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Abstract

Although preliminary analysis frameworks point out the
performance speed-ups achievable by on-chip networks
with respect to state-of-the-art interconnects, the area con-
cern remains one of the most daunting challenges to make
this interconnect technology mainstream. A common ap-
proach to relieve the problem consists of sharing most of
network interface resources among a number of processor
cores. However, buffering resources need to be replicated
and control logic reaches a complexity that limits maximum
achievable frequency. This paper proposes full sharing of
network interface resources, including buffers, thus trading
performance for area. While area improvements are signif-
icant, a number of physical and system-level effects might
mitigate performance degradation, making our technique a
promising solution for area efficient network-on-chip real-
izations across a range of operating conditions.

1 Introduction

With the advent of multi-processor system-on-chip (MP-
SoC) technology, computation efficiency can be achieved
by combining multiple programmable processors within
a multicore system, hence only marginally impacting
programmability and configurability. Relevant examples
thereof come from commercial products both in the high-
performance microprocessor domain [1] and in the embed-
ded computing domain with tighter optimization constraints
[2, 3].

Perhaps the most daunting challenge to make MPSoC
technology mainstream is to realize the enormous band-
width capacities and stringent latency requirements when
interconnecting a large number of processing cores. This
task is on burden of the global intrachip communication
infrastructure. Networks-on-Chip are a promising solution
for designing scalable communication architectures for MP-
SoCs, featuring better modularity and design predictability
when compared to bus based systems.

Although preliminary analysis frameworks have pointed
out the performance enhancements achievable by on-chip
networks [4], the area concern for NoC implementation was
raised by many works in the open literature. For instance,
it was showed in [4] that a NoC architecture for a 30 core
system takes one order of magnitude more cell area than
that of a state-of-the-art multi-layer interconnect. In terms
of floorplan area, the increase can be as large as a few tens
of squared millimiters.

It should be observed that in realistic NoC architectures,
network interfaces (NI) play a significant role in determin-
ing overall NoC area. In [5], a TV companion chip was
redesigned with a NoC as the interconnect fabric, and 78%
of increase in chip area was proved to come from the NIs.
In the xpipes based system in [4], more than half of the
NoC area is due to NIs. Finally, these network components
should come with low area footprint, since the size of IP
modules attached to them is relatively small.

Network interface sharing could be a viable option to
reduce the area overhead of these components. The most
common approach consists of attaching multiple cores to
the same NI, thus sharing the same input port to the net-
work (see for instance [6]). This approach involves replica-
tion of the buffering resources in the NI, thus leading to an
increase of area which hardly justifies this design choice.
In fact, trusting published reports, buffers can account for
more than 30% of the NI area. Moreover, the replication of
buffering resources increases the complexity of buffer con-
trol logic (e.g., scheduling), thus resulting in a reduction of
the maximum operating frequency or in an increase of NI
latency. The problem can be relieved as in [6] by infer-
ing custom-made hardware FIFOs at the cost of flexibility.
Other approaches delve into the intricacies of NI design try-
ing to reduce its complexity [7]. However, this solution can
be successful only up to a certain extent, since the support
for processing cores with advanced communication capa-
bilities (e.g., multiple oustanding transactions, out-of-order
completion, quality of service guarantees) requires complex
NI architectures anyway.

This paper advocates for a more radical solution preserv-
ing the flexibility of fully synthesized architectures. We
propose a network interface sharing architecture wherein
the entire NI resources (including buffering) are shared
among a cluster of processing cores or communication tar-
gets. We design traffic merging and splitting modules for
this purpose, which interleave the different traffic flows on
a unique network interface. While potentially resulting in
more area efficient implementations, this solution needs to
preserve compliance with end-to-end communication proto-
cols linking network interfaces with communicating cores.
This paper focuses on the Open Core Protocol (OCP) [25],
a standard socket interface for industry-relevant MPSoCs,
and proves the feasibility of traffic merging and splitting in
this context.

