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Abstract
Ethernet network interfaces in commodity systems are

designed with a focus on achieving high bandwidth at
low CPU utilization, while often sacrificing latency. This
approach is viable only if the high interface latency is
still overwhelmingly dominated by software request pro-
cessing times. However, recent efforts to lower software
latency in request-response based systems, such as mem-
cached and RAMCloud, have promoted network inter-
face into a significant contributor to the overall latency.
We present a low latency network interface design suit-
able for request-response based applications. Evalua-
tion on a prototype FPGA implementation has demon-
strated that our design exhibits more than double la-
tency improvements without a meaningful negative im-
pact on either bandwidth or CPU power. We also inves-
tigate latency-power tradeoffs between using interrupts
and polling, as well as the effects of processor’s low
power states.

1. Introduction
Historically, network card latency has been overshad-

owed by long wide area links and slow software, both of
which easily bring the overall latency into the millisec-
ond range. More recently, datacenter applications have
emerged with more rigorous latency requirements, thus
inspiring efforts to reach low latency on commodity sys-
tems. An example of such datacenter applications are
various database and caching services that operate from
main memory, such as memcached [6]. Moreover, there
are ongoing efforts to build ultra low latency software,
such as the RAMCloud project [22]. RAMCloud is a
durable storage system boasting latency goals of 5-10 us
round trip, inside a commodity datacenter.

There are economic reasons that lead us to believe that
the commodity low latency trend will continue for the
foreseeable future, and will not be limited to the high per-
formance niche. The ability to do evermore processing
and continuously add new features is essential to many
software companies’ differentiation strategies, thus be-
ing the driving force behind generating revenue. These
companies’ services must run within a small latency bud-
get, demanding commodity technology that provides low
latencies.

On the academic front there has been an analogous,
and likely correlated, interest in low latency. Some soft-
ware efforts were already mentioned, but other disci-
plines also contribute. For example, network and inter-
connect research yielded ideas for bufferless switching
[1] and new network topologies [16]. We position our
work between network and software research, right on
the interface connecting the host and the network.

We adopt a clean slate approach to the problem and
build the lowest latency request-response system that we
can. Following the clean slate approach, we developed a
very simple, and very fast, minimal object store evalua-
tion application that supports only two operations: GET
and SET. The minimal object store application exhibits
low absolute latency, but it also has low latency vari-
ability. Due to this application choice, the latency focus
shifts onto the network interface design, which is our pa-
per’s main contribution. We focus on two latency sources
in the network interface: 1) control communication and
data transfer between the CPU and the network card; 2)
processor idle state wakeup times and power manage-
ment.

Our interface, NIQ (Network Interface Quibbles), was
designed after a detailed investigation of reasons behind
latency inefficiencies in current network cards, as de-
scribed in Section 2. We found that one of our key objec-
tives must be to minimize the number of transitions over
the PCIe interconnect. This is especially true for small
packets, which are prevalent in request-response proto-
cols. In Section 3 we describe how combining existing
techniques (e.g. embedding small packets inside descrip-
tors) with new ideas (e.g. custom polling, creative use
of caching policies) leads to a low latency interface that
does not sacrifice bandwidth.

To evaluate NIQ in detail and compare it to other pos-
sible solutions, we built a configurable FPGA-based net-
work card. This network card is configured and con-
trolled by a user-space NIQ driver that provides zero
copy capabilities and offers direct application access
through bypassing the kernel stack. Evaluation system is
described in Section 4, together with bandwidth and la-
tency performance analysis. CPU idle state power mea-
surements and power-latency tradeoffs of interrupts and
polling are presented in Section 5.

Ideally, total network latency would be dominated by
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wire propagation delay which is limited by the speed of
light to around 5 nanoseconds per meter. Assuming total
round trip distances of under 200 meters inside the data-
center, total time spent on the wire is under one microsec-
ond. The ultimate challenge is to bring network card la-
tencies into the same range. In the meantime, our NIQ
achieved the best round trip latency (client-server-client,
with a network cable in between) of 4.65 us. However,
much of that time is inherent to the hardware components
we had available. In Section 7 we discuss the possibility
of round trip latencies under 2.3 us with state of the art
components and an ASIC implementation.

2. Network Interface Card Design
When implementing request-response protocols on

commodity systems, attempts at low latency often run
into a system designed for a wide area network where
latency is secondary to achieving high bandwidth. We
find current designs to be lacking in latency performance,
even though they are well suited for high bandwidth sys-
tems that are dominated by software latency. Our motiva-
tion are new low latency systems, such as the RAMCloud
project [22], that have software overheads in the one mi-
crosecond range. As a comparison, one round trip time
through an idle linux kernel networking stack measures
at 32-37 us. This measurement includes one receive and
one transmit path between the NIC driver and the user
application for UDP (32 us) and TCP (37 us) packets.
In this section we highlight the network controller chal-
lenges to achieving low request-response latency on ex-
isting systems.

To illustrate the problems addressed in this paper,
we examine in detail how one would build a request-
response based system on top of a current commodity
10G Ethernet NIC. We assume an Intel 10G x520-DA2
adapter [14] because we have access to one, but other
network controllers, such as Broadcom NetXtreme, ex-
hibit similar behavior [11, 4].

A typical network card is connected to the host system
over PCI Express (PCIe) and contains these components:
DMA engine, ring buffers, Ethernet MAC and PHY, plus
additional features (offload engines, QoS, virtualization,
etc.). The DMA engine connects directly to the PCIe
interface and transfers data between the host memory and
the ring buffers on the NIC. Performance of the MAC and
the PHY, as well as the PCIe interconnect, contribute to
overall performance, but in this paper we focus on the
interface between the NIC and the host. This interface is
defined by the functionality of the ring buffers and how
they are managed by the NIC and the host driver. We
describe the interactions between the host and the NIC
by stepping through the packet transmit and the packet
receive process, shown in Figure 1.
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Figure 1: Timing of TX (left) and RX (right) steps.

