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Abstract
The dynamics of spontaneous fluctuations in neural activity are shaped by underlying patterns of anatomical connectivity.
While numerous studies have demonstrated edge-wise correspondence between structural and functional connections, much
less is known about how large-scale coherent functional network patterns emerge from the topology of structural networks. In
the present study, we deploy a multivariate statistical technique, partial least squares, to investigate the association between
spatially extended structural networks and functional networks. We find multiple statistically robust patterns, reflecting
reliable combinations of structural and functional subnetworks that are optimally associated with one another. Importantly,
these patterns generally do not show a one-to-one correspondence between structural and functional edges, but are instead
distributed and heterogeneous, with many functional relationships arising from nonoverlapping sets of anatomical
connections.Wealsofind that structural connections betweenhigh-degreehubs are disproportionately represented, suggesting
that these connections are particularly important in establishing coherent functional networks. Altogether, these results
demonstrate that the network organization of the cerebral cortex supports the emergence of diverse functional network
configurations that often diverge from the underlying anatomical substrate.
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Introduction
Cognitive functions and complex behaviors are thought to emerge
from the links and interactions among brain areas (McIntosh
2000). Recent advances in imaging and tracing of neuronal con-
nections have resulted in the creation of comprehensive network

maps (connectomes) of neural elements and their white matter
connections (Hagmann et al. 2008; Iturria-Medina et al. 2008).
The evolution of neural dynamics on top of this anatomical sub-
strate gives rise to coherent electrophysiological, hemodynamic,
and metabolic activity. A concurrent literature emphasizing the

© The Author 2016. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

3285

Cerebral Cortex, July 2016;26: 3285–3296

doi: 10.1093/cercor/bhw089
Advance Access Publication Date: 21 April 2016
Original Article

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/26/7/3285/1746324 by guest on 16 August 2022

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://www.oxfordjournals.org


temporal correlations between remote neural elements has re-
vealed highly organized global coupling patterns, termed function-
al connectivity (FC) (Friston 1994; Fox et al. 2005; Power et al. 2011).

Although functional interactions are shaped and constrained
by the underlying anatomy, the precise nature of the relation-
ship between structure and function remains a fundamental
question (Honey et al. 2010; Park and Friston 2013). Several stud-
ies have demonstrated that the presence and/or strength of a
structural connectionbetween twobrainareaspredictsthe strength
of the functional connection between those areas (Hagmann
et al. 2008; Skudlarski et al. 2008; Honey et al. 2009; Shen et al.
2012; Hermundstad et al. 2014), and vice versa (Hermundstad
et al. 2014; Deco et al. 2014). Similarly, the structural and func-
tional connectivity profiles of brain areas are often correlated,
such that central, well-connected structural hubs (Hagmann
et al. 2008; Gong et al. 2009) are also likely to play central roles
in shaping functional connectivity (Buckner et al. 2009; Tomasi
and Volkow 2010; Shen et al. 2012).

Despite the link between structural and functional connecti-
vity at the level of individual connections or nodes, it remains
unknown whether network-level interactions among neural ele-
mentsmay give rise to global functional patterns. In other words,
can a network of structural connections predict the strength of a
functional network? A consistent finding in computational mod-
eling is that biophysical dynamical systems (e.g., neural masses)
coupled using anatomically realistic connectivity patterns can
simulate functional connectivity patterns that are more similar
to empirically observed functional connectivity than static struc-
tural connectivity (SC) (Ghosh et al. 2008; Deco et al. 2009; Adachi
et al. 2012; Haimovici et al. 2013; Goni et al. 2014;Messé et al. 2014;
Hansen et al. 2015; Mišic ́ et al. 2015; Ponce-Alvarez et al. 2015;
Stam et al. 2015). This theoretical work suggests that coordinated
coupling between multiple brain areas may lead to indirect, net-
work-level effects, whereby a particular structural configuration
collectively supports a different, nonoverlapping functional
configuration, in addition to the “one-to-one” mapping between
individual structural and functional connections.

Here, we use amultivariate statistical technique (partial least
squares; PLS;McIntosh et al. 1996;McIntosh and Lobaugh 2004) to
investigate the relationship between structural and functional
networks, derived from diffusion-weighted imaging (DWI) and
functional magnetic resonance imaging (fMRI). We simultan-
eously search for structural and functional patterns that optimal-
ly covarywith each other and empirically test the hypothesis that
the integrated structural connectome gives rise to network-wide
associations, whereby structural networks support divergent,
nonoverlapping functional network configurations. In addition,
we investigate how network-level structure-function relation-
ships determine the interaction among resting-state networks
(RSNs; Supplementary Fig. 1) (Damoiseaux et al. 2006; Smith
et al. 2009; Yeo et al. 2011; Power et al. 2011), and how the emer-
gence of these relationships depends on the topological proper-
ties of individual nodes and connections.

Materials and Methods
Data Acquisition

Data were collected as part of the Human Connectome Project, a
Washington University—Minnesota Consortium (Van Essen et al.
2013). Healthy participants were recruited from the Washington
University (St. Louis, MO) area. All participants provided informed
consent.Datausedwere fromthirdquarter (Q3) release, comprising
a total of N = 156 participants.

