
9

Network Intrusion Detection through
Adaptive Sub-Eigenspace Modeling
in Multiagent Systems

MEI-LING SHYU, THIAGO QUIRINO, and ZONGXING XIE

University of Miami

SHU-CHING CHEN

Florida International University

and
LIWU CHANG

Naval Research Laboratory

Recently, network security has become an extremely vital issue that beckons the development
of accurate and efficient solutions capable of effectively defending our network systems and the
valuable information journeying through them. In this article, a distributed multiagent intru-
sion detection system (IDS) architecture is proposed, which attempts to provide an accurate and
lightweight solution to network intrusion detection by tackling issues associated with the design
of a distributed multiagent system, such as poor system scalability and the requirements of ex-
cessive processing power and memory storage. The proposed IDS architecture consists of (i) the
Host layer with lightweight host agents that perform anomaly detection in network connections to
their respective hosts, and (ii) the Classification layer whose main functions are to perform misuse

This article is based on the paper “A Distributed Agent-Based Approach to Intrusion Detection
Using the Lightweight PCC Anomaly Detection Classifier” by Zongxing Xie, Thiago Quirino, Mei-
Ling Shyu, Shu-Ching Chen, and Liwu Chang, which appears in the Proceedings of the IEEE
International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, 446–453.
c© 2006 IEEE.
For Mei-Ling Shyu, this research was supported in part by NSF ITR (Medium) IIS-0325260. For
Shu-Ching Chen, this research was supported in part by NSF EIA-0220562 and NSF HRD-0317692.
Authors’ addresses: M.-L. Shyu, T. Quirino, and Z. Xie, Department of Electrical and Computer
Engineering, University of Miami, Coral Gables, FL 33124; S.-C. Chen, Distributed Multimedia
Information System Laboratory, School of Computing and Information Sciences, Florida Interna-
tional University, Miami, FL 33199; email: chens@cs.fiu.edu; L. Chang, Naval Research Laboratory,
Washington, DC 20375.
c© 2005 Association for Computing Machinery. ACM acknowledges that this contribution was au-
thored or co-authored by a contractor or affiliate of the [U.S.] Government. As such, the Government
retains a non-exclusive royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1556-4665/2007/09-ART9 $5.00 DOI 10.1145/1278460.1278463 http://doi.acm.org/
10.1145/1278460.1278463

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

9:2 • M.-L. Shyu et al.

detection for the host agents, detect distributed attacks, and disseminate network security status
information to the whole network. The intrusion detection task is achieved through the employ-
ment of the lightweight Adaptive Sub-Eigenspace Modeling (ASEM)-based anomaly and misuse
detection schemes. Promising experimental results indicate that ASEM-based schemes outperform
the KNN and LOF algorithms, with high detection rates and low false alarm rates in the anomaly
detection task, and outperform several well-known supervised classification methods such as C4.5
Decision Tree, SVM, NN, KNN, Logistic, and Decision Table (DT) in the misuse detection task. To
assess the performance in a real-world scenario, the Relative Assumption Model, feature extrac-
tion techniques, and common network attack generation tools are employed to generate normal
and anomalous traffic in a private LAN testbed. Furthermore, the scalability performance of the
proposed IDS architecture is investigated through the simulation of the proposed agent communi-
cation scheme, and satisfactory linear relationships for both degradation of system response time
and agent communication generated network traffic overhead are achieved.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—
Security and protection; C.2.4 [Computer-Communication Networks]: Distributed Systems—
Distributed applications

General Terms: Experimentation, Security

Additional Key Words and Phrases: Agent communications, agent-based distributed system, adap-
tive sub-eigenspace modeling (ASEM), intrusion detection, network security

ACM Reference Format:

Shyu, M.-L., Quirino, T., Xie, Z., Chen, S.-C., and Chang, L. 2007. Network intrusion de-
tection through adaptive sub-eigenspace modeling in multiagent systems. ACM Trans. Au-
tonom. Adapt. Syst. 2, 3, Article 9 (September 2007), 37 pages. DOI = 10.1145/1278460.1278463
http://doi.acm.org/10.1145/1278460.1278463

1. INTRODUCTION

The increases of speed and capacity in computational and communication re-
sources as well as the advances in computing and information technologies
have enabled network systems to play an increasingly critical role in modern
society. Particularly, the popularity of Web-based applications has led to the
interconnection of almost all the computers in the world in a global network
that facilitates communications among people. Securing such a large-scale net-
worked system becomes a great challenge, since network intruders have found
the perfect environment to develop innumerous algorithms that make effective
use of the current simplistic, end-user empowering, networking model of the
Internet [Clark 2001]. The fact that more sensitive data have been stored and
manipulated through the Internet where numerous intrusions have brought
serious damages to people, corporations, and the whole society has made net-
work security an extremely vital issue. To address this issue, accurate and
efficient intrusion detection systems (IDSs) have been developed to safeguard
the network systems and crucial information.

There are two main categories for the existing intrusion detection methods
that are employed in IDSs, namely misuse detection and anomaly detection
[Anderson et al. 1995]. The methods in the misuse detection category are
mainly based on signature modeling of known attacks [Lazarevic et al. 2003],
and have the advantage of higher accuracy in detecting known attacks. How-
ever, the most obvious shortcoming of the misuse detection methods is their

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

Network Intrusion Detection • 9:3

incapacity to detect previously unobserved attacks. Different from the misuse
detection methods, anomaly detection methods are based on signature modeling
of normal traffic [Labib and Vemuri 2004]. Anomaly detection methods have the
advantage of detecting new types of attacks [Hochberg et al. 1993], but their
false alarm rates are high. IDSs have undergone rapid developments in both
power and scope in the last few years. Various types of IDS architectures have
been developed in the literature, such as monolithic, hierarchic, agent-based,
and distributed (GrIDS) systems [Verwored and Hunt 2002]. Improvements
made to these methods and architectures would better enhance their ability to
take into account the evolving nature of network attacks.

Recently, the agent concept has emerged as a powerful paradigm in dis-
tributed computing environments due to its favorable characteristics including
higher level abstractions, scalability, adaptability, graceful degradation of ser-
vice and so on, over the non-agent based IDSs [Lee and Stolfo 2000]. It is a
fact that many complex systems at work today in the real world are composed
of components that are either geographically spread out hardware systems
(traffic control systems and energy distribution systems), software subsystems
spread out across many different servers (large scale database systems such
as the ones maintained by government agencies, hospitals, and banks), or
a combination of both (such as the Internet infrastructure itself and mod-
ern mobile phone networks). According to the distributed agent (or multia-
gent) design methodology, the characteristics that a system must present in
order to be modeled as a distributed organization of agents are the following
[Moreno 2005]:

(1) Environmental constraint: Knowledge is distributed in different locations
of the system (decentralized information);

(2) System constraint: Several entities, possessing different abilities, work to-
gether to solve a complex problem;

(3) Domain constraint: The problems in the application domain can be decom-
posed into smaller subproblems, even if some type of interdependency exists
among them.

Communication networks are large, complex, and modularized distributed
systems, which present the aforementioned characteristics, and thus the dis-
tributed agent (or multiagent) design methodology can and have been success-
fully employed in the design of intrusion detection architectures suitable for
such a distributed environment. Among some of the issues encountered in the
design of a distributed agent-based IDS are (i) the amount of network traffic
overhead introduced by the detection system into the residing network, (ii) the
appropriateness of the expressive provisions of the agent communication lan-
guage and negotiation protocols associating the various entities in the system,
(iii) the hardware processing power required to execute the agents’ software,
and (iv) the performance of the data mining detection algorithm employed by
the agents. Most of the designed agent-based intrusion detection systems re-
quire comparatively high processing power in local, end-user machines to ex-
ecute the agents’ software and other supportive software, and introduce con-
siderably more traffic into their residing network [Dasgupta and Brian 2001;

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

9:4 • M.-L. Shyu et al.

Spafford and Zamboni 2000]. All of these design issues are indications that
a lightweight agent-based system, with low network traffic overhead genera-
tion and low processing power requirements, is needed to overcome the issues
encountered in the existing architectures.

In this article, a distributed IDS with multiagent design technology is pro-
posed, where a set of classification agents communicate with each other and
with lower level agents to acquire a global scope of the security state of the
network. The proposed architecture integrates anomaly and misuse detection
schemes, and focuses on the application of the lightweight agent concept in an
attempt to solve the issue of executing agent software in end-user machines that
have low processing power. It intends to detect heterogeneous intrusions in the
network by seeking multiple information sources to extract features suitable
for an effective intrusion detection process. The Adaptive Sub-Eigenspace Mod-
eling (ASEM) based anomaly and misuse detection schemes are proposed, in-
corporating our proposed Weighted Multiple Correspondence Analysis (WMCA)
to handle nominal features. Our experimental results demonstrate that ASEM
outperforms the K-nearest neighbor (KNN) method [Liao and Vemuri 2002] and
LOF algorithm [Breuning et al. 2000] with high detection rates and low false
alarm rates in anomaly detection. ASEM also outperforms several well-known
supervised classification methods such as C4.5 Decision Tree [Quinlan 1993],
Support Vector Machine (SVM) [Han 2003], K-Nearest Neighbor (KNN) [Tou
and Gonzalez 1974], Logistic [Hooper 1999], Nearest Neighbor (NN) [Tou and
Gonzalez 1974], and Decision Table (DT) (all implemented in the Weka package
[Weka 2007]) in the misuse detection task. Moreover, in order to validate the
feasibility of the deployment of our proposed distributed agent-based IDS ar-
chitecture in a real-world scenario, in terms of scalability related criteria such
as generated network traffic overhead and nonlinear degradation of system re-
sponse time, the implementation for the proposed architecture was developed
using Matlab [Mathworks 2007] and Java software. The promising experimen-
tal results indicate both a satisfactory linear degradation of system response
time and low overhead in agent communication related network traffic.

The remainder of this article is organized as follows. Section 2 discusses ex-
isting work related to the design of agent-based IDSs. Section 3 presents our
proposed distributed multiagent IDS architecture. In Section 4, WMCA and
ASEM-based anomaly and misuse detection schemes are introduced. Experi-
mental setup is presented in Section 5. Experiments and results are given in
Section 6. Finally, in Section 7, conclusions are discussed.

2. EXISTING WORK

Various distributed intrusion detection architectures using the multiagent
design methodology and/or the data mining techniques have been developed,
ranging from those comprised entirely of mobile agents [Helmer et al. 2003],
simulating the human body immune system model [Foukia et al. 2001],
entirely comprised of static agents [Spafford and Zamboni 2000; Ertoz
et al. 2004; Snapp et al. 1991], or as a combination of both [Kannadiga and
Zulkernine 2005].

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

Network Intrusion Detection • 9:5

One well-known example of applying distributed agent design methodol-
ogy in the intrusion detection domain is the Distributed Intrusion Detection
System (DIDS) [Snapp et al. 1991]. DIDS was an attempt to build a distributed
system based on monitoring agents that reside at every host in the network.
A centralized data analysis component called the DIDS director agent is solely
responsible for the analysis of the network traffic data collected by each mon-
itor. DIDS architecture presents both advantages and disadvantages. On one
hand, the system utilizes the real-time traffic information from various sources,
namely, data from various host monitors, to assess the security status of its re-
siding network. However, as a drawback, the system’s scalability is poor for
large networks, as an increasing number of host monitors also significantly
increase the work load of the DIDS director agent. Additionally, the data flow
between host monitors and the director agent may generate significantly high
network traffic overheads. In a recent study by [Kannadiga and Zulkernine
2005], the Distributed Intrusion Detection using Mobile Agents (DIDMA) sys-
tem attempted to overcome the scalability issues inherent in the original DIDS
architecture by employing mobile agents in the data analysis task. Thus, by de-
centralizing data analysis, DIDMA hoped to significantly neutralize the effects
of the scalability issues.