2.1. Transmit steps
When a client application decides to make a request, it

formats a request packet and sends it to the server. The
NIC transmit interface requires adding packet metadata
(i.e. the packet descriptor) to the main memory descrip-
tor ring shared between the CPU and the NIC (step 1 in
Figure 1 left). To inform the NIC of a newly available
transmit descriptor, the CPU does an uncached I/O write
to the ”doorbell” register on the NIC (first part of step
2). The NIC, then, uses its DMA engine to fetch the next
transmit descriptor (last part of step 2). The DMA engine
is also employed to fetch the contents of the packet that
is ready for transmission, based on information obtained
in the packet descriptor (step 3). Overall, it takes two
and a half PCIe round trips to get from software transmit
initiation to the packet being available in the NIC.

Described use of the descriptor ring buffer provides
decoupling between the CPU and the NIC, thereby al-
lowing the CPU to get ahead of the NIC in the number of
transmitted packets. Bursts of packets from the CPU are
effectively queued in the ring buffer which is drained by
the NIC as fast as the network allows. This decoupling is
key to achieving high bandwidth.

At this point the packet is on the wire and on its way
to the server, but there is still some necessary client
NIC bookkeeping. When a packet is handed to the NIC
for transmission, its memory cannot be reused until the
DMA is completed. Upon DMA completion, the NIC
sets a flag in host memory indicating that the packet
buffer may be reused (step 4). Typically, there is space
reserved for this flag in the packet’s descriptor entry in
host memory. Following step 4, an interrupt is generated
(step 5) that triggers the CPU completion handling (step
6) and thus completing the transmit process. Bookkeep-
ing (steps 4-6) is not in the critical latency path of the
request-response protocol, but it must be done promptly
to prevent the client from running out of resources (e.g.
memory space, or flow control credits).

2.2. Receive steps
Before the NIC can receive any packets, it must be

loaded with information about available receive packet
buffers in main memory. A descriptor ring buffer is used
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to keep the available receive descriptors, similar to the
transmit descriptor ring. Prior to any packets arriving, the
driver allocates multiple receive packet buffers, creates
receive descriptors pointing to those buffers, and trans-
fers the descriptors to the NIC (steps 1 and 2 in Figure 1
right).

Once the client’s request packet finds its way through
the network, it arrives at the server’s NIC. Upon packet
arrival, the NIC reads the next available descriptor en-
try to determine where to deposit the packet. After de-
positing the packet into the host memory using the DMA
engine (step 3), the NIC notifies the CPU of the packets
arrival. The appropriate packet descriptor ring entry is
repurposed as a completion entry, now containing packet
length and a flag indicating there is a new valid packet
(step 4).

Just as they did in the transmit case, the ring buffer
structures allow the NIC to run ahead of the CPU and
deposit packets faster than the CPU can process them,
at least in bursts. The CPU must read the ring comple-
tion entry to discover the location and size of the arrived
packet. To avoid dedicating a CPU core to monitoring
the completion ring, operating systems prefer to config-
ure the card to interrupt the CPU as a form of a com-
pletion notification (step 5). Under high loads, the NIC
might generate too many interrupts for the host to han-
dle, thereby putting the receiver at risk of a livelock. One
of the mechanism that mitigates this problem is interrupt
coalescing in the NIC [26], where the NIC can coalesce
several received packets together by deferring receive no-
tifications and eventually triggering only one interrupt
for several received packets. Under low load this method
adds significant latency (even hundreds of microseconds)
because interrupt generation is in the critical receive la-
tency path. As an alternative to interrupts, the host can
operate in a polling mode, continuously reading the next
expected completion ring entry until it becomes valid.
Modern operating systems alternate between polling and
interrupt modes depending on the load, thus avoiding the
receiver livelock issue [21] regardless of interrupt coa-
lescing.

Finally, the CPU reads the receive descriptor (step 6)
and the received packet, which is then forwarded to the
application layer for processing. Also, at this point the
CPU allocates a new receive buffer and updates the NIC
with a new receive descriptor to replace the one that was
just used. After processing the request, the server ap-
plication formats a reply packet and sends it back to the
client following the same transmit-receive sequence that
was just described, thus completing one request-response
round trip. Overall, 16 one-way transitions over PCIe
links take place between client initiating a request and
receiving a response from the server. Out of the 16 one-
way transitions, 12 are synchronous, which means they
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Figure 2: NIQ timing of small and large packets.

have to be completed before the next one can begin, thus
affecting the overall latency.

3. NIQ: Interface Design
To resolve our Network Interface Quibbles, we pro-

pose a new network interface design, NIQ, that enables
low latency implementations of request-response proto-
cols. We achieve that goal by focusing on small packets
and reducing the number of PCIe transitions.

The key insight with regard to the nature of request-
response protocols is that at least half of the network
packets are very small. This is true because either the
read request, or the write response contain no data. An-
other important general insight is that network latency of
short packets is generally more critical than the latency
of large packets. Whenever large chunks of data are in-
volved, inherent serialization and software processing la-
tencies are higher, lessening the importance of other la-
tency sources.

Network card design described in Section 2 and il-
lustrated in Figure 1 is particularly inefficient for small
packets because it requires a total of eight PCIe tran-
sitions for send and receive combined. Crossing over
the PCIe interconnect is costly in terms of latency (over
0.9 us round trip is our system), therefore we focus on
minimizing the number of PCIe transitions. In the best
case scenario, only two transitions would suffice: one for
transmission and one for reception. We present an inter-
face that accomplishes the best case for small packets,
but also provides good results for larger packets.