Functional Connectivity (FC)
Whole-brain echo-planar imaging was acquired using a 32-chan-
nel head coil on a modified 3T Siemens Skyra scanner, with the
following parameters: time to repetition = 720 ms, time to echo =
33.1 ms, flip angle = 52o, bandwidth = 2290 Hz/pixel, in-plane
field of view = 208 × 180 mm, 72 slices, 2 mm isotropic voxels,
and multiband acceleration factor = 8 (Ugurbil et al. 2013; Smith
et al. 2013). FMRI data were collected for 28 min during rest,
with eyes open. The first 13 volumes (corresponding to 10 s)
were removed to allow signal stabilization. Preprocessing in-
cluded motion correction, regression of white matter, cerebro-
spinal fluid and movement signals, linear detrending, motion
scrubbing, and low-pass filtering (Power et al. 2012).

Structural Connectivity (SC)
The cortex was parcellated into 114 distinct regions using a
subdivision of FreeSurfer’s Desikan–Killiany atlas (Cammoun
et al. 2012). White matter edges were reconstructed from each
participant’s diffusion-weighted MR images using deterministic
streamline tractography. All streamlines were initiated in white
matter voxels. If a streamline intersected more than two parcels,
it was interpreted as comprising multiple connections. Crossing
fibers were modeled using generalized q-sampling imaging (GQI;
Yeh et al. 2010). The resulting matrices were not thresholded,
thus preserving their original density (mean across subjects =
15.24%, standard deviation = 0.86%). For more details regarding
the tractography procedure, we refer the reader to van den Heu-
vel, Scholtens, Feldman Barrett, et al. (2015); van den Heuvel,
Scholtens, de Reus, et al. (2015).

PLS Analysis

PLS is a multivariate statistical technique used to relate two sets
of variables to each other (Wold 1966; McIntosh and Lobaugh
2004; Abdi 2010; Krishnan et al. 2011; McIntosh and Mišic ́ 2013).
The goal of the analysis is to simultaneously find linear combina-
tions of variables in each block that maximally covary with each
other. In the present analysis, this corresponds to a weighted
combination of structural connections (interpreted as a struc-
tural network) and aweighted combination of functional connec-
tions (interpreted as a functional network).

Singular Value Decomposition
Group structural and functional datawere organized in two separ-
atedatamatrices,X andY, respectively (Fig. 1). Unique connections
(corresponding to the elements of the upper triangle of the adja-
cency matrix) were extracted from each individual participant’s
connectivitymatrix and stacked on top of each other. Given n = 114
nodes, this corresponds to k = 114 × (114−1)/2 = 6441 unique con-
nections. Thus, X and Y had N = 156 rows and k = 6441 columns.
Due to the sparse nature of structural connectivity, several connec-
tions are not observed in tractography-reconstructed data for any
individual, resulting in several all-zero columns in matrix X.
These columns were removed from further analysis, such that X
had N = 156 rows and k = 3896 columns. To ensure that the differ-
ences in structural and functional connection magnitudes do not
dominate the statistical model, the structural and functional data
matriceswere z-scored columnwise, by subtracting themean from
each column and dividing by the standard deviation of that col-
umn. Thus, in the present analyses the covariance matrix was ef-
fectively converted to a correlation matrix prior to decomposition.

The structure-function covariance matrix X0Y is then com-
puted, representing the covariation of all structural and function-
al connections across participants. The resulting covariance
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matrix, with ksc = 3956 rows (due to the removal of zero-valued
connections) and kfc = 6441 columns, is then subjected to singular
value decomposition (SVD; Eckart and Young 1936):

X0Y ¼ UΔV0

such that

U0U ¼ V0V ¼ I:

The outcomeof the analysis is a set ofmutually orthogonal latent
variables (LVs), where U and V are matrices of left and right sin-
gular vectors, and Δ is a diagonal matrix with singular values
along the diagonal. The ith LV is a triplet of the ith left and
right singular vectors and the ith singular value. The number of
LVs is equal to the rank of the covariance matrix X0Y, which is
the smaller of its dimensions or the dimensions of its constituent
matrices. In the present study, the number of participants is
smaller than the number of structural or functional connections
(N<< k), so the rank of X0Y can at most be equal to N. Accordingly,
the dimensions of U are ksc ×N, V is kfc ×N and Δ is N ×N.

Singular vectors weigh the contribution of individual vari-
ables (i.e., structural and functional connections) to the overall
multivariate pattern. Thus, the column vectors of U and V
weigh the structural and functional connections such that they
maximally covary with each other, and can be interpreted as
an optimal combination of structural and functional networks.
Each such structural–functional network combination is asso-
ciated with a scalar singular value from the diagonal matrix Δ,
which reflects the covariance between the original structural
and functional connectivity that is captured by the LV. The effect
size (proportion of cross-block covariance) of a LV can be esti-
mated as the ratio of the squared singular value to the sum of
squared singular values from the decomposition.

