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Abstract

Adequate network link dimensioning requires a thorough insight into the

interrelationship between: (i) the traffic offered (in terms of the average

load, but also its fluctuations), (ii) the desired level of performance, and (iii)

the required bandwidth capacity. It is clear that more capacity is needed

when the average traffic load becomes higher, the fluctuations become

fiercer, or the performance criterion becomes more stringent.

Existing approaches to network link dimensioning are often based on rules

of thumb, e.g., ‘take the average traffic rate at times when the network is rela-

tively busy, and add 30% to cater for fluctuations’. Clearly, such an approach

does not explicitly incorporate the fierceness of the traffic rate’s fluctuations,

or the desired level of performance.

A common approach to estimate the average traffic rate is as follows. A

network manager regularly polls the so-called Interfaces Group MIB via the

Simple Network Management Protocol (SNMP), for instance through a tool

such as the Multi-Router Traffic Grapher (MRTG). This yields the average

rate of the offered traffic since the last poll. The polling interval generally is

in the order of 5 minutes. Evidently, the fierceness of fluctuation of the traf-

fic rate within these 5 minute intervals is unknown to the network manager.

These fluctuations may, however, be considerably large, and noticeable to

users of the network. If, at timescales of say 5 seconds, more traffic is of-

fered to a network link than it can transfer during that interval, traffic may

be lost. Such loss is generally known as possibly leading to performance

degradation and this may well be noticeable to a network user; for instance,

entire words may be lost in a (voice) conversation. Hence, it is in the interest

of network users, and for obvious business reasons also to network opera-
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vi ABSTRACT

tors, to have sufficient bandwidth capacity available to meet the demand at

timescales considerably smaller than 5 minutes.

In this thesis, we develop an alternative approach to network link dimen-

sioning, which explicitly incorporates the offered traffic in terms of both the

average rate as well as its fluctuations at small timescales, and the desired

level of performance. This is expressed through mathematical formulas that

give the required bandwidth capacity, given the characteristics of the offered

traffic, and the performance criterion.

The characteristics of the offered traffic are described using traffic models.

To find accurate traffic models, we have performed hundreds of detailed

measurements of real network traffic at five different locations. These lo-

cations are chosen to differ in terms of number of users, network access

technologies, link speeds, type of users, etc., as to determine which traffic

models are usable in a broad range of networking environments.

We find that a Gaussian traffic model, in general, accurately describes real

network traffic. A Gaussian traffic model is a model in which the traffic is

described as follows: the amount of traffic A(T ), offered over an interval of

length T is distributed according to the Gaussian (normal) distribution, pa-

rameterized through the average EA(T ) and variance VarA(T ). Commonly

seen characteristics of Internet traffic, e.g., long-range dependency and self-

similarity, fit into the framework of Gaussian traffic modeling.

The performance criterion we use throughout this thesis focuses on achiev-

ing ‘link transparency’: in no more than a fraction ε of intervals of length T ,

the offered traffic A(T ) should exceed the available bandwidth capacity C .

In other words: P (A(T ) ≥C T ) ≤ ε.

For Gaussian traffic, we show that the required bandwidth capacity to meet

the above performance criterion can be estimated by the following formula:

C =µ+1/T ·
√

(−2logε) ·VarA(T ), in whichµdenotes the average traffic rate.

In this formula, T and ε reflect the specified performance criterion. The

average traffic rate µ can be found through the traditional, relatively coarse-

grained, SNMP measurements. The fluctuations of the traffic rate, repre-

sented by VarA(T ), require measurements at timescale T . As T is expected

to be small (say in the order of seconds or smaller, corresponding to the

timescale that determines the performance), it seems that relatively fine-

grained measurements are required to determine VarA(T ). It is generally
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not feasible to perform such measurements using SNMP. Therefore, in this

thesis, we propose an alternative approach to estimate VarA(T ).

Our approach to estimate VarA(T ) relies on coarse-grained polling of the

occupancy of a buffer in front of the network link that we want to measure

(similar to the coarse-grained polling required to estimate µ). Occasional

polling of the buffer occupancy yields the empirical distribution function

of the buffer occupancy. We derive a formula that ‘inverts’ the buffer occu-

pancy distribution to VarA(T ). Importantly, we can estimate VarA(T ) with-

out requiring measurements at (small) timescale T .