In contrast to DIDS, a more recent development in the domain of distributed
IDS architectures is MINDS [Ertoz et al. 2004]. The MINDS system analyzes
data collected directly by sensors distributed throughout the network, tapping
information directly from the routers. It combines an unsupervised anomaly de-
tection data mining algorithm, which assigns to each of the collected network
connections a score reflecting how anomalous it is, and an association pattern
analysis-based module, which generates a summarization report of those net-
work connections that are ranked highly anomalous. Although MINDS seems
to solve both anomaly and misuse detection problems, it requires human ef-
forts to assist in its data mining techniques for their proper functioning. That
is, the summarized anomalous data information needs to be supplied to a hu-
man analyst who is then responsible for manually performing the unsupervised
anomalous data labeling process.

Another distributed agent-based IDS called Distributed Hybrid Agent
Based Intrusion Detection and Real Time Response System [Vaidehi and
Ramamurthy 2004] analyzes anomalies to detect and identify the Denial of
Service (DoS) and data theft attacks, in addition to analyzing intrusion signa-
tures capable of detecting wardriving-based hacks. It also attempts to respond
to intrusions in real time by sending out alerts to the designated network ad-
ministrator when network intrusions are detected. One of its main drawbacks
is the design complexity of its comprising agents, in that each agent must take
on almost all of the work load of network traffic sniffing, data parsing, and in-
trusion detection. This makes the architecture inherently less lightweighted.
In addition, its data mining techniques are less powerful since they are capable
of detecting only a limited number of network attacks.

In Helmer et al. [2003], an IDS prototype entirely comprised of mobile agents
was developed. In this architecture, the mobile agents travel among moni-
tored systems in a network of distributed systems, obtain information from

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

9:6 • M.-L. Shyu et al.

Fig. 1. The proposed IDS architecture.

designated data-cleaning agents that reside at each host, classify and correlate
the supplied information, and finally report the analysis results to a desig-
nated administrator through a user interface and several databases. One of its
main advantages is its support for the runtime addition of new capabilities into
the mobile agents. However, one of its main disadvantages is the overhead in
time required to transmit the mobile agents’ code and required data among the
monitored hosts in the residing network, which reduces the system’s ability to
respond to network intrusions in real time.

All of these architectures, having both their advantages and disadvantages,
attempt to achieve the common goal of effective intrusion detection, while at the
same time minimizing the adverse side effects of realistic constraints, such as
the limited availability of processing power at hosts, and the scalability issues
inherent in distributed system design.

3. DISTRIBUTED MULTIAGENT INTRUSION DETECTION SYSTEM

Figure 1 presents our proposed distributed multiagent IDS architecture, which
consists of a host layer and a classification layer.

3.1 Host Layer

A set of lightweight host agents constitutes the host layer. Virtually, every ma-
chine in a network can be equipped with a host agent. Host agents run as

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

Network Intrusion Detection • 9:7

background processes in end user machines. Host agents are mainly concerned
with detecting abnormal network traffic activities occurring in their hosts and
properly responding to them. These agents collect information about the net-
work connections in their hosts and classify these connections into two cate-
gories, normal or abnormal, using the ASEM-based (Adaptive Sub-Eigenspace
Modeling) anomaly detection scheme. Each host agent, upon coming online,
connects to an upper-layer agent called a classification agent, to whom the host
agent reports abnormal connections. To reduce network traffic requirements
for the proposed IDS, no communication occurs among individual host agents.
Furthermore, host agents make use of the fact that every connection to their
respective hosts, whether normal or abnormal, must be analyzed for abnormal-
ity using the ASEM-based anomaly detection scheme. Thus, host agents retain
the information of a small percentage of normal connection instances and pass
it along to the upper layers, which save this information into databases. This
saved normal connection information can then be used to retrain the intrusion
detection classifiers at a later time. This process introduces a desirable feature,
where the burden of collecting updated training data for the classifiers is shared
among every host agent connected to the proposed IDS network. The collected
information is only sent to the upper layers during times of low network ac-
tivity, thus preventing the IDS from overloading its residing network system
during demanding periods. This delayed feedback scheme is facilitated by the
fact that the intrusion detection classifiers do not have to be retrained so often
as to require host agents to continuously feed back updated classifier training
data to the upper layers.

3.2 Classification Layer

This layer is the classification agent layer, which is composed of classification
agents. Classification agents are more specialized agents that attend to the con-
cern of host agents on their suspicions of a possible ongoing attack. Multiple host
agents connect to a single classification agent, a concept depicted in Figure 1
as the TCP/SSL connection between clustered host agents and their respective
classification agents. Host agents rely on their respective classification agents
to classify into known attack types, the abnormal connection instances found in
their host machines through anomaly detection, a task performed by the clas-
sification agent through our proposed ASEM-based misuse detection scheme.
This is an important step, as the uncovering of the attack type will determine
the proper response from an IDS to an intrusion. Within the classification layer,
lies a more distinctive classification agent named the manager agent, which car-
ries a briefly higher degree of authority and responsibility within its layer. The
goal of the further specialization of the manager agent is to introduce a signif-
icant degree of dynamism into the distributed system by having the manager
agent serve as a central point to which all agents can register their presence
within the IDS system and report, in real-time, interesting events taking place
in the network.

Agents in the classification layer are assumed to be running in dedicated
machines capable of delivering the processing power required to handle all the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

9:8 • M.-L. Shyu et al.

misuse detection classification requests of their respective host agents, and
communication with their fellow manager agent. These agents observe a strict
sequence of communication steps upon uncovering an attack type from an ab-
normal connection instance received from their respective host agents. This pro-
cess was devised to provide a more effective, yet less costly manner of achieving
global awareness of an ongoing threat:

(1) Upon uncovering of an attack, a classification agent will first quickly warn
the host agent who is the source of the abnormal connection instance with
information about the attack type. This is due to the fact that this host
agent is a primary victim of the uncovered attack.

(2) Next, the classification agent will warn its fellow manager agent of the
ongoing attack situation taking place in one of its nodes, by providing infor-
mation regarding the attack type, source IP, and source port of the intruder.

(3) Then the classification agent will initiate the process of warning all of its
remaining connected host agents about the ongoing attack by providing
them with the same information, so that they can prevent the attack from
harming their respective hosts.

(4) The manager agent, upon receipt of a warning message from a fellow clas-
sification agent, will in turn ask all the other fellow classification agents
to broadcast to all of their respective host agents the same information it
received about the ongoing threat.

(5) Finally, the remaining classification agents, upon receiving a broadcast re-
quest from the manager agent, will warn all of their respective host agents
of the ongoing network threat so that the host agents can place barriers to
prevent, or at least lessen, the effects of the ongoing threat.

This communication among agents in the classification layer is another im-
portant feature of the proposed distributed multiagent IDS, as other classifica-
tion agents can prevent or lessen the effects of a possible attack, by managing
resources in their nodes that they expect to be affected by the incoming at-
tack, such as bandwidth, communication ports, and connection authorizations.
Finally, classification agents collect the normal connection information from
host agents, in addition to those abnormal connection instances classified by
the ASEM-based misuse detection scheme, and pass them along to the man-
ager agent, who then saves it in the corresponding databases for the purpose
of future classifier retraining.

As was previously mentioned, the manager agent is a classification agent,
which is slightly more specialized within its class and performs extra manag-
ing duties within the classification layer. It is the only agent in the proposed
distributed multiagent IDS architecture that is required to reside in a machine
with a static network address. One of the purposes of the employment of the
manager agent is to enhance the dynamism of the proposed IDS architecture
by introducing into the system desirable features such as:

(1) It allows host and classification agents to dynamically join the IDS network
at any time and register their services and presence at a common point of
access. This feature is depicted in Figure 1 at the classification layer as the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

Network Intrusion Detection • 9:9

TCP/SSL connection link between the classification agents and the man-
ager agent, and at the host layer as the TCP/SSL connection link between
the host agent clusters and the manager agent. Classification agents can
register their dynamic network addresses with the manager agent, thus
preventing the need for hard-coding their addresses into the agents’ soft-
ware or requiring human supervision.

(2) It prevents the issue of single point of failure. For instance, upon coming
online and joining the IDS network, classification agents are required to
register their services with the manager agent. If a classification agent
requires maintenance or has a software issue that requires it to go offline
for a period of time, host agents connected to that specific classification
agent can be rerouted to other available classification agents by requesting
from the manager agent the network address of others that are available.

(3) It allows the misuse detection classification work load at the classification
layer to be fairly divided among the classification agents, thus allowing the
distributed system to make full use of the available resources. As was pre-
viously mentioned, classification agents attend to the concern of their host
agents by classifying abnormal connection data instances into specific at-
tack types. With the introduction of the manager agent, host agents coming
online and joining the IDS network are required to request from the man-
ager agent the network address of an available classification agent. Fur-
thermore, classification agents are required to inform the manager agent
of the number of host agents they are serving, as more and more host agents
connect to them, in addition to providing information about their incoming
communication message rates. Through this feedback scheme, the manager
agent is able to control and fairly divide the workload among the classifica-
tion agents by appropriately routing host agents.

(4) It provides the capability of detecting and blocking distributed network
attacks such as DoS and network scanning. The manager agent, upon re-
ceiving warning messages from various classification agents, can deduce
from the received information about the attack, including the attack types,
source and destination ports, intruders’ IP addresses, and so on, whether
a distributed attack is taking place in hosts throughout the network. The
manager can then utilize common protocols, such as SNMP and CISCO,
or direct cable connections, to make routers and switches block attacks at
specific points in the network.

(5) The task of retraining the ASEM-based anomaly and misuse detection
schemes and updating the required databases is assigned to the manager
agent. The manager agent has access to databases where information about
normal and abnormal connection instances, and known attacks’ signature
information are kept. This is depicted in Figure 1 as the link between the
manager agent and the set of databases. The manager agent uses updated
normal connection data found in the database for normal data and the ab-
normal connection data classified into different attack types by the misuse
detection scheme—found in the database for abnormal data—to retrain the
classifiers. The retraining process yields attack signatures that are placed

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

9:10 • M.-L. Shyu et al.

in the known intrusion signature database. Upon retraining the classifiers,
the manager agent sends updated classifier parameter information down
to the lower layer.

(6) Finally, the manager agent can stay in contact with manager agents re-
siding in other networks, while exchanging relevant information such as
new intrusion signatures. This feature makes use of the proactive behavior
of agents and continually strengthens the immunity of the system, while
allowing it to maintain a global view of its network environment.

