
University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

CSE Journal Articles Computer Science and Engineering, Department of

2014

Network Innovation using OpenFlow: A Survey
Adrian Lara
University of Nebraska-Lincoln, adrianlara@gmail.com

Anisha Kolasani
University of Nebraska-Lincoln

Byrav Ramamurthy
University of Nebraska-Lincoln, bramamurthy2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/csearticles

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of

Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an authorized administrator of DigitalCommons@University of

Nebraska - Lincoln.

Lara, Adrian; Kolasani, Anisha; and Ramamurthy, Byrav, "Network Innovation using OpenFlow: A Survey" (2014). CSE Journal

Articles. 118.
http://digitalcommons.unl.edu/csearticles/118

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles/118?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014 493

Network Innovation using OpenFlow: A Survey
Adrian Lara, Anisha Kolasani, and Byrav Ramamurthy

Abstract—OpenFlow is currently the most commonly deployed
Software Defined Networking (SDN) technology. SDN consists of
decoupling the control and data planes of a network. A software-
based controller is responsible for managing the forwarding in-
formation of one or more switches; the hardware only handles the
forwarding of traffic according to the rules set by the controller.
OpenFlow is an SDN technology proposed to standardize the
way that a controller communicates with network devices in
an SDN architecture. It was proposed to enable researchers to
test new ideas in a production environment. OpenFlow provides
a specification to migrate the control logic from a switch into
the controller. It also defines a protocol for the communication
between the controller and the switches.

As discussed in this survey paper, OpenFlow-based archi-
tectures have specific capabilities that can be exploited by
researchers to experiment with new ideas and test novel ap-
plications. These capabilities include software-based traffic anal-
ysis, centralized control, dynamic updating of forwarding rules
and flow abstraction. OpenFlow-based applications have been
proposed to ease the configuration of a network, to simplify
network management and to add security features, to virtualize
networks and data centers and to deploy mobile systems. These
applications run on top of networking operating systems such as
Nox, Beacon, Maestro, Floodlight, Trema or Node.Flow. Larger
scale OpenFlow infrastructures have been deployed to allow the
research community to run experiments and test their applica-
tions in more realistic scenarios. Also, studies have measured
the performance of OpenFlow networks through modelling and
experimentation. We describe the challenges facing the large scale
deployment of OpenFlow-based networks and we discuss future
research directions of this technology.

Index Terms—Software Defined Networking, OpenFlow, Ca-
pabilities, Applications, Deployments, Networking Challenges.

I. INTRODUCTION

A
RECENT approach to programmable networks is the

Software Defined Networking (SDN) architecture. SDN

consists of decoupling the control and data planes of a

network. It relies on the fact that the simplest function of

a switch is to forward packets according to a set of rules.

However, the rules followed by the switch to forward packets

are managed by a software-based controller 1. One motivation

of SDN is to perform network tasks that could not be done

without additional software for each of the switching elements.

Developed applications can control the switches by running

on top of a network operating system, which works as an

Manuscript received May 23, 2012; revised November 9, 2012, March 5,
2012, and May 9, 2013. This material is based upon work supported by the
National Science Foundation under Grant No. CNS-1040765.

The authors are with the Department of Computer Science and Engineering,
University of Nebraska-Lincoln, Lincoln, NE 68588-0115, USA (e-mail:
{alara,akolasan,byrav}@cse.unl.edu).

Digital Object Identifier 10.1109/SURV.2013.081313.00105
1We assume each OpenFlow network consists of a single logically cen-

tralized controller, which could be implemented by multiple controllers, in
practice.

intermediate layer between the switch and the application.

Another motivation is to move part of the complexity of the

network to the software-based controller instead of relying

only on the hardware network devices.

OpenFlow [1] was proposed to standardize the communi-

cation between the switches and the software-based controller

in an SDN architecture. The authors identify that it is difficult

for the networking research community to test new ideas in

current hardware. This happens because the source code of

the software running on the switches cannot be modified and

the network infrastructure has been “ossified” [1], as new

network ideas cannot be tested in realistic traffic settings. By

identifying common features in the flow tables of the Ethernet

switches, the authors provide a standardized protocol to con-

trol the flow table of a switch through software. OpenFlow

provides a means to control a switch without requiring the

vendors to expose the code of their devices.

OpenFlow was initially deployed in academic campus

networks [1]. Today, at least nine universities in the US

have deployed this technology [2]. The goal of OpenFlow

was to provide a platform that would allow researchers to

run experiments in production networks. However, industry

has also embraced SDN and OpenFlow as a strategy to

increase the functionality of the network while reducing costs

and hardware complexity. Table I shows a list of several

OpenFlow-compliant switches available in the market. The

Open Networking Foundation (ONF) [3] was founded in

2011 by Deutsche Telekom, Facebook, Google, Microsoft,

Verizon, and Yahoo to promote the implementation of SDN

and OpenFlow-based networks. Currently, ONF has more than

95 members including several major vendors.

OpenFlow networks have specific capabilities. For example,

it is possible to control multiple switches from a single

controller. It is also feasible to analyze traffic statistics using

software. Forwarding information can be updated dynamically

as well and different types of traffic can be abstracted and

managed as flows. These capabilities have been exploited by

the research community to experiment with innovative ideas

and propose new applications. Ease of configuration, network

management, security, availability, network and data center

virtualization and wireless applications are those that have

been investigated the most using OpenFlow. They have been

implemented in different environments, including virtual or

real hardware networks and simulations. Researchers have also

focused on evaluating the performance of OpenFlow networks

and on proposing methods to improve their performance.

OpenFlow offers great opportunities for network innovation

but it also faces challenges. The fact that the availability of

the network depends on a single controller at a given time,

creates scalability and availability problems. There are security

1553-877X/14/$31.00 c© 2014 IEEE

kasyma
Typewritten Text
Pages: 493 - 512, DOI: 10.1109/SURV.2013.081313.00105

494 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

TABLE I
EXAMPLE OPENFLOW-COMPLIANT SWITCHES.

Switch Company Series

Arista Arista extensible modular operating system (EOS), Arista 7124FX application switch
Ciena Ciena Coredirector running firmware version 6.1.1
Cisco Cisco cat6k, catalyst 3750, 6500 series

Juniper Juniper MX-240, T-640
HP HP procurve series- 5400 zl, 8200 zl, 6200 yl, 3500 yl, 6600

NEC NEC IP8800
Pronto Pronto 3240, 3290
Toroki Toroki Lightswitch 4810
Dell Dell Z9000 and S4810

Quanta Quanta LB4G

Open vSwitch Software switch. Latest version: 1.10.0

concerns regarding the fact that all the network information is

contained in one single server. Compatibility issues must also

be taken into consideration. Questions remain about future

directions of OpenFlow research as well. We discuss the

extension of this technology to network-layer devices such

as IP routers, as well as the deployment of OpenFlow in wide

area networks (WAN).

This survey paper is the first comprehensive document, in

our opinion, to discuss the capabilities, applications, deploy-

ments and challenges of OpenFlow networks in local and

wide area environments. We also describe SDN and alternative

standards such as ForCES [4]. We explain how OpenFlow has

received major attention among SDN technologies but we also

point out the difference between SDN and OpenFlow.

We begin by giving a background of programmable net-

works and describing SDN in Section II. We explain the

OpenFlow specification in Section III. Then we present the

capabilities of OpenFlow networks in Section IV and we

survey how they have been exploited in different applications

in Section V. We describe deployments of OpenFlow-based

networks in Section VI. Next we discuss studies that have

evaluated the performance of OpenFlow in Section VII. Then

we discuss the challenges faced by OpenFlow in Section

VIII. We conclude by proposing future research directions in

Section IX.

II. BACKGROUND OF PROGRAMMABLE NETWORKS

In this section we present several contributions to pro-

grammable networks prior to SDN and OpenFlow. One of

the first approaches was SOFTNET [5], an experimental

multihop packet radio network that introduced the idea of

adding commands to the contents of each packet. The goal

was to modify a network node during operation time, using

commands written in the SOFTNET language. The motiva-

tion of the authors in creating this network was to enable

experiments with different network protocols. SOFTNET was

deployed as a proof of concept. There were no further large

scale deployments, but the idea behind it was the motivation

for Active Networks [6], [7].

The main idea of Active Networks (AN) was to allow

packets to contain programs that could be executed by the

network devices that they traversed. The concept of active

network is due to the fact that switches perform computations

on the data of the packets flowing through them and the users

can inject programs into the network [6]. A survey on AN

research is available in [8]. Although AN became an active

field of research, it ultimately failed at being widely used.

Recently, NetServ [9] was proposed as ActiveNetworks 2.0.

The authors argue that NetServ contains all the necessary

elements to be deployed.

SOFTNET and ActiveNetworks did not use software com-

ponents to control the network devices. The programmability

of the network was achieved by adding source code to the

payload of the packets. More recent approaches proposed

separating the control plane from the data plane by moving the

first one to general purpose servers. We describe SoftRouter

[10], ForCES [4] and finally we focus on OpenFlow [1]. They

are all based on software defined networking architectures,

where the network devices are controlled by software compo-

nents.

A. Software Defined Networking

The difference between SDN and the previous approaches

is that a software component running on a server or a CPU is

added to the architecture of the network. In SDN, the software

component is responsible for the control plane of the network.

This is why we say that SDN decouples the control and

data planes, as this distinction was not as clear in previous

approaches.

One important feature of SDN is its ability to provide

a network wide abstraction. Keller et al. [11] discuss the

idea of the “platform as a service” model for networking.

According to the authors, it is a common trend to decouple the

infrastructure management from the service management. In

this model, the underlying physical network and the topology

are hidden to the user. Instead, the abstraction presented to

the user is a single router. According to them, the customer

is mostly interested in being able to configure policies and

defining how packets are handled. We will see during the rest

of this survey that a large number of publications aim at hiding

the complexity of the network and providing an easier way to

configure a service. Using names instead of IP addresses, or

high level policies instead of access control configuration files

are examples of this abstraction.

Network operating system is a key concept in SDN. It

comes from the idea of abstracting the complexity of the

underlying network. Lazar [12] explains how an early ap-

proach to programmable networks introduced the term of

LARA et al.: NETWORK INNOVATION USING OPENFLOW: A SURVEY 495

kernel in terms of networking. The idea was precisely to

draw a parallel between the network operating system and

the typical operating system. In an operating system, the

abstraction includes the hardware components of the CPU.

In a network, the abstraction hides the topology and the

network devices. Therefore, the network operating system is

responsible for the abstraction provided by SDN to its users.

Another important advantage of SDN is that it enables

innovation and flexibility. If the control and data plane are

managed by a hardware network devices, there is little room

for innovating and experiment, as the software or firmware of

those devices cannot be easily modified. Instead, by having

access to a software component to manage the control plane,

many ideas can be explored.

B. Standardizing the communication between the control

plane and the data plane

SDN provides network-wide abstraction to the user and any

software-based technique can be used to manage the control

plane. However, we have not discussed how is the communica-

tion between the control and data plane standardized. Next we

describe how several researchers have proposed to standardize

this communication.

One early proposal is the IEEE P1520 Standards Initiative

for Programmable Networks Interfaces [13]. The authors iden-

tify the need of abstracting the complexity of the network to

the user as well as the necessity of a programming interface

to define the network. They also discuss the need of having a

protocol to access the network elements.

The SoftRouter architecture [10] allows dynamic binding

between the network element running the data plane and

the control element (software-based). This architecture was

proposed for network-layer devices that can be controlled by

standard purpose servers. The software component does not

need to be wired to the network device and a network element

can have more than one control element across the network.

ForCES (Forwarding and Control Element Separation) [4]

was created by the Internet Engineering Task Force (IETF).

ForCES was proposed to standardize the way that controlling

elements communicate with network elements. However, this

standard did not experience widespread adoption by the vendor

community. The Internet Research Task Force (IRTF) has

also undertaken efforts regarding SDN. The Software Defined

Networking Research Group (SDNRG) [14] aims to identify

SDN approaches that can be used in the nearby future, as

well as to identify future challenges. It also aims at providing

a forum to SDN researchers [15].

OpenFlow [1] came next and was based on the same

motivation: how to standardize the communication between

the control plane and the data plane. It describes how software

applications can program the flow table of different switches.

OpenFlow quickly became an active research topic and we

describe it in detail in the next section. Before, we briefly

compare ForCES and OpenFlow.

The IETF documented the differences between ForCES and

OpenFlow [16]. According to this document, both standards

decouple the control and data planes and they both standardize

the communication between the two planes. Regarding the

Fig. 1. OpenFlow components.

architecture of the network, one difference can be found be-

tween ForCES and OpenFlow. ForCES defines networking and

forwarding elements and how they can communicate with each

other. The architecture of the network remains unchanged.