Our alternative approach to network link dimensioning, especially the for-

mulas for the required bandwidth and the ‘inversion’ to estimate VarA(T ),

is extensively validated through case-studies that make use of the hundreds

of measurements of real traffic.

The research presented in this thesis can be used for a variety of network

link dimensioning related questions; e.g., it can be used to determine how

much bandwidth capacity is needed to cater growth or to meet Service Level

Agreements. For example, we envision scenarios where small to medium-

sized organizations want to have a ‘transparent connection’ to the Internet,

without wasting resources on bandwidth capacity that is not needed, or to

provision Virtual Private Networks to interconnect various office locations

of an organization.
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1 Introduction

This chapter presents the background and motivation of our re-

search, poses the research questions to be addressed in this thesis,

and outlines the thesis structure.

1.1 Background

The Internet has become a vital element of the modern world. Ranging from

leisure activities such as playing online games, to mission-critical applica-

tions like email for businesses, modern society increasingly relies on the In-

ternet. Moreover, it is expected that the Internet will play even a bigger role

in the future, as it will (further) replace other types of telecommunications.

For instance, for telephony we may use VoIP (Voice-over-IP) applications

instead of the traditional telephony network, and (digital) television signals

may be sent over the Internet as well, instead of via the traditional cable or

antenna installation.

In order to support these applications, a ‘proper’ Internet connection (i.e.,

the communication channel(s) between the involved parties in a communi-

cation session) is required. Various applications may pose different require-

ments on the Internet connection, for example (see, e.g., [Tan02]):

– streaming (and non-interactive) multimedia, such as television sig-

nals, require a guaranteed amount of available bandwidth all the time;

– critical applications like remote surgery require a hard guarantee on

the availability of the Internet connection between patient and sur-

geon;

– interactive, real-time applications, such as VoIP and video conferenc-

ing, require almost no delay and delay variation (jitter); and

1



2 CHAPTER 1. INTRODUCTION

– other applications, e.g., web browsing, do not pose hard requirements

on the Internet connection, but one could say that if the Internet con-

nection is ‘not good enough’, a user may get dissatisfied because of,

for instance, high response times or low throughput of the traffic.

For all Internet applications, it clearly holds that sufficient bandwidth

should be available, regardless of possible other constraints, to (i) make the

application function correctly, and/or (ii) satisfy the user (which are, obvi-

ously, not necessarily unrelated goals).

In order to meet these ‘performance’ requirements on an Internet connec-

tion, two approaches seem viable (see, e.g., [Tan02, PvdMM05, ZOS00]). The

first approach is implementing protocols to ensure certain service levels.

Examples of such techniques are DiffServ [BBC+98] and IntServ [BCS94]

(more on this later on in this section). The second approach does not use

such network protocols, but rather relies purely on network capacity: the ca-

pacity should always be sufficient to satisfy all requests, and hence provide

the service level requested. The latter approach is called overprovisioning,

and is commonly used by network operators: a study by Odlyzko [Odl03]

concluded that backbone networks are generally overprovisioned: on aver-

age only a small percentage of the available capacity is used1. In this thesis

we consider methods related to the concept of overprovisioning for meet-

ing the requirements of an Internet connection. The methods we consider,

however, aim at achieving a higher utilization of the available capacity.

Overprovisioning has several advantages (see, e.g., [FML+03, FTD03]):

– No need for network systems and network management to support

relative (to overprovisioning) complex (and therefore error-prone)

techniques to ensure certain service levels;

– Traffic growth is easily catered for;

– Performance is good: no congestion, low latency; and

– Redundancy: if there are two separate physical links between two lo-

cations, and both have a utilization under 50%, each link can han-

dle the traffic of both links, in case one of them fails (hence, graceful

degradation).

1Note that ‘average’ and ‘used’ are not further defined in [Odl03]
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An argument against overprovisioning is that of the extra costs that are pre-

sumably incurred because of the apparent waste of resources, as ‘a lot’ of the

available capacity is not used. When protocols such as DiffServ and IntServ

are used, however, a higher grade of utilization of the available resources can

be used, compared to an overprovisioning situation: with protocols such as

DiffServ and IntServ, all user can be assigned an amount of bandwidth ca-

pacity that is sufficient to meet their individual performance levels; in the

overprovisioning situation, all users get the ‘best’ performance (see, e.g.,

[FTD03]). The low utilization grade of resources has not withdrawn large

backbone network operators to apply the overprovisioning concept in their

networks. For smaller parties, however, paying for more than 30 times as

much transit bandwidth as the average traffic load — referring to the 3%

utilization grade mentioned by Odlyzko [Odl03] — may be less attractive.