3.3 Communication between Two Layers

At the very core of the efficient performance of the coordination aspect of a dis-
tributed multiagent system is an appropriate agent communication language
(or ACL). An ACL must be capable of providing clear and declarative (what?)
rather than mostly descriptive (how?) meaningful semantics [Singh 1999], in
addition to an ontology with broad coverage in its domain, possibly extensible to
other domains so as to allow for the interoperability of various classes of agents.
The ACL must also provide a negotiation protocol that reflects a large domain of
possible interaction among different agents (goals and operations) [Kone et al.
2000]. Due to all these requirements, the decision on the choice of which com-
munication language to use in the design of a distributed multiagent system
is not to be taken lightly. The KQML language is one of the most commonly
used languages due to its versatility and generality of purposes. KQML sup-
ports multiagent communication through an extensible set of reserved prim-
itives called performatives, which represent communicative acts [Kone et al.
2000]. Having this knowledge in mind, the KQML language was adopted as
the default ACL for our proposed architecture, and a simple and manageable
communication scheme that utilizes a discrete number of KQML performa-
tives was designed to accommodate the goals of all the agents. To provide total
privacy and authentication capabilities, TCP/IP Secure Socket Layer (SSL) is
adopted for the implementation of secure communication among agents. The
adoption of cryptographic communication services is an important step toward
making the distributed multiagent IDS architecture immune against attacks
that can exploit the relatively simple agent communication scheme. Every pos-
sible inter/intra-layer communication event that can arise was taken into con-
sideration in the design of our proposed communication scheme. We propose a
standard communication scheme that utilizes the following KQML performa-
tives at the different architectural layers:

(1) RECOMMEND-ONE: Upon coming online, host agents connect to the man-
ager agent. Since they are aware of the manager agent’s unique network
address, they request from it the address of an available classification agent
using the RECOMMEND-ONE performative. A unique reply-id is placed
within the :reply-with field of the message.

(2) REGISTER: Upon receiving from the manager agent the address of an avail-
able classification agent, host agents connect to the respective classification
agent and utilize the REGISTER performative to join that classification

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

Network Intrusion Detection • 9:11

agent’s cluster. Classification agents also utilize the REGISTER performa-
tive upon coming online to inform the manager agent of their availability
in the IDS network.

(3) UNREGISTER: Employed by both the host and classification agents to dis-
connect from the IDS network.

(4) EVALUATE: Employed by the host agents to request misuse detection ser-
vices from their respective classification agents, and consequently and indi-
rectly, inform them of possible attacks. Host agents place the feature values
of the abnormal connections within the :content field and a unique reply-id
for the message within the :reply-with field of the KQML message.

(5) TELL: Employed by classification agents for the purposes of both replying to
host agents’ classification request and informing the manager agent, and
consequently and indirectly all other classification agents, of an ongoing
threat. Classification agents place information about an attack, including
the extracted connection feature values, classification attack type, the in-
truder’s IP address and source port and so on, within the :content field of the
KQML message. The same message sent as a classification reply to a host
agent can also be sent to the manager agent as the semantics of the message
involve describing an ongoing threat in both scenarios. The only difference
is that reply messages sent to host agents contain a unique reply-id within
the :reply-to field of the message, while warning messages sent to the man-
ager agent do not contain the :reply-to field at all. The TELL performative is
also employed by the manager agent to reply to RECOMMEND-ONE per-
formative messages sent by host agents requesting the address of available
classification agents, upon coming online.

(6) BROADCAST: The BROADCAST performative is used to disseminate in-
formation about an ongoing threat to the whole IDS network. It is employed
by the manager agent to inform all other classification agents of an ongo-
ing threat, while also requesting them to forward that information to all of
their respective connected host agents.

(7) FORWARD: Employed by host agents, in periods of low network traffic con-
ditions, to forward to the manager agent through their respective classifi-
cation agents the normal connection instances that are temporarily stored
in files within a host agent’s residing machine. The :content field of the
message carries an embedded KQML database INSERT performative mes-
sage that is employed to request the manager agent to save the connection
instance into the database.

(8) INSERT: As mentioned above, this KQML database performative is em-
ployed by host agents to send normal connection instances to the manager
agent.

Additionally, an agent’s name within the IDS network, which is placed within
the :sender and :receiver fields of all KQML messages, is defined in a man-
ner that carries significant semantic information and uniquely identifies every
agent within the IDS network. An agent’s name is defined as a string formed by
the concatenation of the keywords “HA” for host agents, “CL” for classification

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

9:12 • M.-L. Shyu et al.

agents, or “MA” for the manager agent, followed by the “@” character, the agent’s
host network IP address, the “:” character, and the agent’s desired local com-
munication port. For instance, an agent with the name “HA@10.0.1.4:3345” is a
host agent embedded in a machine with IP address 10.0.1.4, and utilizing port
3345 for all of its network communication.

Please note that EVALUATE, TELL, and BROADCAST performatives are
the three most commonly employed in this communication scheme and are the
core of the information and knowledge exchange process required for effective
intrusion detection. All the other performatives supplement the communication
scheme in spite of being employed less often: when agents join or leave the IDS
network and when data is sent to the manager agent during periods of low
network traffic. One desirable feature that results from this communication
scheme is that the employed KQML messages are equivalent to relatively small
amounts of data exchanges among the agents. This contributes to making the
proposed communication scheme very lightweight, as will be demonstrated in
Section 6.

Finally, regarding the choice of languages used to encode the information
within the :content keyword of the KQML messages, many standard choices of
languages, such as Prolog and KIF, exist and have been found suitable for our
communication purposes. The Knowledge Interchange Format (KIF) language
is chosen, however, due to its expressive power and extensive online reference
resources.

4. INTRUSION DETECTION SCHEMES

In response to the challenge of automated analysis of increasing network
data and intrusion detection, the ASEM (Adaptive Sub-Eigenspace Modeling)
scheme was developed to provide a lightweight solution to both the anomaly
and misuse detection tasks, which can be incorporated into our proposed dis-
tributed multiagent IDS architecture to facilitate an effective and efficient data
mining process while taking into account the lightweight requirements of our
proposed architecture.

4.1 Nominal Feature Handling

Features extracted from network connections can be either numerical or have
some form of categorical (or nominal) significance [KDD 1999]. Examples of
numerical features are the number of bytes transferred between two hosts, the
duration of a connection, the number of successful or failed login attempts,
the source and destination ports of a connection, among numerous another
features. Examples of nominal features that can be extracted from network
connections are the source and destination IP addresses of two communicating
hosts, whether a connection successfully connected to a host (successful two-
way TCP handshake), the username associated with a specific TCP connection
to a host, the protocol of the connection, the service (HTTP, SSH, TELNET,
FTP, etc.), whether the connection has reached root shell (full administrator
privileges), among numerous others. Notice that some of these nominal features
contain many categories (the service feature), while some are binary in nature

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

Network Intrusion Detection • 9:13

(whether a host successfully connected or not can either be “Yes” or “No”). Both
numerical and nominal features contain valuable information that can make a
significant difference in the effective discrimination between completely normal
or malicious network connections. These motives beckon the exploration of the
possibility of enhancing the capabilities of our proposed ASEM-based anomaly
and misuse detection schemes (which inherently are capable of dealing only
with numeric features) to also handle nominal variables. Two basic distinctive
approaches that are commonly employed in the task of nominal to numerical
feature conversion are:

(1) Using indicator variables in place of a nominal variable: This approach
converts nominal values of each nominal feature into binary valued, zero-
one dummy variables that each can be treated as if they were numerical
attributes. The presence or absence of a specific nominal value in a data
instance is signified by either 0 or 1 in its respective dummy variable.

(2) Employing the Multiple Correspondence Analysis (MCA) approach to com-
pute numerical scaling values to each of the values of a categorical variable.

Both of these solutions have their advantages and disadvantages. For in-
stance, indicator variables are easy to generate from a data set. However, their
utilization is analogous to assigning the same weight to each nominal value in
a data set (either 0 or 1), which may not be desirable or fully correct in cer-
tain scenarios. For instance, consider the nominal feature we discussed, which
described whether or not a host successfully connected to another host. Its nom-
inal value “YES” combined with the information provided by other features may
indicate that an intruder has connected to a machine or is performing some sort
of port scanning attack on a host, and thus may be more significant in the in-
trusion detection domain than its nominal value “NO.” This is exactly what
the MCA approach [Greenacre and Blasius 2006; Greenacre 1984] attempts to
consider. In summary, MCA attempts to generate numerical scaling values for
the nominal feature values in a data set that maximizes the overall correla-
tion among the features. By analyzing a data set’s nominal feature space, MCA
captures the degree of significance and similarities among each of the nominal
feature values and generates respective numerical scaling values which, in con-
trast to the indicator variable approach, do not necessarily have to be within
the same numerical range. Moreover, numerical features can be incorporated
into the MCA process as long as they are discretized into categories and then
treated as nominal features. Based on MCA, we proposed the Weighted Mul-
tiple Correspondence Analysis (WMCA) algorithm to consider more effectively
all information from its statistical analysis on a data set. The WMCA algorithm
is described as follows.

Let the Q × N -dimensional matrix X = {xi j , i = 1, 2, . . . , Q and j = 1, 2, . . . ,
N }, be a data set comprised of N Q-dimensional column vectors X j = (x1 j ,
x2 j , . . . , xQ j)

′, j = 1, 2, . . . , N, which represent the N data instances in the data
set. Each of the Q rows of matrix X correspond to a nominal attribute or feature.
Let us denote the number of categories for the qth nominal attribute by Tq , that
is, the total number of distinct values that appear in the qth row of matrix X.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

9:14 • M.-L. Shyu et al.

Then, the total number of nominal attribute values in the entire data set is
given by

T =
Q

∑

q=1

Tq . (1)

Next, an indicator matrix Z is generated to represent the data matrix X

numerically, where Z = {zi j , i = 1, 2, . . . , T and j = 1, 2, . . . , N }. The N T -
dimensional column vectors of Z, given by Z j = (z1 j , z2 j , . . . , zT j)

′, j =
1, 2, . . . , N , represent the N data instances in the data set. The tth row of
Z corresponds to the zero-one dummy variable associated with one of the T

nominal values of the data set. Furthermore, matrix Z can be considered as
the concatenation of Q indicator matrices corresponding to the Q individual

nominal attributes of the data set, that is, Z = [ZT
1Z

T
2 . . . Z

T
Q]

T
. Next, the 1 × T -

dimensional row vector R is computed as the horizontal concatenation of the Q

row mass vectors of the indicator matrix Z as R = [R1 R2 . . . RQ], where each
row vector R j ∈ R, for j = 1, 2, . . . , Q , is given by

R j =
(

1

N

)

1
TZ

T
j . (2)

Now, the T × T -dimensional diagonal matrix D, corresponding to the row mass
matrix of Z, is computed from the diagonalization of the row vector R as

D =
(

1

Q

)

× diag(R), where (3)

diag(R) is the matrix whose diagonal elements correspond to the elements of
row vector R. Next, the T × T -dimensional matrix C, also known as the Burt

matrix, is computed as the inner-product of the indicator matrix Z using C =
ZZ

T. Now, the T × T -dimensional square matrix M can be defined as

M = D
− 1

2

(

C

Q2N
− D11

TD

)

D
− 1

2 , where (4)

—D
− 1

2 is the inverse of the matrix composed of the square root of the elements
in matrix D;

—is a 1 × T column vector of 1’s.