On the other hand, OpenFlow modifies the architecture in

the sense that data plane elements become simple devices

that forward packets according to rules given by the control

element. ForCES allows multiple control and data elements

within the same network and the logic can be spread through

all the elements. OpenFlow aims at having a centralized

control plane.

Due to the emergence of OpenFlow as the SDN architecture

that has received major attention, we focus this survey on

network innovation using OpenFlow.

III. OPENFLOW SPECIFICATION

The OpenFlow specification describes an open protocol

to allow software applications to program the flow table of

different switches. An OpenFlow architecture consists of three

main components: an OpenFlow-compliant switch, a secure

channel and a controller, as shown in Fig 1. Switches use

flow tables to forward packets. A flow table is a list of flow

entries. Each entry has match fields, counters and instructions.

Incoming packets are compared with the match fields of each

entry and if there is a match, the packet is processed according

to the action contained by that entry. Counters are used to keep

statistics about packets. The packet can also be encapsulated

and sent to the controller.

The controller is a software program responsible for ma-

nipulating the switch’s flow table, using the OpenFlow pro-

tocol. The secure channel is the interface that connects the

controller to all switches. Through this channel, the controller

manages the switches, receives packets from the switches

and sends packets to the switches. An OpenFlow-compliant

switch must be capable of forwarding packets according to

the rules defined in the flow table. Figure 2 shows a high

level description of how a network device processes a packet.

First, the communication between the switch and the controller

is possible through flow table rules. Internally, a switch uses

Ternary Content Addressable Memory (TCAM) and Random

Access Memory (RAM) to process each packet.

496 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

Fig. 2. Elements of an OpenFlow-compliant switch.

TABLE II
MATCH FIELDS OF A FLOW TABLE ENTRY IN AN OPENFLOW 1.0.0

SWITCH.

Ingress Port
Ether src
Ether dst

Ether type
VLAN id

VLAN priority CoS
IP src
IP dst

IP Proto
IP ToS bits

TCP/UDP src port
TCP/UDP dst port

Different versions of the OpenFlow protocol specification

are available. The first version was the OpenFlow version

0.2.0 released in March, 2008. Versions 0.8.0 and 0.8.1 came

next in May, 2008. Version 0.8.2, released in October, 2008,

added the Echo Request and Echo Reply messages. Then,

version 0.8.9 was released in December, 2008. It included

IP netmasks, additional statistic information and several other

updates. OpenFlow 0.9 was released in July, 2009. Finally,

OpenFlow version 1.0, the most widely deployed version, was

released in December, 2009. Next, we focus on versions 1.0.0

[17], 1.1.0 [18], 1.2 [19] and 1.3.0 [20], as previous versions

are now deprecated. A detailed list of changes included in

every version is available in the OpenFlow 1.3.0 specification

document [20].

A. OpenFlow 1.0.0

Currently, the most widely used specification is the version

1.0.0. A switch supporting OpenFlow specification 1.0.0 uses

12 header fields present in the header and payload of the

Ethernet packets coming into the switch. Table II shows all

the header fields.

A packet can be matched to a particular flow entry in the

flow table by using one or more header fields of the packet.

A field in the flow table can have the value of ANY and it

will match all packets. If the forwarding table is implemented

using Ternary Content Addressable Memory (TCAM), ANY

can be implemented in the switch hardware using the third

masking state of the TCAM.

In Fig. 2 we showed the main elements of an OpenFlow

switch. Figure 3 shows the details of the data plane in an

TABLE III
MATCH FIELDS OF A FLOW TABLE ENTRY IN AN OPENFLOW 1.1.0

SWITCH.

Ingress port
Metadata

Ether src
Ether dst

Ether type
VLAN id

VLAN priority
MPLS label

MPLS EXP traffic class

IPv4 src
IPv4 dst

IPv4 proto / ARP opcode
IPv4 ToS bits

TCP/UDP/SCTP src port. ICMP Type
TCP/UDP/SCTP dst port. ICMP Code

OpenFlow 1.0.0 switch. In step 1, the Ethernet packet entering

the switch goes to a packet parsing system. In step 2, the

header fields are extracted and placed in a packet lookup

header, as they are used for matching purposes. In step 3, the

packet lookup header generated is sent to the packet matching

system. In step 4, the packet lookup header is compared to

the rules defined for each flow entry in the OpenFlow flow

table. Note that the flow entries in the table are present in

the descending order of priority. Therefore, the comparison of

the packet lookup header is done starting from the first flow

entry on the flow table. If a match is found, the actions in the

matched flow entry are performed on the packet (step 5B).

Otherwise, the first 200 bytes of the packet are sent to the

controller for processing (step 5A).

B. OpenFlow 1.1.0

In the OpenFlow 1.1.0 specification, a switch contains

several flow tables and a group table, instead of just one single

flow table, as in OpenFlow 1.0.0. Figure 4 shows the main

components of the OpenFlow 1.1.0 switch. The match fields

are also different, as shown in Table III. We have highlighted

in bold the added cells. The metadata field is used to pass

information between the tables as the packet traverses through

them. It is a register used to carry information between the

tables. The Multiprotocol Label Switching (MPLS) fields are

used to support MPLS tagging.

The processing of a packet entering the switch has changed

as there are multiple flow tables available in the switch. The

flow tables in the switch are linked to each other through a

process termed as pipeline processing.

Pipeline processing involves a set of flow tables linked

together to process the packet coming in. When the packet

first enters the switch, it is sent to the first table to look for the

flow entry to be matched. If there is a match, the packet gets

processed there and if there is another table that the particular

flow entry points to, the packet is then sent to that flow table.

This happens until a particular flow entry does not point to

any other flow table.

The flow entries in the flow tables can also point to the

group table. The group table is a special kind of table designed

to perform operations that are common across multiple flows.

This means that actions belonging to a set of flows are grouped

LARA et al.: NETWORK INNOVATION USING OPENFLOW: A SURVEY 497

Fig. 3. How a packet is processed and forwarded in an OpenFlow 1.0.0 switch.

Fig. 4. Components of an OpenFlow 1.1.0 switch. Source: [18].

together. Also, the set of flows is controlled to perform various

actions collectively under a single group. Complex forwarding

actions such as multipath and link aggregation are enabled

through the group table.

Finally, specification 1.1.0 introduces instructions instead

of actions. Previously, an action was associated to each flow

table entry. That action could be to forward the packet or

to drop it, as well as processing it normally as it would be

in a regular switch. Instructions are more complex and they

include modifying a packet, updating an action set or updating

the metadata.

C. OpenFlow 1.2

The OpenFlow specification version 1.2, was released in

December 2011 and it includes a few major features. First

of all, support to IPv6 addressing is added. Matching could

be done using the IPv6 source and destination addresses.

Another important feature supported is the possibility of

connecting a switch to multiple controllers concurrently. The

switch maintains connections with all the controllers and these

can communicate with each other to do hand overs. Having

multiple controllers provides faster recovery during failure and

it is also possible to achieve load balancing.

D. OpenFlow 1.3.0

The OpenFlow specification version 1.3 was released in

June 2012. Some of the improvements over version 1.2 are

listed next. It is possible to control the rate of packets

through per flow meters. Also, auxiliary connections between

the switch and the controller have been enabled. Another

improvement is that cookies can be added to the packets sent

from the switch to the controller and specific durations field

have been added to most statistics. A complete list of changes

is available in the specification’s document [20].

Table IV compares specifications 1.0.0, 1.1.0, 1.2 and 1.3.0.

E. Implementing applications using OpenFlow

In order to run applications on top of a single controller to

manipulate the flow table of a switch, a network operating

system is required (see Fig. 1). It acts as an intermediate

layer between the OpenFlow switch and the user application.

The network operating system communicates with the switch

using the OpenFlow protocol and notifies the application of

network events. Nox [21], Beacon [22] and Maestro [23] are

examples of network operating systems. Recently, Big Switch

released Floodlight [24], an open source Java based controller.

Foster et al. [25] proposed Frenetic, a network programming

language that simplifies the development of applications on

top of network operating systems. NEC proposed Trema [26]

498 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

TABLE IV
COMPARISON OF OPENFLOW SPECIFICATIONS.

Specification 1.0.0 1.1.0 1.2 1.3.0

Widely de-
ployed

Yes No No No

Flow table Single flow
table

Multiple
flow tables

Multiple
flow tables

Multiple
flow tables

MPLS
matching

No Yes Yes Yes, bottom
of stack bit
added

Group table No Yes Yes Yes, more
flexible
table miss
support

IPv6
support

No No Yes Yes, new
header field
added

Simultaneous
communi-
cation with
multiple
controllers

No No Yes Yes,
auxiliary
connections
enabled

to develop OpenFlow applications using Ruby and C. Finally,

DreamersLab developed Node.flow [27], a package to build

a JavaScript based flow controller using Node.js [28]. Table

V summarizes comparative data for the OpenFlow controllers

that we have mentioned.

There are at least four possibilities to implement OpenFlow-

based applications. First, an OpenFlow-compliant hardware

switch can be used. We have provided a list in Table I. It is

also possible to implement an OpenFlow-compliant software-

based switch using Open vSwitch [29], [30]. A third option

is to deploy virtual networks using Mininet [31], a virtual

environment developed by the Stanford University that can

be used to simulate multiple hosts in virtual network within

one single host machine. Finally, a NetFPGA platform can be

used. It consists of a PCI card that provides four 1G Ethernet

ports, static RAM and other network functionalities [32]. The

NetFPGA is also available with four 10G Ethernet ports.

Since physical and virtual switches can be used to deploy

an OpenFlow network, it is important to note some similarities

and differences between them. The advantage of a virtual

switch is definitely the cost. Open vSwitch can be downloaded

for free and it can be installed using commonly used virtual

machine tools. A virtual switch performs the operations shown

in Fig. 2 and Fig. 3 in software. Therefore, its main drawback

is the performance. Hardware based switches perform data

plane operations faster.

It is worth mentioning that debugging network applications

is not a common technique yet. However, a first prototype of a

debugger has recently been proposed by Handigol et al. [33].

Using OpenFlow, experimental and production traffic can

share the same OpenFlow switch. The action of a flow table

entry of an OpenFlow switch can be to send the packet to

the switch data path. On the other hand, a different flow entry

can be defined for experimental traffic. This way, experimental

traffic can be tested without interfering with the production

traffic [1]. In order to further enhance this, Sherwood et al.

proposed FlowVisor [36]. Using this technique, it is possible

for several single controllers to share the control of a switch.

A centralized OpenFlow- based controller “slices” the network

and acts as an intermediate layer between the switch and all

the OpenFlow controllers that manipulate the switch.

F. OpenFlow: a specification, a protocol or an architecture?

OpenFlow can be viewed as a specification when it is in

the context of an OpenFlow switch. An OpenFlow switch

is achieved by implementing the requirements specified in

the OpenFlow specification, in the device. For instance, in

the OpenFlow specification, it is required that the switch

has to support the flood action on the packets belonging to

a particular flow. The flood action floods the packet using

the normal pipeline of the switch [18]. Whether or not to

implement this feature is a decision made by the vendor, but

an OpenFlow switch must provide this functionality.

The OpenFlow protocol deals with defining the format

of the messages passed between the control plane and the

OpenFlow switch through the secure channel. The format of

the messages has to be understood as well as generated by

both the entities. This standard format of message passing

is defined in the OpenFlow protocol. In fact, the OpenFlow

protocol is part of the OpenFlow specification and it applies

to the OpenFlow control plane as well as to the OpenFlow

switch.

Finally, OpenFlow is viewed as architecture in the context

of an entire network. In an OpenFlow network, OpenFlow

switches are being controlled by one or more OpenFlow

controllers. Such a network can be viewed as supporting the

OpenFlow architecture.

It is important to keep in mind that the data plane imple-

mentation of the switch is vendor specific. As long as a switch

can communicate with an OpenFlow controller, the data plane

can be implemented differently by each vendor. Therefore,

the fact that two switches are OpenFlow-compliant does not

make them equal. Actually, not all switches implement all the

features of the OpenFlow specification. It is possible that an

OpenFlow-based application works using one switch but does

not work using a different switch.

G. OpenFlow and SDN

Since OpenFlow has become the most popular SDN tech-

nology, some consider these terms as synonyms. However,

it is important to note the difference between them. SDN

consists of decoupling the control plane from the data plane,

whereas OpenFlow describes how a software controller and

a switch should communicate in an SDN architecture. SDN

gives the user an abstraction of the network-wide state and

OpenFlow abstracts a network component. As an analogy, an

operating system provides a system-wide abstraction, just like

SDN provides a network-wide abstraction. On the other hand,

just like the operating system communicates with hardware

through drivers, OpenFlow can be considered a driver to

communicate a single controller and a network component.

