

www.astesj.com 812

Network Intrusion Detection System using Apache Storm

Muhammad Asif Manzoor*, Yasser Morgan

Faculty of Engineering and Applied Sciences, University of Regina, SK, Canada

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 05 April, 2017
Accepted: 27 May, 2017
Online: 19 June, 2017

 Network security implements various strategies for the identification and prevention of
security breaches. Network intrusion detection is a critical component of network
management for security, quality of service and other purposes. These systems allow early
detection of network intrusion and malicious activities; so that the Network Security
infrastructure can react to mitigate these threats. Various systems are proposed to enhance
the network security. We are proposing to use anomaly based network intrusion detection
system in this work. Anomaly based intrusion detection system can identify the new network
threats. We also propose to use Real-time Big Data Stream Processing Framework, Apache
Storm, for the implementation of network intrusion detection system. Apache Storm can
help to manage the network traffic which is generated at enormous speed and size and the
network traffic speed and size is constantly increasing. We have used Support Vector
Machine in this work. We use Knowledge Discovery and Data Mining 1999 (KDD’99)
dataset to test and evaluate our proposed solution.

Keywords:
Network Intrusion Detection
Support Vector Machine
Apache Storm
LibSVM
KDD 99

1. Introduction

Network security is of increasing importance than ever with
increased usage of network-based computing resources. Several
network security mechanisms like encryption, firewalls,
cryptography, access control, authentication, and intrusion
detection are used to provide network security. These techniques
are used to detect and prevent the malicious activities and network
attacks. Network intrusion detection is an essential task for any
network based computing environment. Network Intrusion
Detection system continuously monitors the network traffic and
perform in-depth packet analysis for malicious activities and
attacks in real time. Once the intrusions are detected, appropriate
actions can be taken to mitigate the threat against the computing
and network resources. Currently, computer networks are
generating a huge amount of data traffic at enormous speed and
this data generation speed is continuously increasing. Network
traffic also contains different types (variety) of data. Network
traffic satisfies all the three V’s of big data; volume, velocity, and
variety. The focus of this paper is to propose a network intrusion
detection mechanism that can deal with all the 3 V’s of big data.

This paper is an extension of work originally presented in 2016
IEEE 7th Annual Information Technology, Electronics and Mobile

Communication Conference (IEMCON) [1]. In original work, we
have used anomaly-based approach for network intrusion
detection. Anomaly based approaches use machine learning
algorithms to identify the abnormal behavior from the normal data
traffic. We have used statistical approaches for feature reduction
and support vector machine with the linear kernel for the
classification process. We also have proposed an Apache Storm
topology for the real-time big data streaming application. The
current work uses Radial Basis Function (RBF) kernel for the
support vector machine. This paper discusses the class imbalance
problem and its possible solutions. We also discuss multiple
techniques to reduce the false positive and false negative rates in
the context of network intrusion detection system.

Mostly, network intrusion detection system follows one of the
two major detection mechanism; Anomaly-based network
intrusion detection and Signature based network intrusion
detection. Some researchers also have proposed hybrid approaches.
Each detection approach has its own strengths and weaknesses.

1.1. Signature Based Network Intrusion Detection

Signature based or misuse intrusion detection systems have
better detection rate as compared to anomaly based systems in case
of known network attacks. This type of intrusion detection systems
scans predetermined signatures in network traffic packets and
recognizes predefined patterns of network intrusions and attacks.

ASTESJ

ISSN: 2415-6698

*Muhammad Asif Manzoor, Faculty of Engineering and Applied Sciences,
University of Regina, SK, Canada, AsifManzoor@uregina.ca

Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 812-818 (2017)

www.astesj.com

 Special Issue on Recent Advances in Engineering Systems

https://dx.doi.org/10.25046/aj0203102

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj0203102

M. A. Manzoor et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 812-818 (2017)

www.astesj.com 813

The signature based system cannot detect new potential threats
until their signature is added to the database. During the time, when
a new threat is detected and its signature is applied, these systems
cannot detect the new threats. Malicious strings in TCP/IP packets,
abnormal flag combination, request for non-existing services, and
intrusion attack signature are few of the approaches [2], [3] used
to design signature based network intrusion detection systems.