Singular Value Decomposition (SVD) is now applied to matrix M in order to
extract its T eigenvalue-eigenvector pairs, namely, (λ1, E1), (λ2, E2), . . . , (λT ,
ET), where λ1 ≥ λ2 ≥ . . . ≥ λT ≥ 0 and E =[E1 E2 . . . ET] is the matrix composed
of the T column eigenvectors E j = (e1 j , e2 j , . . . , eT j)

′, j = 1, 2, . . . , T . It is at
this point where our proposed WMCA approach detaches, at least in a statistical
sense, from the traditional procedure followed in the execution of the original
MCA approach. In essence, traditional MCA utilizes the T elements of the first
eigenvector E1, namely, the first major principal component of matrix M, to com-
pute T scaling values for the T nominal attribute values found in the data set.
As a result of the utilization of a single eigenvector, all the information provided
by the remaining eigenvectors and eigenvalues is simply discarded. In order to

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

Network Intrusion Detection • 9:15

more effectively utilize the valuable scaling value information provided by all
of the eigenvalues and eigenvectors of matrix M, we propose a procedure that
automatically selects significant eigenvectors and compute a weighted average
of these eigenvectors, while taking into account the significance of each eigen-
vector based on the magnitude of their eigenvalues. This automated procedure
is described as follows.

First, the set of eigenvectors is refined by eliminating those possessing ex-
tremely insignificant or null eigenvalues: carrying very little information. Thus,
all those eigenvectors not satisfying the refinement equation (5) are discarded.

λυ > φ, where (5)

—φ is an adjustable coefficient whose value is set by default to 0.01×λ1, based
on our empirical studies;

—λυ > φ is the eigenvalue of the (υ)th eigenvector Eυ satisfying Equation (5);

—υ ∈V is defined as the refined eigenvector space.

Next, a function based on the standard deviation values of the refined eigen-
vector space, and which captures the similarity degree among the nominal fea-
ture values in the data set, is defined. Thus, all those eigenvectors satisfying
Equation (6) are retained while all others are discarded.

STD(Eψ) ≤ MeanSTD(Eυ). (6)

—MeanSTD(Eυ) is the average value of all the standard deviation values of the
eigenvectors in the refined eigenvector space V;

—STD(Eψ) is the standard deviation of the eigenvector satisfying Equation (6)
and corresponding to the (ψ)th eigenvector Eψ ;

—ψ ∈ W is defined as the final refined eigenvector space containing all eigen-
vectors satisfying both Equations (5) and (6).

Now, those eigenvectors satisfying both Equations (5) and (6) are combined
through a weighted average into a single T × 1-dimensional column vector H =
∑

ψǫW

λψ

λt
Eψ .

—λψ is the eigenvalue corresponding to the (ψ)th eigenvector Eψ in the final
refined eigenvector space ψ ∈ W;

—λt =
∑

ψ∈W

λψ is the total sum of the eigenvalues corresponding to those eigen-

vectors present in the final refined eigenvector space ψ ∈ W.

The T scaling values for the T nominal attribute values found in the data set,
and which are ordered by the order of appearance of their corresponding dummy
variables in the indicator matrix Z, are given by the T × 1-dimensional column
vector S = D

− 1
2 H. Here, S can be further divided into Q column vectors corre-

sponding to the Q nominal attributes of the data set, and which are represented

by the Q indicator matrices composing matrix Z, that is, S = [ST
1 S

T
2 . . . S

T
Q]

T
.

Finally, the numeric data set matrix X′, corresponding to the numeric version

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

9:16 • M.-L. Shyu et al.

of the nominal data set matrix X, is computed as:

X
′ =

[

Z
T
1S1 Z

T
2S2 . . . Z

T
Q SQ

]T
. (7)

In summary, through a modified numerical scaling value generation process,
our proposed WMCA approach attempts to make effective use of the similarity
information found in all the eigenvectors and eigenvalues attained from a data
set, rather than limiting our statistical analysis to a single major principal
component.

4.2 Adaptive Sub-Eigenspace Modeling (ASEM)

Periodically, normal data connections collected from the host agents are stored
in the database of normal data maintained in the manager agent. Using the
normal data, the proposed Adaptive Sub-Eigenspace Modeling (ASEM) algo-
rithm is employed in the ASEM-based anomaly detection and the misuse de-
tection schemes, which are executed in the host agents and classification agents,
respectively.

Let p × N -dimensional matrix X = {xi j , i = 1, 2, . . . , p and j = 1, 2, . . . , N },
represent the training normal data set, where the N p-dimensional column vec-
tors X j = (x1 j , x2 j , . . . , xpj)

′, j = 1, 2, . . . , N , represent the N training normal
data instances. Let Z = {zi j , i = 1, 2, . . . , p and j = 1, 2, . . . , N } represent the
normalized training normal data with the corresponding column vectors rep-
resenting normalized training normal data instances Z j = (z1 j , z2 j , . . . , zpj)

′,
and let μ̄i and sii be the mean and variance of the ith row of X. Equation (8) is
used to normalize the training normal data instances.

zi j =
xi j − μ̄i√

sii

. (8)

Let (λ1, E1), (λ2, E2), . . . , (λp, Ep) be the p eigenvalue-eigenvector pairs of the

correlation matrix S = 1
N−1

∑N
j=1 (Z j − Z̄)(Z j − Z̄)

′
for the normalized training

normal data set Z, Z̄ = 1
N

∑N
j=1 Z j , and λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0. The p eigenvalue-

eigenvector pairs make up the p-dimensional eigenspace, which is the platform
for both the anomaly detection scheme and the misuse detection scheme.

Next, the transformation or projection of the normalized training normal
data set can be obtained from the original space to the eigenspace. Let the
matrix Y = {yi j , i = 1, 2, . . . , p and j = 1, 2, . . . , N } be the projection or score
matrix of Z onto the p-dimensional eigenspace, where the score column vec-
tors Y j = (y1 j , y2 j , . . . , ypj)

′, j = 1, 2, . . . , N , correspond to the projection of the
normalized training normal data instances. Let Ei = (ei1, ei2, . . . , eip)′ be the ith

eigenvector for the normalized training normal data set. Equation (9) defines
the ith score value of the j th normalized vector Z j .

yi j = Ei
′
Z j = ei1z1 j + ei2z2 j + · · · + eipzpj . (9)

After defining the score row vectors Ri = (yi1, yi2, . . . , yiN), i = 1, 2, . . . , p,
an adaptive sub-eigenspace selection function is proposed in Equation (10) to
model the essential characteristics of the training normal data set.

a < STD(Rm) < b, (10)

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

Network Intrusion Detection • 9:17

where

—a is the preset coefficient to exclude extremely small principal components,
with the default value 0.0001;

—b is an adjustable coefficient, with the default value MEANSTD(Rυ) (the av-
erage value of all ST D(Rυ)), and Rυ satisfies the left-hand side of Equation
(10);

—STD(Rm) is the standard deviation of the selected score row vector satisfying
Equation (10);

—m ∈ M, M is defined as the adaptive sub-eigenspace.

The selection function in Equation (10) uses the extracted inherent statistical
information from the training data to model the training data set. Standard
deviation, a widely used statistical measure for differentiating the degree of
variance or similarity [Pentland et al. 1994], is used based on our empirical
study with comparison to other statistical measures like mean, slope, and so
on. In addition, the default values of both a and b are also determined based on
empirical studies.

Here, the original training data set (normal data) is reconstructed and mod-
eled in the adaptive subeigenspace with dimensionality reduction. The selected
principal component contributing to the sub-eigenspace represent the most
meaningful information of the training data set with respect to the hidden sim-
ilarity and are possibly nonconsecutive, as demonstrated by our experiments.

4.3 ASEM-based Anomaly Detection Scheme

For anomaly detection, a suitable discriminate measure to differentiate nor-
mal and abnormal data instances is required. For this purpose, a distance
threshold function for each training normal data instance is defined by using
Equation (11).

c j =
∑

m∈M

(ymj)
2

λm

, (11)

where

—m ∈ M is the index of the mth principal component selected from
Equation (10);

—λm is the eigenvalue of the corresponding mth principal component;

—ymj is the score value of the mth feature in the adaptive subeigenspace;

—c j is the threshold value for each data instance in the training data set; all
of them contribute to the array C = {c j , j = 1, 2, . . . , N }.

Accordingly, let SC be the sorted C in an ascending order, h = [(1 − α)×N]
be the nearest integer to (1−α) × N , and α be the preset false alarm rate of the
classifier. A class-deviation threshold Cθ = SC[h] can be defined to differentiate
between the normal and abnormal data instances.

Let X′ = {x′
i j , i = 1, 2, . . . , p and j = 1, 2, . . . , N ′} be a p × N ′-dimensional

matrix containing N ′ p-dimensional column vectors X
′
j = (x′

1 j
, x′

2 j
, . . . , x′

pj)
′,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

9:18 • M.-L. Shyu et al.

j = 1, 2, . . . , N ′, representing N ′ testing instances, including both normal and
abnormal data instances. The testing data instances are then normalized with

z
′
i j = x′

i j −μ̄i√
sii

, where Z′ = {z′
i j } represents the normalized testing data instances

with corresponding column vectors Z
′
j = (z′

1 j
, z′

2 j
, . . . , z′

pj)’, and ūi and sii are

the same parameters used in Equation (8).
Let the testing data score matrix Y′={y′

i j , i = 1, 2, . . . , p and j = 1, 2, . . . , N ′}
be the projection of Z′ onto the p-dimensional adaptive sub-eigenspace of the
training data set X, where the score column vectors Y

′
j = (y′

1 j
, y′

2 j
,. . .,y′

pj)
′,

j = 1, 2, . . . , N ′, correspond to the projection of each of the N ′ testing data
instances. Then the ith score value of the j th normalized testing instance
vector Z

′
j is given by:

y
′
i j = Ei

′
Z

′
j = ei1z

′
1 j + ei2z

′
2 j + · · · + eipz

′
pj , (12)

where Ei = (ei1, ei2, . . . , eip)′ is the same eigenvector used in Equation (9).
Compute the threshold vector C′ = {c′

j , j = 1, 2, . . . , N ′} using the class-
deviation function in Equation (13).

c
′
j =

∑

m∈M

(y′
mj)

2

λm

, (13)

where

—λm and M are the same parameters used in Equation (10);

—y
′
mj is the the score value of the mth eigenspace feature of the projected and

normalized original testing data instance X
′
j .

Thus, a testing observation X
′
j is classified as abnormal to the class of the

training normal data when c
′
j > Cθ , or as normal when c

′
j ≤ Cθ .

4.4 ASEM-Based Misuse Detection Scheme

For misuse detection, it is required to define a suitable discriminate measure
to differentiate each attack. Let X

k = {xi j , i = 1, 2, . . . , p and j = 1, 2, . . . , N k}
represent each attack in the training data set. The corresponding projection or
score matrix onto the obtained subeigenspace from the training normal data
set (described in Section (4.2)) can be obtained using Equation (9), and the
corresponding array C

k = {c j , j = 1, 2, . . . , N k} can be obtained using Equation
(11). Then, Equation (14) defines an attack reference threshold value Ck

θ to
differentiate each attack. For each testing observation X

′
j , the distance with

respect to each attack Dk
j is obtained with Equation (15). Accordingly, the attack

label for X
′
j is determined by the smallest Dk

j value.

Ck
θ =

1

N k

Nk
∑

j=1

c j . (14)

D
k
j = |c′

j − Ck
θ |. (15)

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

Network Intrusion Detection • 9:19

The ASEM-based misuse detection scheme is inspired by the fact that each
network attack has different characteristics and thus results in a self-cluster
for the corresponding score values projected onto the adaptive subeigenspace,
obtained from the training normal data set in different subsections, with an
obvious gap. In other words, compared with the training normal network data,
each network attack possesses distinct characteristics of anomaly, which is rep-
resented as a separate subsection of the score values. Therefore, the gaps among
different attacks can be captured for misuse detection.