Significance of SC–FC Patterns
We assessed the statistical significance of each LV using permu-
tation tests. Permutation testswere performed by randomly reor-
dering the rows of the original structural data matrix X,

generating a set of permuted datamatrices where the original or-
dering of individual participants had been destroyed. Structure-
function covariance matrices were then computed for the
permuted structural and nonpermuted functional data matrices,
and subjected to SVD as described above. This procedure gener-
ated a distribution of singular values under the null hypothesis
that there is no relation between structure and function. Given
that singular values are proportional to the magnitude of a stat-
istical relationship captured by a LV, a P-value for a LV was esti-
mated as the proportion of times the permuted singular values
exceeded the original singular value.

Contribution and Reliability of Individual Connections
The contribution and reliability of individual connectionswas es-
timated by bootstrap resampling, which allows patterns derived
from the analysis to be cross-validated. Bootstrapping was per-
formed by randomly resampling participants with replacement
(i.e., the rows of data matrices X and Y). The resampled data ma-
trices were subjected to SVD as described above, to generate a
sampling distribution for each of the weights in the singular vec-
tors. The bootstrap distribution was used to estimate the stand-
ard error for each weight, which reflects the stability of the
weight. Finally, a bootstrap ratio was calculated for each struc-
tural and functional connection by dividing the weight from
the singular vector by its bootstrap-estimated standard error.

Thus, a bootstrap ratio with a large magnitude indicates that
the connectionwithwhich it is associated has both a large singu-
lar vector weight (i.e., contributes to the LV) and a small standard
error (i.e., is stable across participants). Thus, bootstrapping
serves as a form of cross-validation, allowing us to select connec-
tions that are stable across participants. When the bootstrap
distribution is approximately normal, the bootstrap ratio is
equivalent to a z-score (Efron and Tibshirani 1986). Bootstrap
ratio maps were thresholded at values corresponding to the
95% confidence interval. Connections were included only if
their bootstrap-estimated 95% confidence interval did not in-
clude zero. Finally, it is important to note that the bootstrap pro-
cedure was not used for hypothesis testing, eschewing the need

Figure 1. PLS analysis. SC and FC data matrices were organized by stacking the upper triangle elements from individual participants’matrices to form two newmatrices.

The rows of these matrices correspond to participants, and columns correspond to either structural or functional connections. Structural connections that were zero-

valued for all participants were removed, and the remaining data were z-scored columnwise. The covariance between structural and functional connections was

computed across participants, resulting in a rectangular SC–FC covariance matrix. The SC–FC covariance matrix was then subjected to singular value decomposition

(SVD), resulting in a vector of weights for all structural connections (interpreted as a structural network), a vector of weights for all functional connections (interpreted

as a functional network) that optimally covary with each other. Each SC–FC pattern was associated with a scalar singular value, which indicates the proportion of SC–FC

covariance accounted for by the extracted structural and functional networks.
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to correct for multiple comparisons. Rather, hypothesis testing
was done using the permutation procedure described above, at
the level of the entire multivariate pattern.

Matching Decompositions From Original and Resampled Matrices
The decompositions of both permuted and bootstrap-resampled
datamatrices are not guaranteed to produce a set of LVs compar-
ablewith the ones derived from the original datamatrix, because
both types of resampling could induce arbitrary axis rotation (a
change in the order of LVs) or axis reflection (a sign change for
the weights). As a result, Procrustes rotations are used to match
the resampled LVs to the original LVs (McIntosh and Lobaugh
2004).

Graph Theoretic Measures

All graph theoretic metrics and analyses were performed using
the Brain Connectivity Toolbox (https://sites.google.com/site/
bctnet/), including degree/strength, modularity, and the rich
club coefficient (Rubinov and Sporns 2010).

Community Detection
Functional network communities (RSNs) were derived using
a modularity maximization procedure (Newman and Girvan
2004; Rubinov and Sporns 2011; Sporns and Betzel 2016). The
goal of the procedure was to find a partition that maximizes the
quality function

QðγÞ ¼ 1
mþ

X

ij

½wþ
ij � γ � pþij �δðσ i; σ jÞ

� 1
mþ þm�

X

ij

½w�
ij � γ � p�ij �δðσi; σ jÞ;

wherewþ
ij is the connectivity matrix containing only the positive

correlations, while w�
ij contains only correlations less than zero.

The term p±ij ¼ ðs±i s±j =2m±Þ denotes the expected density of con-
nections between nodes i and j given a particular null model,
where s±i ¼ P

j w
±
ij and m± ¼ P

i;j>i w
±
ij . The variable σi represents

the community assignment of node i, and δðσ i; σ jÞ is the Kroneck-
er function and is equal to 1 when σ i ¼ σj and 0 otherwise. The
resolution parameter γ scales the relative importance of the
null model, potentiating the discovery of either larger ðγ < 1Þ or
smaller ðγ > 1Þ communities.