1.2. Anomaly Based Network Intrusion Detection

Anomaly based system try to capture the behavior of incoming
network traffic. These systems establish a baseline model for
normal user/network behavior against the abnormal behavior. This
model is created by analyzing the network traffic over a period of
time and train the system to classify the normal traffic and
malicious traffic. The baseline model reflects the valid activities of
applications, hosts, users, and network. All the incoming network
traffic is scanned using the defined model to classify it into normal
and intrusion network packet. Alarms are raised for all the packets
which are classified as intrusions. Anomaly based detection
systems are good to detect new network threat at the cost of
increased false alarm rate (both false positive and false negative
detection). Despite this problem, anomaly based detection is an
indispensable method due to increase in new type intrusion attacks.

The rest of paper is organized as follow, anomaly based
intrusion detection systems are review in section II. Section III
provides the detailed description of KDD 99 data set and also
discusses the pre-processing techniques used in this work.
Implementation details and methodology is discussed in Section
IV. Experimental results are discussed in section V. Class
imbalance problem and false positive/negative problem for
network intrusion detection are discussed in Section VI and the
paper is concluded in Section VII.

2. Literature Review

Machine learning algorithms are used to design anomaly based
intrusion detection system. Both unsupervised and supervised
learning methods are used in this domain. Although many
intrusion detection methods are proposed using various different
machine algorithms we will review Artificial Neural Network
(supervised learning) and K-Mean Nearest neighbor (unsupervised
learning) based approaches.

Artificial Neural Networks are used by many researchers as
supervised learning algorithm to train the intrusion detection
technique. Rapake et al. [5] proposed to use numbers of system
calls that are executed on the host machine. These numbers are
utilized for neural network training. Han and Cho [6] proposed to
use evolutionary neural networks to detect anomalies based on
learning the behavior of the program. Authors have used 1999
DARPA IDEVAL data set to evaluate their proposed method.
Liang et al. [4] proposed to apply Fisher feature selection
algorithm on KDD 99 dataset for performance enhancement.
Authors used artificial neural networks to develop their intrusion
detection system.

K-Mean Nearest Neighbor (KNN) is a clustering algorithm
based on unsupervised learning method. Wang et al. [7] used KDD
99 dataset and defined new features based on density, cluster
centers, and nearest neighbors. KNN is used to classify the normal
traffic and network intrusion. Li et al. in [8] combined KNN
algorithm with Particle Swarm Optimization (PSO) to design
hybrid system. The K-mean algorithm suffers from premature
convergence. PSO algorithm helps to avoid premature
convergence in the proposed method. Xian et al. [9] proposed to
unite fuzzy KNN algorithm with clonal selection algorithm to
design network intrusion detection. Jiang et al. [10] used
incremental KNN algorithm to detect intrusions. Authors used
outlier factor to calculate the deviation degree of the cluster in this
work.

Multiple network intrusion detection systems are proposed
using data mining algorithms. Han et al. [11] used data mining
approach to detect intrusions. They have analyzed attributes of
network traffic protocol to identify misuse signature. They also
have analyzed network packet contents for intrusion signatures.
Qin and Hwang [12] proposed internet trace technique which
discards few non-functionary frequent episodes rules dynamically.
These episode rules are utilized to recognize abnormal sequences
in network traffic connections. Otey et al. [13] develop a general
purpose tunable algorithm to detect outlier/anomalies. The
proposed algorithm can work with mixed attribute dataset as well
dynamic and streaming data sets. KDD 99 intrusion dataset is one
of the dataset used to test and evaluate the proposed tunable
algorithm.

Gondal et al. [14][14] determined center of clusters on basis of
diversity. These Diversity-based centroids are used to develop
network intrusion detection system. Xiao et al. in [15] used
Bayesian Network Model Averaging in their proposed work and
compared it with Naïve Bayes classifier and Bayesian Network
classifier. Authors have evaluated their work over NSL-KDD
dataset.