Moreover, this paper shows that by devising proper op-
timization techniques at the merging and splitting modules,
NI sharing outperforms a pure serialization of conflicting
network access patterns. Moreover, system-level effects as-
sociated with the presence of global slave bottlenecks or



physical-level effects associated with a higher achievable
operating frequency (due to a lower switch radix) may mask
the further level of arbitration introduced by traffic mergers
and splitters. Finally, this work assesses the non-trivial area-
performance trade-off spanned by our architecture based on
NI sharing in an application-specific as well as in a general
purpose scenario.

After reviewing previous work in Section 2, design
guidelines for a traffic merger and splitter are analysed in
Section 3. Then, architecture details and related optimiza-
tions follow in Sections 4 and 5, respectively. Synthesis
results are illustrated in Section 6. Basic performance tests
follow in Section 7 while a system-level analysis is illus-
trated in Section 8.

2 Previous work

Most of previous work on NoC area optimization comes
from the domain of application specific on-chip networks
[8, 9, 10, 12, 11, 14, 15, 16],

When it comes to general purpose NoC architectures,
area savings are mainly expected from optimized topolo-
gies still preserving structured wiring. An interesting
node:router mapping of N:M is proposed in [17], instead
of traditional 1:1 (k-ary n-cube) or N:1 (clustered topolo-
gies). The work in [18] proves the limitation of 2D-meshes
as processor counts increase. It also proposes a concen-
trated mesh architecture with replicated subnetworks and
express channels. The work in [19] trades-off the number
of dimensions with the number of cores per router, but lacks
of physical insights. Physical implications and feasibility
of multi-dimensional and/or concentrated topologies have
been investigated in [24].

A method for reducing the hardware complexity of NoCs
by automatically configuring the architecture of the NoC
switches to suit the application traffic characteristics was
presented in [20].

Network interfaces, their architectures and their opti-
mizations have not been addressed extensively in the open
literature. Guidelines and trade-offs for network interface
design have been summarized in [21].

Network interfaces with low area footprint have been
proposed in [22, 23]. The NI hardware complexity reduc-
tion coming from aligned packet formats is highlighted in
[7].

Perhaps the most complete description of a network in-
terface is that reported in [6], which provides throughput
or latency guarantees and supports multiple point-to-point
connections. In practice, multiple initiator cores could be
connected to the same network interface by exploiting these
connections. Two message queues are allocated at NI in-
stantiation time for each point-to-point connection, one for
outgoing and one for incoming messages. In practice, the
underlying principle consists of replicating the buffering re-
sources of the shared network interface depending on the
number of attached cores.

This paper describes original work in sharing network
interfaces without any replication of buffering resources. It
capitalizes on the concept of traffic merging and splitting
and cuts down on the area footprint of NoC architectures.
Moreover, the paper shows that through proper optimization
techniques traffic merging can be far more effective than
a pure serialization of conflicting network access patterns.
This is confirmed via system-level analysis with clock cycle
accuracy.
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Figure 1. Concept network interface architec-
ture

3 Design requirements

The basic idea of this paper is to allow multiple initiator
and/or target cores to share the same network interface re-
sources, as pictorially illustrated in Fig.1. Fig.1 illustrates
the concept architecture of a traffic merger, which merges
traffic flows coming from different initiator cores. A simi-
lar scheme can be applied to group a number of target cores,
thus allowing them to share a unique network interface. The
architecture block required for this purpose is denoted as
traffic splitter from here on. The main requirements when
designing a traffic merger (splitter) are as follows:

- Preserving compliance to the point-to-point proto-
col. Communicating cores are typically wrapped in such
a way that they are connected to the network via standard
point-to-point communication protocols (e.g., OCP, AXI,
DTL). Mergers and splitters have to be inserted on the phys-
ical point-to-point link in a transparent way with respect to
the protocol, since traffic merging and splitting are handled
at a lower level of abstraction than that specified by the stan-
dard interface sockets. As an example, when an OCP master
interface intends to start a new command but looses arbitra-
tion to access the shared network interface, it must not be
aware of this and the blocking condition should be signaled
as the unavailability of the OCP slave interface to process
a new command. In practice, this can be achieved by the
merger driving the SCmdAccept signal low for that mas-
ter until the network interface becomes available. Without
lack of generality, the OCP protocol (revision 2.1) will be
hereafter used as the reference point-to-point communica-
tion protocol.