The procedure was performed across a range of resolution
parameters, from γ = 0.5 to 2.5 in increments of 0.1. At each reso-
lution parameter (corresponding to a particular scale), we ran the
Louvain algorithm 250 times (Blondel et al. 2008) to identify parti-
tions that produced large Q values. For each resolution parameter,
we quantified the similarity of all pairs of community assignments
as the z-score of the Rand index, and selected the parameter (γ =
1.8) with the greatest average similarity (Traud et al. 2011). Rather
than treat anyof the 250 individual partitions as representative,we
derived a consensus partition using the method presented in Bas-
sett et al. (2013). The final consensus partition had a modularity
score of Q(γ) = 0.48 and contained Nc = 6 communities which was
visually compared and matched with the topographical profiles
of previously reported RSNs (Power et al. 2011; Yeo et al. 2011), in-
cluding the ventral attention (VA), frontoparietal network (FPN),
default mode network (DMN), salience (SAL), somato-motor (SM),
and visual (VIS) networks (Supplementary Fig. 1).

Rich Club Detection
A rich club is defined as a subgraph of high-degree nodes that are
densely interconnected among each other, above and beyond

what would be expected on the basis of their degrees alone
(Colizza et al. 2006). Typically, rich club detection is performed
across a range of degrees k, selecting the subset of nodes >k
and comparing the density of the subgraph with a null model.
In the present study, we sought to detect the presence of a rich
club for a population of n = 156 participants. Due to inter-partici-
pant variance in density and the presence of individual connec-
tions, we did not perform the analysis for a group-averaged
connectivity matrix. Rather, we used a method for rich club de-
tection that operates at the group level, pooling together sub-
graphs for the entire population to create an ensemble subgraph.

Rich club detection was performed across a range of degrees.
Each individual matrix was first binarized, and for each degree k,
all nodes with degree ≤k were removed from the network. The
number of edges and nodes in the remaining subgraph was re-
corded, and the procedurewas repeated for all individual partici-
pant matrices. For each k, we calculated a pooled rich club
coefficient φ(k) as the ratio of all remaining connections to all
possible connections, representing the density of the ensemble
subgraph. This procedure was simultaneously performed for a
null distribution of 1000 randomized networks with preserved
degree sequences (Maslov and Sneppen 2002). The resulting
null distribution of rich club coefficients was used to normalize
the empirical rich club coefficient φnorm(k) = φ(k)/φrandom(k).

This procedurewas repeated for a range of k. A φnorm(k) that is
consistently >1 overa range of k suggests the presence of rich club
organization. In the present study, we observed consistent, stat-
istically significant φnorm(k) > 1 for k ≥ 27, resulting in a rich club
with 14 nodes, including the following bilateral regions: medial
prefrontal cortex, superior frontal gyrus, superior parietal cortex,
insula, superior temporal gyrus, and precuneus. Once nodes are
labeled as belonging to the rich club or not, edges can be labeled
in a similar way. Using the nomenclature described by van den
Heuvel et al. (2012), we labeled edges connecting non-rich club
nodes to non-rich club nodes as “local”, edges connecting non-
rich club nodes to rich club nodes as “feeder” and edges connect-
ing rich club nodes to rich club nodes as “rich club”.

Results
We investigated multivariate relationships between structural
and functional connectivity using PLS analysis (McIntosh et al.
1996; McIntosh and Lobaugh 2004; Abdi 2010; Krishnan et al.
2011; McIntosh and Mišić 2013), a multivariate statistical tech-
nique that relates one set of variables (in this case, structural con-
nections) to another (functional connections) by decomposing
the covariance between them and assigning weights to each con-
nection (Fig. 1). Structural and functional data were derived from
the Human Connectome Project (Van Essen et al. 2013), with n =
156 healthy participants. SC was estimated in terms of FA, while
FC was estimated from 28min-long resting-statemultiband fMRI
scans in the same participants. The analyses were subsequently
repeated for SC estimated in terms of the number of streamlines
(NOS; see Sensitivity to diffusion imaging, below).

The analysis revealed a set of 156 components or LVs(Fig. 2),
each of which represents a particular weighted pattern of struc-
tural and functional connections that optimally covary with each
other. These weighted combinations are naturally interpreted as
structural and functional networks, respectively. The number of
LVs (156) corresponds to the rank of the SC–FC covariance matrix
(in the present case, the number of participants; seeMaterials and
Methods). We selected latent variables for further analysis based
on 3 criteria. First, latent variables must be statistically significant
by permutation test (see Materials and Methods; Fig. 2, orange).
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Second, latent variablesmust account for at least 1/156th of cross-
block covariance, corresponding to covariance accounted for by
the average single latent variable (also known as theKaiser criter-
ion; Fig. 2, blue). Third, each latent variable must account for a
substantially larger proportion of covariance than the subse-
quent one, also known as Cattell’s scree test (Cattell 1966). The
scree test is a heuristic that identifies the most important LVs
based on the shape of the singular value curve. If there is a
change in the slope of the curve, from a steep slope associated
with the larger LVs to a shallow slope associatedwith the smaller
LVs, the criterion suggests to retain only the LVs before the
change in slope. In the present analysis, the change in effect
size between successive LVs was most pronounced at the
5th LV (change between 1st–2nd, 2nd–3rd, 3rd–4th, 4th–5th,
5th–6th = 2.67, 2.06, 0.42, 0.39, 0.48; change between 6th–7th,
7th–8th, 8th–9th, 9th–10th, 10th–11th = 0.12, 0.09, 0.11, 0.15, 0.07).

