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 Network security implements various strategies for the identification and prevention of 
security breaches. Network intrusion detection is a critical component of network 
management for security, quality of service and other purposes. These systems allow early 
detection of network intrusion and malicious activities; so that the Network Security 
infrastructure can react to mitigate these threats. Various systems are proposed to enhance 
the network security. We are proposing to use anomaly based network intrusion detection 
system in this work. Anomaly based intrusion detection system can identify the new network 
threats. We also propose to use Real-time Big Data Stream Processing Framework, Apache 
Storm, for the implementation of network intrusion detection system. Apache Storm can 
help to manage the network traffic which is generated at enormous speed and size and the 
network traffic speed and size is constantly increasing. We have used Support Vector 
Machine in this work. We use Knowledge Discovery and Data Mining 1999 (KDD’99) 
dataset to test and evaluate our proposed solution. 
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1. Introduction  

Network security is of increasing importance than ever with 
increased usage of network-based computing resources. Several 
network security mechanisms like encryption, firewalls, 
cryptography, access control, authentication, and intrusion 
detection are used to provide network security. These techniques 
are used to detect and prevent the malicious activities and network 
attacks. Network intrusion detection is an essential task for any 
network based computing environment. Network Intrusion 
Detection system continuously monitors the network traffic and 
perform in-depth packet analysis for malicious activities and 
attacks in real time. Once the intrusions are detected, appropriate 
actions can be taken to mitigate the threat against the computing 
and network resources. Currently, computer networks are 
generating a huge amount of data traffic at enormous speed and 
this data generation speed is continuously increasing. Network 
traffic also contains different types (variety) of data. Network 
traffic satisfies all the three V’s of big data; volume, velocity, and 
variety. The focus of this paper is to propose a network intrusion 
detection mechanism that can deal with all the 3 V’s of big data.  

This paper is an extension of work originally presented in 2016 
IEEE 7th Annual Information Technology, Electronics and Mobile 

Communication Conference (IEMCON) [1]. In original work, we 
have used anomaly-based approach for network intrusion 
detection. Anomaly based approaches use machine learning 
algorithms to identify the abnormal behavior from the normal data 
traffic. We have used statistical approaches for feature reduction 
and support vector machine with the linear kernel for the 
classification process. We also have proposed an Apache Storm 
topology for the real-time big data streaming application. The 
current work uses Radial Basis Function (RBF) kernel for the 
support vector machine. This paper discusses the class imbalance 
problem and its possible solutions. We also discuss multiple 
techniques to reduce the false positive and false negative rates in 
the context of network intrusion detection system. 

Mostly, network intrusion detection system follows one of the 
two major detection mechanism; Anomaly-based network 
intrusion detection and Signature based network intrusion 
detection. Some researchers also have proposed hybrid approaches. 
Each detection approach has its own strengths and weaknesses.  

1.1. Signature Based Network Intrusion Detection 

Signature based or misuse intrusion detection systems have 
better detection rate as compared to anomaly based systems in case 
of known network attacks. This type of intrusion detection systems 
scans predetermined signatures in network traffic packets and 
recognizes predefined patterns of network intrusions and attacks. 
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The signature based system cannot detect new potential threats 
until their signature is added to the database. During the time, when 
a new threat is detected and its signature is applied, these systems 
cannot detect the new threats. Malicious strings in TCP/IP packets, 
abnormal flag combination, request for non-existing services, and 
intrusion attack signature are few of the approaches [2], [3] used 
to design signature based network intrusion detection systems.  

1.2. Anomaly Based Network Intrusion Detection 

Anomaly based system try to capture the behavior of incoming 
network traffic. These systems establish a baseline model for 
normal user/network behavior against the abnormal behavior. This 
model is created by analyzing the network traffic over a period of 
time and train the system to classify the normal traffic and 
malicious traffic. The baseline model reflects the valid activities of 
applications, hosts, users, and network. All the incoming network 
traffic is scanned using the defined model to classify it into normal 
and intrusion network packet. Alarms are raised for all the packets 
which are classified as intrusions. Anomaly based detection 
systems are good to detect new network threat at the cost of 
increased false alarm rate (both false positive and false negative 
detection). Despite this problem, anomaly based detection is an 
indispensable method due to increase in new type intrusion attacks.  