- Providing different levels of support for multiple
outstanding transactions. In order to relieve the perfor-
mance overhead induced by NI sharing, multiple outstand-
ing transactions could be supported. Even when the proces-
sor cores do not support multiple outstanding transactions,
the cluster of cores sharing the same NI appears as a sin-
gle core which is capable of them. Obviously, mergers and
splitters should support multiple outstanding transactions
only if the network interface supports them. Unfortunately,
network interfaces usually reflect processor core complex-
ity, and if cores are blocking on read transactions, the cor-
responding NI will not provide the support for more ad-
vanced communication features not to overdesign the sys-
tem. In this work, we focus on a network interface architec-
ture which supports multiple outstanding write transactions
but a single oustanding read transaction. As a consequence,
these are also the communication capabilities supported by
our mergers and splitters. As will be proved later on, a few
simple optimizations are enough to break the serial depen-
dency between conflicting transactions from different pro-
cessor cores in a cluster.

- Minimization of area and delay overhead. Area con-
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Figure 2. Architecture of the request path in
the network interface initiator

sumption depends on the level of support for multiple out-
standing transactions and on the number of states in the
FSM. The requirement is that the area of a traffic merger or
splitter be less than that of a network interface, thus making
NI sharing cost effective. As Fig.3 indicates, mergers (and
splitters) might turn out to be particularly area demanding
since they cannot handle the OCP signaling from a proces-
sor core as a whole, but they have to handle both the request
and the response channel, and inside each channel they have
to deal with handshaking signals traveling in opposite di-
rections. Moreover, since mergers break the timing path of
point-to-point links, their critical path needs to be carefully
designed not to degrade the operating frequency of the pro-
cessor cores and of the network components.

- Scalability. Merger/splitter architecture needs to sup-
port a scalable number of attachable cores that will be de-
cided based on system performance analysis (e.g., traffic
patterns, real-time requirements).

4 NI sharing architectures

Before dwelving into the architecture details of the pro-
posed merger and splitter, an overview of the network in-
terface architecture that will be used throughout this paper
is provided. It is the interface module to the xpipes NoC
fabric [27].

4.1 Network interface architecture

The network interface is designed as a bridge between
an OCP interface and a NoC switching fabric. Its purposes
are the synchronization between OCP and network timing,
(de-)packetization, the computation of routing information
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(stored in a Look-Up Table, LUT) and flit buffering to im-
prove performance. Differentiated bridges exist between
communication initiators and the network (network inter-
face initiator) and between communication targets and the
network (network interface target).

Each NI is split into two sub-modules: one for the re-
quest and one for the response channel. These sub-modules
are loosely coupled. Whenever a transaction requiring a re-
sponse is processed by the request channel, the response
channel is notified; whenever the response is received, the
request channel is unblocked.

The request path of the NI is built around two registers
(Fig.2): one holds the transaction header (1 refresh per OCP
transaction), while the second one holds the payload (re-
freshed at each OCP burst beat). A set of flits encodes the
header register, followed by multiple sets of flits encoding a
snapshot of the payload register subsequent to a new burst
beat. Header and payload content is never allowed to mix,
and padding is eventually used. Routing information is at-
tached to the header flit of a packet by checking the transac-
tion address against a LUT. The length of this field depends
on maximum switch radix and maximum number of hops in
the specific network instance at hand.

The NI performs clock domain crossing, however in or-
der to keep the architecture simple the ratio between net-
work and core clock frequencies needs to be an integer di-
vider.

4.2 Merger architecture

The detailed architecture of the proposed traffic merger
is illustrated in Fig.3. Each OCP channel (request and
response) is handled by a separate couple of multi-
plexer/demultiplexer blocks and by a dedicated FSM gen-
erating the control signals for the (de-)multiplexing logic.