Divergent SC–FC Patterns

We first explore the topographic arrangement of the 5 LVs (LVs
1–5) that were selected for further analysis based on the criteria
described above (Fig. 3). The 5 LVs were statistically significant
by permutation test (P = 0.03 for LV3 and P < 10−5 for all others)
and accounted for 8.1, 5.5, 3.4, 3.0, and 2.6% of covariance
between structure (DWI) and function (fMRI). Each connection re-
presents a bootstrap ratio: the weight of a particular connection,
divided by its bootstrap-estimated standard error. The most sali-
ent feature of these patterns is that they generally do not show a
simple one-to-one correspondence between structural and func-
tional edges. Rather, the patterns are rich and heterogeneous,
rarely conforming or perfectly matching, suggesting that struc-
tural connections have the capacity to support and influence re-
mote functional connections (Fig. 3). To quantify this lack of
correspondence, we correlated the structural and functional
weights for each LV, showing generally poor and insignificant
correlations between the 2 (r = 0.01, 0.008, −0.025, 0.021, 0.0091
and P = 0.41, 0.53, 0.04, 0.08, 0.48 for LVs 1–5). Supplementary Fig-
ures 2–6 providemore detail regarding the specific structural and
functional connections involved in these networks by showing
the weighing of these connections between all pairs of ROIs.

At the same time, the patterns recapitulate several previously
reported SC–FC relationships. For instance, the first LV (LV1)
prominently captures functional connectivity within the DMN,
including connectivity between medial prefrontal cortex and
posterior cingulate, as well as between lateral parietal cortices
(see also Fig. 4). The corresponding structural pattern shows
that this functional configuration strongly covaries with the ana-
tomical projections between medial prefrontal cortex and the
posterior cingulate, but does not find any covarying projections
between posterior cingulate and lateral parietal cortices. This is
consistent with previous reports, which have shown that DMN
FC is supported by projections between medial frontal cortex
and medial and lateral parietal cortices, yet have repeatedly
failed to find evidence of anatomical projections betweenmedial
parietal cortex (precuneus and posterior cingulate) and lateral
parietal cortices cortices (Greicius et al. 2009; Honey et al. 2009;
van den Heuvel et al. 2009).

Anatomical Basis of RSN Connectivity

We next investigate patterns of connectivity within and between
functional communities (RSNs; Supplementary Fig. 1), and relate
these to anatomical connectivity patterns. RSNs are communities
of brain regions that, at rest, display greater functional connectiv-
ity with each other thanwith other regions, yet are often anatom-
ically separated. They have a distinct functional profile and are
thought to support specific cognitive functions (Damoiseaux
et al. 2006; Smith et al. 2009; Yeo et al. 2011; Power et al. 2011).

Figure 4 shows, for each LV, themean connectivity within and
between RSNs (top of each panel), as well as the most reliable in-
dividual connections (bottom of each panel). Stratifying connec-
tions by their RSN membership again displays the considerable
divergence in multivariate SC–FC patterns. In many cases, FC
within an RSN is not exclusively supported by SC within the
same RSN. Rather, functional connections within and between
RSNs are often associated with structural connections within
and between other RSNs.

LV2 shows that structural connectivity between the visual
and FPN is associatedwith a considerably broader set of function-
al interactions, encompassing not just visual-frontoparietal in-
teractions, but also visual-default mode, visual-salience, and
visual–VA interactions. This suggests that the anatomical projec-
tions between the visual and FPN act as a conduit to the rest of
the brain, facilitating communication between the relatively per-
ipheral visual network and other networks, including the default
mode, salience and VA networks. LV 4 shows a related effect,
whereby the anatomical connections between the visual and
VA networks support functional interactions between the visual
and DMNs (Fig. 4, blue connections). This statistical effect again
highlights the integrative role of polysensory association net-
works, in this case facilitating communication between the vis-
ual system and the rest of the brain.

LV3 captures the emergence of bilateral frontal and lateral
occipito-parietal functional clusters, encompassing lateral and
superior temporal cortices and anterior cingulate, as well as su-
perior and inferior parietal cortices, cuneus and precuneus, peri-
calcarine, and inferior temporal cortices. The analysis indicates
that these functional patterns are supported by frontoparietal,
fronto-temporal, and fronto-occipital structural connections,
but interestingly, despite common covariation in the frontal
and parietal functional connections (Fig. 3, blue connections),
there are no statistically reliable functional connections between
these frontal and posterior clusters. This demonstrates that the
presence of a structural connection does not always predict the

Figure 2. Latent variablemagnitudes. The PLS analysis produced k = 156 LVs, each

of which represents a particular SC–FC relationship, and is associated with a

singular value. The squared magnitude of each singular value is proportional to

the strength of the SC–FC relationship. (Blue) percent covariance (i.e., effect

size) accounted for by each LV. (Orange) P-value associated with each LV, as

determined by permutation tests.
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corresponding functional connection. In addition, LV3 shows
that much of the within-module functional connectivity for
large, polysensory association networks such as default mode,
salience and FPN occurs in the absence of direct anatomical pro-
jections (Figs 3 and 4, red connections).