3.1. Small Packets
NIQ exploits the fact that modern processors are op-

timized around cache-line size transfers. Minimum size
Ethernet packets are 60 bytes in length, thereby fitting
into a 64 byte cache line. Note that minimum Ethernet
size is usually said to be 64 bytes, but that includes the 4-
byte FCS (Frame Check Sequence), although it does not
include the preamble and the start delimiter. All mod-
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ern network cards generate and strip the FCS in hard-
ware and never expose it to higher layers, reducing the
effective minimum packet size to 60 bytes. Observa-
tion that minimum size packets fit inside a 64 byte cache
line serves as an important guideline to designing the
small packet interface. Processors are already optimized
for communication using cache lines, so we assume that
small packets are minimum size 60 byte Ethernet pack-
ets. Expanding the interface to support, for example, two
cache-line size packets is very much possible, and we
discuss it in Section (Section 7). Timing of the small
packet transmit and receive sequences is illustrated in the
top part of Figure 2, with step numbers corresponding to
Figure 1.

To achieve the ideal goal of one PCIe transition on
transmit and one transition on receive, NIQ interface
folds all critical steps from Figure 1 into just a single
step. Folding of the transmission steps into one is ac-
complished by embedding the entire small packet within
the transmit descriptor. Moreover, we do not employ
the DMA engine to transfer the descriptor, but instead
the descriptor is transferred by the CPU directly to the
network card. Our transmit descriptors are one cache
line wide, with flags indicating whether an entire small
packet is embedded in it, or it is a traditional descriptor
with packet address and length.

On the receive side, folding of the steps is achieved by
embedding the entire small packet inside the completion
entry. Upon reception, the entire small packet is trans-
ferred within a cache line wide completion, instead of
copying it into a host buffer via the DMA engine. As-
suming the use of polling (discussed later in this section),
the completion containing the data also serves as a notifi-
cation, thus successfully folding all critical receive steps.

As an additional benefit of transferring small packets
in this fashion, no host memory buffers are consumed on
transmit or receive. Since no host memory is consumed,
there is no need to allocate or free any buffers, thus re-
ducing the total amount of software bookkeeping. It is
still necessary to exchange flow control credit informa-
tion between the network card and the host, but that can
be batched and done less frequently.

As was already mentioned, both transmit descriptors
and receive completions are 64 bytes wide. To efficiently
communicate with the network card in cache line size
units, we utilize the cache hierarchy and write-gathering
buffers. All memory that is written by the CPU is
mapped as write-gathering (also called write combining),
while the memory that is read by the CPU is mapped as
cacheable. This is a departure from standard practices
of mapping I/O memory as uncacheable, but it is similar
to graphics cards practice of using write-gathering policy
for mapping frame buffers.

Any write by the CPU made to a write-gathering ad-

dress bypasses the cache hierarchy and goes into one of
CPU’s write-gathering buffers. Once the entire cache
line is written, or a memory-ordering instruction (such as
sfence) is executed, the entire cache line is flushed over
PCIe to the network card [12]. Combining the writes in
a buffer close to the CPU core improves CPU bandwidth
and PCIe bandwidth. In fact, it would not be feasible for
the CPU to use uncached writes to write the descriptor
over PCIe 8 bytes at a time. Each PCIe packet incurs
up to 28 bytes of header overhead across all layers [23],
resulting in a 77% overhead. The number of overhead
bytes is the same regardless of data payload size, making
64 byte transfers more efficient.

The cacheable mapping of completion entries enables
us to issue cache misses to the network card, transfer-
ring the entire 64 byte completion in one PCIe packet.
Moreover, the method of polling the network card puts
the completion entry all the way into the first level cache,
where it is ready for immediate processing. In order to
force the cache miss, an appropriate clflush instruction is
executed before the polling read. One of the implications
of using a cacheable memory type in this fashion is that
read side-effects are not allowed in the NIQ. For exam-
ple, a NIQ address location might be read multiple times,
either speculatively or due to a cache eviction. Therefore,
we cannot rely on reads to inform us when the CPU has
processed the data, but instead we require explicit flow
control notifications.

3.2. Large Packets
For large packets NIQ still uses cache lines for com-

munication, but entire packets no longer fit within a de-
scriptor. Instead, we follow the traditional approach of
employing the DMA engine to transfer packet data, as
discussed in Section 2. Descriptors and completions are
still cacheable and 64 bytes wide, but instead of embed-
ding the entire packet (like in the small packet case), they
only contain the first 48 bytes of the packet, which in-
cludes headers. Putting the headers inside the descrip-
tor/completion enables an efficient implementation of
header splitting on transmit/receive.

Header splitting on transmit is necessary to enable
zero-copy techniques often used in low latency system
implementations. If the header cannot be split from the
payload, it is necessary to copy the packet data into an
intermediate memory buffer before transmit. To avoid
copying the header and the data into a single buffer,
the network card’s DMA engine can be programmed
to transfer them separately and join them before they
leave the card. However, programming the DMA engine
to perform two transfers typically requires two separate
transmit descriptors. Our interface enables header split-
ting with just a single transmit descriptor. Splitting the
header on reception can also be beneficial, because the
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Figure 3: Notification timing diagram without (left) and
with (right) PCIe read delay.

header is available for CPU processing as soon as the
completion is read, as they are in the same cache line.

We have explored and evaluated the option of using the
CPU to transfer entire large packets through the write-
gathering buffers, but we found the CPU bandwidth
penalties increase significantly with packet size (up to
70% penalty for largest packets). Even though the small
packet interface provides lower latency, it is entirely pos-
sible to send small packets through the large packet inter-
face. This is recommended when strict packet ordering is
important because a small packet that is sent through the
small packet interface is allowed to pass a large packet
and leave the network card out of order. Allowing small
packets to bypass large packets is meant as a feature,
since it can easily save over 1 us of transmit time for the
small packets. It is entirely possible to enforce strict or-
dering on the interface, but since the underlying network
doesn’t guarantee packet ordering, we choose to allow
reordering.