Control logic has been carefully optimized for minimum
complexity, and the resulting FSM is illustrated in Fig.4



(for the request path). The state is IDLE whenever no com-
mands are received on the MCmd lines from the processor
cores. However, the state stays the same also when sin-
gle writes or single or burst reads are performed. This is
because for all these transactions only one clock cycle is re-
quired by the network interface to store them. In fact, the
OCP protocol allows to generate a single address even for
long burst transfers, the addressing mechanism being im-
plicit in the kind of burst transaction being executed. In
contrast, whenever burst write transactions need to be per-
formed, the merger switches to the BWR state, and the con-
trol signals are kept stable until all the write data words have
been stored into the NI. Then, the merger goes back to the
idle state. In essence, in the idle state an arbitration mech-
anism is active, discriminating between multiple requests
from the processor cores. A fixed priority arbitration is cur-
rently supported, even though the extension to round robin
is straightforward.

All other state machines (for the response path in the
merger, for the request and the response path in the split-
ter) also exhibit two states and have similar characteristics,
and hence are not reported here.

5 Optimizations

The network interface architecture we are targeting sup-
ports multiple oustanding write transactions but only one
pending read transaction. The support for multiple outgo-
ing reads would require a deep modification of the network
interface and is outside the scope of this paper. However,
since our on-chip network supports posted writes, multiple
posted writes could be performed while a read transaction is
pending. The merger might allow several cores with pend-
ing OCP write transactions to access the NI while the ongo-
ing high priority core is waiting for response data of a read
transaction previously stored by the NI. During this state,
other cores with pending OCP read transactions would be
kept out of the arbitration even though they had the highest
priority. Once response data is stored by the waiting pro-
cessor core, then the normal arbitration priority is restored.
The support for this optimization involves the selector sig-
nals for the request and the response paths (Fig.3) to drive
different values. The request path selector selects cores with
pending OCP writes, which will be serialized on the net-
work interface based on their priority. The response path
selector is instead fixed at the value of the processor core
with the pending read, since it has to receive incoming data.

Another optimization was implemented in our merger ar-
chitecture to efficiently utilize the network interface. The
original merger architecture features the behavior in Fig.5.
Assume that cores 1, 2 and 3 have pending OCP commands.
Following arbitration, the command of core 1 is processed.
Because of network congestion, the network interface might
delay the assertion of the next SCmdAccept. Meanwhile,
the MCmd line between the arbiter and the NI is idle since a
new arbitration round can take place only on the next SCm-
dAccept edge. When this latter is finally asserted, it takes a
round trip delay before the new MCmd line (the one of pro-
cessor core 2) can be driven to the NI. In order to avoid this
delay overhead, the optimized scheme illustrated in Fig.5
was implemented. Immediately after the transaction of core
1 is stored at the NI, a new arbitration round takes place, so
that the OCP signals of the next high priority core immedi-
ately drive NI inputs. As a consequence, when SCmdAc-
cept will transition from low to high again, the new com-
mand is immediately stored without any additional penalty.
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The inconvenience of this approach is that if core 1 is the
highest priority one, it cannot acquire the network interface
for two consecutive transactions in case of contention, since
the NI will be re-arbitrated to another waiting processor be-
fore a new command from core 1 can be driven. However,
full exploitation of network resources was our primary de-
sign objective.

Similar optimizations were implemented in the FSMs of
the traffic splitter. Here multiple target devices share the
same network interface target. Again, only one target core
will be accessed for a read transaction at a time. However,
while a read transaction is taking place, all other target cores
can be accessed for write transactions. These optimizations
reflect the NI capability to perform one outstanding read
transaction but multiple write-after-read transactions. Fi-
nally, the same pre-arbitration mechanism was implemented
in the splitter, allowing prompt addressing of a new target
core.

6 Synthesis results

Merger and splitter were synthesized with Synopsys
Physical Compiler [26] (thus accounting for placement ef-
fects during logic synthesis) to assess their critical path and
area, as well as the scalability of these parameters with an
increasing number of clustered cores. A 65nm STMicro-
electronics technology library was used.