Jeong et al. [16] proposed in their work to used Discrete
Wavelet Transform to extract the features from network traffic.
Principal Component Analysis (PCA) is applied to the extracted
features to identify principal components and a visual analytics
tool is proposed for intrusion detection. Le et al. [17] used deep
learning approach in their network intrusion detection system.
Authors explored various optimizers with Long Short-Term
Memory Recurrent Neural Network.

Table I: Details of Dataset

 Training Testing
Normal 97280 60623
Probe 4107 4166
DoS 391458 229853
U2R 52 13939
R2L 1124 2478
Total 494021 321026

http://www.astesj.com/

M. A. Manzoor et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 812-818 (2017)

www.astesj.com 814

Table II: Network Attacks and Categories

Category Network Attacks

Denial of
Service
(DoS)

back, land, neptune, pod, smurf, teardrop,
apache2, mailbomb, processtable

Probe ipsweep, nmap, portsweep, satan, mscan, saint

User to
Root
(U2R)

ftpwrite, guespasswd, imap, multihop, phf, spy,
warezclient, Warezmaster, httptunnel, named,
sendmail, snmpgetattack, xlock, xsnoop

Remote
to Local
(R2L)

bufferiverflow, loadmodule, perl, rootkit, ps,
snmpguess, sqlattack, worm, xterm

3. Knowledge and Discovery 1999 Dataset (KDD 99)

Knowledge and Discovery 1999 Network Intrusion Detection
dataset (KDD 99) [18] is used in this work to test and evaluate the
performance of the proposed method. KDD 99 is publicly
available dataset and widely used by various researchers. The
complete KDD 99 dataset contains around five million records for
training and 3 million records for testing tasks. Due to the large
size of the original dataset, smaller version of KDD 99 dataset is
frequently used for evaluating intrusion detection systems. This
smaller version contains 10% of testing and training records. We
also have tested our intrusion detection system using smaller
dataset. KDD 99 dataset contains normal records as well as
malicious records. Twenty two types of attacks are included in
training dataset along with normal network packets. Seventeen
additional attacks are added to the testing dataset and can be used
to determine whether the proposed algorithm can detect new
attacks or not. Network attacks are divided into four categories;
Denial of Service (DoS), Probe, User-to-Root (U2R), and Remote-
to-Local (R2L). Table I provides the distribution of training and
testing dataset into normal and intrusion packets. KDD 99 dataset
consists of 494021 training records and 311029 testing records.
The division of network attacks into categories is given in Table II.
Network attacks in bold are new attacks added to testing dataset
only.

Each record has 41 attributes; description of these attributes is
given below:

• 9 basic and single connection derived (SCD) header
features,

• 9 time based multiple connection derived (MCD)
header features,

• 10 host based multiple connection derived (MCD)
header features, and

• 13 content based features collected from traffic
payloads.

3.1. Pre-Processing

KDD 99 data set is pre-processed in order to make it
appropriate for the machine learning algorithm. The second reason
for the pre-processing is to enhance the intrusion detection rate.
Pre-processing is performed in three steps.

Figure 1: Network Intrusion Detection System Architecture

1. Each record in the dataset consists of numeric as well as
categorical attributes. Textual data is used for categorical
attributes. Support vector machine algorithm requires
numeric data (either discrete or continuous). The first step
in pre-processing is to convert this categorical attributes to
numeric attributes. The dataset contains three categorical
attributes while rest of the thirty eight attributes are
numeric. Every category of an attribute is assigned a
specific number.

2. Next, we have normalized all the numeric attributes in the
training dataset. Testing dataset attributes are normalized
using ratios determined for training dataset, so both
(training and testing) subsets are normalized with same
ratios. Normalization process converts all attributes to the
same range; hence each attribute has a similar effect
during the training process. The normalization process
also significantly reduces the training time for support
vector machine algorithm.

3. We applied statistical operations on the training dataset to
reduce the features. Same features are dropped from
testing dataset. These dropped attributes had a negative
impact on the performance of network intrusion detection
system. Reduce the number of attributes have a positive
effect on the computation time.