As an SDN technology, OpenFlow networks have specific

capabilities that we describe next.

IV. CAPABILITIES OF OPENFLOW

OpenFlow architectures allow centralized control of the

network, software-based traffic analysis, dynamic updating

LARA et al.: NETWORK INNOVATION USING OPENFLOW: A SURVEY 499

TABLE V
OPENFLOW CONTROLLERS.

Controller Language Created by Comments

NOX C++ Nicira Networks NOX was donated to the research community in 2008. It has several branches at Stanford
University, such as classic NOX, new NOX and POX. New NOX is the version that will be
further developed. POX supports Python and it is used for educational or research applications
[34].

Beacon Java Stanford University Supports both event-based and threaded operation. Mostly used for research and experimentation
[22].

Maestro Java Rice University Licensed under licensed under LGPL v2.1. Not as common as other controllers such as NOX [35].
Floodlight Java Big Switch Networks Forked from Beacon and extended for enterprise usage. Apache-licensed [24].
Trema Ruby and C NEC Supports Linux applications only [26].
Node.Flow JavaScript DreamersLab Works on top of Node.js, a platform built on Chrome’s JavaScript runtime [27], [28].

of forwarding rules and flow abstraction. In this section we

describe these capabilities and we give examples that illustrate

how they can be exploited.

A. Centralized control of the network

One important capability of an OpenFlow network is that

the controller has network-wide knowledge of the system.

Several OpenFlow switches can be connected to a single

controller and it is then possible to make decisions in a

centralized manner. Instead of having several network devices

with a limited knowledge of the network, a single controller

can take decisions based on its knowledge of a broader part

of the network.

One example of this is Ethane [37], an architecture proposed

for managing the network of an enterprise. The key idea is to

create a centralized policy that is managed by the controller.

The switches become simple machines that forward and drop

packets according to the rules defined by the controller. Using

this architecture, it is possible to manage the network policies

using high-end names. Routing decisions are also considered

by the policy and finally, it becomes easier to bind a packet

to its origin.

Another example of this capability deals with link failure

recovery. In a traditional network, each switch has a limited

knowledge of the network. When a link fails, then routes

get adjusted at each switch until new routes are found. In

an OpenFlow network, a centralized controller can find new

paths in a much faster and easier way.

A comparison between the Path Computation Element

(PCE) [38] architecture and OpenFlow is worth being men-

tioned when discussing this capability. Path computation in

large and complex networks may require cooperation between

different domains. The PCE architecture was proposed to

address these challenges. A PCE is an entity that is capable of

computing a network path or route based on a network graph

[38]. A PCE architecture is not fully centralized. However, a

cooperation between different entities does exist. Nevertheless,

it can also occur that an entity does not have visibility over

another element. Therefore, the knowledge of the network is

not full. In OpenFlow-based networks, the controller usually

has a broader knowledge of the network and therefore the

control of the network is centralized. On the other hand,

OpenFlow controllers do not cooperate together as it happens

in a PCE architecture. Giorgetti et al. [39] propose OpenFlow

and PCE architectures to control wavelength switched optical

networks.

To illustrate the difference between PCE and OpenFlow ar-

chitectures, we describe how the OSCARS [40] (On-Demand

Secure Circuits and Advance Reservation System) project

provides a PCE module [41]. Through this module, researchers

can deploy PCE elements in the network in a distributed

manner. Therefore, it is possible to perform path computation

without using a single centralized point. If we compare this to

an OpenFlow testbed, we will find that researchers deploy the

code on top of an OpenFlow controller and all computations

are performed from there.

Another centralized approach towards network management

is the Bandwidth Broker (BB) architecture [42]. A BB consists

of one or more servers that perform network functionalities

such as quality of service (QoS), policy enforcement or

admission control. The data plane communicates with the BB

modules. The advantage of this architecture is that part of the

complexity is assumed by the BB and minimal configuration

is required in the network device. This architecture can be

used at the edge of a network to control bandwidth allocation.

B. Software-based traffic analysis

Software-based traffic analysis is a powerful capability of

OpenFlow networks. This capability greatly enables innova-

tion, as it is possible to improve the capabilities of a switch

using any software-based technique. Traffic analysis can be

performed in real time using machine learning algorithms,

databases and any other software tool.

As an example, a distributed denial of service attack (DDoS)

detection method is proposed in [43] and it heavily relies

in traffic analysis. The method is based on retrieving traffic

data on periodic intervals and using self organizing maps to

classify traffic as normal or malicious. Because the traffic

analysis is done by software, there are more possibilities of

using advanced features to perform the analysis, such as neural

networks.

Another application of this capability is source address

validation. Yao et al. [44] proposed checking the source

address of each new flow. When a switch forwards a packet to

the controller because it does not match any rule in the flow

table, the controller can validate whether or not that source

address corresponds to a valid flow.

C. Dynamic updating of forwarding rules

Another capability of OpenFlow networks is that they allow

dynamic updates of forwarding rules. All kinds of changes

500 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

in the topology can be performed in real time, based on the

decisions taken by a software controller. No human interaction

is required. This is possible because the controller can modify

the flow table entries at any time.

In [45], the controller is notified of a link failure and it

modifies the entries of the flow table to re-route the traffic.

By doing this, the network can react to link failures without

requiring any action by the network administrator. The authors

also suggest that the controller can automatically allocate more

or less bandwidth according to the traffic load, to save energy.

Another application of this capability is load balancing.

The controller can assess the load of several servers and

dynamically change the forwarding rules to make sure that

the load is properly balanced. Handigol et al. [46] proposed

Plug-n-Serve, a load balancer that can dynamically add new

servers to the cluster without interrupting the service.

D. Flow abstraction

Finally, networks using OpenFlow abstract all traffic as

flows. For each flow there is an entry in the flow table. For

each entry, different rules can be defined. One flow could be all

traffic using one specific TCP protocol. Another could be all

packets travelling between two defined MAC addresses or all

data with one IP address destination. One could also define

a non standard header to identify traffic of a specific entry.

This allows managing different kinds of flows using the same

control element.

Merging packet and circuit networks in a single infras-

tructure has been studied by several authors and it relies on

this capability. Packet and circuit networks are treated as two

different flows but they can be managed by the same controller.

In the next section we survey how the capabilities described

above have been exploited in OpenFlow-based applications.

V. OPENFLOW-BASED APPLICATIONS

In this section we survey studies that use OpenFlow for

different kinds of applications. Ease of configuration, network

management, security and availability are examples of these

applications. OpenFlow has also been used to achieve network

and data center virtualization, as we describe next.

A. Ease of configuration

OpenFlow-based applications can simplify the configuration

of the network. Common approaches include access control

lists and configuration files whose administration is time

consuming and can lead to errors. By using SDN, it is possible

to use software to take care of this. Yamasaki et al. [52]

proposed using OpenFlow to manage the VLANs of a campus

network. They describe how the number of VLAN ids is

limited and how the configuration tasks are time consuming.

In their approach, the controller analyzes incoming traffic and

detects if the communication should be allowed or not, based

on virtual group ids (GID) instead of VLANs. Using this

approach, the number of VLANs limitation is overcome and

the configuration of the network is simplified.

Several authors have addressed how to ensure consistent

network updates using SDN. Reitblatt et al. [53] describe

how to provide abstract operations that allow updating rules

across the entire network in one fell swoop. In another paper,

Reitblatt et al. [54] describe how updating network policies

can lead to inconsistencies when packets are processed by

both the old and the new policy. The authors note that achiev-

ing per-packet and per-flow consistency is critical to avoid

inconsistencies and they describe techniques to implement

both features. Also, Katta et al. [55] introduce algorithms that

trade time against TCAM space in order to do the updates in

an efficient manner. McGeer [56] proposes a network update

protocol as well. His method uses boolean formulas and it

ensures that flows are treated consistently. As an example,

if a ruleset 1 is updated to a ruleset 2, the protocol ensures

that the packets that were being processed using ruleset 1 are

conserved, then the update takes place in all routers and finally

the packets are released and processed by ruleset 2. Finally,

Ghorbani et al. [57] propose a method to migrate virtual

machines in a consistent manner and respecting bandwidth

requirements. The authors have implemented an algorithm that

outputs the order in which virtual machines must be migrated

in order to ensure that no inconsistencies occur.

As we described earlier, Casado et al. [37] proposed Ethane,

an SDN architecture explicitly designed to simplify the man-

agement of the network in an enterprise. Ethane relies on

the idea that the network policy should be known by the

controller and enforced in all switches. The main requirement

is that all communications between two hosts require explicit

permission. Instead of creating configuration files for all the

switches in the network, these devices are kept simple and the

rules are managed by the controller. An implementation of an

Ethane switch in hardware is described in [58].

Some common points can be extracted from these studies.

We mentioned in Section II that a user is interested in defining

policies and configuring how their packets are forwarded. Here

we notice that the studies by Reitblatt et al. [54] and by

Casado et al. [37] focus on simplifying the creation of policies

and hiding how these policies are implemented underneath.

The study by Yamasaki et al. [52] provides another way of

creating VLANs in such a way that the user must not deal

with troublesome configuration files.

B. Network management

Deploying OpenFlow-based networks has also motivated

research on OpenFlow management infrastructures. These

studies aim at simplifying network management through

OpenFlow. Mattos et al. [59] implemented a user friendly

interface that allows the user to manage the network. Their

implementation is based on NOX. Several applications are

developed on top of that network operating system and a web

based interface is provided to the user. Also, a multiagent

system is capable of autonomously perform management.

Gibb et al. [60] propose an architecture in which network

appliances (middleboxes) are not located at points of the

topology that are traversed by plenty of traffic. They argue

that these chokepoints are not suitable for middleboxes, as

performance and correctness issues arise. Instead, they suggest

using processing units in waypoints of the network. An

OpenFlow switch, located at the chokepoint, is capable of

LARA et al.: NETWORK INNOVATION USING OPENFLOW: A SURVEY 501

TABLE VI
COMPARISON OF SECURITY APPLICATIONS USING OPENFLOW.

Publication Problem approached Description of the solution Implementation SDN capabilities exploited

Suh et al. (CONA) [47] DDoS attack detection Frequency and pattern of re-
quests are analyzed to de-
tect DDoS attacks.

NetFPGA-OpenFlow
switches

Traffic analysis and dy-
namic rules updating

Braga et al. [43] DDoS attack detection Statistic information in the
flow table is used to classify
traffic as normal or mali-
cious.

Simulation of a NOX based
network.

Traffic analysis and central-
ized control.

Chu et al. [48] DDoS attack detection Locator/ID separation pro-
tocol (LISP) is used to iden-
tify authorized and mali-
cious sources.

Small network with one
controller and two Open-
Flow switches. Specialized
hardware simulates DDoS
attacks.

Traffic analysis and dy-
namic rules updating

Liu et al. [49] Covert channel protection The controller uses a sec-
ond software node that fil-
ters authorized communica-
tion.

Simulation of a network
using a virtual OpenFlow
switch.

Dynamic rules updating and
centralized control.

Yao et al. (VAVE) [44] Source address validation The controller analyzes traf-
fic and calculates the flow
path to decide if the source
address is valid.

Simulation of a network
using a virtual OpenFlow
switch.

Traffic analysis and dy-
namic rules updating.

Jafarian et al. [50] Moving target defense The controller periodically
assigns different virtual IP
addresses to hosts to hide
the real IP addresses to an
intruder.

Simulation using Mininet. Centralized control,
dynamic rules updating.

Gutz et al. [51] Traffic isolation Network slices are defined
through a programming
language instead of using
network-level techniques.

A tool was developed to test
whether traffic isolation was
correct

Centralized control

routing to the processing units only the traffic that needs to

be processed by the middlebox. By doing this, less traffic

traverses the network appliances and a much simpler hardware

is used at the chokepoint of the network.

Defining and implementing network policies has also been

addressed using OpenFlow. Voellmy et al. [61] propose Pro-

cera, a controller architecture and a high level network control

language that can be used to reactively define network policies.

Regarding implementation, Fergusson et al. [62] propose an

OpenFlow-based method to perform policies delegation in

SDN networks. Their idea consists of creating delegation

trees, where each path can be managed by different network

administrators. The authors create hierarchical flow tables

that can be used to delegate policies. An incoming packet

is matched to these policies and processed accordingly.

Finally, an innovative way of managing IP multicast in

overlay networks was proposed by Nakagawa et al. [63].

The authors propose using OpenFlow instead of a more com-

mon approach such as Internet Group Management Protocol

(IGMP). Two important contribution of their approach are

eliminating periodical join/leave messages and making use of

multipath in the layer-2 network.