When synthesizing for maximum performance, the crit-
ical path results illustrated in Fig.6-a are obtained for the
merger. Timing paths in the request and in the response sec-
tions of the merger are quite close to each other, therefore
the critical path is in one module or in the other one depend-
ing on the number of inputs and on the effectiveness of the
synthesis heuristics. In any case, the critical path is always
in the control logic and does not involve the datapath. More-
over, the critical path scales quite smoothly for the realistic
cases analysed in Fig.6-a. As suggested by [24], realistic
target frequencies for the OCP section of the system might
be around 500 MHz, while the network could be operated
at 1 GHz. By synthesizing the NI initiator under these con-
ditions, the critical path of its OCP frontend is 1.30ns and
goes to the SData output. Even assuming that in the re-
sponse path of the merger the maximum delay of 0.37 ns is
incurred (but it will be less than that, because this is the de-
lay measured in the control logic and for the highest number
of attached cores), the total delay would amount to 1,67ns.
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Figure 7. Simple test cases for performance
characterization

If we assume that the master OCP interface does not im-
plement combinational dependencies (hence its inputs are
latched), the total delay is just increased by a library setup
time (around 0.10 ns) and the worst case delay of the OCP
section is well below the target 2ns delay in the worst case.
As a consequence, for a realistic target operating frequency
of high-performance systems, our traffic merger does not
degrade the target frequency of the OCP section. Similar
considerations hold for the merger.

As regards the area overhead (Fig.6-b), the merger for a
cluster of 2 attached cores exhibits an area which is 1/6 that
of the corresponding network interface and 1/18 that of a
5x5 switch commonly found in 2D mesh topologies. This
paves the way for significant area savings at network level,
as will be illustrated in section 8.

7 Basic performance tests

In order to characterize the performance degradation in-
duced by our traffic conditioning blocks and the effective-
ness of the proposed optimizations, we set up a few simple
test cases which are reported in Fig.7. All test cases were
modeled in SystemC with clock cycle accuracy. Micropro-
cessor cores were emulated by means of OCP traffic gener-
ators, injecting parameterizable traffic patterns. Parameters
include burst length of OCP read and/or write transactions
and idle cycles between consecutive bursts. Target cores
are instead SystemC models of OCP memories with tun-
able access latency. Each memory is assumed to be private

to a correspondent processor core.
The fully parallel topology (see Fig.7) represents the

ideal case: each processor core accesses its private memory
without any contention. We compare this topology with the
ones featuring a traffic splitter for the memories or a traffic
merger for the processor cores or both of them. Finally, we
also analysed a collapsed topology wherein the two proces-
sor cores sharing the same NI initiator are replaced by a sin-
gle processor core generating twice the number of transac-
tions of the original cores. This test case will unveil whether
using a traffic merger is equivalent to a pure serialization of
network accesses or not. Similarly, a topology wherein the
two memory cores are replaced by a single memory core
with doubled capacity is assessed.

We at first generated a mixed traffic pattern consisting of
alternating read and write transactions. Burst length was set
to 10 data words (similar results were obtained by varying
this parameter), and a total of 500 read and 500 write data
words were transferred between each initiator core and its
corresponding private memory. Execution time results are
reported in Fig.8, and are normalized to the best case. We
notice that as the idleness in the system increases, execu-
tion times of the different solutions are very similar to each
other, except for the collapsed master case, which takes on
average two times longer than the parallel topology (as ex-
pected). With a lot of idleness in the system, network ac-
cesses of the processor cores can be interleaved without any
interference, therefore the price to pay for having mergers
and splitters is just the delay for the first serialization, which
is negligible.

As the number of idle waits decreases, we have a neat
performance differentiation. Interestingly, using a splitter
does not impact performance significantly. This is due to
the support for write-after-read transactions at the splitter,
and hence is an effect of our optimizations. Clearly, using
a traffic splitter is more convenient than collapsing the two
memory cores in a single memory of increased capacity and
with 2 split addressing regions.

This trend is even more apparent when we compare the
topology with a merger and the one with collapsed proces-
sor cores. The former significantly outperforms the latter as
the idleness in the system increases, indicating that for real-
istic network access traces mergers do not vanish the advan-
tages of parallelism. The worst case for the mergers occurs
when the processor cores initiate two read transactions at
the same time. In fact, the lowest priority one waits for the
highest priority one to complete before being processed. In
contrast, with only a splitter, such contention occurs closer
to the target core, thus improving performance. Finally, the
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combined utilization of mergers and splitters halves the per-
formance for short idle waits, while it keeps almost the same
performance of the parallel architecture from 50 idle waits
on.