4. We have used LibSVM library for SVM implementation;
it requires training and testing data in a specific format.
Lastly, we have converted the dataset to LibSVM
compatible format.

http://www.astesj.com/

M. A. Manzoor et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 812-818 (2017)

www.astesj.com 815

4. Methodology

The architecture of Support Vector based Network Intrusion
Detection system is given in Figure 1. KDD 99 training data set is
pre-processed and Support Vector Machine (SVM) algorithm is
applied to build a model. Pre-processing information determined
for the training dataset is used to pre-process the training dataset.
SVM model built during the training process is used to predict the
category during the testing process.

4.1. Support Vector Machine

Support Vector Machine algorithm [19] is developed to solve
binary classification problems. SVM is supervised learning
algorithm which can be used for classification and regression
problems and it is based on statistical learning approach. The
fundamental idea of SVM is to identify hyperplanes (decision
boundaries) between two categories based on the training data and
one providing the maximum separation between two categories is
selected as shown in Figure 2. This hyperplane provides the
optimal separation between two categories. The identification of
optimal hyperplane is considered as an optimization problem.
Testing examples are projected and the category is predicted based
on their position with respect to the optimal hyperplane. Cover’s
theorem [20] states; if linearly non-separable dataset is
transformed using non-linear kernel function then it is probable
that the transformation process will generate linearly separable
dataset in higher dimensional space. Support vector machine also
uses different types of non-linear kernel function to create linearly
separable dataset and increase classification performance.

Let we have a training dataset S= {(x1, y1), (x2, y2),…, (xn, yn)},
where xi ∈ Rn and it represents input feature vector and yi ∈ {-1, 1}

is the category. Let weight and bias of hyperplane is given by w
and b. The non-linear Kernel function is applied on training dataset
to transform it into linearly separable categories and φ(x) is used
to represent it. The hyperplane between the two categories can be
defined as:

w.φ(x) + b = 0 (1)

The optimization problem for calculation of w and b is:

Minimize

φ(w) = ½ ||w||2
 (2)

Subject to

 yi(w.φ(x) + b) ≥ 1

New variables ζi (slack variable) and C (regularization constant)
are included in above optimization problem:

Minimize

 φ(w,ζ) = ½ ||w||2 + C ∑ 𝜁𝜁𝑖𝑖𝑁𝑁
𝑖𝑖=1

 (3)

Subject to

 yi(w.φ(x) + b) ≥ 1 – ζi, ζi ≥ 0

Figure 2: Decision Boundary with maximum margin

Where ζ is used to relax the hard margin constraint and C is
used to manage the trade-off between classification error and
maximal margin of separation.

Multiclass SVM is often constructed using basic binary SVMs
to deal with real world problems like pedestrian detection [21],
medical diagnosis [22], sentiment analysis [23] and many others.
For multiclass SVM, 1-vs-1 [24] and 1-vs-all [25] are two
approaches used to build basic binary SVMs.

We have used LibSVM [26] Java API in this work for SVM
implementation. LibSVM provides both regression and
classification implementations. We have used C-SVM approach to
classifying the network traffic data into normal and intrusions.
Radial Basis Function (non-linear kernel function) is used in this
work for transformation into higher dimensional space. The value
of gamma used here is 1 and the value of C is 6. As kernel
implementation is part of LibSVM library; hence we are
considering it a part of SVM training process and not a part of pre-
processing. Finally, we have used the 1-vs-1 multiclass approach
in this work.

Figure 3: Apache Storm Topology

http://www.astesj.com/

M. A. Manzoor et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 812-818 (2017)

www.astesj.com 816

4.2. Apache Storm

Apache Storm is a scalable distributed framework that can be
easily configured on cloud services or clusters. It is developed to
process real-time big streaming data. Spouts and bolts are the basic
building blocks for Apache Storm applications. Spouts are used as
data sources; data is forwarded in form of tuples to the bolts. Bolts
are the computation unit of the Apache Storm. Bolts process and
evaluate the incoming tuples and can forward the results in form
of tuple to other bolts for further processing. Spouts and bolts are
combined to form a topology. Topologies are directed acyclic
graphs and used to develop Apache Storm applications. An
Apache Storm topology is shown in Figure 3. The edges of the
topology show the flow of data. Bolts and spouts are vertices in the
topology. We can create many instances of every bolt and spout to
speed up the processing.