Outsourcing network functionality is another interesting

innovation to simplify the network management. Gibb et

al. [64] propose Jingling, an architecture that allows adding

functionality to a network in an outsourced manner. Feature

providers can be located anywhere outside the network. Poli-

cies defined how feature providers must be used and a network

controller maps the policies to the feature providers. Following

the idea of having services outside the network, the idea of

Networking-as-a-Service (NaaS) has emerged. Raghavendra et

al. [65] propose using OpenFlow to manage networks in such

a way that they are ready to user services provided as NaaS.

In this section, we notice that the common trend is to

exploit how OpenFlow can dynamically update the forwarding

rules. Having a network-aware controller allows the network

manager to dynamically forward traffic according to specific

needs. Once again, we also note how several studies simplify

the creation of network policies.

C. Security

OpenFlow has also been used to create applications that pro-

vide security to the network. Table VI compares the problems

approached, the solutions proposed and the infrastructures

used to test the implementations.

Methods to detect DDoS using OpenFlow have been pro-

posed recently [47], [43], [48]. Suh et al. [47] proposed a

content oriented networking architecture. This approach relies

on creating flows based on the identity of the client and the

type of content requested. A DDoS attack is detected when

the server that provides a given content type receives more

requests than expected, based on a pre-defined range. Chu

et al. [48] proposed a method that analyzes the frequency of

traffic. If a threshold is exceeded, then the controller considers

that a DDoS attack is happening and it starts dropping packets.

Finally, as we mentioned earlier, Braga et al. [43] proposed a

method that gathers traffic information and uses self organiz-

ing maps to classify the traffic as normal or malicious.

Liu et al. [49] proposed an SDN architecture where nodes

with different levels of security clearance can exchange com-

munication. The OpenFlow controller sets up the rules so

that traffic is authorized only when the requester has a higher

security clearance than the receiver.

502 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

Yao et al. proposed VAVE [44], an OpenFlow-based ar-

chitecture designed to validate the address of all incoming

packets. When the switch receives a packet that does not match

any rule, the packet is sent to the controller and the source

address is validated. If spoofing is detected, then a rule is

created to stop that traffic.

Jafarian et al. [50] propose a moving target defense (MTD)

technique using OpenFlow. The proposed defense assigns

virtual IP addresses to hosts and the controller maps virtual

addresses to physical addresses. This is performed once and

again, in an unpredictable way such that the attacker cannot

identify which host is behind each IP address.

Finally, traffic isolation has been studied by Gutz et al.

[51]. The authors argue that current traffic isolation techniques

such as VLANs increase the complexity of the network

configuration. They propose creating network slices at a higher

level. Under their approach, a network programming language

should be able to create this slices to isolate traffic. This way,

slices are defined at a high level and then forwarding rules are

automatically added to the switches.

When it comes to security, we notice how the researchers

heavily rely on the ability of processing data in the controller.

In all these publications, some kind of intelligence is added

to the switch through the controller. For example, Braga

et al. [43] use self organizing maps, which could not be

implemented on regular switches. Also, Yao et al. [44] exploit

the idea that, since a given packet must be analyzed by the

controller, then a more rigorous address validation can be

performed. Once again, in the study by Gutz et al. [51], we

note how more capability is given to a higher layer. In this

case, it is about isolating network traffic using a programming

language. This is a common trend in SDN: how to allow a

user to perform network tasks without needing full access to

the network topology.

D. Availability

OpenFlow-based applications have focused on providing

availability to the network as well, including load balancing

and fault tolerance. Load balancing is a commonly used tech-

nique to distribute a working load between two or more nodes.

This improves the availability of a network since the system

can support one or several single failures. Fault tolerance refers

to the property of a system to continue operating when a

failure occurs.

1) Load balancing: Handigol et al. proposed Plug-n-Serve

[46], a load balancer for unstructured networks that attempts

to reduce the response time by taking into consideration the

load of the servers and the congestion of the network. The

proposed method displays the load of the network in real time.

The software running on the controller takes the load of the

network and servers into consideration and decides where to

direct the traffic. Using this solution, it is also possible to add

new servers to the cluster and the software will dynamically

detect them and add them to the load balancing. An improved

version of Plug-n-Serve, Aster*x was also proposed in [74].

Aster*x runs on the Global Environment for Network Inno-

vations (GENI) infrastructure and it is used at a much larger

scale than Plug-n-Serve.

Wang et al. [75] argue that Plug-n-Serve works by reactively

creating forwarding rules for incoming requests. They pro-

posed a proactive approach, based on wild cards. They divide

the entire client address space into different rules. These rules

forward the traffic to specific servers. The controller knows

what percentage of traffic should be handled by each server

and it creates the rules so that the expected loads are respected.

We can see that the approach by Wang proactively creates

the rules to make sure that each server handles the required

percentage of connections. This requires a smaller number of

rules than the approach used by Plug-n-Serve, which improves

its scalability. On the other hand, Plug-n-Serve takes into

consideration the load of the server and the network and does

not require a specific percentage of traffic for each server and it

is more flexible, since each client can be handled individually.

2) Fault tolerance: Sharma et al. [76] and Staessens et

al. [45] have explored fault tolerance using OpenFlow. In

[76], the authors describe how failure recovery can be im-

plemented using OpenFlow. They explain how the controller

can dynamically change the routing rules when a failure

is detected in a link. In [45], experiments are designed to

analyze if an OpenFlow based network can recover from a link

failure. The authors argue that carrier grade networks must be

able to recover in less than 50 ms. The experiments show

that restoration is successful but that the dependency on the

centralized controller makes the goal of 50 ms challenging to

achieve.

Another way of ensuring availability is to verify that there

are no configuration errors that might cause a disruption.

Khurshid et al. [77] propose VeriFlow to check network

invariants in real time. This includes loops in the routing

tables, unavailable paths and other problems that can be

identified before deploying the network. Moreover, the authors

are interested in doing this in real time. VeriFlow sits between

the controller and the switch and monitors the communication

between these two parts. By modelling the network as a graph,

network invariants are checked in the order of hundreds of

microseconds.

Porras et al. [78] propose a policy enforcement mechanism

that is also based in analyzing the forwarding rules that are

added to or deleted from the flow table. The author introduce

FortNOX and they aim at performing role based authentication

and security constraint enforcement. The application checks

for conflicting rules after every update of the flow table. When

two rules incur in a contradiction, then the rule defined by the

user with the highest security clearance is kept.

These studies have some common trends. First, the ca-

pability of dynamically updating forwarding rules is heavily

exploited. Load balancing is performed based on the ability of

the controller to alter the forwarding rules. The fact that the

controller is network-aware is also helpful. In the studies by

Sharma [76] and by Staessens [45], finding new paths after a

failure occurred is easily done in a centralized manner, since

the topology is known. Traditionally, this kind of recovery is

done by decisions taken by switches that are not network-

aware and a centralized method simplifies this task.

LARA et al.: NETWORK INNOVATION USING OPENFLOW: A SURVEY 503

TABLE VII
COMPARISON OF NETWORK VIRTUALIZATION APPLICATIONS USING OPENFLOW.

Publication Problem approached Description of the solution Implementation

Simeonidou et al. [66] Packet and circuit network integra-
tion

An OpenFlow controller is inte-
grated with a GMPLS controller

No implementation provided

Das et al. [67] Packet and circuit network integra-
tion

An OpenFlow controller is inte-
grated with a GMPLS controller

Prototype network using NetFPGA
switches that emulates a WAN

Das et al. [68] Packet and circuit network integra-
tion

An OpenFlow controller is inte-
grated with a GMPLS controller

Fully functional hardware based
network. Used as a proof of concept
for a demonstration.

Das et al. [69] Application aware aggregation and
traffic engineering in a circuit-
packet network

The capabilities of SDN are ex-
ploited in a circuit-packet network
to provide application aware rout-
ing.

Hardware based network used to
emulate a WAN

Das et al. [70] Complexity of IP/MPLS control
plane

The MPLS data plane is controlled
by OpenFlow instead of the tradi-
tional IP/MPLS control plane.

Open vSwitch and Mininet are used
to emulate a WAN

Ferkouss et al. [71] Flexibility of MPLS nodes An OpenFlow controller is used to
dynamically modify MPLS nodes

Hardware implementation that ex-
ploits the pipelining of OpenFlow
1.1.0.

Kempf et al. [72] Supporting MPLS forwarding in
OpenFlow 1.0.0

Additional match fields are added
to the flow entry format and MPLS
actions are added to the OpenFlow
1.0 specification

NetFPGA-OpenFlow switches

Sharafat et al. [73] MPLS implementation complexity The centralized control capability is
exploited to implement MPLS-TE
and MPLS-VPN in a simpler way
than the traditional approach

Physical and virtual switches sup-
porting the MPLS section of Open-
Flow 1.1 and simulation using
Mininet

E. Network virtualization using MPLS and GMPLS

Network virtualization is another research area where Open-

Flow has been applied. Circuit and packet switched networks

are typically managed using separate infrastructure and this

is costly. Several authors have proposed OpenFlow-based

architectures that could be used to manage both packet and

optical circuit networks using the same infrastructure [66],

[67], [68], [69], [79]. Azodolmolky et al. [79] provide a

good explanation on how OpenFlow and GMPLS can be used

together as an integrated control plane. This approach relies

on the fact that packet and optical circuit networks can be

managed as different flows in the switch’s flow table. In order

to manage both flows, a GMPLS controller is integrated to

the standard OpenFlow controller. The OpenFlow controller

is responsible for managing the flow table. However, when

a flow corresponds to traffic over an optical circuit, then the

GMPLS controller takes care of the routing decisions and a

flow entry containing the forwarding action and the required

wavelength is added to the flow table. This way, switches can

handle two kind of flows, one for circuit networks and one

for packet networks.

MPLS and GMPLS have also been used in other applica-

tions. Kempf et al. [72] add an extension to OpenFlow 1.0

that allows a switch to forward MPLS on the data plane.

Das et al. [70] proposed using MPLS in the data plane

but OpenFlow in the control plane instead of the traditional

IP/MPLS control plane. El Ferkouss et al. [71] argue that

OpenFlow can be used to “deossify” an MPLS architecture.

They show how an MPLS node can play multiple roles for

different MPLS domains, which provides greater flexibility

to the nodes. Sharafat et al. [73] implement MPLS-TE and

MPLS-VPN using an OpenFlow controller to show that cen-

tralized control makes the implementation easier. Table VII

compares the different applications that use OpenFlow to

virtualize networks using MPLS and GMPLS. Centralized

control, dynamic rules updating and flow abstraction are the

most commonly exploited capabilities for these applications.

The studies that we have mentioned exploit the circuit

switching capability of GMPLS and not the VLAN-switching

capability. In summary, the research direction regarding GM-

PLS and OpenFlow is to simplify the creation of end-to-

end circuits. Das et al. [80] discuss why GMPLS has not

been as successful as expected in the control plane and how

combining it with software defined networking is a more

suitable approach.

F. Data center virtualization

Similar to network virtualization, virtualizing data centers

using OpenFlow has also been an active research area. SDN

architectures have been considered to meet the requirements

of a data center: efficiency, agility, scalability and simplicity

[81]. Al-Fares et al. [82] proposed Hedera, a dynamic flow

scheduling method for data center networks. They proposed

an OpenFlow-based architecture that can dynamically modify

the flows according to the traffic load. The authors argue that

this approach achieves a larger network utilization. Rotsos

et al. [83] also use OpenFlow to dynamically virtualize the

network. They argue that VLANs and MPLS can be used to

create virtual networks in a static way. However, the network

utilization can be optimised if the network virtualization is

performed according to the traffic load.

G. Wide area network applications

A majority of studies have deployed their experiments

in local area networks. However, some studies address the

possibility of deploying OpenFlow in a wide area network

(WAN). First, in [70] the authors show that OpenFlow could

be deployed in a WAN by emulating this kind of network.

504 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

Studies such as [67], [69] show that OpenFlow could be used

to control this type of network.

Bennesby et al. [84] propose an inter-domain routing so-

lution using an OpenFlow architecture running on a NOX

controller. The authors explain how the different autonomous

systems (or domains) interact with each other through the

Internet. They propose a routing scheme based on OpenFlow

that would allow autonomous systems to communicate with

each other.

H. Wireless applications

OpenRoads [85] was designed to enable research in mobile

networks. It can be considered as the wireless version of

OpenFlow. In this architecture, a flow visor [36] (as introduced

in Section III) controls network devices through the SNMP

protocol. Several controllers can be deployed on top of the

flow visor. Details of the OpenRoads architecture are available

in [86]. A deployment of OpenRoads in the campus of

Stanford University is described in [87]. Other works using

OpenRoads include [88], [89].