5. EXPERIMENTAL SETUP

In order to test our framework, various experiments are organized to assess the
performance of (i) the scalability characteristics of the proposed architecture in
terms of the required agent communication, and (ii) the accuracy and time per-
formance of the proposed ASEM-based intrusion detection schemes, which are
the cores of agents’ reasoning module. Testing data sets were acquired from
three resources: the KDD CUP 1999 Data [KDD 1999], network traffic data
generated in our testbed through the application of our proposed Relative As-
sumption Modeling algorithm, and network attacks traffic data also generated
in our testbed through the application of specialized attack generation tools
such as NMAP and Nessus vulnerability scanners, the THC-Hydra and Brutus
multiprotocol brute-force scanners, the IRS port scanner, and finally the D-ITG
network traffic generator [D-ITG 2006; InsecureOrg 2006; Oxid 2006]. Addi-
tionally, all the generated network traffic data is preprocessed by our proposed
feature extraction (FE) technique in order to acquire the necessary features
for our proposed ASEM-based schemes. Experimental results include not only
the agent communication and system scalability performance of the proposed
architecture, but also the intrusion detection accuracy rates in comparison to
several well-known data mining approaches. A 10-fold cross-validation process
was performed for every intrusion detection comparison experiment for a fair
and better evaluation, and the standard deviation of the classification accuracy
for each approach is also included. A smaller standard deviation value indi-
cates that the classification approach performs in a consistently stable manner,
whereas a larger standard deviation value indicates inconsistent or unstable
performance. The term cross-validation indicates the iterative process by which
a given data set is randomly split randomly into training and testing sets com-
posed of 2

3
and 1

3
of all data instances, respectively.

5.1 Private Network Testbed Setup

Figure 2 illustrates our private LAN network testbed setup, where the gener-
ation of realistic network traffic and the performance assessment experiments
of our proposed architecture take place.

The focus of our testbed-based experiments is on network attacks based on
the TCP network protocol, since a great majority of attacks are either executed
via, or rely to a certain degree, on the TCP protocol. This is due mostly to
TCP’s frangibility and instability. For example, a survey has shown that 90%

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

9:20 • M.-L. Shyu et al.

Fig. 2. The private LAN testbed setup employed to generate realistic network traffic and test the
proposed distributed IDS system.

to 94% of Denial of Service (DoS) attacks, which are among the major threats
to the whole Internet community, are employed via the TCP protocol [Moore
et al. 2001]. Note, however, that our proposed architecture is not limited to the
detection of simply TCP-based network attacks. The network protocol is simply
one of many categorical features employed to describe a network connection
(TCP, UDP, ICMP, and ARP) and is seamlessly incorporated into our intrusion
detection schemes through the employment of WMCA.

5.2 Relative Assumption Modeling

The Relative Assumption Modeling approach is proposed due to the fact that
the so-called normal and abnormal data sets are relative concepts determined
by factors such as the available bandwidth of a network, server processing ca-
pability, average network load, network services provided, among innumerous
others. The same type of network connections may be labeled distinctly among
different kinds of networks. Furthermore, it is highly possible that the current
increasing abnormal data sets would be considered as normal in the near fu-
ture due to the rapid development of networks, computers, and their relative
techniques.

In an attempt to produce both the normal and relatively complete abnormal
data sets, we utilize a relative reversing method on core phases to propose a

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

Network Intrusion Detection • 9:21

pair of abstract definitions to express the following two opposite concepts:

—typical normal connections: generate fewer data transfers during a moderate
time period in suitable rate, frequency, and pace.

—typical abnormal connections: generate increasing data transfers during a
very short or very long time period continually and quickly.

Next, five pairs of opposite core phases are combined, such as (“suitable rate,”
“increasing”), (“not much,” “much”), (“during a moderate time period,” “during
a very short or very long time period”), (“suitable frequent,” “continually”), and
(“suitable pace,” “fleetly”), to simulate the differences between typical normal
and abnormal connections in a real-world network environment. In general,
abnormal connections should possess at least one or more typical features that
are in the form of core phases opposite to the normal ones. That is, for one group
of typical normal connections, there would be 31 (C1

5 + C2
5 + C3

5 + C4
5 + C5

5)
groups of corresponding abnormal connections. Additionally, different groups
with different degrees of anomaly or different distribution parameters can be
naturally considered as different types of attacks. Finally, these abstract phases
with different numeric values in different networks should yield good relative
and adjustable generated network traffic patterns.

5.3 Feature Extraction (FE)

The proposed feature extraction (FE) technique is executed in order to trans-
form the raw generated data into data applicable for data mining and classifica-
tion. Furthermore, for any supervised classification method, feature extraction
(FE) is an important module, as it can drastically affect an algorithm’s perfor-
mance [Liu et al. 2003; Liu and Motoda 1998]. The generated network data
contains all the required analysis information, which can be extracted from
the data packets flowing across the network. Before the features are extracted
from the network data, the network traffic needs to be collected and stored.
The following three steps are proposed to extract features that are critical for
effective network intrusion detection:

—Windump: the windows version of Tcpdump [Jacobson et al. 2007], which
uses the Libcap [2007] library to extract low-level traffic from the network,
is used to collect and store all the raw data directly from the network card.

—Tcptrace [2007]: a tool used to produce several different types of outputs
containing information such as elapsed time, number of bytes and segments
transferred both ways, number of retransmissions, round trip times, window
advertisements, network throughput, and many more features, through the
analysis of the Windump generated files, is used to extract basic information
on each TCP connection from the Windump collected data.

—Our own FE techniques are used to extract/generate basic, time-based,
connection-based, and ratio-based network features from the Tcptrace output
file.
(1) Basic Features: basic information related to the connection. Seventeen

basic features are extracted, which include duration, IP, port, total pack-
ets, acknowledge packets, throughput, and so on.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

9:22 • M.-L. Shyu et al.

Table I. Relation between Core Phases and Features

Core Word Pair Feature Type

(“suitable rate,” “increasing rate”) Basic and Ratio-based

(“not much,” “much”) Basic

(“during a moderate time period,” “during
a very short or very long time period”)

Basic

(“suitable frequent,” “continually”) Basic and Connection-based

(“suitable pace,” “fleetly”) Basic and Time-based

(2) Time-Based Features: the number of connections having the same IP
or/and port in a 3-second sliding window. Four time-based features are
extracted to provide information on both the source and destination sides
of a connection.

(3) Connection-Based Features: the number of connections having the same
IP or/and port in the last 100 connections. Four connection-based fea-
tures are also extracted to provide information on both the source and
destination sides of a connection.

(4) Ratio-Based Features: the ratio of transferred packets between two con-
nections that have the same IP and port. Sixteen ratio-based features
are extracted to provide information on both the source and destination
sides of a connection. Ratios are found between the current and neigh-
bor connections (neighbor ratio) and between the current and the first
connection having the same IP and port.

In fact, all of these features correspond to one or more of the core phases pre-
viously described. For example, the first feature “duration” directly represents
the core phase (“during a moderate time period,” “during a very short or very
long time period”). Yet another example is the ratio features, which reflect the
core phase (“suitable rate,” “increasing rate”). Detailed information about these
relationships is shown in Table I.

5.4 Network Attack Generation Tools

In this article, a total of six software tools, ranging from vulnerability and
network scanner to traffic generators, were selected in order to generate the
network attack data needed for our studies.

(1) Nessus: It is perhaps the best free network vulnerability scanner today. It
provides plugins for the generation of over 11,000 types of network related
vulnerability tests including DoS, port scanning, and OS-specific vulnera-
bilities.

(2) NMAP: Similarly to Nessus, this tool has been commonly employed for the
assessment of vulnerabilities present in network system setups and also
as a tool for the exploration of services available across hosts of a network.
It effectively tests IDS and firewall policies by generating various types
of network and port scanning attacks including SYN, FIN, ACK, Window,
X-MAS Tree, among others.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

Network Intrusion Detection • 9:23

(3) THC-Hydra: Developed by The Hacker’s Choice Group (THC), THC-Hydra
is a brute force password-guessing tool that supports over 30 protocols and
services, including cryptographic-based services such as SSH2. THC-Hydra
has the ability to break into not only hosts, but also routers and firewall,
making this tool a real threat for network administrators.

(4) Brutus: It is another brute force network cracker, which offers the same
functionalities as THC-Hydra with an even easier installation process.

(5) IRS Scanner: It is a powerful tool that scans for IP-based restrictions rules
for a particular network service. It combines ARP Poisoning and Half-Scan
techniques to generate totally spoofed TCP connections. IRS is the perfect
software for complementing tools such as the ones we have described.

(6) D-ITG: It provides a platform capable of producing various types of traffic
at the packet level and for the network, transport, and application layers,
while accurately implementing appropriate stochastic processes for traffic
flow features such as the packet interdeparture time and packet size. It
plays an important role in the field of network traffic analysis and can be
employed to test IDS, switches, ACLs, and firewalls, as well as to provide
the traffic needed by analytical network applications.

6. EXPERIMENTAL RESULTS AND DISCUSSION

6.1 Agent Performance Evaluation

In order to assess the scalability performance of our proposed distributed multi-
agent IDS architecture in a realistic scenario, a prototype of the proposed archi-
tecture was implemented using Matlab [Mathworks 2007] and Java software.
We conducted evaluations in terms of scalability-related criteria such as gen-
erated network traffic overhead and the degree of linearity of the degradation
of system response time for the employment of our proposed agent communica-
tion scheme. Figure 2 shows our network testbed, where the different types of
agents were placed in mutually exclusive hosts within the testbed, in a manner
such that any communication among the agents could only be realized through
the generation of network traffic rather than local traffic within any host. This
means that host and classification agents were not executed together within
the same machine, while the manager agent was placed in a host all by itself
and without the presence of any other classification agents. This measure en-
sures that every conversation between the agents would generate measurable
network traffic and yield realistic scalability results. With these constraints in
mind, the agents were placed in the hosts having the following IP addresses
within the testbed:

—Host agents: host agents were placed in the hosts having local IP addresses
10.0.1.1, 10.0.1.2, 10.0.1.3, and 10.0.1.5.

—Classification agents: classification agents’ hosts occupied the local addresses
10.0.1.4, 10.0.1.7, and 10.0.1.8.

—Manager agent: the manager agent occupied by itself the host having the
local IP address 10.0.1.6.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

9:24 • M.-L. Shyu et al.

Each classification agent, including the manager agent was executed within
its own Matlab session. An equal number of multiple Matlab sessions was ex-
ecuted in the hosts occupied by the host agents in order to support the large
number of host agents being simulated during the experiments. Each Matlab
session was allowed to support a maximum of 50 host agents before a new ses-
sion was initiated to support the execution of more host agents. Next, having
decided on the location of the agents within the testbed, a realistic experimen-
tal scenario was devised to capture the effects that the communication between
an increasing number of classification and host agents would have on the traf-
fic requirements, and consequently on the scalability performance, of the dis-
tributed architecture. In summary, our experiments consisted of instantiating
an ever increasing number of classification and host agents to simulate an ever
increasing IDS network, in a manner that would reflect the performance of
the proposed architecture as it was expanded from a small to a large scale.
Throughout the experiments, the number of classification agents connected to
the IDS ranged from a minimum of 1 (the manager agent running alone) to a
maximum of 6 (the manager agent plus 5 more classification agents sharing
an equal classification load). For each of these different numbers of connected
classification agents, the total number of host agents varies from a minimum of
10 host agents to a maximum of 100 host agents per classification agent. There
are a total of 60 (6 × 10) experiments, 1 to 6 classification agents, each with 10,
20, . . . , 100 host agents. Therefore, the maximum number of agents is 600, to
simulate a realistic network of 600 hosts connecting to the IDS network. For
each experiment, the following simulation takes place:

(1) The desired number of, and types of, agents are instantiated. The IDS
network lies quietly waiting for an abnormal event.