Apache Storm framework offers distributed and fault tolerant
computing. An Apache Storm cluster is shown in Figure 4. The
cluster consists of one or multiple worker nodes and only one
master node. Worker nodes are named as supervisors while the
master node is named as nimbus. Apache Storm also requires
ZooKeeper cluster to provide coordination between the master
node and worker node(s).

The proposed Apache Storm topology is given in Figure 5.
This topology has one spout and three bolts. The detail of the bolts
and spout is given below:

1. Input Reader (Spout) is the only data source in this
topology. KDD 99 dataset is stored in a text file. This
spout reads the KDD 99 dataset and each record is
forwarded as a tuple to the next bolt.

2. Data Pre-Processer (Bolt) receives the tuples from Input
Reader and performs pre-processing as explained in
Section 3. It converts the categorical data to numeric data,
perform normalization and feature reduction. Finally, it
converts the data into LibSVM compatible format.

Figure 4: Apache Storm Cluster

Figure 5: Apache Storm Topology

3. Support Vector Machine (Bolt) performs the
classification process for the network intrusion detection
system.

4. Result Aggregator (Bolt) is the last processing unit in this
topology. It aggregates the classification results. It stores
these results on a text file for further analysis.

5. Experimental Results and Discussion

5.1. Experimental Setup

Apache Storm 0.9.6 is configured on Ubuntu 12.04. All the
experiments are performed on 3.4 GHz Intel Core i7 processor
with 16.00 GB of memory.

5.2. Evaluation and Analysis

We have used KDD 99 intrusion detection dataset to test our
SVM based method. The testing dataset contains 18729 records
belonging to new network intrusion attacks (17 new network
attacks included) which are not included in the training dataset.
Whereas 292300 records belong to network intrusion attacks
which are also part of the training dataset. The accuracy for
intrusion detection of the proposed method is 98.03% when only
known attacks are considered (Network attacks used during
training process). This intrusion detection rate drops to 92. 60%
when all the network attacks are considered during the testing
process. All the discussion, following this point, will be based on
the complete testing dataset. The classification results for complete
dataset (new network attacks included) of the proposed intrusion
detection method are given in Table III. A simplified confusion
matrix is given in Table IV; which only divides the classification
results into normal and malicious network traffic.

Table III: Confusion Matrix for Network Intrusion Detection
System

 Normal Dos Probe R2L U2R
Normal 60294 66 225 7 1
DoS 6571 223266 16 0 0
Probe 760 441 2965 0 0
R2L 12849 91 72 927 0
U2R 2462 3 0 7 6

http://www.astesj.com/

M. A. Manzoor et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 812-818 (2017)

www.astesj.com 817

Table IV: Simplified Confusion Matrix

 Normal Attack

Normal 60294 299

Attack 22642 227794

The performance of the can also be determined using False
Positive Rate (FPR), False Negative Rate (FNR), Precision and
Recall. These four performance evaluators are calculated below
using simplified confusion matrix (Table IV).

FPR = FP / (FP + TN) = 22642 / (22642 + 227794) = 0.09

FNR = FN / (FN + TP) = 299 / (299 + 60294) = 0.005

Precision = TP / (TP+FP) = 60294 / (60294+22642) = 0.73

Recall = TP / (TP+FN) = 60294 / (60294 + 299) = 0.995

For a good classification rate, FPR and FNR must be close to
zero while Precision and Recall must be close to one. Other than
Precision, all other performance parameters indicate good
classification performance.