There are also other wireless applications that do not

use OpenRoads. Huang et al. [90] proposed PhoneNet, an

infrastructure which supports group communication among

phones. A group of users can interact using their phones after

a multicast address is created so that it can be accessed by all

the members in the group.

Bansal et al. [91] propose OpenRadio, a design for a

programmable wireless network dataplane to automatize how

devices’ software is updated. They argue that software updates

have become more frequent (there used to be a release

every few years and now updates are available monthly).

OpenRadio aims to providing an infrastructure to update

base stations of wireless systems via software. Without this

approach, devices must be collected so that the software can

be manually updated. This frequent hardware collection is

expensive and network software updates are more adequate.

As an example, they describe that in an urban area, there could

be one device per block to provide adequate coverage. In this

scenario, collecting the sensors every time an update must be

installed would be prohibitively expensive. OpenRadio enables

updating the devices without having to physically collect them.

Regarding wireless enterprise local area networks (WLAN),

Suresh et al. [92] propose Odin, a prototype SDN architecture

that simplifies client management in a WLAN. The network is

given programmability and light virtual access points are in-

troduced. These access points are managed from an OpenFlow

controller.

I. Other applications

OpenFlow has also been used in other areas not listed above,

such as routing and network congestion control. Liu et al.

[93] proposed a method to control congestion using queuing

systems and a centrally controlled network. Yap et al. [94] also

consider network congestion, as well as bandwidth reservation

and multicast. Nascimento et al. [95] proposed QuaqFlow, a

Quagga implementation using OpenFlow. Quagga is a routing

package that provides implementation of TCP/IP routing pro-

tocols. RouteFlow [96], an architecture that provides routing

as a service, was proposed as an extended work of Quagga.

Rothenberg et al. [97] proposed an OpenFlow-based approach

that allows the introduction of advanced routing systems. This

study was built by extending the earlier RouteFlow [96].

Egilmez et al. [98] proposed an architecture to provide routing

for video streaming.

In the next section, we focus on larger-scale deployments

rather than the applications themselves.

VI. OPENFLOW DEPLOYMENTS

Deployments of OpenFlow-based networks mainly include

campus networks and testbeds, as well as deployments under-

taken by the industry.

Stanford University has deployed an OpenFlow-based net-

work in one of its buildings. The network includes production,

experimental and demonstration traffic. It connects approxi-

mately fifty switches and around 25 users, both wired and

wireless. Details of the topology can be found at [99]. Other

universities have also deployed OpenFlow-based networks.

The full list is available at [2] and it includes Clemson Uni-

versity [100], Georgia Tech [101], Indiana University [102],

Kansas State University [103], Rutgers University [104], Uni-

versity of Washington [105], University of Wisconsin [106]

and Princeton University [2].

At a larger scale, the Global Environment for Network

Innovations (GENI) [107] provides a research infrastructure

where OpenFlow experiments can be conducted. The Open-

Flow core of this network consists of several interconnected

OpenFlow-compliant switches on both Internet2 [108] and

National LambdaRail (NLR) [109] networks. The connection

to the NLR network is achieved through HP6600 switches

deployed at Sunnyvale, Seattle, Denver, Chicago, and At-

lanta and through NetFPGA switches in Sunnyvale, Houston,

Chicago, and New York [110]. Internet2 has OpenFlow-

compliant switches installed in Los Angeles, New York,

Washington DC, Atlanta [111]. Campus networks can connect

to the GENI deployment to run larger scale experiments.

As of October 2012, Internet2 provides a nationwide 100G

software defined network [113]. The network is currently

operational for member institutions of Internet2. The deploy-

ment includes routers of the Brocade MLX family and related

Brocade NetIron platforms, as well as Juniper Networks MX

Series routers [114]. It also provides a 100G Ethernet network

and a 8.8 Terabit per seconds optical network. Internet2 will

operate the U.S UCAN (United States Unified Community

Anchor Network) program [112]. Their goal is to use this

software defined network to provide a platform to interconnect

research, educational and health care institutions. Figure 5

shows a draft of the expected deployment.

The Energy Science Network (ESnet) [115] is funded by the

Department of Energy (DOE) and operated at the Lawrence

Berkeley National Laboratory. ESnet has also deployed an

OpenFlow testbed, originally funded by the Advanced Net-

working Initiative (ANI) [116]. ANI was an investment in

next-generation technology infrastructure to speed of scien-

tific discovery. ESnet operates two testbeds: the Long Island

Metropolitan Area Network (LIMAN) and the 100G. The

LIMAN is a 10G testbed. It includes four NEC IP8800

OpenFlow switches [117]. The OpenFlow network operates on

LARA et al.: NETWORK INNOVATION USING OPENFLOW: A SURVEY 505

Fig. 5. Draft of the planned U.S. UCAN network using the Internet2 100G deployment. (Source: [112]).

Fig. 6. Topology of the ANI OpenFlow testbed.

the VLAN 101. There are two ways of running an experiment

on the testbed. One option is to connect the controller directly

to the OpenFlow switches through the management VLAN.

The second option is to connect to the flow visor controller

and getting a partition of the network to run the experiments.

The first option requires the researches to reserve the testbed

beforehand. The second option does not require any reserva-

tion of resources. The flow visor configuration file has to be

sent to the administrator to get connected. The 100G testbed

runs between the DOE Supercomputer centers in Argonne

National Lab (Chicago) and NERSC (California) through a

100G dedicated network [118]. To deploy experiments using

the 100G testbed, researchers must follow a proposal process

that includes writing a 1-2 page proposal and demonstrating

that the experiment is working in a small environment [119].

Figure 6 shows the topology of the ANI OpenFlow testbed.

Another smaller deployment is the Open Access Research

Testbed for Next-Generation Wireless Networks (ORBIT)

testbed [120], which is being developed and operated by

WINLAB, Rutgers University. It is intended to be used to

test and evaluate innovative protocols in real-world settings

and it includes an OpenFlow-based network. The deployment

consists of an OpenFlow-compliant switch Pronto 3290 con-

Fig. 7. Topology of the ORBIT OpenFlow testbed.

nected to nine nodes. Out of the 9 nodes, 7 of them are

connected to one NetFPGA each. Each of the NetFPGA is

connected to the Pronto 3290 OpenFlow switch through four

3GbE connections. All of the 9 nodes are connected to the

Pronto 3290 OpenFlow switch and they are connected to a

control plane through which the nodes can be accessed through

telnet/ssh sessions by the experimenter. Figure 7 shows the

topology of the ORBIT OpenFlow testbed.

Similar testbeds have been deployed in Europe and Japan

as well. Ofelia is a project funded by the European Union

that provides an OpenFlow-based network with nodes in

Belgium, Switzerland, UK, Spain, Germany, Italy and Brazil

[121]. Also, the Dynamic Network System (DYNES) project

[122], funded by the National Science Foundation (NSF),

is exploring technologies such as OpenFlow to interconnect

campus, regional and backbone networks. Other future deploy-

ments also include the Network Development and Deployment

Initiative (NDDI) and the Open Science, Scholarship and

Services Exchange (OS3E) [122].

OpenFlow has also been deployed by several companies,

as seen in the keynote lectures of the 2012 Open Networking

Summit [123]. As an example, Google has deployed Open-

Flow in the inter-datacenter backbone network that carries all

the traffic between the different datacenters [124]. Currently,

506 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

this network is completely OpenFlow based. According to

the speaker, adopting OpenFlow has been the most significant

change in networking in the company [125].

By surveying OpenFlow-based applications and deploy-

ments, we have identified some challenges faced by

OpenFlow-based networks. We discuss these challenges next.

VII. PERFORMANCE OF OPENFLOW-BASED NETWORKS

We have surveyed different OpenFlow-based applications

and deployments. Next we mention several studies that have

designed experiments to evaluate the performance of Open-

Flow architectures. We also discuss publications that propose

alternatives to improve the performance of OpenFlow net-

works.

A. Measuring and modelling the performance of OpenFlow-

based networks

Jarschel et al. [126] model an OpenFlow controller as a

M/M/1 queuing system. This model allows obtaining results

regarding the total sojourn time of a packet through the system.

The model also captures the difference in terms of delay

between a packet that is processed by the switch and a packet

that must go to the controller. Also, the probability of dropping

a packet because the controller is under high load is studied.

The results show that the sojourn time depends largely on

processing speed of the OpenFlow controller. Also, the authors

are able to conclude that the processing time of the controller

lies between 220 and 245 µs. Another interesting result shows

that current controllers cannot handle a big number of flows

in 10Gbps links.

Bianco et al. [127] compare the performance of OpenFlow

switching, link layer Ethernet switching and network layer IP

routing. Experiments include using packets of different sizes

and comparing the results of single flows against multiple

flows. In all the experiments, OpenFlow achieves good results

in comparison to link layer Ethernet switching and network

layer IP routing.

Levin et al. [128] address the following question: “How

does distributed SDN state impact the performance of a

logically centralized control application?” [128]. The authors

argue that the SDN network control plane cannot be fully

physically centralized because responsiveness, reliability and

scalability issues arise. One possible solution is to have a

distributed control plane where a logically centralized control

plane operates. This design faces consistency challenges and

the authors study how much inconsistencies in the global

network view affect the performance of the network. The

authors compare two applications: one is ignorant to possible

inconsistencies and the other takes inconsistency into consid-

eration when operating. This study concludes that optimality is

significantly affected when inconsistencies are not considered

and that the robustness of an application is increased when it

is aware of the network state distribution.

Heller et al. [129] address two important questions regard-

ing reliability, scalability and performance. First, they analyze

how many controllers are needed in a network. Second, they

discuss where in the topology should these controllers go.

The authors introduce these questions as an important part

of the controller placement problem. Regarding the number of

controllers needed, the authors analyze the latency of different

topologies and they observe that one controller is often enough

to keep the latency at a reasonable rate. They also explain

that, in general, adding k controllers reduces the latency by

a factor of k. However, they also show examples where this

is not the case and more controllers are required. Regarding

the placement of controllers, they show how this decision can

also affect the latency of the network. They also show that

randomly selecting the location of the controller yields results

that are far from optimal.

Finally, the performance of OpenFlow has also been evalu-

ated in the optical networks domain. Liu et al. [130] evaluate

the performance of an OpenFlow-based wavelength path con-

trol in transparent optical networks. They study two different

approaches for lightpath setup (sequential and delayed) and

two ways of lightpath release (active and passive). The exper-

imental setup includes four OF-PXCs connected in a mesh

topology, with one OpenFlow switch and one client node

attached to each OF-PXC. A photonic cross-connect (PXC)

devices switches optical signals in an all-optical device. The

results show that a path between two clients (thus traversing

two switches) can be provisioned faster using the sequential

approach. Also, releasing a path can be done faster if the active

approach.

B. Improving the performance of OpenFlow-based networks

Several authors have also proposed modifications to Open-

Flow or alternative ways of using it to increase the scalability,

reliability or performance of the network.

Yeganeh et al. [131] propose Kandoo, a framework that

aims at reducing the number of events that are received at

the control plane of the network. To do this, two layers of

controllers are used. The upper layer maintains the network-

wide state. The bottom layer consists of several controllers

that do not know the network-wide state and that are not

interconnected. The bottom layer handles most of the events

and reduces the overhead at the upper layer. This framework

also increases the scalability of an OpenFlow network.

At least two studies have proposed additional ways to take

profit of a CPU being connected to the switch. Mogul et

al. [132] propose software defined counters. Recall that an

OpenFlow switch collects statistic data for each flow. The

authors explain that this data is stored in the switch using

application specific integrated circuits (ASIC). The propose

keeping and processing information in a CPU, where more

variable and flexible statistics could be processed. The study

does not include implementation or simulation results, but the

feasibility of software defined counters is analyzed theoreti-

cally.

Lu et al. [133] also propose combining ASIC and CPU

processing. The authors point out two limitations of current

switches: a limited size forwarding table and a limited size

packet buffer. They argue that a their approach relaxes these

limitations by using a CPU. A prototype is developed and

a 3.9Gb/s software forwarding throughput is achieved. Also,

large TCP traffic bursts are absorbed without packet losses.

The experimental setup consists of sending 50k bidirectional

TCP flows among four servers.

LARA et al.: NETWORK INNOVATION USING OPENFLOW: A SURVEY 507

Vanbever et al. [134] propose HotSwap, a system that

enables correct and efficient upgrades of SDN controllers.

The goal of HotSwap is to be able to change from one

controller to another (when upgrading the controller is needed)

without disrupting the network. They argue that stopping the

old controller and starting the new one introduces delays

and can also create errors in the network. HotSwap records

relevant messages between the switches and the controller and

bootstraps the new controller by replicating previous network

events. By the time the new controller starts operating, the

network state is the same as when the previous controller was

operating.