(2) A host agent is chosen and is ordered to emulate the detection of an ab-
normal connection to its residing host.

(3) The host agent requests the classification agent to which it is connected,
to perform supervised classification of the abnormal connection instance
and to reply with the attack type. This is achieved using the KQML EVAL-
UATE performative.

(4) Upon receiving the abnormal instance from the host agent, the classifica-
tion agent performs the misuse detection task, and then sends the classi-
fication results back to the host agent. This is achieved using the KQML
TELL performative.

(5) The classification agent then informs the manager agent about the in-
trusion recently detected by one of its host agents, by also sending the
classification results to the manager agent. This is achieved using the
KQML TELL performative.

(6) The classification agent then starts the process of informing, one by one,
all of its remaining connected host agents of the ongoing threat. This is
also achieved through the use of the KQML TELL performative.

(7) The manager agent, upon receiving the ongoing threat warning from the
classification agent, informs the other remaining classification agents, one

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

Network Intrusion Detection • 9:25

by one, of the ongoing threat and also requests them to forward the warn-
ing to all their respective host agents. This is achieved through the KQML
BROADCAST performative.

(8) As a last step, the classification agents, upon receiving the warning mes-
sage or broadcast request from the manager agent, forward the received
warning to their respective host agents, one by one.

(9) Now, the IDS network lies once again quiet, all agents having been in-
formed of the ongoing threat, waiting for the next abnormal event.

(10) At any time, the size of the IDS network may increase—more classification
or host agents are added—and the process is repeated from Step 2.

Furthermore, for each of these 60 scenarios, two features are measured,
starting from the time when step 1 is executed to the time when step 9 ends,
as an indication of the scalability performance. These features are the aver-
age bandwidth (in Mbps) consumed by the communication among the agents
throughout the simulation, and the system response time—the time period be-
tween the detection of an abnormal instance by a host agent (Step 1) and the last
host agent being informed of the ongoing threat (Step 9). The system response
time can also be interpreted as the system’s awareness time, that is, the time
required for all the agents in the IDS network to acquire the most updated in-
formation about the security status of their residing network. Both the required
average bandwidth and system response time features are measured using the
Ethereal [2007] packet capture and analysis software. Since the classification
agent is the midpoint between every host/classification/manager agent’s conver-
sations, Ethereal is executed in all of the hosts where the classification agents
reside.

The experiment makes a few assumptions, such as the fact that the effec-
tiveness of the agent communication scheme will be assessed in the absence
of network traffic or network attacks, and anomaly and misuse detection are
ignored at the host and classification layers respectively. Additionally, as illus-
trated by Step 1 of the simulation scenario, it is assumed at the beginning of
the simulation that all the required number and types of agents are already
connected to the network. Thus, some provisions of the proposed communi-
cation scheme, such as the agent registration part and host → classification
→ manager agents normal data forwarding scheme, which utilize the KQML
RECOMMEND-ONE, REGISTER, UNREGISTER, FORWARD, and INSERT
performatives, are not required for the successful implementation of the ex-
periment and are thus left out of the experiment for convenience. This is due
to the fact that the focus of the experiment is primarily on the evaluation of
those KQML performatives that are involved with the intrusion detection and
information dissemination processes. Furthermore, by varying both the num-
bers of classification and host agents that have to be informed of a possible
attack from low to significantly high values, the experimental results should
illustrate the pattern in the increase of the system response time and required
network bandwidth resources as more and more agents are introduced to reveal
the practicality of the employment of our proposed communication scheme, and
consequently, the scalability performance of our proposed IDS.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

9:26 • M.-L. Shyu et al.

Fig. 3. KQML messages employed by the classification and host agents for communication.

6.1.1 Performance of the Communication Scheme. The execution of the
60 different simulation scenarios yielded the generation of numerous KQML
messages, which follow the communication scheme described in Section 3.3.
Figures 3 and 4, for instance, illustrate a sample of the messages generated
during the simulation of the last simulation scenario, namely when 6 classifi-
cation agents and 100 host agents per classification agent were connected to
the IDS network.

Figure 3 is divided into three parts. The left side shows the execution of the
classification agent software, while the top-right part shows the execution of the
host agent responsible for initiating the simulation process by emulating the de-
tection of an abnormal connection (simulation Step (2)), and the bottom-right
shows the execution of the host agent that is the last agent in that particu-
lar simulation to have received the BROADCAST warning from the manager
agent. Figure 4, on the other hand, corresponds entirely to the execution output
of the manager agent. In particular, the left-hand side of Figure 4 corresponds
to the manager agent’s execution output during the simulation process. The
interpretation of the right-hand side will be elaborated in Section 6.1.4. Notice
from the top-right side of Figure 3 that the host agent initiates the simulation
process at 16:56:33 87 ms by sending a KQML EVALUATE message to the
classification agent. The execution of the proposed communication scheme can
be followed from the figures. The simulation ends at 16:56:35 191 ms, when
the last host agent receives a warning message forwarded by its classification
agent from the manager agent, as shown in the bottom-right of Figure 3. The
total required system awareness time for this simulation is then found to be
(16:56:35 191 ms - 16:56:33 87 ms = 00:00:02 104 ms). This result is more clearly
illustrated in Figure 5, the plot of the required system awareness time vs. the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

Network Intrusion Detection • 9:27

Fig. 4. KQML messages employed by the manager agent for communication.

Fig. 5. Plot of the communication time required by the system for full intrusion awareness, as a
function of the number of agents in the IDS.

number of classification agents and vs. the number of host agents per classifi-
cation agent, where it corresponds to the peak awareness time required by the
architecture, for all the simulation scenarios.

6.1.2 System Awareness Time Scalability. Figure 5 depicts an interesting
and rather promising result. Note that the ideal case scenario for the awareness
time scalability performance of the system, when network related delays are
ignored, is linear and dependent only on the number of hosts per classification

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

9:28 • M.-L. Shyu et al.

Fig. 6. Plot of the average bandwidth (in Mbps) required by the IDS system during the communi-
cation process, as a function of the number of agents in the IDS.

agent. For instance, we can assume that the time taken for the manager agent
to warn the classification agents is negligible compared to the time taken by the
classification agents to warn the host agents, since the number of host agents
in the IDS network is much larger. At the peak of the communication process,
when all classification agents are broadcasting in parallel exactly the same
warning TELL message to their respective host agents, the time taken by each
classification agent should be ideally equal since they work individually and
in parallel. Thus, the system awareness time is independent of the number of
classification agents and linearly dependent solely on the number of host agents
per classification agent under the assumptions.

Figure 5 resembles for the most part a plane, as expected, with a very low
slope. This indicates that the increase in the awareness time of the IDS is
linear with respect to the number of agents connected to the system, while
the low slope indicates a good stability of the system to a significant increase
in the number of agents connected to it. Also, it is not until the number of
hosts per classification agent reaches between 80 and 100, and the number of
classification agents varies between 3 and 6 (between 240 to 600 total agents)
that the network-related delays become noticeable and the awareness time
starts to increase with a higher linear slope. Mature programming techniques
can lead to significant improvement of the communication scheme performance,
better than a Matlab and Java based simulation, thus decreasing the slope of the
line shown in Figure 5, and consequently, the degrading effect that scalability
has on the time response performance of the system. Finally, the presented
linearity of the awareness time scalability is a promising result, indicating the
feasibility of a realistic employment of the proposed architecture.

6.1.3 Required Average Bandwidth Scalability. Figure 6 also depicts an
interesting and rather promising result. The ideal case scenario for the aver-
age bandwidth scalability performance of the system is also linear. However,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

Network Intrusion Detection • 9:29

in contrast to the awareness time scalability case, it is dependent only on the
number of classification agents in the system. Making the same assumptions
as before, if a snapshot is taken at any point in time during the peak of the
communication process, when all classification agents are broadcasting in par-
allel exactly the same warning TELL message to their respective host agents,
the average total number of messages traveling from the classification layer
to the host layer is ideally equal to the number of classification agents, since
each classification agent sends a maximum of 1 message at a time. Thus, the
system average bandwidth scalability is independent of the number of host
agents per classification agent, and linearly dependent solely on the number of
classification agents under the assumptions.

It can be observed that Figure 6 also resembles a plane, as expected, having
a relatively linear slope. This linear slope indicates that (i) the increase in the
average bandwidth of the IDS system is linear with respect to the number of
agents connected to the system, and (ii) it presents relatively good stability due
to the absence of sharp changes in the average bandwidth as the number of
agents in the system increases. Approximate linear scalability, whether time
or bandwidth related, is always a desirable feature in any distributed system.
Systems with a nonlinear response to scalability may collapse a network upon
the execution of communication intensive jobs or fail to function as well as
desired for the users of the system.

6.1.4 Distributed Attack Detection Capabilities. As was previously men-
tioned, let us return once again to Figure 4, which shows the execution output
of the manager agent. One important feature of the proposed architecture is
illustrated in the right-hand side of the figure. Recall that the manager agent
is also a classification agent, and thus it is also responsible for its own cluster
of host agents. The figure illustrates the scenario in which the manager agent
receives a misuse detection classification request from one of its host agents,
namely, “HA:10.0.1.1:4037” at 17:01:55 659 ms and initiates the process of clas-
sifying the abnormal instance, replying to the host agent, warning all the other
5 connected classification agents, and finally, warning all the remaining 99 host
agents in its own cluster. Notice, however, that in the middle of this process, the
manager agent receives a warning message from one of its classification agents
“CL@10.0.1.4:5001” at 17:01:55 663 ms. After handling the host agent triggered
event sequence, the manager agent then handles the new incoming message by
notifying the other remaining 4 classification agents of the new attack, and all
of the 100 host agents in its own cluster. Notice also the content of the message
received from agent “HA:10.0.1.1:4037.” The first, second, and third features
describe the source IP (10.0.1.8), source port (4044), and destination port (23)
of the detected abnormal connection. Upon classifying this feature vector, the
manager agent will have knowledge that a TELNET based brute force attack
is being generated from host 10.0.1.8 at source port 4044. At the same time,
the message from “CL@10.0.1.4:5001” describes that a TELNET based brute
force attack is also being generated from a malicious host 10.0.1.8 from source
port 6559. At this point, the manager agent is capable of intelligently entailing
that a distributed TELNET based brute force attack is being generated from

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

9:30 • M.-L. Shyu et al.

host 10.0.1.8, and it can further entail that, since the source ports are different
for both attacks, the intruder may be generating them in parallel and from
different local socket addresses.

In essence, these results show that the proposed IDS architecture provides a
natural way of detecting distributed network attacks, which may include differ-
ent types of attacks, such as DoS and network scanning attacks, and entailing
possible characteristics of the attack such as the parties involved in it and its
frequency. This is a desirable feature of the proposed IDS, as distributed forms
of attacks commonly occur in our networks today.