Normal traffic and DoS attacks are recognized correctly mostly.
Whereas Remote to Local (R2L) and User to Root (U2R) are the
two categories which are recognized incorrectly most of the time.
Class imbalance is the main reason behind this shortcoming. R2L
and U2R have the least number of training samples. Similarly,
probe attack category also has relatively less training examples.
While remaining two categories have the majority of the training
examples; around 98.9% of the dataset. This class imbalance
creates biased results during the training process. We will discuss
few techniques to solve class imbalance problem in the next
section.

The proposed network intrusion detection system is supposed
to handle real-time streaming data traffic. The training process is
done offline and it is not a real-time task. This system can process
roughly 13,600 packets in a second for testing/prediction purposes.
This processing speed is achieved with a single general purpose
computer. The processing speed can be further increased by using
a cluster of dedicated servers. This processing speed is a good
indicator for real-time big streaming data scenario.

Support Vector Machines are machine learning algorithm used
for supervised classification tasks whereas Apache Storm is
development platform used to develop real-time big streaming data
processing applications. Apache Storm supports multiple
languages for coding. We have used Java in our work. The
proposed system achieves good classification results along with a
good processing speed.

6. Performance Enhancement for Network Intrusion
Detection Systems

Class imbalance refers to the uneven representation of classes
in training dataset. The skewed distribution causes performance
degradation for many machine learning algorithms [27]. The
methods to solve class imbalance problem are generally divided
into two categories; data level and algorithm level solutions.

6.1. Data Level Approach

Data level approaches apply different techniques to the dataset
before training process. It can be considered as pre-processing step
to accommodate the class distribution. Sampling, under-sampling,
and over-sampling, is a data-level approach to managing class
distribution. Over-sampling duplicates the records from the
minority category whereas under-sampling removes records from
the majority category to minimize the imbalance ratio between
different categories in training data.

Yen et al. [28] proposed to use cluster based approach to solve
the class imbalance problem by selecting representative data.
Clusters are used to identify the representative data to achieve
better prediction rate for minority categories. Yu et al. [29] used
vector quantization to under-sample the majority class and
constructed representative local models. Synthetic Minority Over-
Sampling Technique (SMOTE) [30] is an adaptive data-level
approach for over-sampling. It computes the probability
distribution to model minor categories and use this probability
distribution to add new examples to the smaller classes. Guo and
Viktor [31] proposed to combine boosting and data generation to
over-sample the minority classes. This approach is named as
DataBoost-IM algorithm.

6.2. Algorithm Level Approach

In algorithm level approach, specialized machine learning
algorithms are used to tackle class imbalance problem.

One of the techniques used is to develop modified version of
the basic learning algorithm which can manage imbalanced classes.
z-SVM [32] and GSVM-RU [33] are modified version of SVM to
manage imbalanced class distribution. z- SVM tries to maximize
g-mean value by moving hyperplane using a parameter z. GSVM-
RU uses granular computing to enhance the classification accuracy.

Another algorithm level approach is to use cost sensitive
learning; whenever a misclassification occurs, an expensive cost is
imposed on the classifier. Cao et al. [34] proposed Particle Swarm
Optimization (PSO) based cost sensitive artificial neural network
for imbalanced data classification.

7. Conclusion

Network intrusion detection is an important component of
network management and it is a defense mechanism for network
security. Anomaly based intrusion detection detects anomalous
behavior or new network attacks which signature-based intrusion
detection cannot. Higher processing speed is required to handle
incoming real-time data traffic. The proposed Network Intrusion
detection system can process 13,600 packets in a second on a
single general purpose computer. Apache Storm based network
intrusion detection system can achieve higher processing by
deploying a cluster of computers. Data pre-processing techniques
are implemented to reduce the number of feature; which reduces
the training and testing time and increased the classification
accuracy.

In this paper, we outline the machine learning based method
for anomaly based intrusion detection. We propose to utilize
support vector machine as supervised learning algorithm to
classify the incoming network traffic into normal and network
intrusion attacks (DoS, Probe, R2L, U2R). KDD 99 intrusion
detection dataset is used in this work. The data set is pre-processed
in order to make incompatible with support vector machine

http://www.astesj.com/

M. A. Manzoor et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 812-818 (2017)

www.astesj.com 818

algorithm as well as with LibSVM library. The experimental
results show the feasibility of the proposed intrusion detection
method. The performance can be further enhanced by solving class
imbalance problem as discussed in section 6. This paper suggests
using Support Vector Machine for classification process and
Apache Storm as development platform to develop network
intrusion detection system to handle big data characteristics of the
network data traffic.