The rest of paper is organized as follow, anomaly based 
intrusion detection systems are review in section II. Section III 
provides the detailed description of KDD 99 data set and also 
discusses the pre-processing techniques used in this work. 
Implementation details and methodology is discussed in Section 
IV. Experimental results are discussed in section V. Class 
imbalance problem and false positive/negative problem for 
network intrusion detection are discussed in Section VI and the 
paper is concluded in Section VII.  

2. Literature Review 

Machine learning algorithms are used to design anomaly based 
intrusion detection system. Both unsupervised and supervised 
learning methods are used in this domain. Although many 
intrusion detection methods are proposed using various different 
machine algorithms we will review Artificial Neural Network 
(supervised learning) and K-Mean Nearest neighbor (unsupervised 
learning) based approaches.  

Artificial Neural Networks are used by many researchers as 
supervised learning algorithm to train the intrusion detection 
technique. Rapake et al. [5] proposed to use numbers of system 
calls that are executed on the host machine. These numbers are 
utilized for neural network training. Han and Cho [6] proposed to 
use evolutionary neural networks to detect anomalies based on 
learning the behavior of the program. Authors have used 1999 
DARPA IDEVAL data set to evaluate their proposed method. 
Liang et al. [4] proposed to apply Fisher feature selection 
algorithm on KDD 99 dataset for performance enhancement. 
Authors used artificial neural networks to develop their intrusion 
detection system.  

K-Mean Nearest Neighbor (KNN) is a clustering algorithm 
based on unsupervised learning method. Wang et al. [7] used KDD 
99 dataset and defined new features based on density, cluster 
centers, and nearest neighbors. KNN is used to classify the normal 
traffic and network intrusion. Li et al. in [8] combined KNN 
algorithm with Particle Swarm Optimization (PSO) to design 
hybrid system. The K-mean algorithm suffers from premature 
convergence. PSO algorithm helps to avoid premature 
convergence in the proposed method. Xian et al. [9] proposed to 
unite fuzzy KNN algorithm with clonal selection algorithm to 
design network intrusion detection. Jiang et al. [10] used 
incremental KNN algorithm to detect intrusions. Authors used 
outlier factor to calculate the deviation degree of the cluster in this 
work.  

Multiple network intrusion detection systems are proposed 
using data mining algorithms. Han et al. [11] used data mining 
approach to detect intrusions. They have analyzed attributes of 
network traffic protocol to identify misuse signature. They also 
have analyzed network packet contents for intrusion signatures. 
Qin and Hwang [12] proposed internet trace technique which 
discards few non-functionary frequent episodes rules dynamically. 
These episode rules are utilized to recognize abnormal sequences 
in network traffic connections. Otey et al. [13] develop a general 
purpose tunable algorithm to detect outlier/anomalies. The 
proposed algorithm can work with mixed attribute dataset as well 
dynamic and streaming data sets. KDD 99 intrusion dataset is one 
of the dataset used to test and evaluate the proposed tunable 
algorithm.  

Gondal et al. [14][14] determined center of clusters on basis of 
diversity. These Diversity-based centroids are used to develop 
network intrusion detection system. Xiao et al. in [15] used 
Bayesian Network Model Averaging in their proposed work and 
compared it with Naïve Bayes classifier and Bayesian Network 
classifier. Authors have evaluated their work over NSL-KDD 
dataset.  

Jeong et al. [16] proposed in their work to used Discrete 
Wavelet Transform to extract the features from network traffic. 
Principal Component Analysis (PCA) is applied to the extracted 
features to identify principal components and a visual analytics 
tool is proposed for intrusion detection. Le et al. [17] used deep 
learning approach in their network intrusion detection system. 
Authors explored various optimizers with Long Short-Term 
Memory Recurrent Neural Network.  