Finally, LV5 shows that occipito-temporal and temporo-par-
ietal anatomical connections are associated with long-distance,

bilateral temporal functional interactions, particularly in associ-
ation cortex, including bilateral transverse temporal and superior
temporal gyri. This LV suggests that temporal homotopic func-
tional connectivity and synchrony may at least in part be
mediated by indirect projections (for example, the superior longi-
tudinal fasciculus), in addition to direct rostral and midsaggital
callosal projections that interconnect the superior temporal

Figure 4. RSN relationships. The 5 SC–FC patterns revealed by PLS are stratified by their RSN membership. The RSNs are abbreviated as follows: ventral attention (VA),

frontoparietal network (FPN), default mode network (DMN), salience (SAL), somato-motor (SM), and visual (VIS). The mean contribution (bootstrap ratio) is computed

for all within- and between-RSN connections.

Figure 3. Spatial configuration of optimally covarying SC–FC networks. PLS analysis revealed 5 statistically significant SC–FC patterns. Statistical significance is assessed

using permutation tests, and effect size is estimated from the magnitude of the singular value associated with each pattern (see Materials and Methods). Each LV is

comprised of a weighted pattern of structural (left) and functional (right) connections. Bootstrap resampling is used to construct a 95% confidence interval for each

connection weight; the top 5% most reliable connections are shown. Connections with positive weights are shown in red and connections with negative weights are

shown in blue. SC–FC patterns with the same color covary positively with each other, while SC–FC with different colors covary negatively.
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lobes (Cipolloni and Pandya 1985). We also note that, since the
present parcellation and subsequent fiber tracking do not include
subcortical structures and subcortical projection fibers, such as
those from the medial geniculate to the transverse temporal
gyrus, their influence on interhemispheric communication can-
not be assessed.

High-degree Hubs Shape SC–FC Relationships

Finally, we investigate the contribution of high-degree nodes
(hubs) to the establishment of structure-function relationships.
Due to their dense connectivity, hubs are hypothesized to act
as bridges for signal traffic, facilitating the spread and integration
of information in brain networks (Sporns et al. 2007; Zamora-
Lopez et al. 2010; van den Heuvel and Sporns 2013). This suggests
that hubs should be disproportionately important in mediating
the emergence of large-scale functional networks. To investigate
the role of high-degree hubs on structural networks extracted
using PLS, we first perform a rich club analysis (see Materials
and Methods; van den Heuvel and Sporns 2011; van den Heuvel
et al. 2012). The rich club is a central collective of densely inter-
connected high-degree hubs. Once nodes have been classified

as belonging to the rich club or not, the edges between them
can also be stratified into distinct classes (Fig. 5): connections be-
tween two rich club nodes (“rich club”), connections between
rich club nodes and non-rich club nodes (“feeder”) and connec-
tions between two non-rich club nodes (“local”).

For each PLS-derived structural pattern, we calculate the
mean contribution of each class of structural connections (rich
club, feeder, local). Figure 5 shows that structural connections
are significantly more involved in network-level SC–FC associa-
tions if they connect nodes that are members of the rich club of
hubs (“rich club” connections, Student’s t-test, P < 10−5), com-
pared with connections that involve only one rich club node
(“feeder” connections) or those that involve no rich club nodes
(“local” connections; van den Heuvel et al. 2012).

A similar effect is observed for the corresponding functional
patterns (Fig. 5, bottom). For each functional connection, we com-
pare the strength (mean absolute functional connectivity) of the
participating nodes with the contribution that the connection
makes to the functional network extracted by PLS. The nodes par-
ticipating in each functional connectionwere stratified into quar-
tiles to facilitate interpretation. We find that connections
between high-strength functional hubs make a greater-than-

Figure 5. Hubs shape structure-function relationships. Top: mean reliability for each type of structural connection. Structural connections are stratified according to

whether they connect rich club nodes to each other (“rich club”), rich club nodes to non-rich club nodes (“feeder”) or non-rich club nodes to other non-rich club nodes

(“local”). This classification system is illustrated in the accompanying schematic. Bottom: all functional connections are plotted as a function of the strength of the

participating brain regions (strength is calculated as the mean absolute functional connectivity of an individual region). The strengths of participating nodes are

stratified into quartiles and the contribution of all connections in those quartiles is averaged. Each quartile is colored according to how reliably it contributes to the FC

pattern derived from the PLS analysis.
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expected contribution to the functional networks captured by
each of the 5 LVs (Fig. 5, bottom). For instance, functional connec-
tions between nodes with strengths in the top quartile (top right-
hand corner in each plot) make the greatest average contribution
to each of the 5 functional patterns. These results suggest that
highly connected brain regions are disproportionately involved
in establishing network-wide communication, acting as the
focal points in large-scale structural and functional networks.