References

[1] Manzoor, Muhammad Asif, and Yasser Morgan. "Real-time Support Vector
Machine based Network Intrusion Detection system using Apache Storm."
Information Technology, Electronics and Mobile Communication
Conference (IEMCON), 2016 IEEE 7th Annual. IEEE, 2016.

[2] Bro, Bro Intrusion Detection System 2002.

[3] SNORT, SNORT: The open source network intrusion detection system 2002.

[4] Hu, Liang, et al. "An improved intrusion detection framework based on
Artificial Neural Networks." Natural Computation (ICNC), 2015 11th
International Conference on. IEEE, 2015.

[5] A. Rapaka, A. Novokhodko, and D. Wunsch, “Intrusion detection using
radial basis function network on sequences of system calls,” in Proc. Int.
Joint Conf. Neural Netw., 2003, vol. 3, pp. 1820–1825.

[6] S. J. Han and S. B. Cho, “Evolutionary neural networks for anomaly
detection based on the behavior of a program,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 36, no. 3, pp. 559–570, Jun. 2006.

[7] Xiujuan Wang, Chenxi Zhang and Kangfeng Zheng, "Intrusion detection
algorithm based on density, cluster centers, and nearest neighbors," in China
Communications, vol. 13, no. 7, pp. 24-31, July 2016.

[8] Z. Li, Y. Li, and L. Xu, “Anomaly intrusion detection method based on k-
means clustering algorithm with particle swarm optimization,” in
Proceedings of the 2011 International Conference of Information
Technology, Computer Engineering and Management Sciences.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 157–161.

[9] J. Xian, F. Lang, and X. Tang, “A novel intrusion detection method based
on clonal selection clustering algorithm,” in Proc. Int. Conf. Mach. Learn.
Cybern., 2005, vol. 6, pp. 3905–3910.

[10] S. Jiang, X. Song, H.Wang, J. Han, and Q. Li, “A clustering-based method
for unsupervised intrusion detections,” Pattern Recognit. Lett., vol. 27, no.
7, pp. 802–810, May 2006.

[11] H. Han, X. L. Lu, and L. Y. Ren, “Using data mining to discover signatures
in network-based intrusion detection,” in Proc. Int. Conf. Mach. Learn.
Cybern., 2002, vol. 1, pp. 13–17.

[12] M. Qin and K. Hwang, “Frequent episode rules for Internet anomaly
detection,” in Proc. IEEE Int. Symp. Netw. Comput. Appl., 2004, pp. 161–
168.

[13] M. E. Otey, A. Ghoting, and S. Parthasarathy, “Fast distributed outlier
detection in mixed-attribute data sets,” Data Min. Knowl. Discov., vol. 12,
no. 2/3, pp. 203–228, May 2006.

[14] Gondal, M.S.; Malik, A.J.; Khan, F.A., "Network Intrusion Detection
Using Diversity-Based Centroid Mechanism," in Information Technology
- New Generations (ITNG), 2015 12th International Conference on , vol.,
no., pp.224-228, 13-15 April 2015

[15] Liyuan Xiao; Yetian Chen; Chang, C.K., "Bayesian Model Averaging of
Bayesian Network Classifiers for Intrusion Detection," in Computer
Software and Applications Conference Workshops (COMPSACW), 2014
IEEE 38th International , vol., no., pp.128-133, 21-25 July 2014

[16] Jeong, Dong Hyun, Bong-Keun Jeong, and Soo-Yeon Ji. "Designing a
hybrid approach with computational analysis and visual analytics to detect
network intrusions." Computing and Communication Workshop and
Conference (CCWC), 2017 IEEE 7th Annual. IEEE, 2017.