VIII. CHALLENGES OF OPENFLOW-BASED NETWORKS

OpenFlow deployments face several challenges that must

be taken into consideration, including security, availability,

scalability, reliability, expenditure and compatibility.

A. Security

One principal challenge of an OpenFlow-based network is

the dependence on the controller. The controller becomes a

component with a critical knowledge of the network and a

very attractive target for an attacker. Security measures must

be considered to ensure the availability of the controller. At the

same time, since this component has access to all the network,

it must be strongly protected from intruders.

The channel between the controller and the switches can

also be vulnerable. According to the OpenFlow specification,

Transport Layer Security (TLS) can be used to secure the

communication. However, this feature is not a requirement

and it is also acceptable to communicate the controller and

the switches using plain text traffic. TLS can then provide

security to the channel, but its usage depends on the design

of the network since it is not required.

The flow table is a component that could also present

security risks, although there are no published vulnerabilities

yet. It is possible to manage a flow table from two different

controllers, where one of them is a production hardware and

the other one is just experimental. Since the latter one will

be subject to lower security controls, it is important to make

sure that the consistency of the flow table remains and that a

malicious update coming from one controller will not tamper

other flow entries. Currently, the flow visor takes care of those

considerations but since OpenFlow is a recent protocol, this

needs to be kept in mind.

A centralized software-based controller can also have secu-

rity advantages. In a distributed network, many vulnerabilities

must be addressed in different protocols and different devices.

Having a software controller outside of the data plane can

simplify how security is enforced, as there is plenty of

expertise on securing servers through hardening instead of

securing network devices.

B. Availability

The dependence on the controller is also a challenge re-

garding availability. An OpenFlow-compliant switch is capa-

ble of forwarding packets using cached rules. However, the

communication with the controller is eventually needed for

any kind of modification of the rules. One advantage of a

traditional, distributed network architecture is that if a switch

fails, the availability of the network can be maintained. In

an OpenFlow network, the communication with the controller

must be ensured. As we mentioned in the previous subsection,

the controller becomes a single point of failure.

How to handle the delay needed to create new flows is also

a challenge. When an OpenFlow switch receives a packet that

does not match any rule in the flow table, then the first 200

bytes of the packet are sent to the controller. After this, the

controller can install a new forwarding rule. Therefore, the

delay to process the first packet is larger. If this delay is too

large, then the availability requirements of a network might

not be met.

C. Scalability

The controller can also become a bottleneck. If too many

packets must be forwarded to the controller, then performance

issues can occur. A well designed network should ensure that

the most part of the traffic can be handled by the switches

without needing to forward data to the controller. It is also

important to assess whether the controller will become a

bottleneck when the number of nodes grows. As we discussed

in Section VII, authors have addressed this challenge while

evaluating the performance of OpenFlow. In particular, Heller

et al. [129] show how a single controller is usually enough to

keep an acceptable latency. They also show that introducing

k controllers reduces the latency by k.

OpenFlow-based architectures also face two important scal-

ability challenges: a limited flow table size and hardware

constraints. First, the number of flows that can be contained

in the flow table is limited. It is still a challenge to handle

a very large number of flows using an OpenFlow-compliant

switch. Manipulating packets at the control plane is slow as

well. Therefore, end-to-end traffic control is hard to implement

if many different flows must be manipulated. Second, there

are hardware limitations on the speed at which flows can be

added. For these two reasons, it is still unclear if OpenFlow

deployments can be used to control the core of a network.

Currently, OpenFlow is being used at the edge of a network

instead.

D. Survivability

The dependency on the controller also creates reliability

issues. One example can be found in [45]. In this OpenFlow-

based network, a link failure is reported to the controller and

a new path is found. According to the results, the network

recovers successfully but not quickly enough. The authors

explain that the expected recovery time is not met because of

the time lost contacting the controller. A common requirement

by carriers is to achieve a network recovery in less than 50

seconds. In the study by [45], this goal is not met.

On the other hand, a centralized control also has advantages

regarding network recovery. In a distributed network, recov-

ering from a broken path can be a slow process. However, an

OpenFlow controller is network-aware and it can find the new

path faster.

508 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

A multipath proposal for OpenFlow addresses how to re-

cover faster from failures. This proposal includes a fast reroute

support, where backup flows can be installed in advance. If

the switch detects that a specific port has lost connectivity,

then the backup flow is installed. This is a proactive way of

dealing with link failures and it has the advantage that the

controller does not need to be contacted immediately after the

failure.

E. CAPEX and OPEX

It has been debated whether OpenFlow can reduce the

capital and operational expenses (CAPEX and OPEX) of an

organization.

OpenFlow adopters argue that by moving the complexity

to the software-based controller, network devices become

simpler and therefore, cheaper. This would reduce the CAPEX.

However, OpenFlow also has limitations and advanced hard-

ware is still required to operate a network. It does not seem

likely that network switches and routers will become simple

commodities in the short term. Also, ensuring the availability

of the control plane can increase the CAPEX. It is important

that the controller remains reachable even in case of a failure

in the data plane. Achieving this could increase the costs of a

deployment.

A similar trade-off occurs for OPEX. We have discussed

several studies that simplify the network configuration and

management. Certainly, OpenFlow can be used to reduce the

number of human based configuration tasks that are time

consuming and error prone. This reduces the OPEX. On the

other hand, moving the complexity of the network to the

software control plane requires work. Project administrators,

software developers, testers, debuggers and other costs are

examples of expenses that must be incurred in an OpenFlow-

based deployment. Therefore, it is not clear either whether

OpenFlow greatly reduces the OPEX.

F. Compatibility

Another important challenge for OpenFlow deployments is

that the network operating systems support specific versions of

the OpenFlow specification. Currently, most of them support

OpenFlow 1.0.0. Even though OpenFlow 1.1.0 has been

available for several months, the network operating systems

do not support specific features of the newer version. The

challenge is then to upgrade both the OpenFlow specification

and the software of each network operating system.

This compatibility issue also applies to the network devices,

whose software must be updated to meet the requirements

of new OpenFlow specifications. For instance, in the HP

ProCurve switches series, modifying the packet header fields

(for example: IPv4 destination address) in the switch hardware

is not supported. But, it is possible to do the same in

the switch software which is a slower path for processing.

Therefore, it is likely that switch vendors would fine tune their

hardware to support additional features in the switch hardware

to improve efficiency. This updating process must be taken in

consideration when new versions become available.

User developed applications face compatibility issues as

well. We have shown how there are significant differences

between specifications 1.0.0 and 1.1.0. Another example is

that version 0.8.9 became deprecated when version 1.0.0 was

available. Therefore, it is important to consider if applications

running under version 1.0.0 will still work on version 1.1.0

or if all affected developments must also be updated. This

scenario could occur again in further releases.

Finally, we believe that compatibility among controllers

should also be taken into consideration. Currently, multiple

network devices perform switching and routing in a standard-

ized way. However, if the devices are controlled by software-

based controllers, then standardization should be achieved too.

Controllers from different domains should use the same pro-

tocols to ensure that the communication is possible between

hosts in different domains.

Next we conclude the paper by discussing the future re-

search directions in OpenFlow-based networks.

IX. CONCLUSIONS AND FUTURE DIRECTIONS

OpenFlow is a promising technology for enabling advanced

functionality in programmable networks. This survey paper is,

in our opinion, the first one to discuss the capabilities, appli-

cation, deployments and challenges of SDN/OpenFlow-based

networks. We also explained and compared the OpenFlow

specifications. Below, we identify future research directions

in OpenFlow-based networks.

First of all, applications have been developed in areas such

as security, ease of configuration, availability, network and

data center virtualization, wireless applications and others.

Currently, a majority of the surveyed applications consist of

small, simple networks with some OpenFlow switches and

hosts. Only a small number of studies demonstrate their work

in a WAN. In [70], the authors emulated an OpenFlow-enabled

WAN, but this is an exception to the majority of studies.

Whether OpenFlow can be used in WAN deployments or not

is still an open question. Studies show that OpenFlow could be

used to control a WAN ([67], [69], [59]). However, scalability

and performance experiments have not been conducted yet.

Second, we observe that OpenFlow switches have been used

as a multi-layer network device. This technology was first

proposed to control Ethernet switches. However, OpenFlow

has also been used in routing ([75], [83], [94], [95]), IP address

validation ([44]) and MPLS control ([66], [67], [68], [69],

[70], [71], [72], [73]). This shows that OpenFlow can be used

at multiple layers. Future directions include tighter integration

of OpenFlow features with routers and MPLS switches to

reduce their complexity and cost.

Third, we find an open problem in the design of OpenFlow

architectures. So far, mostly all applications and deployments

use only one controller to manage all the switches. Distributed

architectures with more than one controller could be used

to address some of the challenges such as availability or

reliability [129]. In fact, a vast majority of networks contain

duplication as a means to ensure the availability of the system.

We believe that the possibility of communicating controllers

in the OpenFlow 1.2 specification ([19]) is an opportunity

to deploy this kind of architecture. Coordinating tasks across

multiple controllers and using them during normal and failover

conditions are tasks for future investigations.

LARA et al.: NETWORK INNOVATION USING OPENFLOW: A SURVEY 509

Fourth, we believe that most studies do not involve real

hardware but use virtualization tools such as Mininet [31] and

Open vSwitch [30]. Also, the number of hosts is small in

most of the applications. Scenarios such as Ethane [37], where

validation includes real hardware and up to 300 hosts are

not very common. Realistic hardware simulations would also

yield better results regarding the advantages and disadvantages

of using OpenFlow in real networks. Using testbeds such as

those described in this paper is a good way to strengthen the

validation of new applications.

Finally, it is important to mention that data center virtual-

ization is one of the active areas that has received a lot of

attention in the industry. The deployment of OpenFlow by

Google [123] in one of their backbone networks and active

participation of the Open Networking Foundation are good

examples of the interest of industry in OpenFlow. Integrating

OpenFlow into such large scale real-world applications is an

important future direction.

In conclusion, OpenFlow is one of the transformational

technologies to affect the networking vendor community in the

last decade and exhibits tremendous scope for future research

and deployment.

X. ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for

their valuable suggestions. The quality of the manuscript was

significantly improved based on their comments.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, 2008.

[2] OpenFlow Current Deployments. [Online]. Available: http://www.
openflow.org/wp/current-deployments/

[3] Open Networking Foundation. [Online]. Available: https://www.
opennetworking.org/

[4] A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong,
R. Gopal, and J. Halpern. Forwarding and Control Element
Separation (ForCES) Protocol Specification. [Online]. Available:
http://tools.ietf.org/html/rfc5810

[5] J. Zander and R. Forchheimer, “The SOFTNET project: a retrospect,”
in 8th European Conference on Electrotechnics, June 1988, pp. 343
–345.

[6] D. L. Tennenhouse and D. Wetherall, “Towards an active network
architecture,” SIGCOMM Comput. Commun. Rev., vol. 26, no. 2, pp.
5–17, April 1996.

[7] J. M. Smith and S. M. Nettles, “Active networking: one view of the
past, present, and future,” IEEE Trans. Syst. Man Cybern, C, Appl.

Rev., vol. 34, no. 1, pp. 4 –18, February 2004.
[8] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and

G. J. Minden, “A survey of active network research,” IEEE Commun.

Mag., vol. 35, no. 1, pp. 80 –86, January 1997.
[9] J. W. Lee, R. Francescangeli, J. Janak, S. Srinivasan, S. A. Baset,

H. Schulzrinne, Z. Despotovic, and W. Kellerer, “NetServ: Active
Networking 2.0,” in 2011 IEEE International Conference on Commu-

nications Workshops (ICC), June 2011, pp. 1 –6.
[10] T. V. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, and T. Woo,

“The SoftRouter Architecture,” in Proc. ACM SIGCOMM Workshop

on Hot Topics in Networking, 2004.
[11] E. Keller and J. Rexford, “The ”Platform as a service” model for

networking,” in Proc. 2010 Internet Network Management Conference

on Research on Enterprise Networking, 2010.
[12] A. A. Lazar. Aurel A. Lazar home page. [Online]. Available:

http://www.ee.columbia.edu/∼aurel/networking.html
[13] J. Biswas, A. A. Lazar, J. F. Huard, K. S. Lim, S. Mahjoub, L. F. Pau,

M. Suzuki, S. Torstensson, W. Wang, and S. Weinstein, “The IEEE
P1520 Standards Initiative for Programmable Network Interfaces,” in
IEEE Commun. Mag., vol. 36, no. 10, 1998, pp. 64–70.