With a traffic pattern made up of write transactions, we
obtain similar results with high levels of idleness. When this
latter decreases, all non-parallel architectures exhibit an ex-
ecution time which is almost two times that of the parallel
topology, without any further differentiations. This is an ef-
fect of the posted write semantics and of the intensive traffic
patterns, which avoid resource under-utilization. Hence, by
introducing additional arbitration rounds in the system, par-
allel writes get simply serialized. Finally, a traffic pattern
made up of only read transactions provided execution time
results similar to those in Fig.8. This behavior is related to
the distance of the congestion point from the target destina-
tion.

8 System-level analysis

Let us now take system-level effects into account in de-
termining the area-performance trade-off spanned by archi-
tectures with NI sharing. Our scheme can be applied both
to application-specific and general purpose NoC topologies,
as illustrated hereafter.

Figure 10. NI and switch area reduction in the
topology with NI sharing
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Figure 11. Throughput degradation as a func-
tion of cache miss overhead with shared and
non-shared NIs

8.1 Application-specific topology

We consider the MPEG-4 application as a case study. In
particular, we focus on the MPEG-4 decoder Profile High
4:2:2 Level 5, which supports a resolution of 1920x1088 at
a frame rate of 72.3 frames/sec. The workload is assumed
to be split among 8 parallel processor cores by means of an
horizontal slicing technique. We consider a shared mem-
ory system, where each processor core reads encoded data
from the shared memory, performs its computation (even-
tually accessing its private memory for cache line refills)
and writes decoded data back to shared memory. Based on
the specific MPEG-4 profile and resolution and on real-time
constraints, we extrapolated read/write communication re-
quirements of the processor cores from/to the shared mem-
ory. The number of cache line refills was kept as a parame-
ter of the traffic pattern, and they will end up degrading the
nominal throughput in our assumptions. A synthetic traffic
pattern reflecting the above scenario was therefore gener-
ated by means of the OCP traffic generators. In practice,
since we are focusing on video decoding, the amount of
write data will be much higher than that of read data. We
set the network clock frequency to be twice the frequency
of the OCP section, which is a reasonable assumption for
the xpipes architecture [24].

Since the traffic pattern is shared memory dominated,
we selected the H-star topology suggested in [7] for this



application and placed the shared memory in the central
switch, as illustrated in Fig.9-left. Peripheral switches con-
nect processor cores and their associated private memo-
ries.The switch radix in all cases is 5. This topology with
non-shared NIs was compared with the shared NI topol-
ogy reported in Fig.9-right. Here clusters of two processor
cores and those of two memory cores share the same net-
work interface initiator and target, respectively. Because of
the central switch, the maximum switch radix (determining
the maximum network clock frequency) does not change.
However, the amount of hardware resources changes a lot:
switches have lower radix on average, the number of NIs
decreases from 17 to 9, with only the addition of 4 mergers
and 4 splitters.

Physical synthesis of the two topologies provided the
area reports of Fig.10. NI sharing allows an impressive re-
duction of total NoC area by 41%. In particular, total switch
area is reduced by 41.3% while total NI area by 46.7%.
Mergers and splitters alltogether account for only 6% of to-
tal area of the topology with NI sharing. These results prove
the effectiveness of our technique in providing area-efficient
NoC realizations.

Performance results are instead illustrated in Fig.11.
Nominal throughput is guaranteed for the topology with
non-shared NIs in the absence of cache misses. For the
same case, NI sharing does not incur any throughput degra-
dation, since there is a strong congestion to access the
shared memory, therefore an additional arbitration round at
the network boundary does not result in bubbles in shared
memory utilization. Moreover, the traffic pattern is domi-
nated by posted write transactions, effectively supported by
our mergers and splitters.

We express the impact of cache misses as the percentage
stretching of computation time due to cache misses com-
puted as though processor core and memory were directly
connected without the network in between. Hence, it is the
time needed by a processor core to directly access its private
memory for cache line refills. The network latency then in-
troduces an additional and unpredictable overhead.