There is some necessary bookkeeping of host mem-
ory buffers taking place off the latency critical request-
response path, much like we discussed in Section 2. On
the transmit path, this processing is batched for efficiency
reasons and an interrupt scheme employing interrupt co-
alescing is used to notify the CPU of the necessary book-
keeping. NIQ uses interrupts for bookkeeping notifica-
tion, but for critical notifications it employs a custom
polling scheme, which we describe next.

3.3. NIQ polling
For the NIQ interface we designed a custom polling

technique that we refer to as NIQ polling. Instead of
polling the host memory, NIQ polling repeatedly issues
reads over PCIe to the network card, thus avoiding com-
municating through the main memory. Additionally, the
replies from the network card are put directly into the
first level cache, thereby avoiding a cache miss.

The goal of the NIQ polling notification scheme is to
minimize notification latency. We define notification la-
tency as the time between a new valid completion en-
try being ready in the NIQ and when that completion
is ready for processing in the CPU. When repeatedly

polling the network card (illustrated on the left of Fig-
ure 3), notification latency is between half a PCIe round
trip and one and a half round trip. The expected notifica-
tion latency value is one PCIe round trip because it may
take up to one whole round trip time between the com-
pletion being ready and the CPU polling read arriving at
the network card.

To lower the expected notification latency we intro-
duce a PCIe read delay time inside the network card.
When there are no new valid completions, the network
card holds on to the polling read for one PCIe read de-
lay time before eventually replying with an invalid en-
try, instead of replying immediately. However, if a new
completion is ready, a reply is generated immediately,
thereby significantly reducing the expected notification
latency (up to 2x reduction). This process is illustrated
on the right of Figure 3. As an added benefit of PCIe read
delay, fewer invalid entries get transferred over PCIe,
also reducing the number of invalid entries the CPU must
process.

Choosing the correct value for PCIe read delay is a
balancing act between minimizing expected notification
latency and avoiding triggering any deadlock prevention
or watchdog mechanisms that could be triggered by a
delayed memory read. Expected notification latency is
inversely proportional to 1+(PCIe read delay), and we
found that a PCIe read delay value of about 20 PCIe
round trips gives good latency performance. This de-
lay value is well clear of triggering any operating sys-
tem watchdog mechanisms, but we have encountered an
interesting interaction with Intel’s implementation of si-
multaneous multithreading, known as hyper threading.
While a hyper thread is waiting on the polling read to re-
turn, one would expect its sibling thread to make full use
of the execution units and other shared resources, lead-
ing to NIQ polling being an even more attractive solu-
tion. However, we found that when using NIQ polling
and delaying the read response for longer than around
4 us (or 10000 cycles), the sibling hyper thread makes
no forward progress. We attribute this phenomenon to
a deadlock/starvation prevention mechanism that detects
the polling thread has not made progress for a long time
(while waiting on the poll read), and upon detection pre-
ventatively stalls the sibling thread. For this reason we
do not use hyper threading.

Polling in this way permanently consumes one PCIe
read credit, but is unlikely to cause any issues on the PCIe
bus because the PCIe spec allows for read delays of at
least 10 ms [23]. Next, we discuss alternatives to our
NIQ polling technique.

3.3.1. Interrupts vs. host polling vs. mwait
Historically, there was a huge speed mismatch be-

tween the I/O devices and the CPU, making interrupt
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schemes necessary and efficient. It would be unfeasi-
ble for the single core CPU to wait several milliseconds
for an I/O device to complete an operation. However,
modern network cards are much faster and modern CPUs
have multiple cores, thus changing the balance. One
would still like the CPU core to be able to do other pro-
cessing while waiting on the network device, but often
there is nothing else to do. This reasoning coupled with
poor latency performance of interrupts is what makes
polling an attractive option.

We find three main reasons for poor interrupt latency
performance. Firstly, we measure a 1.4 us delay between
when the interrupt controller is instructed to generate an
interrupt, and the linux interrupt handler is executed. The
second latency penalty comes from the necessary inter-
thread communication between the interrupt handler and
the user application thread. The inter-thread communi-
cation is necessary because implementing the entire user
application (i.e. consuming and generating packets) in-
side an interrupt handler is impractical at best. The third
reason interrupts have a bad latency reputation is power
management, and specifically CPU idle states. While
waiting for an interrupt the CPU is not busy (unlike when
polling) and often reaches a deep idle state with an exit
time in tens of microseconds. We investigate the power
management tradeoffs further in Section 5.

Polling on the host memory location is a good low la-
tency alternative to interrupts. When using host memory
polling, the CPU reads the memory location of the next
expected completion entry in a tight loop until that lo-
cation becomes valid. Because the reads are done in a
tight loop, the memory location is cached and reads re-
turn quickly for as long as the completion entry is invalid.
Due to reads hitting in the cache, the CPU must do a lot
of useless work processing invalid entries, realizing they
are invalid, and reading them again. When the network
card actually updates the completion entry, the cache line
gets invalidated and the CPU incurs a cache miss when it
tries to read it. To avoid spinning on a memory location
in a tight loop, the CPU can issue a monitor instruction
for that cache line, followed by an mwait instruction that
halts the processor to save power [12]. As soon as the
monitored cache line is invalidated by the network card’s
write, the CPU is woken up to process the completion.
Section 5 provides experimental evaluation of latency-
power tradeoffs between interrupts and polling.