Sensitivity to Diffusion Imaging

The estimation of SC from diffusion imaging entails several im-
portant methodological choices and limitations. To determine
the extent to which the present results depend on how SC is es-
timated, we performed 2 additional control analyses. First, to test
how sensitive the results are to whether SC is estimated in terms
of FA (reported thus far) versus NOS, we compared SC–FC pat-
terns from both types of data. Without applying any post hoc ro-
tation, we correlated the weighted patterns derived from the PLS
analyses (Supplementary Fig. 7). All correlations were statistical-
ly significant, for both SC patterns (r = 0.68, 0.64, 0.69, 0.68 and
0.61 for LV1–5, P < 10−5, Bonferroni corrected) and FC patterns (r =
0.99, 0.95, 0.97, 0.96 and 0.86 for LV1-5, P < 10−5, Bonferroni cor-
rected). This suggests that the global SC–FC patterns derived
from PLS are stable for both FA- and NOS-defined SC.

Second, we sought to determine the extent to which the pre-
sent results depend on the ability of diffusion imaging to capture
interhemispheric connections. We repeated the PLS analysis re-
lating SC and FC, but only focused on the connections within a
single hemisphere (right hemisphere). We then correlated the
patterns derived from the whole-brain and single-hemisphere
analyses (Supplementary Fig. 8). All correlations were statisti-
cally significant, for both SC patterns (r = 0.95, 0.89, 0.77, 0.57
and 0.42 for LV1–5, P < 10−5, Bonferroni corrected) and FC patterns
(r = 0.94, 0.90, 0.80, 0.58 and 0.37 for LV1-5, P < 10−5, Bonferroni
corrected), though there was a large variation in the magnitude
of the correlation. This indicates that PLS is sensitive to interhe-
mispheric projections, but that their inclusion does not dominate
the resulting patterns.

Discussion
In thepresent report,weprovide evidence for network-level asso-
ciations between brain structure and function. Using a versatile
multivariate framework,wedemonstrate systematic, statistically
significant relationships between structural and functional net-
work patterns. Importantly, we find that FC patterns generally
do not conform to SC patterns. Rather, functional networks often
diverge from the topology of structural networks, likely as a result
of complex network-wide interactions.

These results speak to a core feature of brain networks: while
the presence of an individual structural connection partially pre-
dicts the magnitude of the corresponding functional connection,
the reverse is not necessarily true (Koch et al. 2002; Skudlarski
et al. 2008; Honey et al. 2009; Shen et al. 2012; Hermundstad
et al. 2014, but see also Hermundstad et al. 2013). We find that
that a structural network can predict a functional network, but
that the two do not necessarily overlap. This suggests that, in
the context of a network, structural connections may influence
downstream functional connections, consistent with the notion
that coordinated functional interactions may produce statistical
associations (functional connectivity) that diverge from the
anatomical substrate. For instance, computational studies have
investigated the emergence of functional networks from

structural networks by modeling how the biophysical dynamics
of individual brain regions (using neural masses, for instance)
interact when coupled by anatomically realistic connectivity pat-
terns. These studies suggest that through indirect, network-level
interactions, the stable anatomical network can support a wide
range of functional network configurations (Honey et al. 2007;
Ghosh et al. 2008; Deco et al. 2009; Adachi et al. 2012; Goni et al.
2014; Messé et al. 2015; Hansen et al. 2015; Mišić et al. 2015;
Ponce-Alvarez et al. 2015; Stam et al. 2015). As a result, functional
configurations need not necessarily match the underlying struc-
tural network. The present study provides empirical support for
the predictions generated by dynamic models and further high-
lights the utility of such models for understanding the emer-
gence of large-scale functional network configurations.

A salient example of diverging SC–FC patterns are the RSNs or
intrinsic connectivity networks. These networks of brain areas
display coherent functional connectivity, yet are often found to
be anatomically distributed (Damoiseaux et al. 2006; Smith
et al. 2009; Yeo et al. 2011; Power et al. 2011). Although many of
the RSNs are known to have an anatomical basis (van den Heuvel
et al. 2009), including several subcomponents of the DMN (Grei-
cius et al. 2009), the anatomical basis for the prominent interac-
tions among RSNs displayed over time is unknown (de Pasquale
et al. 2012). Network analyses have so far failed to demonstrate a
clear one-to-one correspondence between network communities
in FC (corresponding to RSNs) and communities in the under-
lying SC. Indeed, several studies using theoretical models have
raised the possibility that FC within an RSN may be supported
by SC outside that RSN (Haimovici et al. 2013; Hansen et al.
2015; Ponce-Alvarez et al. 2015). The present report provides a
comprehensive analysis of connectivity within and between
RSNs, demonstrating that these interactions are often influenced
by remote anatomical projections.

Despite the topographic divergence between structural and
functional network configurations, our results suggest that
high-degree hub regions are disproportionately involved inmedi-
ating the emergence of large-scale interactions. In particular,
high-degree structural and functional hubs appear to be central
in the PLS-derived network patterns. This result provides further
evidence that, by virtue of their high connectivity, hub regions in-
tegrate information and facilitate communication among mul-
tiple brain regions (Zamora-Lopez et al. 2010; van den Heuvel
and Sporns 2011; van den Heuvel et al. 2012; Mišic ́ et al. 2014).
As a result, the formation of global network patterns naturally re-
volves around hub regions, which serve to promote synchroniza-
tion among distributed areas.