6.2 Anomaly Detection Performance Evaluation

Various experiments comparing the K-nearest neighbor (KNN) [Liao and
Vemuri 2002] and LOF [Breuning et al. 2000] methods, are conducted with
the following three pairs of data sets with preset false alarm rates from 0.01%
to 2%. It is noted that the KNN method employed here is a threshold-based
algorithm designed for anomaly detection [Liao and Vemuri 2002], which is not
the same as the one commonly used in the regular classification domain, since
here only normal, rather than both normal and abnormal, data instances are
used in the anomaly detection process. The average anomaly detection rates of
KNN with the pre-set parameter k = 1, 2, 3, 4, and 5 are used for better eval-
uation. In LOF [Breuning et al. 2000], each instance is assigned an outlierness

degree called the local outlier factor (LOF) of an instance, which depends on how
isolated the instance is with respect to the surrounding neighboring instances.

—Pair 1: The 12,932 normal instances and 11,618 abnormal instances used in
Xie et al. [2006]. It is a mix of generated normal and abnormal instances
based on our testbed and DoS connections from the MIT Tcpdump data set
(LLDOS2.0.2.) [DARPA 2007]. The data has a total of 39 numeric features.
As in a typical anomaly detection scenario, from among the normal data
instances, 3,000 are randomly chosen for training.

—Pair 2: The 2,233 normal and 3,005 abnormal instances generated in our
testbed through our proposed Relative Assumption Modeling approach and
Feature Extraction techniques. The data has a total of 47 features, where 4
of them are nominal. A total of 2/3 of the normal data instances are randomly
chosen for training.

—Pair 3: The 5,000 normal instances and 4,444 abnormal instances obtained
from KDD CUP 1999 Data [KDD 1999]. The data has a total of 41 features,
where 3 of them are considered as nominal. Among them, 2/3 of the normal
data instances are randomly chosen for training.

For the Pair 1 data set, where the abnormal instances are mixed with several
kinds of attacks, the true detection rates of the ASEM-based scheme, LOF, and
KNN are presented in Table II. Additionally, all the observed false alarm rates
for all of the methods are approximately equal to the preset values, and thus we
move our focus to the anomaly detection rates for evaluating the performance
of ASEM. From the table, it can be seen clearly that ASEM maintains a high
detection rate (> 94%) under a low range of preset false alarm rates (from

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

Network Intrusion Detection • 9:31

Table II. Anomaly Detection Rates Comparison among ASEM, LOF,
and KNN with the Pair 1 Data Set. Standard Deviations of

Classification Accuracy are Shown in Parentheses

False Alarm ASEM LOF KNN

0.01% 94.27%(±2.13) 49.83%(±10.53) 47.41%(±15.90)

0.05% 94.34%(±2.53) 51.04%(±9.88) 49.33%(±15.47)

0.10% 94.56%(±2.67) 67.22%(±9.72) 65.10%(±16.08)

0.50% 95.98%(±2.85) 71.68%(±13.33) 70.09%(±13.55)

1% 97.23%(±1.46) 77.26%(±17.97) 76.95%(±14.75)

2% 98.05%(±1.32) 80.32%(±19.21) 77.33%(±14.95)

Table III. Anomaly Detection Rates Comparison among ASEM, LOF,
and KNN with the Pair 2 Data Set. Standard Deviations of

Classification Accuracy are Shown in Parentheses

False Alarm ASEM LOF KNN

0.01% 88.88%(±2.04) 0.00%(±0.00) 0.00%(±0.00)

0.05% 95.34%(±1.96) 0.07%(±0.04) 0.00%(±0.00)

0.10% 95.44%(±1.88) 1.09%(±0.58) 0.00%(±0.00)

0.50% 100%(±0.00) 99.92%(±0.06) 99.90%(±0.08)

1% 100%(±0.00) 100%(±0.00) 15.67%(±4.36)

2% 100%(±0.00) 100%(±0.00) 0.00%(±0.00)

0.01% to 2%), outperforming LOF and KNN, especially in the false alarm range
of 0.01% to 0.05%, where ASEM always possesses a higher detection rate (40%
higher) than those of LOF and KNN. Furthermore, the ability of the ASEM-
based scheme to maintain high detection rates with increasing false alarm
rates indicates that the stability of the ASEM-based scheme is superior to that
of LOF and KNN. This is achieved through the selection of the representative
components, in contrast to assigning the same weight to all the attributes, as
is done in LOF and KNN, which yields a more robust predictive model. These
results reveal that ASEM possesses the favorable feature of maintaining a
preponderant and stable anomaly detection rate.

Table III lists the detection rates for the Pair 2 data set. From this table,
it can be clearly seen that ASEM maintains a high detection rate (>88.88%)
and outperforms LOF and KNN. In general, ASEM seems to be more stable
than both LOF and KNN since the anomaly detection accuracy of the latter
two methods varies greatly from 0% to even 100%, under different false alarm
rates, or the use of different training data sets. KNN performs the worst among
the three methods, which indicates that when few training instances or even
few unsuitable instances are present in the training data set, it severely impacts
KNN’s classification accuracy. LOF also exhibits failure points when the false
alarm rate is set to less than or equal to 0.1%. This indicates its inefficiency in
relatively low false alarm rates.

For the Pair 3 data set, Table IV exhibits the detection rates of ASEM, LOF,
and KNN methods. ASEM’s ability to maintain almost 100% accuracy again
demonstrates its robustness and stability. ASEM outperforms LOF and KNN
in all false alarm rates in the experiments. Similarly, KNN performs the worst,
as its anomaly detection rate is always below 31%. This is due to the fact that

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

9:32 • M.-L. Shyu et al.

Table IV. Anomaly Detection Rates Comparison among ASEM, LOF,
and KNN with the Pair 3 Data Set. Standard Deviations of

Classification Accuracy are Shown in Parentheses

False Alarm ASEM LOF KNN

0.01% 99.96%(±0.04) 0.00%(±0.00) 0.00%(±0.00)

0.05% 99.98%(±0.02) 70.59%(±9.03) 30.78%(±10.53)

0.10% 100%(±0.00) 73.58%(±8.84) 25.87%(±9.86)

0.50% 100%(±0.00) 74.39%(±8.32) 25.67%(±11.77)

1% 100%(±0.00) 79.79%(±6.58) 19.89%(±8.21)

2% 100%(±0.00) 80.27%(±5.79) 19.87%(±9.02)

the difference in Euclidean distance between the two attacks in space is so
small that KNN cannot distinguish well between the different classes.

In summary, it is noted that in all three pairs of data sets, the observed false
alarm rates of the ASEM-based scheme are approximately equal to the preset
values, indicating that ASEM maintains the misclassification rate for normal
data instances under control.

Another important performance measure acquired from all of these experi-
ments is the different methods’ training and classification speeds. ASEM per-
forms much faster than LOF and KNN, especially in comparison to the LOF
method. For example, for the Pair 1 data set, ASEM only requires about 1

20
of

the time associated with training and classification by KNN, and about 1
60

of
that of LOF, in the same execution environment of the empirical studies. It is
well known that training and classification speeds are crucial factors that must
be considered in the implementation of systems capable of practical real-time
responses. ASEM’s promising speed results make it a good choice for use in
anomaly detection applications. Therefore, along with its inherent lightweight
feature from the representative components based approach, where the ex-
tracted representative principal component and related information are used
to replace all the information provided by hundreds of data instances, ASEM
also shows good operational benefits.

6.3 Misuse Detection Performance Evaluation

Three groups of data sets are used to evaluate ASEM’s misuse detection per-
formance.

—Group 1: Seven types of network attacks, namely 884 Back, 908 Satan, 1,215
Smurf, 138 Apache, 929 Neptune, 108 Portsweep, and 262 Warezmaster in-
stances from the KDD CUP 1999 Data [KDD 1999]. The data has a total of
41 features, where 3 of them are considered as nominal features.

—Group 2: Three types of network attacks, namely attack1, attack2, and
attack3, generated in our LAN network testbed [Xie et al. 2006] through
the proposed Relative Assumption Modeling and Feature Extraction tech-
niques. The data has a total of 47 features, where 4 of them are nominal.
The data in this group include (i) 881 attack1 abnormal network connec-
tion instances, out of which 500 are randomly selected for training and the
remaining ones are used for testing, (ii) 1,047 attack2 abnormal network

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

Network Intrusion Detection • 9:33

Table V. Misuse Detection Rates Comparison among ASEM, C4.5,
SVM, KNN, Logistic, NN, and DT. Standard Deviations of

Classification Accuracy are Shown in Parentheses

Accuracy % Group 1 Group 2 Group 3

ASEM 99.85%(±0.08) 97.75%(±1.02) 98.41%(±0.36)

C4.5 99.79%(±0.17) 97.80%(±1.24) 97.74%(±1.18)

SVM 98.94%(±0.24) 93.94%(±2.48) 96.44%(±2.86)

KNN 97.76%(±1.75) 96.47%(±2.07) 96.62%(±2.96)

Logistic 98.03%(±0.93) 96.86%(±2.04) 96.79%(±2.44)

NN 97.77%(±1.31) 96.89%(±2.54) 96.02%(±2.81)

DT 99.65%(±0.18) 95.30%(±2.75) 96.65%(±2.29)

connection instances, where 500 are randomly selected for training and the
remaining ones are used for testing, and (iii) 1,077 attack3 network connec-
tion instances, out of which 500 are randomly selected for training and the
remaining ones are used for testing.

—Group 3: Data generated by network attack generation tools. It is composed
of 6 different attacks including 2,295 ACK, 4,661 Connection, 1,576 HTTP,
4,373 SSH, 2,607 TELNET, and 603 Window. The data has a total of 47 fea-
tures, where 4 of them are nominal. From them, 2

3
of each attack is randomly

selected for training.

In order to ensure the full manifestation of the two aspects of high anomaly
detection and low observed false alarm rates in the experiments, each group
of data is comprised of data instances belonging to multiple classes and the α

value is set to 0.1% (a typical low false alarm rate being used in many research
areas [Branden and Hubert 2004, 2005]).

Table V shows the classification accuracy of the ASEM, C4.5 decision trees,
SVM, K-Nearest Neighbor (KNN) (k = 5), Logistic, Nearest Neighbor (NN), and
Decision Table (DT) for each group of data sets. As can be seen from this table,
the misuse detection rates for all methods are comparable, as the known attacks
always possess obviously different characteristics. In fact, ASEM outperforms
all other compared methods (except for the C4.5 method in Group 2), and more
importantly, it has the smallest standard deviation values for all three groups
of data, indicating it is more stable than the other methods in the experiments.

Another important comparison is the response time. For many systems that
employ misuse detection, real-time response is a critical issue. Many existing
data mining algorithms present algorithmic responses that, without suitable
modifications, cannot be employed in real-time demanding applications such
as intrusion detection. Our experiments have, however, further indicated that
ASEM presents the potential to be employed in a real-time intrusion detection
system.

In the first place, ASEM requires significantly lower training and classi-
fication times than all of the other compared methods, as is illustrated in
Table VI, which shows the average combined time in seconds for the training
and classification times required by the investigated methods under the same
execution environment. The combined, rather than the individual, training
and classification times are used because, for instance, for NN and KNN, the
training model generation time is negligible, as it involves simple operations

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

9:34 • M.-L. Shyu et al.