[14] Internet Engineering Task Force (IETF). Proposal: Software Defined
Networking Research Group (SDNRG). [Online]. Available: http:
//trac.tools.ietf.org/group/irtf/trac/wiki/sdnrg

[15] Internet Research Task Force (IRTF). Software Defined Networking
Research Group (SDNRG) - Charter. [Online]. Available: http:
//www.1-4-5.net/∼dmm/sdnrg/sdnrg.html

[16] Internet Engineering Task Force (IETF). Analysis of Comparisons
between OpenFlow and ForCES. [Online]. Available: http://tools.ietf.
org/html/draft-wang-forces-compare-openflow-forces-01

[17] OpenFlow Switch Specification, Version 1.0.0 (Wire Protocol 0x01).
[Online]. Available: http://www.openflow.org/documents/openflow-
spec-v1.0.0.pdf

[18] OpenFlow Switch Specification, Version 1.1.0 Implemented
(Wire Protocol 0x02). [Online]. Available: http://www.openflow.
org/documents/openflow-spec-v1.1.0.pdf

[19] OpenFlow Switch Specification, Version 1.2 (Wire Protocol 0x03).
[Online]. Available: https://www.opennetworking.org/images/stories/
downloads/openflow/openflow-spec-v1.2.pdf

[20] OpenFlow Switch Specification, Version 1.3.0 (Wire Protocol 0x04).
[Online]. Available: https://www.opennetworking.org/images/stories/
downloads/specification/openflow-spec-v1.3.0.pdf

[21] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “NOX: towards an operating system for networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, July
2008.

[22] David Erickson. Beacon Home. [Online]. Available: https://openflow.
stanford.edu/display/Beacon/Home/

[23] Z. Cai, A. L. Cox, and T. S. Eugene. Maestro: A System for
Scalable OpenFlow Control. [Online]. Available: http://www.cs.rice.
edu/∼eugeneng/papers/TR10-11.pdf

[24] Floodlight. [Online]. Available: http://floodlight.openflowhub.org/
[25] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,

A. Story, and D. Walker, “Frenetic: a network programming language,”
in Proc. 16th ACM SIGPLAN International Conference on Functional

Programming, 2011.

[26] Trema, Full-Stack OpenFlow Framework in Ruby and C. [Online].
Available: http://trema.github.com/trema/

[27] Node.flow. [Online]. Available: https://github.com/dreamerslab/node.
flow

[28] Node.js. [Online]. Available: http://nodejs.org/

[29] B. Pfaff, J. Pettit, K. A. T. Koponen, M. Casado, and S. Shenker,
“Extending networking into the virtualization layer,” in Proc. ACM

SIGCOMM HotNets, 2009.

[30] Open vSwitch. [Online]. Available: http://openvswitch.org/
[31] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:

rapid prototyping for software-defined networks,” in Proc. Ninth ACM

SIGCOMM Workshop on Hot Topics in Networks, 2010.
[32] NetFPGA. NetFPGA. [Online]. Available: http://netfpga.org/foswiki/

bin/view/NetFPGA/OneGig/LearnMore
[33] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown,

“Where is the debugger for my software-defined network?” in Proc.

First Workshop on Hot Topics in Software Defined Networks (HotSDN),
2012.

[34] NOX. [Online]. Available: http://www.noxrepo.org
[35] Maestro Platform. [Online]. Available: http://code.google.com/p/

maestro-platform/

[36] R. Sherwood, M. Chan, A. Covington, G. Gibb, M. Flajslik, N. Hand-
igol, T.-Y. Huang, P. Kazemian, M. Kobayashi, J. Naous, S. Seethara-
man, D. Underhill, T. Yabe, K.-K. Yap, Y. Yiakoumis, H. Zeng,
G. Appenzeller, R. Johari, N. McKeown, and G. Parulkar, “Carving
research slices out of your production networks with OpenFlow,”
SIGCOMM Comput. Commun. Rev., vol. 40, no. 1, pp. 129–130,
January 2010.

[37] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: taking control of the enterprise,” SIGCOMM

Comput. Commun. Rev., vol. 37, no. 4, pp. 1–12, October 2007.
[38] IETF. A Path Computation Element (PCE)-Based Architecture.

[Online]. Available: http://tools.ietf.org/html/rfc4655

[39] A. Giorgetti, F. Cugini, F. Paolucci, and P. Castoldi, “OpenFlow and
PCE architectures in Wavelength Switched Optical Networks,” in 16th

International Conference on Optical Network Design and Modeling

(ONDM), April 2012, pp. 1 –6.
[40] Energy Sciences Network (ESNet). On-Demand Secure Circuits and

Advance Reservation System. [Online]. Available: http://tools.ietf.org/
html/rfc4655

[41] V. Vokkarane. Progress report. [Online]. Available: http://www.cis.
umassd.edu/∼vvokkarane/common/reports/Y2Q1report.pdf

510 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

[42] K. Nichols, V. Jacobson, and L. Zhan. A Two-bit Differentiated
Services Architecture for the Internet. [Online]. Available: http:
//tools.ietf.org/html/rfc2638

[43] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack
detection using NOX/OpenFlow,” in 2010 IEEE 35th Conference on

Local Computer Networks (LCN), October 2010.

[44] G. Yao, J. Bi, and P. Xiao, “Source address validation solution with
OpenFlow/NOX architecture,” in 19th IEEE International Conference

on Network Protocols (ICNP), 2011.

[45] D. Staessens, S. Sharma, D. Colle, M. Pickavet, and P. Demeester,
“Software defined networking: Meeting carrier grade requirements,”
in 18th IEEE Workshop on Local Metropolitan Area Networks (LAN-

MAN), 2011.

[46] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Johari,
“Plug-n-Serve: Load-balancing web traffic using Open-Flow,” 2009.

[47] J. Suh, H. Choi, W. Yoon, T. You, T. Kwon, and Y. Choi, “Imple-
mentation of a Content-oriented Networking Architecture (CONA): A
Focus on DDoS Countermeasure,” in European NetFPGA Developers

Workshop, 2010.

[48] Y. Chu, M. Tseng, Y. Chen, Y. Chou, and Y. Chen, “A novel design
for future on-demand service and security,” in 12th IEEE International

Conference on Communication Technology (ICCT), 2010.

[49] X. Liu, H. Xue, X. Feng, and Y. Dai, “Design of the multi-level security
network switch system which restricts covert channel,” in IEEE 3rd

International Conference on Communication Software and Networks

(ICCSN), 2011.

[50] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “OpenFlow random host
mutation: transparent moving target defense using software defined
networking,” in Proc. First Workshop on Hot Topics in Software

Defined Networks (HotSDN), 2012.

[51] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isolation:
a slice abstraction for software-defined networks,” in Proc. First

Workshop on Hot Topics in Software Defined Networks (HotSDN),
2012.

[52] Y. Yamasaki, Y. Miyamoto, J. Yamato, H. Goto, and H. Sone, “Flexible
Access Management System for Campus VLAN Based on OpenFlow,”
in IEEE/IPSJ 11th International Symposium on Applications and the

Internet (SAINT), 2011.

[53] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in ACM SIGCOMM, 2012.

[54] M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consistent updates
for software defined networks: change you can believe in!” in Proc.

10th ACM Workshop on Hot Topics in Networks, 2011.

[55] N. Katta, J. Rexford, and D. Walker, “Incremental consistent updates,”
in ACM SIGCOMM HotSDN Workshop, 2013.

[56] R. McGeer, “A safe, efficient update protocol for OpenFlow networks,”
in Proc. First Workshop on Hot Topics in Software Defined Networks

(HotSDN), 2012.

[57] S. Ghorbani and M. Caesar, “Walk the line: consistent network updates
with bandwidth guarantees,” in Proc. First Workshop on Hot Topics in

Software Defined Networks (HotSDN), 2012.

[58] J. Luo, J. Pettit, M. Casado, J. Lockwood, and N. McKeown, “Pro-
totyping Fast, Simple, Secure Switches for Ethane,” in 15th Annual

IEEE Symposium on High-Performance Interconnects, 2007.

[59] D. M. F. Mattos, N. C. Fernandes, V. T. da Costa, L. P. Cardoso,
M. E. M. Campista, L. H. M. K. Costa, and O. Duarte, “OMNI: Open-
Flow MaNagement Infrastructure,” in 2011 International Conference

on the Network of the Future (NOF), 2011.

[60] G. Gibb, H. Zeng, and N. McKeown, “Initial thoughts on custom
network processing via waypoint services,” in 3rd Workshop on In-

frastructures for Software/Hardware Co-Design, 2011.

[61] A. Voellmy, H. Kim, and N. Feamster, “Procera: a language for high-
level reactive network control,” in Proc. First Workshop on Hot Topics

in Software Defined Networks (HotSDN), 2012.

[62] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,
“Hierarchical policies for software defined networks,” in Proc. First

Workshop on Hot Topics in Software Defined Networks (HotSDN),
2012.

[63] Y. Nakagawa, K. Hyoudou, and T. Shimizu, “A management method
of IP multicast in overlay networks using OpenFlow,” in Proc. First

Workshop on Hot Topics in Software Defined Networks (HotSDN),
2012.

[64] G. Gibb, H. Zeng, and N. McKeown, “Outsourcing network func-
tionality,” in Proc. First Workshop on Hot Topics in Software Defined

Networks (HotSDN), 2012.

[65] R. Raghavendra, J. Lobo, and K.-W. Lee, “Dynamic graph query
primitives for SDN-based cloudnetwork management,” in Proc. First

Workshop on Hot Topics in Software Defined Networks (HotSDN),
2012.

[66] D. Simeonidou, R. Nejabati, and S. Azodolmolky, “Enabling the future
optical Internet with OpenFlow: A paradigm shift in providing intelli-
gent optical network services,” in 2011 13th International Conference

on Transparent Optical Networks (ICTON), 2011.

[67] S. Das, G. Parulkar, and N. McKeown, “Unifying Packet and Circuit
Switched Networks,” in GLOBECOM Workshops, 2009 IEEE, 2009.

[68] S. Das, G. Parulkar, N. McKeown, P. Singh, D. Getachew, and L. Ong,
“Packet and circuit network convergence with OpenFlow,” in 2010

Conference on (OFC/NFOEC) Optical Fiber Communication (OFC),

collocated National Fiber Optic Engineers Conference, 2010.

[69] S. Das, Y. Yiakoumis, G. Parulkar, N. McKeown, P. Singh,
D. Getachew, and P. D. Desai, “Application-aware aggregation and
traffic engineering in a converged packet-circuit network,” in Optical

Fiber Communication Conference and Exposition (OFC/NFOEC) and

the National Fiber Optic Engineers Conference, 2011.

[70] S. Das, A. R. Sharafat, G. Parulkar, and N. McKeown, “MPLS
with a simple OPEN control plane,” in Optical Fiber Communication

Conference and Exposition (OFC/NFOEC), 2011 and the National

Fiber Optic Engineers Conference, 2011.

[71] O. El Ferkouss, S. Correia, R. Ben Ali, Y. Lemieux, M. Julien,
M. Tatipamula, and O. Cherkaoui, “On the Flexibility of MPLS
Applications over an OpenFlow-Enabled Network,” in 2011 IEEE

Global Telecommunications Conference (GLOBECOM 2011), 2011.

[72] J. Kempf, S. Whyte, J. Ellithorpe, P. Kazemian, M. Haitjema, N. Be-
heshti, S. Stuart, and H. Green, “OpenFlow MPLS and the open source
label switched router,” in Proc. 23rd International Teletraffic Congress,
2011.

[73] A. R. Sharafat, S. Das, G. Parulkar, and N. McKeown, “MPLS-TE
and MPLS VPNS with OpenFlow,” in Proc. ACM SIGCOMM 2011

Conference, 2011.

[74] N. Handigol, S. Seetharaman, M. Flajslik, A. Gember, N. McKeown,
G. Parulkar, A. Akella, N. Feamster, R. Clark, A. Krishnamurthy,
V. Brajkovic, and T. Anderson, “Aster*x: Load-Balancing Web Traffic
over Wide-Area Networks,” 2011.

[75] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-Based Server Load
Balancing Gone Wild,” in Proc. 11th USENIX conference on Hot

topics in management of internet, cloud, and enterprise networks and

services, 2011.

[76] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“Enabling fast failure recovery in OpenFlow networks,” in 8th Inter-

national Workshop on the Design of Reliable Communication Networks

(DRCN), 2011.

[77] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow:
verifying network-wide invariants in real time,” in Proc. First Workshop

on Hot Topics in Software Defined Networks (HotSDN), 2012.

[78] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A
security enforcement kernel for OpenFlow networks,” in Proc. First

Workshop on Hot Topics in Software Defined Networks (HotSDN),
2012.

[79] S. Azodolmolky, R. Nejabati, E. Escalona, R. Jayakumar, N. Efstathiou,
and D. Simeonidou, “Integrated OpenFlow–GMPLS control plane: an
overlay model for software defined packet over optical networks,” Opt.