The idea that a structural connection between two brain areas
has the capacity to influence the expression of a functional con-
nection between two different areas is closely related to the
concept of effective connectivity (Friston 1994; McIntosh and
Gonzalez-Lima 1994; McIntosh 2012). Namely, the apparent stat-
istical dependencies between two brain areas may be subject to
indirect, intervening influences fromother areas due to their net-
work embedding. Although PLS cannot be used to infer causal in-
fluences mediated by individual connections, what the present
method does show is the collective effect of these causal influ-
ences: a structural network may support a functional network
with a different configuration.

We also note that the structural and functional patterns re-
ported in the present study encompass multiple systems.
These multivariate patterns represent an optimal mapping be-
tween individual variation in structure and function: individuals
who have a particular structural pattern also tend to express a
particular functional pattern. Each LV is a statistical model,
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showing how increased integrity or thickness in a single or mul-
tiple structural edges tends to result in greater functional con-
nectivity in a particular network of areas. In other words, all
connections may mutually influence one another, and import-
antly, there are multiple pathways or patterns through which
these influences can be exerted. Thus, these patterns represent
particular modes that embody both the physical constraints im-
posed by the brain’s anatomy, as well as the tendency for func-
tional coactivation among distributed areas, and therefore
naturally involve multiple cognitive systems.

Altogether, the present multivariate approach is part of an
emerging effort to construct models that simultaneously take
into account multiple modalities (Crossley et al. 2016; Mišic ́ and
Sporns, 2016). Correlative or relational techniques, such as PLS,
have beenused to study the relationship betweenwhitematter in-
tegrity and task-related BOLDsignal (Burzynskaet al. 2013), aswell
as the relationship between structural covariance and functional
connectivity in the face processing network (Shaw et al. 2016). A
mathematically related technique, canonical correlation analysis,
also seeks to relate two sets of variables to one another, but in con-
trast to PLS, corrects forwithin-set correlationsprior to thedecom-
position (McIntosh and Mišic ́ 2013). For instance, a recent study
used canonical correlation in the samedata set to relate functional
connectivity patterns to cognitive-behavioral profiles (Smith et al.
2015). The increasingdepthandavailabilityof imagingandpheno-
typic data will further drive the development and application of
multivariate techniques capable of modeling complex relation-
ships between multiple modalities.

Methodological Considerations

The present results are subject to several important limitations
regarding the estimation of structural and functional connectiv-
ity. At present, computational tractography based on diffusion
imaging is the leading technique for reconstructing human ana-
tomical connectivity patterns in vivo. However, diffusion-based
tractography has also been shown to be susceptible to both
false positives and false negatives (Jones et al. 2013; Thomas
et al. 2014). Thus, the structural patterns captured by the PLS ana-
lysis should be interpreted with caution. The limitations of com-
putational tractography highlight the need for more.

It is important to note that the networks derived from PLS
may not have the same statistical and topological properties as
networks defined using other methods, notably correlations
among time series. Functional connections identified by PLS
collectively covary, and in this sense they embody the statistical
association that is the principal hallmark of functional connectiv-
ity. However, PLS-derived patterns are fully connected, weighted
networks, where the weight of each connection is determined by
its contribution to a linear combination across all functional con-
nectivity strengths. Unlike correlation-based functional brain
networks, PLS networks are not guaranteed to be positive semi-
definite and are unlikely to show properties that are inherent to
networks mapped with pairwise correlations, such as increased
transitivity (Zalesky et al. 2012), closed triangle motifs (Sporns &
Kotter 2004), and local clustering (Sporns&Zwi2004).As such, net-
works derived from PLS weights should not be confused with cor-
relation-based networks. This is an important consideration if
subsequent analyses are performed on the PLS networks, particu-
larly with respect to the choice of null model.

We also note that FC was estimated over the entire recording
epoch, which precludes the study of temporal dynamics. There is
an emerging literature emphasizing the dynamic properties of
functional connections on faster time scales (Allen et al. 2012;

Tagliazucchi et al. 2012; Hutchison et al. 2013; Gonzalez-Castillo
et al. 2014; 2015; Shen et al. 2015), and the dependence of these
fluctuations on anatomical connectivity is an important future
question. The present analysis was not configured to capture
such fluctuations in FC, but in principle, this PLS-based frame-
work could be readily adapted to includemultiple functional con-
figurations (e.g., by treating each one as a separate variable and
concatenating them together in a single FC matrix prior to the
analysis; Fig. 1).

Conclusion
As the focus of neuroscience shifts towards anatomical and func-
tional relations betweenbrain regions, there is a growing recogni-
tion that cognitive operations and complex behaviors emerge
from the network interactions. Using a novel application of
multivariate PLS analysis, we demonstrate that the structure-
function relationship in the cerebral cortex transcends one-to-
one correspondences and is present at the network level. More
generally, the present results showcase the utility and flexibility
of a multivariate statistical framework for addressing questions
related to large-scale, multimodal datasets. By examining the
effect of experimental manipulations on all variables (e.g., con-
nections) simultaneously, multivariate models naturally em-
brace the notion of coherent networks and can be readily
extended to other data types and empirical questions, including
brain–behavior relationships, multimodal relationships (e.g.,
electrophysiological and hemodynamic neural activity), and
brain–gene relationships.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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