With an increasing role played by cache misses, the non-
shared topology exhibits a progressive throughput degrada-
tion, as expected. For 6% and 15% cache miss overheads,
we can consider the variability of throughput results as a
statistical variation associated with the interleaving of traf-
fic patterns on the network. As the cache miss overhead be-
comes significant, the impact of NI sharing on throughput
becomes apparent.

8.2 General purpose topology

The 2-D mesh is currently the most popular regular
topology used for on-chip networks in regular tile-based
architectures, because it perfectly matches the 2-D sili-
con surface. However, this topology shows poor latency
scalability and is very area demanding. Concentrated
topologies are a straightforward optimization of 2D mesh
topologies[18, 24]. They envision the connection of more
cores per switch. This way, less switches are required and
the average number of hops is reduced at the cost of a lower
bandwidth. The main problem with this solution is at the
physical layer: a concentrated architecture makes use of
switches with a higher radix, which reduces the maximum
operating frequency of the network. On one hand, the total
number of cycles for the execution of a given benchmark
is expected to decrease with respect to a 2D mesh, while
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Figure 12. Concentrated topologies without
and with NI sharing

on the other hand if we consider the achievable clock fre-
quency the performance is almost the same or even worse
than a 2D mesh. See [24] for further details.

The proposed traffic mergers and splitters provide an ef-
fective workaround for this problem. In fact, they allow to
share the same NI, and hence to keep the switch radix unal-
tered. This prevents a degradation of the maximum operat-
ing frequency. As a case study, we propose the topologies il-
lustrated in Fig.12. A concentrated topology (resulting from
the optimization of a 4x4 2D mesh) is compared with a con-
centrated variant making use of NI sharing. This time, NI
sharing reduces the maximum switch radix, and therefore
raises the maximum operating frequency from 1 GHz to 1.4
GHz. Since the ratio between network frequency and OCP
section frequency was kept to 2, NI sharing allows OCP
cores to be operated at 700 MHz instead of 500 MHz. For
what follows, we assume that OCP cores can keep up with
these speeds.

Both topologies were synthesized for their target fre-
quencies, thus coming up with realistic area numbers. The
only exception concerns mergers and splitters, always syn-
thesized for maximum performance not to degrade the fre-
quency of the OCP section. Total area turns out to be re-
duced by 42%.

As regards performance, we simulated the traffic pattern
of a parallel application with a producer-worker-consumer
workload allocation policy. One core on one side of the
chip (say, core 1) accesses an I/O device and writes com-
putation data to shared memory sh1. All other processor
cores (from cores 2 to 7) read their computation data from
this memory, perform computation and finally write output
data to the output shared memory sh8 on the opposite side
of the chip, from where another processor core (say, core 8)
moves them off-chip. This way, a longer number of hops
to read input data is counterbalanced by a shorter path to
write output data or viceversa. During computation, cores 2
to 7 access their private memories for cache line refills. A
number of conflicts arise in the system when NI sharing is
used: core 1 write accesses to sh1 are in conflict with read
accesses of cores 2 to 7 always from sh1. There are also
conflicts for cache line refills on the splitters serving private
memories. Finally, there is a conflict between read accesses
of core 8 from sh8 and write accesses of cores 2 to 7 always
to sh8.

Performance results are illustrated in Fig.13. Execution
cycle statistics show a negligible 3% degradation of the
topology with NI sharing, proving that the merger/splitter
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Figure 13. Impact of the lower switch radix on
execution time of topologies with NI sharing

architecture optimizations have been quite effective in han-
dling this traffic pattern. However, if we consider the oper-
ating frequency boosting that NI sharing enables, we get a
28% improvement of total execution time.

9 Conclusions

In this paper, we propose an area efficient NoC design
technique relying on NI sharing. All NI resources are
shared by a cluster of initiator or target cores, including
buffering resources. This paves the way for significant area
savings. Performance degradation of this solution cannot
be reduced to a mere serialization of network access re-
quests, in that optimizations implemented at mergers and
splitters allow performance of architectures with NI shar-
ing to more closely follow that of fully parallel architec-
tures. Moreover, physical (improvement of maximum op-
erating frequencies) as well as system level effects (central-
ized slave bottlenecks) play in favour of our solution. Our
experimental results prove the effectiveness of NI sharing
in reducing NoC area footprint.
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