4. Object Store Evaluation
In this section we evaluate latency and bandwidth per-

formance of a NIQ implementation. Our implementation
is based on a dual socket system with Intel Westmere
processors and a NetFPGA [29] board, as shown in the
block diagram in Figure 4. The system has a minimum
PCIe read round trip latency of 930 ns, which includes
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Figure 4: Block diagram of the test system.

the FPGA and the host machine, but is mostly dominated
by the FPGA. NetFPGA Ethernet PHY and MAC round
trip latency is 868 ns + 0.8 ns/byte, giving a range of 920
ns to 2.08 us for smallest to largest packets. All mea-
surements in this section are based on a request-response
roundtrip of a single-threaded minimal object store appli-
cation. The object store application was built to provide
only the essential set of features for conducting the eval-
uation, thus shifting the evaluation focus onto the NIQ.
For latency experiments, client and server are running on
different processors, but on the same system, both using
the same NetFPGA card with a copper twinax network
cable providing a loopback link. Running on the same
system, and thus in the same time domain, makes it pos-
sible to obtain detailed latency breakdowns. To avoid
interference under high load, bandwidth experiments are
run on two separate systems, with the client using a com-
modity network card, while the server still runs on NIQ.

NIQ is directly compared to an Intel x520 network
card. To make the comparison fair, the x520 user-space
driver was modified and integrated into the object store
application so it can be used in the same way as the
NIQ driver. For the reasons of implementation simplic-
ity, physical addresses are made available to the applica-
tion by using a kernel module that allocates 1 MB chunks
of contiguous physical memory, which are further frag-
mented and managed by the application itself. Our ap-
plication protocol runs on top of Ethernet and IP to cor-
rectly emulate a datacenter environment where a packet
must travel through switches and IP routers. Most mea-
surements are conducted on GET requests, except where
otherwise indicated, because GETs are assumed to be an
order of magnitude more frequent [3].

4.1. Latency evaluation
Here we present latency measurements on an unloaded

system. In the unloaded system each request is sent in
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A B C D E F G H I J K

NIC NIQ • • • • • • • • • •
x520 •

RX

small pkt • • • • • • • •
niq poll • • • • • •
host poll • • •
interrupt •
mwait •

TX

small pkt • • • • • • • •
hdr split • • • • • • • • • •
no DMA •
doorbell • • •
Table 1: Design configuration variants.

isolation from other requests in an effort to get consistent
best case latency breakdown. Experiments with a loaded
system are presented in the next subsection. All of the
NIQ latency experiments are conducted with both client
and server using the NIQ interface. Reference x520 ex-
periments are done with client and server using the Intel
x520 network card.

Our NIQ prototype can easily be configured to oper-
ate in different modes (e.g. polling, interrupts, header
splitting on/off, small packet optimization on/off). We
present latency performance of configurations listed in
Table 1. For each configuration in Table 1, a match-
ing latency range can be found in Figure 5. The bottom
end of each latency range corresponds to a GET request
round trip of a small object (4 bytes), while the upper end
of the latency range corresponds to a large object (1452
bytes). Configuration A is our best NIQ configuration,
as described in Section 3. Reference configurations J
and K correspond to the Intel NIC design described in
Section 2, with the exception that they use host memory
polling instead of interrupts. In configuration K, NIQ
prototype is configured to behave the same as the x520
NIC (configuration J) and they both exhibit similar laten-
cies. This validates our choice of comparing our design
with the x520 card, since for the same configuration NIQ
and x520 perform similarly.

Configurations B through I are all unique and differ
from configuration A in only one parameter, enabling us
to quantify the benefits of each configuration parameter.
In Figure 5 we demonstrate that our NIQ polling tech-
nique has the lowest latency, especially compared to an
interrupt scheme (configuration C) that exhibits the high-
est latency. The same Figure 5 shows latency effects of
small packet optimizations, as well as the effect of using
a doorbell register scheme to initiate a descriptor DMA
transfer. Even though, for large requests only, configu-
ration F has a marginal latency advantage over config-
uration A, we dub configuration A as best. This is be-
cause configuration F uses the CPU to transfer data to

Figure 5: Design configurations’ latency ranges for
minimum to maximum size packets.

the NIQ, instead of utilizing the DMA engine, which in-
curs a CPU bandwidth hit of over 3.5x for large requests.
Header splitting provides small latency gains (up to 0.24
us) and it enables zero copy transmit, thereby improving
bandwidth by over 20% for the largest requests.

To obtain further insight into the latency breakdown,
we instrumented the userspace driver code to timestamp
the request-response pairs at various points using the
rdtsc instruction. For the timestamps to be accurate,
we place every rdtsc instruction in-between two memory
barriers, thus causing a total instrumentation overhead of
0.35 us compared to times presented in Figure 5. We
are able to get one way request time measurements be-
cause the server and the client run on the same physical
machine, but on different processors.

Figure 6 shows latency breakdowns for GET request
(subplot a) and SET request (subplot b) running on NIQ.
GET and SET breakdowns are similar, with a difference
that the server returns a SET reply before touching any
object data, leading to a constant server application la-
tency with respect to object size. Replies containing ob-
jects that are 12 bytes or smaller, fit into a minimum size
packet (after accounting for the 48 byte header), thus al-
lowing the server to use the small packet transmit path
and achieve lower latency (shown in the inset of Figure
6a).

While NIQ is optimized for small packets, it also per-
forms well with large packets. A comparison between
Figures 6a and 6c illustrates that NIQ and the x520 card
latencies scale similarly with object size, but NIQ con-
sistently provides lower latency. Figure 6d illustrates
why we choose to transfer large packets using the DMA
engine (subplot a), rather than stream writes using the
CPU (subplot d). In subplot d, the server driver time dra-
matically increases with packet size, reducing the server
bandwidth by up to 3.5 times. However, streaming CPU
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Figure 6: Detailed request latency breakdown.

writes might be a practical solution for transmitting pack-
ets that are just over the minimum size, where latency
benefit is large and bandwidth penalty low. The saw-like
artifacts in subplot d are very specific to our implemen-
tation and are the result of the host running out of PCIe
credits when the object size is not an integer number of
cache lines. Writing a partial cache line is implemented
using multiple 8-byte writes, thus requiring more PCIe
credits.