Table I: Details of Dataset 

 Training Testing 
Normal 97280 60623 
Probe 4107 4166 
DoS 391458 229853 
U2R 52 13939 
R2L 1124 2478 
Total 494021 321026 
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Table II: Network Attacks and Categories 

Category Network Attacks 

Denial of 
Service 
(DoS) 

back, land, neptune, pod, smurf, teardrop, 
apache2, mailbomb, processtable 

Probe ipsweep, nmap, portsweep, satan, mscan, saint 

User to 
Root 
(U2R) 

ftpwrite, guespasswd, imap, multihop, phf, spy, 
warezclient, Warezmaster, httptunnel, named, 
sendmail, snmpgetattack, xlock, xsnoop 

Remote 
to Local 
(R2L) 

bufferiverflow, loadmodule, perl, rootkit, ps, 
snmpguess, sqlattack, worm, xterm 

 

3. Knowledge and Discovery 1999 Dataset (KDD 99) 

Knowledge and Discovery 1999 Network Intrusion Detection 
dataset (KDD 99) [18] is used in this work to test and evaluate the 
performance of the proposed method. KDD 99 is publicly 
available dataset and widely used by various researchers. The 
complete KDD 99 dataset contains around five million records for 
training and 3 million records for testing tasks. Due to the large 
size of the original dataset, smaller version of KDD 99 dataset is 
frequently used for evaluating intrusion detection systems. This 
smaller version contains 10% of testing and training records. We 
also have tested our intrusion detection system using smaller 
dataset. KDD 99 dataset contains normal records as well as 
malicious records. Twenty two types of attacks are included in 
training dataset along with normal network packets. Seventeen 
additional attacks are added to the testing dataset and can be used 
to determine whether the proposed algorithm can detect new 
attacks or not. Network attacks are divided into four categories; 
Denial of Service (DoS), Probe, User-to-Root (U2R), and Remote-
to-Local (R2L). Table I provides the distribution of training and 
testing dataset into normal and intrusion packets. KDD 99 dataset 
consists of 494021 training records and 311029 testing records. 
The division of network attacks into categories is given in Table II. 
Network attacks in bold are new attacks added to testing dataset 
only. 

Each record has 41 attributes; description of these attributes is 
given below:  

• 9 basic and single connection derived (SCD) header 
features,  

• 9 time based multiple connection derived (MCD) 
header features,  

• 10 host based multiple connection derived (MCD) 
header features, and  

• 13 content based features collected from traffic 
payloads. 
 

3.1. Pre-Processing  

KDD 99 data set is pre-processed in order to make it 
appropriate for the machine learning algorithm. The second reason 
for the pre-processing is to enhance the intrusion detection rate. 
Pre-processing is performed in three steps. 

 

Figure 1: Network Intrusion Detection System Architecture 

1. Each record in the dataset consists of numeric as well as 
categorical attributes. Textual data is used for categorical 
attributes. Support vector machine algorithm requires 
numeric data (either discrete or continuous). The first step 
in pre-processing is to convert this categorical attributes to 
numeric attributes. The dataset contains three categorical 
attributes while rest of the thirty eight attributes are 
numeric. Every category of an attribute is assigned a 
specific number. 

2. Next, we have normalized all the numeric attributes in the 
training dataset. Testing dataset attributes are normalized 
using ratios determined for training dataset, so both 
(training and testing) subsets are normalized with same 
ratios. Normalization process converts all attributes to the 
same range; hence each attribute has a similar effect 
during the training process. The normalization process 
also significantly reduces the training time for support 
vector machine algorithm. 

3. We applied statistical operations on the training dataset to 
reduce the features. Same features are dropped from 
testing dataset. These dropped attributes had a negative 
impact on the performance of network intrusion detection 
system. Reduce the number of attributes have a positive 
effect on the computation time. 

4. We have used LibSVM library for SVM implementation; 
it requires training and testing data in a specific format. 
Lastly, we have converted the dataset to LibSVM 
compatible format.    
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4. Methodology 

The architecture of Support Vector based Network Intrusion 
Detection system is given in Figure 1. KDD 99 training data set is 
pre-processed and Support Vector Machine (SVM) algorithm is 
applied to build a model. Pre-processing information determined 
for the training dataset is used to pre-process the training dataset. 
SVM model built during the training process is used to predict the 
category during the testing process.   

