if then if P2 was originally in c2 or d2, then the decrease in R1c would

allow us to move the point P2 to a new rate triple P ′
2 = (R2p + δ, R2c, R1c − δ),

resulting in the operating point (R1, R2+δ), which again leads to a contradiction.

Therefore P2 can only be in a2 or b2. But if P2 were in b2, then by observation 1

(with a change of roles between P1 and P2) we would have P1 ∈ (a1 ∪ b1) which
contradicts our assumption that P1 ∈ d1 \ (a1 ∪ b1 ∪ c1). Thus we see that if

P1 ∈ d1 \ (a1 ∪ b1 ∪ c1), then P2 ∈ a2.

By the above reasoning we have restricted the possible combinations where the

points (P1, P2) could lie initially. To prove Theorem 5.3, we have to show that we can

deal with the following combinations: b1 × a2, a1 × b2, b1 × b2, d1 × a1 and a1 × d2.

We now show that we can move any point P1 ∈ b1 ∪ d1 (on one of the bad planes)

to an equivalent point lying in a1 ∪ c1,

• Case (P1, P2) ∈ b1 × a2:

In this case, equations (b1) and (a2) are tight which means that the rate pairs

are of the form

P1 = (R1p, R1c, R2c), such that R1p +R1c = I(b1),

P2 = (R2p, R2c, R1c) = (I(a2), R2c, R1c).

If we apply a R1c → R1p rate moving operation to P1 we can obtain a new point

P ′
1 with

P ′
1 = (R′

1p, R
′
1c, R2c) = (I(a1), I(b1)− I(a1), R2c) ∈ a1 ∩ b1.

As a result of the moving the point P2 will be moved to

P ′
2 = (R2p, R2c, R

′
1c) = (I(a2), R2c, I(b1)− I(a1)),

which continues to lie in the a2 plane. Observe that during this rate moving

operation the sum rates remain unchanged (R1p + R1c, R2p + R2c) = (R1, R2) =

(R′
1p +R′

1c, R
′
2p +R′

2c).

The case when (P1, P2) ∈ a1 × b2 is analogous.

• Case (P1, P2) ∈ b1 × b2:
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C.2 Detailed explanation concerning moving points

Our starting points are

P1 = (R1p, R1c, R2c), such that R1p +R1c = I(b1),

P2 = (R2p, R2c, R1c), such that R2p +R2c = I(b2).

We will first do a R1c → R1p rate moving operation until we get to the plane a1.

The points we obtain are

P ′
1 = (R′

1p, R
′
1c, R2c) = (I(a1), I(b1)− I(a1), R2c) ∈ a1 ∩ b1,

P ′
2 = (R2p, R2c, R

′
1c) = (R2p, R2c, I(b1)− I(a1)) ∈ b2.

We then perform second rate moving operation R2c → R2p in order to move to

the plane a2.

P ′′
1 = (R′

1p, R
′
1c, R

′′
2c) = (I(a1), I(b1)− I(a1), I(b2)− I(a2)) ∈ a1 ∩ b1,

P ′′
2 = (R′′

2p, R
′′
2c, R

′
1c) = (I(a2), I(b2)− I(a2), I(b1)− I(a1)) ∈ a1 ∩ b2.

Thus we have managed to move the points (P1, P2) ∈ b1× b2 to equivalent points

(P ′′
1 , P

′′
2 ) ∈ a1 × a2 while leaving the sum rate (R1, R2) unchanged.

• Case (P1, P2) ∈ d1 × a2:

If P1 ∈ d1, it means that the triple sum inequality (d1) is tight. The starting

rates are

P1 = (R1p, R1c, R2c), such that R1p +R1c +R2c = I(d1),

P2 = (I(a2), R2c, R1c) ∈ a2.

To move P1 away from the interior of the d1 plane we will once again use a rate

moving operation R1c → R1p. This operation will increase the rate R1p at the

expense of the rate R1c. We cannot increase the rate R1p indefinitely – sooner or

later one of the two other rate constraints on R1p will saturate.

The other constraints on R1p come from equations (a1) and (c1), so by rate

moving we will eventually reach either the a1 or the c1 planes.
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If the first case the resulting points will be

P ′
1 = (R′

1p, R
′
1c, R2c) = (I(a1), R

′
1c, R2c) ∈ a1 ∩ d1,

P ′
2 = (I(a2), R2c, R

′
1c) ∈ a2,

where R′
1c = I(d1) − I(a1) − R2c because by rate moving we stayed in the d1

plane.

In the latter case where moving the rates of P1 ∈ d1 puts us on the c1 plane the

resulting points will be

P ′
1 = (R′

1p, R
′
1c, R2c) ∈ c1 ∩ d1, s.t. R′

1p +R2c = I(c1)

P ′
2 = (I(a2), R2c, R

′
1c) ∈ a2.

Once again, the sum rate (R1, R2) remains unchanged by the rate moving, but

the moved points (P ′
1, P

′
2) are now either in a1 × a2 or c1 × a2 as claimed.

The case when (P1, P2) ∈ a1 × d2 is analogous.

Therefore, given an arbitrary point (R1, R2) ∈ ∂RCMG(N , pCMG), there always

exists a choice of common/private rates such that (P1, P2) ∈ a1 ∪ c1 × a2 ∪ c2 with

(R1p +R1c, R2p +R2c) = (R1, R2).

C.3 Redundant inequality

In Section 5.5.3, we claimed that the inequality (5.49) is less tight than the sum rate

constraint obtained by adding equations (5.48) and (5.51).

To that this is true, consider the following argument starting from the positivity

of the mutual information I(W1;W2|B1) ≥ 0:

H(W1W2B1) +H(B1) ≤ H(W1B1) +H(W2B1). (C.8)
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We now addH(X1W1W2) and subtract −H(X1W1W2B1) on both sides of the equation:

H(W1W2B1) +H(B1) +H(X1W1W2)

−H(X1W1W2B1)
≤ H(W1B1) +H(W2B1) +H(X1W1W2)

−H(X1W1W2B1).

We now use the fact thatW2 is independent fromW1, soH(W1)−H(W1W2) = −H(W2)

to obtain:

H(W1W2B1) +H(B1) +H(X1W1W2)

−H(X1W1W2B1) +H(W1)−H(W1W2)
≤ H(W1B1) +H(W2B1) +H(X1W1W2)

−H(X1W1W2B1)−H(W2).

We move the term H(W1B1) to the other side and rearrange the terms the final

expression:

H(X1W1W2) +H(W1W2B1)−H(X1W1W2B1)−H(W1W2)

+H(W1) +H(B1)−H(W1B1)

≤ H(X1W1W2) +H(W2B1)

−H(X1W1W2B1)−H(W2)

I(a1) = I(X1;B1|W1W2) + I(W1;B1) ≤ I(X1;B1|W2) = I(b1),

which shows that we can drop the constraint from equation (5.49).
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