4.2. Bandwidth evaluation
Another important performance aspect is how NIQ be-

haves under heavy load, which we explore next. To gen-
erate enough load to saturate the server that is running
the NIQ based single-threaded object store application,
we use a multithreaded client running on top of the x520
card. This way we are able to make sure the bottleneck is
the server running NIQ, therefore measuring NIQ band-
width and NIQ latency under heavy load.

Figure 7 shows the server throughput on the outgo-
ing link, which is also the bottleneck link since it carries
larger packets than the inbound link. For large packets

the throughput is limited by the physical link speed of 10
Gbps, but small and medium packet throughput is limited
by the server processing power. There is an initial NIQ
throughput drop in Figure 7 that occurs when the request
object size is over 12 bytes. The drop is caused by the
necessary descriptor assembly and additional bookkeep-
ing required by objects that don’t fit in small packets.
As object size increases further, physical link bandwidth
limitation causes a drop in throughput inversely propor-
tional to the object size, for both NIQ and x520. Medium
size packets’ throughput is roughly constant with varia-
tions that are within one cache miss, and thus difficult to
account for.

Interestingly, NIQ manifests higher throughput than
the x520 card implementation. This observation implies
that even though engineering for high bandwidth often
compromises latency, the converse is not true; engineer-
ing for low latency is very favorable to achieving high
bandwidth.

To further explore latency impact of high request
loads, we plot the latency vs. load graph in Figure 8. For
load generation, we model request arrivals as a Poisson
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Figure 7: Server throughput results.

Figure 8: Server latency vs. load.

process by making the time between generated requests
follow an exponential distribution. Figure 8 shows load-
latency curves for minimum and maximum size objects,
for both NIQ and x520 implementations. As predicted
by the queueing theory, latency exponentially increases
with load, and it does so in a similar fashion for all ex-
perimental setups.

5. Latency vs. Power Analysis
In this section we investigate latency and power im-

pacts of processor power management. Our experiments
have demonstrated that it is critical to properly use power
management states to achieve low latency. We focus on
a subset of Intel’s power management states [10] that are
relevant to our application, namely core idle states (c-
states), package idle states (pc-states) and performance
states (p-states). These states are Intel’s implementa-
tion of platform independent mechanisms defined in the
ACPI specification [8].

Core and package idle states lower the CPU power
consumption during the idle periods at a cost of incurring

Figure 9: CPU latency-power tradeoffs for: mobile
class Ivy Bridge (left/red), desktop class Sandy Bridge
(middle/green) and server class Westmere (right/blue).

some wakeup latency when the CPU transitions back
from idle to active. Package idle states control the power
of the ”uncore” logic (e.g. memory controller, shared
caches, QPI links), while core idle states manage the
cores (c0-active; c1-clock gated; c3-local cache flushed;
c6-power gated). Wakeup latencies are on the order of 50
us for the deepest c-states, and up to 100 us for deep pc-
states. Processor performance states (p-states) are active
states tied to different processor clock frequencies that
result from frequency-voltage scaling. Lower frequen-
cies burn less power and incur higher execution time, but
they do not add to wakeup latency because the processor
can execute instructions in any p-state.

5.1. Experimental evaluation
We experimentally determine wakeup latencies and

power consumption for three classes of Intel proces-
sors (mobile Ivy Bridge 3610QM, desktop Sandy Bridge
2600K and server Westmere E5620). Power is measured
on the 12 volt rail that feeds into the CPU voltage regula-
tors and thus includes any inefficiencies those regulators
might introduce (typical regulator efficiency is around
85%). Wakeup latencies are measured from an FPGA
board connected to a PCIe slot to avoid any instrumenta-
tion code interfering with the measurements. The FPGA
generates a ping request to an idle CPU (in low power
state) and measures how long it takes to receive a reply.
Overall latency displayed in Figure 9, thus, includes one
wakeup latency plus some small code execution time and
one PCIe round trip overhead (overall overhead is less
than 1 us). In this experiment the FPGA generates one
ping request every 5 ms, allowing the processor plenty
of time to completely reach any idle state. Each point
in Figure 9 represents power and wakeup latency for a
given (package pc-state, core c-state) pair. Power value
is the processor idle power in the given idle-state pair,

9
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Figure 10: Wakeup latency for a mobile Ivy Bridge pro-
cessor in transition from active to PC7 state.

while wakeup latency is the time it takes the processor
to exit its idle state and be ready to execute instructions.
Multiple active-state points (pc0, c0) correspond to dif-
ferent performance states (i.e. different clock frequen-
cies). Active states have zero wakeup latency, so (pc0,
c0) points in Figure 9 show latency measurement over-
heads and corresponding power consumptions.