4.1. Support Vector Machine  

Support Vector Machine algorithm [19] is developed to solve 
binary classification problems. SVM is supervised learning 
algorithm which can be used for classification and regression 
problems and it is based on statistical learning approach. The 
fundamental idea of SVM is to identify hyperplanes (decision 
boundaries) between two categories based on the training data and 
one providing the maximum separation between two categories is 
selected as shown in Figure 2. This hyperplane provides the 
optimal separation between two categories. The identification of 
optimal hyperplane is considered as an optimization problem. 
Testing examples are projected and the category is predicted based 
on their position with respect to the optimal hyperplane. Cover’s 
theorem [20] states; if linearly non-separable dataset is 
transformed using non-linear kernel function then it is probable 
that the transformation process will generate linearly separable 
dataset in higher dimensional space. Support vector machine also 
uses different types of non-linear kernel function to create linearly 
separable dataset and increase classification performance.   

Let we have a training dataset S= {(x1, y1), (x2, y2),…, (xn, yn)}, 
where xi ∈ Rn and it represents input feature vector and yi ∈ {-1, 1} 

is  the category. Let weight and bias of hyperplane is given by w 
and b. The non-linear Kernel function is applied on training dataset 
to transform it into linearly separable categories and φ(x) is used 
to represent it. The hyperplane between the two categories can be 
defined as: 

w.φ(x) + b = 0  (1) 

The optimization problem for calculation of w and b is: 

Minimize 

φ(w) = ½ ||w||2 
 (2) 

Subject to 

   yi(w.φ(x) + b) ≥ 1 

New variables ζi (slack variable) and C (regularization constant) 
are included in above optimization problem: 

Minimize 

   φ(w,ζ) = ½ ||w||2 + C ∑ 𝜁𝜁𝑖𝑖𝑁𝑁
𝑖𝑖=1

 
   (3) 

Subject to 

   yi(w.φ(x) + b) ≥ 1 – ζi, ζi ≥ 0 

 
Figure 2: Decision Boundary with maximum margin 

Where ζ is used to relax the hard margin constraint and C is 
used to manage the trade-off between classification error and 
maximal margin of separation. 

Multiclass SVM is often constructed using basic binary SVMs 
to deal with real world problems like pedestrian detection [21], 
medical diagnosis [22], sentiment analysis [23] and many others. 
For multiclass SVM, 1-vs-1 [24] and 1-vs-all [25] are two 
approaches used to build basic binary SVMs.  

We have used LibSVM [26] Java API in this work for SVM 
implementation. LibSVM provides both regression and 
classification implementations. We have used C-SVM approach to 
classifying the network traffic data into normal and intrusions. 
Radial Basis Function (non-linear kernel function) is used in this 
work for transformation into higher dimensional space. The value 
of gamma used here is 1 and the value of C is 6. As kernel 
implementation is part of LibSVM library; hence we are 
considering it a part of SVM training process and not a part of pre-
processing. Finally, we have used the 1-vs-1 multiclass approach 
in this work.   

 
Figure 3: Apache Storm Topology 
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4.2. Apache Storm  

Apache Storm is a scalable distributed framework that can be 
easily configured on cloud services or clusters. It is developed to 
process real-time big streaming data. Spouts and bolts are the basic 
building blocks for Apache Storm applications. Spouts are used as 
data sources; data is forwarded in form of tuples to the bolts. Bolts 
are the computation unit of the Apache Storm. Bolts process and 
evaluate the incoming tuples and can forward the results in form 
of tuple to other bolts for further processing. Spouts and bolts are 
combined to form a topology. Topologies are directed acyclic 
graphs and used to develop Apache Storm applications. An 
Apache Storm topology is shown in Figure 3. The edges of the 
topology show the flow of data. Bolts and spouts are vertices in the 
topology. We can create many instances of every bolt and spout to 
speed up the processing.  