Table VI. Comparison of the Average Combined Time
(in Seconds) for Training and Classification Among

ASEM, C4.5, SVM, KNN, Logistic, NN, and DT

Combined Times Group 1 Group 2 Group 3

ASEM 12.1 s 7.6 s 14.3 s

C4.5 17.3 s 14.4 s 19.6 s

SVM 278.6 s 112.3 s 312.7 s

KNN 83.5 s 48.3 s 98.4 s

Logistic 115.6 s 78.9 s 136.5 s

NN 75.4 s 37.5 s 90.7 s

DT 53.6 s 47.4 s 59.2 s

such as data normalization, thus the overall combined time reflects solely the
classification time of the methods. However, for the methods other than NN
and KNN, the classification time was found to be a significantly small portion
of the overall combined time, in other words, most of the methods perform the
classification task in a very efficient manner. The drawback though is in the
requirement of a larger training time. Thus, the results presented in Table
VI primarily reflect the training time costs associated with the methods other
than NN and KNN. From Table VI, it can be observed that ASEM uses a sig-
nificantly lower training time than all other methods, especially for the Group
3 data set, which has the largest amount of data instances and attributes.

Additionally, ASEM requires less memory storage to maintain the classifi-
cation components obtained during the training phase. In contrast, methods
such as NN and KNN, which are instance-based, require large memory storage
to maintain a predictive model that can, at times, be composed of hundreds of
training data instances. Also, rule-based methods such as C4.5 and DT may
have large memory storage requirements for the hundreds of rules generated
from a data set, thus, leading to inefficient classifiers. For example, as illus-
trated in Table VI, KNN’s and NN’s time response performances present huge
deteriorations for large data sets.

7. CONCLUSION

In this article, a novel distributed multiagent IDS architecture is presented,
which incorporates the desirable features of the multiagent design method-
ology with highly accurate, fast, and lightweight ASEM-based anomaly and
intrusion detection schemes. Even as a larger number of agents are introduced
into the network, our proposed architecture provides effective communication
between its two comprising layers, through an efficient agent communication
scheme that requires only a small and manageable generation of network traf-
fic overhead, as shown in the experiment results. A key concept in the design
of the proposed IDS architecture was the concept of lightweight agents, which
takes into account realistic assumptions regarding the host machines with pos-
sibly low processing power and memory in the network. To test the feasibility
of a realistic employment of all the salient aspects of the proposed IDS architec-
ture, a private LAN testbed is built to facilitate both the generation of realistic
normal and anomalous network traffic, and common network attack generation

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

Network Intrusion Detection • 9:35

tools, in order to appropriately verify the performance of the ASEM-based intru-
sion detection schemes when compared to other well-known anomaly detection
and supervised classification methods, and to assess the important scalability
aspects of the proposed architecture such as system response time and agent
communication generated network traffic overhead. From the experimental
results, we can conclude that (i) the ASEM-based anomaly detection scheme
achieves a satisfactory combination of both high detection rate (> 88%) and
good operational merits such as low training and classification times, (ii) the
ASEM-based misuse detection scheme achieves > 97% accuracy for all three
groups of data, and (iii) the ASEM-based misuse detection scheme also has the
lowest combined training and classification times. Possessing high detection
rates in both the anomaly and misuse detection tasks, and equipped with good
operational merits, ASEM was found to be suitable for use in both layers of the
proposed IDS architecture. Finally, the experimental results on the scalability
of the proposed architecture yielded promising results indicating a satisfactory
linear scalability of both the system response time and average bandwidth re-
quirements as a larger number of agents are introduced into the IDS network.
These results are indicative that our proposed IDS architecture provides many
favorable characteristics such as being lightweight, and having good scalability,
adaptability, and graceful degradation of service.

REFERENCES

ANDERSON, D., FRIVOLD, T., AND VALDES, A. 1995. Next-generation intrusion detection expert system
(NIDES): A summary. In SRI International Technical Report. Vol. 95. Menlo Park, CA. 28–42.

BRANDEN, K. AND HUBERT, M. 2004. Robust classification in high dimensional data. In Proceedings

in Computational Statistics. Prague, Czech Republic, 1925–1932.
BRANDEN, K. AND HUBERT, M. 2005. Robust classification in high dimensions based on the SIMCA

method. Chemometrics and Intelligent Laboratory Systems 79, 10–21.
BREUNING, M. M., KRIEGEL, H.-P., NG, R. T., AND SANDER, J. 2000. LOF: Identifying density-based

local outliers. In Proceedings of the ACM SIGMOD Conference. Dallas, TX. 93–104.
CLARK, D. 2001. Rethinking the design of the internet: end to end arguments vs. the brave new

world. ACM Trans. Inter. Tech. 1, 1 (Sept.), 70–109.
DARPA 2007. Intrusion detection evaluation data sets. available at http://www.ll.mit.edu/.
D-ITG. 2006. Distributed internet traffic generator. available at http://www.grid.unina.

it/software/ITG/.
DASGUPTA, D. AND BRIAN, H. 2001. Mobile security agents for network traffic analysis. In DARPA

Information Survivability Conference and Exposition (DISCEX II’01). Vol. 2. Anaheim, CA. 332–
340.

ERTOZ, L., EILERTSON, E., LAZAREVIC, A., TAN, P., SRIVASTAVA, J., KUMAR, V., AND DOKAS, P. 2004.
The MINDS—Minnesota Intrusion Detection System, Next Generation Data Mining. MIT Press,
Cambridge, MA.

ETHEREAL. 2007. Ethereal—A network protocol analyzer. available at http://www.ethereal.com.
FOUKIA, N., HULAAS, J., AND HARMS, J. 2001. Intrusion detection with mobile agents. In Proceedings

of the 11th Annual Internet Society Conference. Stockholm, Sweeden.
GREENACRE, M. AND BLASIUS, J. 2006. Multiple Correspondence Analysis and Related Methods.

Chapman and Hall, Boca Raton, FL, USA.
GREENACRE, M. J. 1984. Theory and Applications of Correspondence Analysis. Academic Press,

London.
HAN, B. 2003. Support vector machines. available at http://www.ist.temple.edu/∼vucetic/

cis526fall2003/lecture8.doc.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

9:36 • M.-L. Shyu et al.

HELMER, G., WONG, J., S. K., J., HONAVAR, V., MILLER, L., AND WANG, Y. 2003. Lightweight agents
for intrusion detection. J. Syst. Softw. 67, 109–122.

HOCHBERG, J., JACKSON, K., STALLINGS, C., MCCLARY, J., DUBOIS, D., AND FORD, J. 1993. NADIR: An
automated system for detecting network intrusions and misuse. Comput. Secur. 12, 3 (May),
235–248.

HOOPER, P. 1999. Reference point logistic classification. J. Classif. 16, 91–116.
INSECUREORG. 2006. Nmap free security scanner, tools and hacking resources. available at

http://insecure.org.
JACOBSON, V., LERES, C., AND MCCANNE, S. 2007. Tcpdump. available at anonymous@ftp.ee.lbl.gov.
KANNADIGA, P. AND ZULKERNINE, M. 2005. DIDMA: A distributed intrusion detection system using

mobile agents. In Proceedings of the Sixth International Conference on Software Engineering,

Artificial Intelligence, Networking and Parallel and Distributed Computing. 238–245.
KDD. 1999. KDD Cup 1999 Data. available at http://kdd.ics.uci.edu/databases/kddcup99/.
KONE, M., SHIMAZU, A., AND NAKAJIMA, T. 2000. The state of the art in agent communication lan-

guages. Knowl. and Inform. Syst. 2, 3, 259–284.
LABIB, K. AND VEMURI, V. 2004. Detecting and visualizing Denial-of-Service and network probe

attacks using principal component analysis. In Third Conference on Security and Network Ar-

chitectures (SAR’04). La Londe, France.
LAZAREVIC, A., ERTOZ, L., KUMAR, V., OZGUR, A., AND SRIVASTAVA, J. 2003. A comparative study of

anomaly detection schemes in network intrusion detection. In Proceedings of the Third SIAM

Conference on Data Mining. San Francisco, CA.
LEE, W. AND STOLFO, S. 2000. A framework for constructing features and models for intrusion

detection systems. ACM Trans. Inform. Syst. Secur. 3, 4 (Nov.), 227–261.
LIAO, Y. AND VEMURI, V. 2002. Use of K-nearest neighbor classifier for intrusion detection. Comput.

Secur. 5, 5, 439–448.
LIBCAP. 2007. Libcap. available at http://www.tcpdump.org.
LIU, H. AND MOTODA, H. 1998. Feature Extraction, Construction and Selection: A Data Mining

Perspective. Kluwer Academic Publishers, Boston, MA.
LIU, H., YU, L., MANORANJAN, D., AND MOTODA, H. 2003. Active feature selection using classes. In

Proceedings of Seventh Pacific-Asia Conference on Knowledge Discovery and Data Mining. Seoul,
Korea, 474–485.

MATHWORKS. 2007. Matlab. available at http://www.mathworks.com/matlabcentral/.
MOORE, D., VOELKER, G., AND SAVAGE, S. 2001. Inferring internet Denial-of-Service activity. In

Usenix Security Symposium. Washington, D.C. 9–22.
MORENO, A. 2005. Medical applications of multi-agent systems. available at http://cyber.felk.

cvut.cz/EUNITE03-BIO/pdf/Moreno.pdf.
OXID. 2006. Irs. available at http://http://www.oxid.it/irs.html.
PENTLAND, A., MOGHADDAM, B., STARNER, T., OLIYIDE, O., AND TURK, M. 1994. View-based and modu-

lar eigenspaces for face recognition. In Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR’94). Seattle, WA, 84–91.
QUINLAN, J. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco, CA.
SINGH, M. 1999. A social semantics for agent communication languages. In Proceedings of IJCAI-

99 Workshop on Agent Communication Languages. Stockholm, Scandinavia, 75–88.
SNAPP, S., BRETANO, J., DIAS, G., GOAN, T., HEBERLEIN, L., HO, C., LEVITT, K., MUKHERJEE, B., SMAHA, S.,

GRANCE, T., TEAL, D., AND MANSUR, D. 1991. DIDS (distributed intrusion detection system)—
motivation, architecture, and an early prototype. In Proceedings of the 14th National Computer

Science Conference. Washington D.C. 167–176.
SPAFFORD, E. AND ZAMBONI, D. 2000. Intrusion detection using autonomous agents. Comput.

Netw. 34, 4 (Oct.), 547–570.
TCPTRACE. 2007. available at http://www.tcptrace.org.
TOU, J. AND GONZALEZ, R. 1974. Pattern Recognition Principles. Addison-Wesley, MA.
VAIDEHI, K. AND RAMAMURTHY, B. 2004. Distributed hybrid agent based intrusion detection and

real time response system. In Proceedings of the First International Conference on Broadband

Networks (BROADNETS’04). 739–741.
VERWORED, T. AND HUNT, R. 2002. Intrusion detection techniques and approaches. Comput.

Comm. 25, 1356–1365.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

Network Intrusion Detection • 9:37

WEKA. 2007. Weka. available at http://www.cs.waikato.ac.nz/ml/weka/.
XIE, Z., QUIRINO, T., SHYU, M.-L., CHEN, S.-C., AND CHANG, L. 2006. A distributed agent-based

approach to intrusion detection using the lightweight PCC anomaly detection classier. In
IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing

(SUTC2006). Taichung, Taiwan, R.O.C, 446–453.

Received March 2006; revised January 2007; accepted May 2007

ACM Transactions on Autonomous and Adaptive Systems, Vol. 2, No. 3, Article 9, Publication date: September 2007.