It can take several milliseconds for a processor with
complex power management (e.g. mobile Ivy Bridge)
to go from being active to being steadily in the deepest
idle state. Since it can take milliseconds to reach a stable
state, we must explore the wakeup latency and power of
a processor that is in transition form active to deep idle.
In Figure 10, a mobile Ivy Bridge processor is in transi-
tion from active state to pc7 (power gated cores, memory
controller shut off, shared cache flushed and disabled).
The figure shows how the wakeup latency depends on the
actual idle time of the processor, as the processor is inter-
rupted after CPU idle time into the transition from active
to pc7. One can notice several plateaus corresponding to
major processor components being shut down, as well as
the overall complexity of the low power transition pro-
cess. It is evident that the wakeup latency is lower if
the transition process is interrupted early (e.g. only 4 us
wakeup if interrupted 5 us into the pc7 transition). How-
ever, the proposition of frequently waking the processor
before it completely reaches its intended idle state can
be costly in terms of power, as shown in Figure 11. This
figure shows the average power of a mobile Ivy Bridge
processor that is trying to reach an idle state (pc1, pc3,
pc6, pc7), but is always interrupted after CPU idle time.
One can see from the figure that deep idle states are more
efficient only if the CPU is actually idle for longer peri-
ods of time. Power numbers presented in Figure 11 were
obtained from the RAPL interface registers [12] and each
experiment’s CPU idle time in Figure 10 was randomized
to avoid unwanted artifacts due to periodicity.

Figure 11: Average CPU power of a mobile Ivy Bridge
processor in transition from active to idle state, but being
interrupted after CPU idle time.

Effects shown in Figure 10 can also affect DMA laten-
cies on processors with integrated memory controllers.
The memory controllers are put into an idle state by the
processor, but a DMA read requires them to access main
memory. Any delay of over 10 us between the processor
starting a transition into pc6 and the DMA engine initi-
ating a read is likely to increase DMA latency by over
10x.

5.2. Application notification performance
Upon new packet reception, the NIC generates a noti-

fication to the application that a new packet is available.
This notification can be an interrupt, a write to a prede-
fined memory location that is actively polled by the CPU,
or a combination of both. The notification mechanism is
at the center of power-latency tradeoffs discussed here.
To achieve lower power consumption while waiting for a
notification, the CPU can enter an idle state. However, if
the CPU running the application is idle when the notifica-
tion is received, wakeup latency is incurred, as discussed
previously.

In Figure 12 we present latency and idle power mea-
surements for interrupt and polling notifications on a
desktop class system. We consider a case of using inter-
rupts and placing the entire application code inside the
kernel interrupt handler. However, this is feasible only
for the simplest of cases where the application process-
ing can be done extremely quickly. A more plausible
setup is the one where the kernel interrupt handler wakes
up a user process that does the bulk of the processing.
We find that signaling from the interrupt handler to the
user process introduces more than several microseconds
of additional latency, even though both interrupt based
mechanisms are equally power efficient.

The lowest latency is achieved using mwait/polling
from inside the user space process. With this mecha-
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Figure 12: Latency vs. power tradeoffs of different notification mechanisms.

nism, in non-active states (pc6, pc3, pc1 in Figure 12)
the user application makes calls to a kernel module to
use monitor/mwait on a memory address that the NIQ
writes to. In the active states (pc0 in Figure 12) the ap-
plication polls that same memory address in a tight loop.
For non-deep idle states (pc0, pc1), the mwait/polling
approach increases power consumption by less than 2%
over interrupt mechanisms, while offering more than 2-
4x latency improvements. Deeper idle states (pc6, pc3)
offer over 50% reduction in combined CPU and memory
power over non-deep idle states (pc0, pc1), but they are
unusable due to a huge latency penalty.

One disadvantage of the mwait approach is that the
application process appears to the operating system as if
it is constantly running without voluntarily yielding the
CPU. This makes it impossible to take full advantage of
the tickless kernel [27], resulting in marginally higher
power usage in deep idle states, as shown in Figure 12
for states pc3 and pc6.

In conclusion, mwait/polling mechanism combined
with the pc1 idle state is a viable way to save power (55%
savings compared to highest performance states). How-
ever, deeper idle states incur too high of a latency penalty
to be used with ultra low latency applications. While
there is a power penalty to using mwait/polling instead
of interrupts, it is not as dramatic as initially expected.
We believe that the poor latency reputation of interrupts
and the high power consumption reputation of polling
are somewhat unjustified. While waiting for an interrupt,
processors are generally allowed to enter deep idle states
(e.g. pc6), but polling always keeps them busy in an ac-
tive state (pc0). This means pc6-state power and latency
are associated with interrupts, while pc0-state power and
latency are associated with polling. However, one can
select the CPU idle state for either interrupts or polling,
and Figure 12 is meant to help with that choice.

6. Related Work
Engineers have been building low latency RPC sys-

tems since long before Ethernet was a dominating link
layer protocol, as demonstrated in [32]. In that paper
authors identify network controllers as having a signif-
icant influence on the overall RPC latency. They also
express concern with the trend of NIC latencies not im-
proving nearly as fast as their bandwidth capabilities.
These trends have continued with NIC bandwidth in-
creasing 1000-fold since then, but round trip RPC laten-
cies improved only 10-100 times. Ironically, most of the
latency improvement came from the decrease in serial-
ization latency, which is directly tied to bandwidth (e.g.
64 byte packet at 10 Mbps has serialization latency of
51.2 us, while at 10 Gbps it is only 51.2 ns). The same
authors [32] compared DMA based Ethernet controllers
with FIFO-based ATM controllers. They concluded that
DMA based controllers work well for large packets, but
for small packets they prefer a simple FIFO interface that
is directly accessed by the host. Similarly to our ap-
proach, they go on to advocate building future network
controllers with a hybrid interface to best suit both small
and large packets. Twenty years later, with computing
shifting into datacenters, we find that many of the good
ideas from the past are being adapted to fit current needs.

Even though Infiniband has traditionally been favored
in high performance computing, recent work has shown
that 10G Ethernet can also achieve good latency perfor-
mance [24]. To complement this finding, high perfor-
mance switch and NIC vendors have built 10G Ethernet
switches capable of 0.3-0.5 microsecond latencies [7, 2]
and network adapters capable of 1.3 microsecond laten-
cies [20]. These proprietary components have promptly
found their way into vertically integrated solutions for
low latency applications, such as online trading systems
[30]. We view our work as an integral part of the over-
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all efforts to openly discuss, understand and build low
latency datacenter systems on commodity hardware.