Apache Storm framework offers distributed and fault tolerant 
computing. An Apache Storm cluster is shown in Figure 4. The 
cluster consists of one or multiple worker nodes and only one 
master node. Worker nodes are named as supervisors while the 
master node is named as nimbus. Apache Storm also requires 
ZooKeeper cluster to provide coordination between the master 
node and worker node(s).  

The proposed Apache Storm topology is given in Figure 5. 
This topology has one spout and three bolts. The detail of the bolts 
and spout is given below: 

1. Input Reader (Spout) is the only data source in this 
topology. KDD 99 dataset is stored in a text file. This 
spout reads the KDD 99 dataset and each record is 
forwarded as a tuple to the next bolt.  

2. Data Pre-Processer (Bolt) receives the tuples from Input 
Reader and performs pre-processing as explained in 
Section 3. It converts the categorical data to numeric data, 
perform normalization and feature reduction. Finally, it 
converts the data into LibSVM compatible format. 

 

 
Figure 4: Apache Storm Cluster 

 

 
Figure 5: Apache Storm Topology 

3. Support Vector Machine (Bolt) performs the 
classification process for the network intrusion detection 
system.  

4. Result Aggregator (Bolt) is the last processing unit in this 
topology. It aggregates the classification results. It stores 
these results on a text file for further analysis.   

5. Experimental Results and Discussion 

5.1. Experimental Setup 

Apache Storm 0.9.6 is configured on Ubuntu 12.04. All the 
experiments are performed on 3.4 GHz Intel Core i7 processor 
with 16.00 GB of memory.   

5.2. Evaluation and Analysis 

We have used KDD 99 intrusion detection dataset to test our 
SVM based method. The testing dataset contains 18729 records 
belonging to new network intrusion attacks (17 new network 
attacks included) which are not included in the training dataset. 
Whereas 292300 records belong to network intrusion attacks 
which are also part of the training dataset. The accuracy for 
intrusion detection of the proposed method is 98.03% when only 
known attacks are considered (Network attacks used during 
training process). This intrusion detection rate drops to 92. 60% 
when all the network attacks are considered during the testing 
process. All the discussion, following this point, will be based on 
the complete testing dataset. The classification results for complete 
dataset (new network attacks included) of the proposed intrusion 
detection method are given in Table III. A simplified confusion 
matrix is given in Table IV; which only divides the classification 
results into normal and malicious network traffic.  

Table III: Confusion Matrix for Network Intrusion Detection 
System 

 Normal Dos Probe R2L U2R 
Normal 60294 66 225 7 1 
DoS 6571 223266 16 0 0 
Probe 760 441 2965 0 0 
R2L 12849 91 72 927 0 
U2R 2462 3 0 7 6 
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Table IV: Simplified Confusion Matrix 

 Normal Attack 

Normal 60294 299 

Attack 22642 227794 
 

The performance of the can also be determined using False 
Positive Rate (FPR), False Negative Rate (FNR), Precision and 
Recall. These four performance evaluators are calculated below 
using simplified confusion matrix (Table IV). 

FPR = FP / (FP + TN) = 22642 / (22642 + 227794) = 0.09 

FNR = FN / (FN + TP) = 299 / (299 + 60294) = 0.005 

Precision = TP / (TP+FP) = 60294 / (60294+22642) = 0.73 

Recall = TP / (TP+FN) = 60294 / (60294 + 299) = 0.995 

For a good classification rate, FPR and FNR must be close to 
zero while Precision and Recall must be close to one. Other than 
Precision, all other performance parameters indicate good 
classification performance.  

Normal traffic and DoS attacks are recognized correctly mostly. 
Whereas Remote to Local (R2L) and User to Root (U2R) are the 
two categories which are recognized incorrectly most of the time. 
Class imbalance is the main reason behind this shortcoming. R2L 
and U2R have the least number of training samples. Similarly, 
probe attack category also has relatively less training examples. 
While remaining two categories have the majority of the training 
examples; around 98.9% of the dataset. This class imbalance 
creates biased results during the training process. We will discuss 
few techniques to solve class imbalance problem in the next 
section.  