[17] T. T. H. Le, J. Kim and H. Kim, "An Effective Intrusion Detection Classifier
Using Long Short-Term Memory with Gradient Descent Optimization,"
2017 International Conference on Platform Technology and Service
(PlatCon), Busan, South Korea, 2017, pp. 1-6.

[18] The UCI KDD Archive University of California, Irvine, 1999:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[19] Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20(3), 273–
297 (1995)

[20] Devroye, Luc, László Györfi, and Gábor Lugosi. A probabilistic theory of
pattern recognition. Vol. 31. Springer Science & Business Media, 2013.

[21] J. Baek, J. Kim and E. Kim, "Fast and Efficient Pedestrian Detection via the
Cascade Implementation of an Additive Kernel Support Vector Machine,"
in IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 4,
pp. 902-916, April 2017.

[22] H. Ma, T. Tan, H. Zhou and T. Gao, "Support Vector Machine-recursive
feature elimination for the diagnosis of Parkinson disease based on speech
analysis," 2016 Seventh International Conference on Intelligent Control and
Information Processing (ICICIP), Siem Reap, Cambodia, 2016, pp. 34-40.

[23] Ye Fei, "Simultaneous Support Vector selection and parameter optimization
using Support Vector Machines for sentiment classification," 2016 7th IEEE
International Conference on Software Engineering and Service Science
(ICSESS), Beijing, China, 2016, pp. 59-62.

[24] Kreßel, U.: Pairwise classification and support vector machines. In:
Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods:
Support Vector Learning, pp. 255–268. MIT Press, Cambridge (1999)

[25] Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

[26] Chang, Chih-Chung, and Chih-Jen Lin. "LIBSVM: a library for support
vector machines." ACM Transactions on Intelligent Systems and
Technology (TIST) 2.3 (2011): 27.

[27] Wang, Shuo, and Xin Yao. "Multiclass imbalance problems: Analysis and
potential solutions." IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics) 42.4 (2012): 1119-1130.

[28] Yen, Show-Jane, and Yue-Shi Lee. "Cluster-based under-sampling
approaches for imbalanced data distributions." Expert Systems with
Applications 36.3 (2009): 5718-5727.

[29] Yu, Ting, et al. "A hierarchical VQSVM for imbalanced data sets." Neural
Networks, 2007. IJCNN 2007. International Joint Conference on. IEEE,
2007.

[30] Chawla, Nitesh V., et al. "SMOTE: synthetic minority over-sampling
technique." Journal of artificial intelligence research 16 (2002): 321-357.

[31] Guo, Hongyu, and Herna L. Viktor. "Learning from imbalanced data sets
with boosting and data generation: the databoost-im approach." ACM Sigkdd
Explorations Newsletter 6.1 (2004): 30-39.

[32] Imam, Tasadduq, Kai Ting, and Joarder Kamruzzaman. "z-SVM: an SVM
for improved classification of imbalanced data." AI 2006: Advances in
Artificial Intelligence (2006): 264-273.

[33] Tang, Yuchun, et al. "SVMs modeling for highly imbalanced
classification." IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics) 39.1 (2009): 281-288.

[34] Cao, Peng, Dazhe Zhao, and Osmar R. Zaïane. "A PSO-based cost-sensitive
neural network for imbalanced data classification." Pacific-Asia Conference
on Knowledge Discovery and Data Mining. Springer Berlin Heidelberg,
2013.

http://www.astesj.com/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

	1.1. Signature Based Network Intrusion Detection
	1.2. Anomaly Based Network Intrusion Detection
	2. Literature Review
	3. Knowledge and Discovery 1999 Dataset (KDD 99)
	3.1. Pre-Processing

	4. Methodology
	4.1. Support Vector Machine
	4.2. Apache Storm

	5. Experimental Results and Discussion
	5.1. Experimental Setup
	5.2. Evaluation and Analysis

	6. Performance Enhancement for Network Intrusion Detection Systems
	6.1. Data Level Approach
	6.2. Algorithm Level Approach

	7. Conclusion
	References