Researching the interactions between the cache hier-
archy and I/O data transfers [31, 9, 13] has resulted in an
implementation by Intel that claims to improve their net-
work controller latency by 10-15% [13]. Previous work
on power management of datacenter servers [18, 19] has
been promising, but it assumes that latencies in hun-
dreds of microseconds are acceptable. On the software
research front, there are efforts that improve the average
and tail latencies of existing datacenter applications, such
as memcached and web search [15]. With a clean slate
approach, the RAMCloud project [22] is driving the to-
tal round trip request-response latency into the 5-10 us
range, applying significant efforts to reducing the soft-
ware overheads. Kernel network stack overheads are typ-
ically removed by circumventing the network stack com-
pletely and accessing the network card through a user-
level driver [17, 5, 28]. User-level drivers are typically
hardware specific and do not provide the OS protection
mechanisms that applications are accustomed to. There
is ongoing work on the netmap framework [25] that pro-
vides low latency of a user level access in conjunction
with the benefits of an operating system. This software
research complements our work by accentuating the need
for low latency network interfaces.

7. Discussion and Conclusion
Our approach in this paper is a clean slate approach

where we assume the applications are written in a way
to take advantage of NIQ. For an existing application to
benefit from NIQ, it would need to be modified to use
the NIQ user space library to send and receive packets. It
is also possible to implement the NIQ driver as a kernel
module, thus enabling application multiplexing, but we
do not explore this option in the paper. Some of the soft-
ware low latency techniques used in the NIQ implemen-
tation can also be used with most other network cards
(e.g. polling, kernel bypass, header splitting). To make
the evaluation comparison fair, we have implemented
those techniques for both NIQ and the Intel x520 card.
On the other hand, some of the techniques are unique to
NIQ and require support form the driver, hardware and
the host system (e.g. delayed PCIe reads, mapping NIQ
memory as cacheable).

NIQ performance results presented in Section 4 are
limited by the FPGA implementation. We implemented
NIQ prototype on an FPGA development board utiliz-
ing available standard components, such as MAC, PHY
and the PCIe core. However, those available components
exhibit relatively high latencies, when compared to the
lowest possible with today’s technologies. We are able
to extrapolate what the overall request-response latency
would be, if the system is built with state of the art com-

ponents. One small packet round trip through our PHY
and MAC components measures at 920 ns, while the best
ASIC components take only 300 ns, indicating 620 ns of
possible improvement in the Ethernet path. For the PCIe
estimation we take the minimum PCIe latency seen on
the Intel’s x520 card (560 ns) and compare it to the min-
imum NIQ PCIe latency (930 ns). Additionally, we mea-
sure an extra 190 ns of possible savings when running on
one of the newest available server processors with an on-
chip PCIe controller, for a total PCIe round trip savings
of 560 ns. Since our minimum request-response latency
(4.65 us) includes two Ethernet and two PCIe round trips,
we infer possible request-response times of under 2.3 us,
thereby doubling our performance.

We demonstrate that it is possible to fit a basic GET
request within a minimum size (60 B) packet using bi-
nary object keys. Many existing object store systems use
string keys instead of binary object keys, which gener-
ally makes GET requests bigger than a single cache line.
One solution to this would be to use a hash on the string
object keys to convert them into binary keys. However,
it is also possible to extend the NIQ small packet inter-
face to support larger packets (e.g. two cache line size
packets) on receive and transmit. On the transmit side,
writing a two-cache-line packet using the write-gathering
memory mapping is as simple as writing two cache lines
back-to-back. On the receive side, however, the change
would be more extensive. One simple solution to support
larger packet on the small packet interface is not to com-
municate complete headers between NIQ and the CPU.
Instead, NIQ checks and drops redundant header fields
on receive (e.g. destination mac address, type fields,
etc.), thus enabling bigger Ethernet packets that still fit
into one cache line. Another possible solution is to use
two sibling hardware threads (hyperthreads) to issue two
polling cache misses, with replies eventually ending up
in the same L1 cache ready for processing. A similar so-
lution might involve explicit prefetches (using the SSE
instruction), or even automatic adjacent line prefetching,
to get more than one cache line at a time from NIQ to
the CPU. Finally, one might simply use the host polling
technique; especially on a new SandyBridge-EP platform
with DDIO [13], where it would perform well.

In its current prototype form, NIQ interface can only
be accessed by a single thread at a time, thus limiting
possibilities for parallelism. As future work we intend to
extend the NIQ interface to support multiple queues, thus
supporting multithreading and increasing performance
through parallelism.

We also discuss two extreme solutions for building a
low latency request-response applications (e.g. object
store). One solution is to implement the entire applica-
tion in the NIQ. This becomes problematic as soon as
two or more memory accesses are needed, such as a hash
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table lookup and a data read, because memory accesses
over PCIe exhibit high latency. The second solution is to
completely integrate the network card with the proces-
sor. This is an attractive option from the latency point of
view, with an open question of how exactly would the in-
tegrated controller be connected to the processor. Unless
the latency of that interconnect is negligible, such design
would still benefit from our findings.

In conclusion, we have designed, implemented and
evaluated a network interface solution for low latency
request-response protocols. We demonstrate significant
latency gains by focusing on minimizing the number of
transitions over the PCIe interconnect, particularly for
small packets. Moreover, we designed and made a case
for a custom polling notification technique by evaluat-
ing its latency and power performance. We also investi-
gated processor power management implementation and
the impact it has on latency. Finally, our system’s latency
gains did not come at the expense of bandwidth, but there
was an increase in implementation complexity.
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