The proposed network intrusion detection system is supposed 
to handle real-time streaming data traffic. The training process is 
done offline and it is not a real-time task. This system can process 
roughly 13,600 packets in a second for testing/prediction purposes. 
This processing speed is achieved with a single general purpose 
computer. The processing speed can be further increased by using 
a cluster of dedicated servers. This processing speed is a good 
indicator for real-time big streaming data scenario.  

Support Vector Machines are machine learning algorithm used 
for supervised classification tasks whereas Apache Storm is 
development platform used to develop real-time big streaming data 
processing applications. Apache Storm supports multiple 
languages for coding. We have used Java in our work. The 
proposed system achieves good classification results along with a 
good processing speed.  

6. Performance Enhancement for Network Intrusion 
Detection Systems 

Class imbalance refers to the uneven representation of classes 
in training dataset. The skewed distribution causes performance 
degradation for many machine learning algorithms [27]. The 
methods to solve class imbalance problem are generally divided 
into two categories; data level and algorithm level solutions. 

6.1. Data Level Approach 

Data level approaches apply different techniques to the dataset 
before training process. It can be considered as pre-processing step 
to accommodate the class distribution. Sampling, under-sampling, 
and over-sampling, is a data-level approach to managing class 
distribution. Over-sampling duplicates the records from the 
minority category whereas under-sampling removes records from 
the majority category to minimize the imbalance ratio between 
different categories in training data.  

Yen et al. [28] proposed to use cluster based approach to solve 
the class imbalance problem by selecting representative data. 
Clusters are used to identify the representative data to achieve 
better prediction rate for minority categories. Yu et al. [29] used 
vector quantization to under-sample the majority class and 
constructed representative local models. Synthetic Minority Over-
Sampling Technique (SMOTE) [30] is an adaptive data-level 
approach for over-sampling. It computes the probability 
distribution to model minor categories and use this probability 
distribution to add new examples to the smaller classes. Guo and 
Viktor [31] proposed to combine boosting and data generation to 
over-sample the minority classes. This approach is named as 
DataBoost-IM algorithm. 

6.2. Algorithm Level Approach 

In algorithm level approach, specialized machine learning 
algorithms are used to tackle class imbalance problem.  

One of the techniques used is to develop modified version of 
the basic learning algorithm which can manage imbalanced classes. 
z-SVM [32] and GSVM-RU [33] are modified version of SVM to 
manage imbalanced class distribution. z- SVM tries to maximize 
g-mean value by moving hyperplane using a parameter z. GSVM-
RU uses granular computing to enhance the classification accuracy.  

Another algorithm level approach is to use cost sensitive 
learning; whenever a misclassification occurs, an expensive cost is 
imposed on the classifier. Cao et al. [34] proposed Particle Swarm 
Optimization (PSO) based cost sensitive artificial neural network 
for imbalanced data classification.  

7. Conclusion 

Network intrusion detection is an important component of 
network management and it is a defense mechanism for network 
security. Anomaly based intrusion detection detects anomalous 
behavior or new network attacks which signature-based intrusion 
detection cannot. Higher processing speed is required to handle 
incoming real-time data traffic. The proposed Network Intrusion 
detection system can process 13,600 packets in a second on a 
single general purpose computer. Apache Storm based network 
intrusion detection system can achieve higher processing by 
deploying a cluster of computers.  Data pre-processing techniques 
are implemented to reduce the number of feature; which reduces 
the training and testing time and increased the classification 
accuracy. 

In this paper, we outline the machine learning based method 
for anomaly based intrusion detection. We propose to utilize 
support vector machine as supervised learning algorithm to 
classify the incoming network traffic into normal and network 
intrusion attacks (DoS, Probe, R2L, U2R). KDD 99 intrusion 
detection dataset is used in this work. The data set is pre-processed 
in order to make incompatible with support vector machine 
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algorithm as well as with LibSVM library. The experimental 
results show the feasibility of the proposed intrusion detection 
method. The performance can be further enhanced by solving class 
imbalance problem as discussed in section 6. This paper suggests 
using Support Vector Machine for classification process and 
Apache Storm as development platform to develop network 
intrusion detection system to handle big data characteristics of the 
network data traffic.  
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