Express, vol. 19, no. 26, pp. B421–B428, December 2011.

[80] S. Das, G. Parulkar, and N. McKeown, “Why OpenFlow/SDN Can
Succeed Where GMPLS Failed,” in European Conference and Exhibi-

tion on Optical Communication. Optical Society of America, 2012,
p. Tu.1.D.1.

[81] O. Baldonado. SDN, OpenFlow, and next-
generation data center networks. [Online]. Avail-
able: http://www.eetimes.com/design/embedded/4371543/SDN--
OpenFlow--and-next-generation-data-center-networks

[82] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vah-
dat, “Hedera: dynamic flow scheduling for data center networks,”
in Proc. 7th USENIX conference on Networked systems design and

implementation, 2010.

[83] C. Rotsos, R. Mortier, A. Madhavapeddy, B. Singh, and A. W. Moore,
“Cost, performance and flexibility in OpenFlow: Pick three,” Workshop

on Software Defined Networks Co-located with the IEEE International

Conference on Communications (ICC), 2012. [Online]. Available:
http://www.cs.nott.ac.uk/∼rmm/papers/pdf/iccsdn12-mirageof.pdf

[84] R. Bennesby, P. Fonseca, E. Mota, and A. Passito, “An inter-as
routing component for software-defined networks,” in IEEE Network

Operations and Management Symposium (NOMS), 2012.

[85] K.-K. Yap, M. Kobayashi, R. Sherwood, T.-Y. Huang, M. Chan,
N. Handigol, and N. McKeown, “OpenRoads: empowering research in

LARA et al.: NETWORK INNOVATION USING OPENFLOW: A SURVEY 511

mobile networks,” SIGCOMM Comput. Commun. Rev., vol. 40, no. 1,
pp. 125–126, January 2010.

[86] OpenFlow Wireless. [Online]. Available: http://www.openflow.org/wk/
index.php/OpenFlow Wireless

[87] K.-K. Yap, M. Kobayashi, D. Underhill, S. Seetharaman, P. Kazemian,
and N. McKeown, “The Stanford OpenRoads Deployment,” in Proc.

4th ACM International Workshop on Experimental Evaluation and

Characterization, 2009.

[88] K.-K. Yap, S. Katti, G. Parulkar, and N. McKeown, “Delivering
capacity for the mobile internet by stitching together networks,” in
Proc. 2010 ACM Workshop on Wireless of the Students, by the Students,

for the Students, 2010.
[89] K.-K. Yap, R. Sherwood, M. Kobayashi, T.-Y. Huang, M. Chan,

N. Handigol, N. McKeown, and G. Parulkar, “Blueprint for intro-
ducing innovation into wireless mobile networks,” in Proc. Second

ACM SIGCOMM Workshop on Virtualized Infrastructure Systems and

Architectures, 2010.

[90] T.-Y. Huang, K.-K. Yap, B. Dodson, M. S. Lam, and N. McKeown,
“PhoneNet: a phone-to-phone network for group communication within
an administrative domain,” in Proc. Second ACM SIGCOMM Workshop

on Networking, Systems, and Applications on Mobile Handhelds, 2010.
[91] M. Bansal, J. Mehlman, S. Katti, and P. Levis, “OpenRadio: a pro-

grammable wireless dataplane,” in Proc. First Workshop on Hot Topics

in Software Defined Networks (HotSDN), 2012.
[92] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao,

“Towards programmable enterprise WLANS with Odin,” in Proc. First

Workshop on Hot Topics in Software Defined Networks (HotSDN),
2012.

[93] L. Lu, Y. Xiao, and H. Du, “OpenFlow control for cooperating AQM
scheme,” in 2010 IEEE 10th International Conference on Signal

Processing (ICSP), 2010.

[94] K.-K. Yap, T.-Y. Huang, B. Dodson, M. S. Lam, and N. McKeown,
“Towards software-friendly networks,” in Proc. First ACM Asia-Pacific

Workshop on Systems, 2010.

[95] M. R. Nascimento, C. E. Rothenberg, M. R. Salvador, and M. F.
Magalhães, “QuagFlow: partnering Quagga with OpenFlow,” in Proc.

ACM SIGCOMM 2010 Conference, 2010.
[96] M. R. Nascimento, C. E. Rothenberg, M. R. Salvador, C. N. A. Corrêa,

S. C. de Lucena, and M. F. Magalhães, “Virtual routers as a service: the
RouteFlow approach leveraging software-defined networks,” in Proc.

6th International Conference on Future Internet Technologies, 2011.
[97] C. E. Rothenberg, M. R. Nascimento, M. R. Salvador, C. N. A.

Corrêa, S. Cunha de Lucena, and R. Raszuk, “Revisiting routing control
platforms with the eyes and muscles of software-defined networking,”
in Proc. First Workshop on Hot Topics in Software Defined Networks

(HotSDN), 2012.

[98] H. E. Egilmez, B. Gorkemli, A. M. Tekalp, and S. Civanlar, “Scalable
video streaming over OpenFlow networks: An optimization framework
for QoS routing,” in 18th IEEE International Conference on Image

Processing (ICIP), 2011.
[99] OpenFlow Stanford Deployment. [Online]. Available: http://www.

openflow.org/wp/stanford-deployment/
[100] Clemson OpenFlow Agregate. [Online]. Available: http://groups.geni.

net/geni/wiki/GeniAggregate/ClemsonOpenFlow

[101] Georgia Tech OpenFlow Agregate. [Online]. Available: http://groups.
geni.net/geni/wiki/GeniAggregate/GeorgiaTechOpenFlow

[102] Indiana OpenFlow Agregate. [Online]. Available: http://groups.geni.
net/geni/wiki/GeniAggregate/IndianaOpenFlow

[103] KSU Lab OpenFlow Aggregate. [Online]. Available: http://groups.
geni.net/geni/wiki/GeniAggregate/KansasStateOpenFlow

[104] Rutgers OpenFlow Agregate. [Online]. Available: http://groups.geni.
net/geni/wiki/GeniAggregate/RutgersOpenFlow

[105] University of Washington OpenFlow Agregate. [Online]. Available:
http://groups.geni.net/geni/wiki/GeniAggregate/WashingtonOpenFlow

[106] Winsconsin OpenFlow Agregate. [Online]. Available: http://groups.
geni.net/geni/wiki/GeniAggregate/WisconsinOpenFlow

[107] GENI, Exploring networks of the future. [Online]. Available:
http://www.geni.net/

[108] Internet2. [Online]. Available: www.internet2.edu
[109] National LambdaRail. [Online]. Available: http://www.nlr.net

[110] Testbed Networks: Provided by NLR. [Online]. Available: www.nlr.
net/testbeds.php

[111] GENI. GENI OpenFlow Backbone Deployment at Internet2. [Online].
Available: http://groups.geni.net/geni/wiki/OFI2

[112] United States Unified Community Anchor Network. United States
Unified Community Anchor Network. [Online]. Available: http:
//www.usucan.org/about

[113] Internet2. Nation’s First 100G Open, Nationwide, Software-Defined
Network Launches for Education, Research, Industry and Innovators.
[Online]. Available: http://internet2.edu/news/pr/2012.10.01.nations-
first-100g-national-scale-network-launches.html

[114] Internet2. Internet2 Mailing List Service. [Online]. Available:
https://lists.internet2.edu/sympa/arc/i2-news/2012-07/msg00002.html

[115] Energy Science Network. Energy Science Network. [Online].
Available: www.es.net

[116] Advanced Networking Initiative (ANI). [Online]. Available: http:
//www.es.net/RandD/advanced-networking-initiative/

[117] IP8800 OpenFlow Networking. [Online]. Available: http://support.
necam.com/pflow/legacy/ip8800/

[118] ESNet. 100G Testbed. [Online]. Available: http://www.es.net/RandD/
100g-testbed/

[119] Energy Sciences Network ESNet. Proposal Process. [Online].
Available: http://www.es.net/RandD/100g-testbed/proposal-process

[120] OpenFlow Experimentation in ORBIT. [Online]. Available: http:
//www.orbit-lab.org/wiki/Documentation/OpenFlow

[121] Ofelia. [Online]. Available: http://www.fp7-ofelia.eu/news-and-events/
press-releases/ofelia-openflow-facility-now-open-for-experiments/

[122] MRI-R2 Consortium: Development of Dynamic Network System
(DYNES). [Online]. Available: http://www.internet2.edu/ion/dynes.
html

[123] Open Networking Summit 2012 Program. [Online]. Available:
http://opennetsummit.org/

[124] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hlzle, S.
Stuart, and A. Vahdat, B4: Experience with a Globally-Deployed
Software Defined WAN, in Proceedings of the ACM SIGCOMM
2013 Conference, 2013.

[125] S. Levy. Going With the Flow: Google′s Secret Switch to the
Next Wave of Networking. [Online]. Available: http://www.wired.
com/wiredenterprise/2012/04/going-with-the-flow-google/all/1

[126] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-
Gia, “Modeling and performance evaluation of an OpenFlow architec-
ture,” in 23rd International Teletraffic Congress (ITC), 2011.

[127] A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “OpenFlow Switch-
ing: Data Plane Performance,” in IEEE International Conference on

Communications (ICC), 2010.
[128] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,

“Logically centralized?: state distribution trade-offs in software defined
networks,” in Proc. First Workshop on Hot Topics in Software Defined

Networks (HotSDN), 2012.
[129] B. Heller, R. Sherwood, and N. McKeown, “The controller placement

problem,” SIGCOMM Comput. Commun. Rev., vol. 42, no. 4, pp. 473–
478, Sep. 2012.

[130] L. Liu, T. Tsuritani, I. Morita, H. Guo, and J. Wu, “Experimental
validation and performance evaluation of OpenFlow-based wavelength
path control in transparent optical networks,” Opt. Express, vol. 19,
no. 27, pp. 26 578–26 578, Sep. 2012.

[131] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient
and scalable offloading of control applications,” in Proc. First Work-

shop on Hot Topics in Software Defined Networks (HotSDN), 2012.
[132] J. C. Mogul and P. Congdon, “Hey, you darned counters!: get off my

ASIC!” in Proc. First Workshop on Hot Topics in Software Defined

Networks (HotSDN), 2012.
[133] G. Lu, R. Miao, Y. Xiong, and C. Guo, “Using CPU as a traffic co-

processing unit in commodity switches,” in Proc. First Workshop on

Hot Topics in Software Defined Networks (HotSDN), 2012.
[134] L. Vanbever, J. Reich, T. Benson, N. Foster, and J. Rexford, “HotSwap:

Correct and efficient controller upgrades for Software-Defined Net-
works,” in ACM SIGCOMM HotSDN Workshop, 2013.

Adrian Lara received his B.S. and M.Sc. in Com-
puter Science from the University of Costa Rica in
2006 and 2011. He is currently a doctoral student
under the supervision of Dr. Byrav Ramamurthy at
the University of Nebraska-Lincoln. His research
interests include Software Defined Networking using
OpenFlow, big data networks and network secu-
rity. Specifically, he looks at network virtualization,
multi-layer bandwidth provisioning and secure au-
thentication using OpenFlow.

512 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

Anisha Kolasani earned her B. Tech. in Information
Technology from the Jawaharlal Nehru Technologi-
cal University in Hyderabad, India in 2010. In 2012,
she received her M. Sc. in Computer Science and
Engineering from University of Nebraska-Lincoln
under the supervision of Dr. Byrav Ramamurthy. She
focused on dynamic network traffic isolation through
OpenFlow. She is currently working for Intel on Sort
Test Technology Development.

Byrav Ramamurthy is currently a Professor in
the Department of Computer Science and Engineer-
ing at the University of Nebraska-Lincoln (UNL).
He is the author of the book ”Design of Optical
WDM Networks - LAN, MAN and WAN Architec-
tures” and a co-author of the book ”Secure Group
Communications over Data Networks” published by
Kluwer Academic Publishers/Springer in 2000 and
2004 respectively. He served as the Chair of the
IEEE Communication Society’s Optical Networking
Technical Committee (ONTC) during 2009-2011.

He served as the IEEE INFOCOM 2011 TPC Co-Chair. His research areas
include optical and wireless networks, peer-to-peer networks for multimedia
streaming, network security and telecommunications. His research work is
supported by the U.S. National Science Foundation, U.S. Department of
Energy, U.S. Department of Agriculture, NASA, AT&T Corporation, Agilent
Tech., Ciena, HP and OPNET Inc.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2014

	Network Innovation using OpenFlow: A Survey
	Adrian Lara
	Anisha Kolasani
	Byrav Ramamurthy

	Lara105.dvi