Although the idea of overprovisioning is simple, still the question remains

of how much a network operator should overprovision its network to guar-

antee certain levels of service. Without sufficient overprovisioning, the per-

formance of the network (also from a user’s perspective) will drop below

the required levels. Too much overprovisioning, however, does not improve

performance (again, from the user’s perspective) anymore, and hence, may

be seen as a waste of resources. This leads to the question what the lowest

capacity level is, at which additional capacity does not improve the service

level (or: at which capacity level the required service level is achieved).

Example: Consider the following scenario — which is a typical

application scenario for the research presented in this thesis —

depicted in Figure 1.1. An organization connects to the Internet

through a so-called uplink to an Internet Service Provider (ISP)

(or an ISP connects to a backbone network operator). The ISP

takes care of connectivity to the rest of the Internet. Now sup-

pose the organization does not want their uplink to be a limiting

factor, i.e., it may not be a performance bottleneck, in the Inter-

net communications of its employees (or clients, etc.). To meet

that requirement, the bandwidth capacity of the uplink should

be sufficiently large. On the other hand, however, the larger the

uplink’s capacity, the higher the associated costs for the organi-

zation will be in general.
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Internet

Internet

Service

Provider
uplink

network

internal

organization’s

Figure 1.1: An organization is connected to the Internet via an Internet Ser-

vice Provider, through an uplink

In a situation as in the example above, a tradeoff between capacity (costs)

and performance is to be made: performance should be good, but there

should be no needless waste of resources. We use the term performance-

aware bandwidth provisioning, or in short bandwidth provisioning, to de-

note this concept of ‘efficient’ overprovisioning. Bandwidth provisioning is

the topic of this thesis.

Note that, in the context of thesis, when we use the more general term (net-

work) link dimensioning, we refer to this (performance-aware) bandwidth

provisioning idea.

1.2 Bandwidth provisioning

The tradeoff between network link capacity, and the performance as per-

ceived by users for traffic transmitted over that link, is illustrated in Fig-

ure 1.2. When capacity is low, the link will be a performance bottleneck

for the users. When capacity is added, the performance as perceived by

the users will improve - to a certain extent: at some point, the addition of

even more capacity, does not, or just slightly, further improve the perceived

performance. When the overprovisioning concept is applied, there is a sub-

stantial amount of spare capacity (see the indication in Figure 1.2). Clearly,

bandwidth provisioning has the advantage of providing ‘good performance’,

and does not suffer from the very low utilization grade in pure overprovi-

sioning, in that (it is expected that) higher resource utilization grades are

achieved with bandwidth provisioning.
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Figure 1.2: Relation between bandwidth capacity and perceived perfor-

mance.

We define bandwidth provisioning as follows:

(Performance-aware) bandwidth provisioning is the procedure

to determine the lowest required bandwidth capacity level for a

network link, such that for a given traffic load, a desired perfor-

mance target is met.

Note that the term ‘traffic load’ refers to the characteristics of the traffic of-

fered to the network link, e.g., the mean load and variations around this

mean load. Clearly, the crucial question in the context of bandwidth provi-

sioning is: What is the required bandwidth capacity of a network link, given

the traffic load and a desired performance target?

In more formal terms: let A be (a statistical description of) the offered traffic,

and p the desired performance target, and denote with ϕ the function (for

simplicity we assume such a function exists) that determines the required

capacity, denoted with C . In other words:

ϕ : (A, p) 7→C .

Figure 1.3 illustrates the relation between C , A and p, in a capacity, load

and performance triangle. Clearly, these three quantities are related to each

other, according to the following dynamics:
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offered traffic load link capacity

(perceived) performance

Figure 1.3: The relation between capacity, load and (perceived) perfor-

mance.

– If the offered traffic load increases, and the capacity is not changed,

the perceived performance may deteriorate (and vice versa);

– If the capacity increases, and the traffic load remains unchanged, the

perceived performance may improve (and vice versa);

– If the offered traffic load increases, the link capacity needs to be ex-

panded in order to keep the perceived performance unchanged (and

vice versa).

Traditionally, the provisioning formula ϕ that is used to determine the re-

quired bandwidth, is merely a rule of thumb. For instance: ‘the mean traffic

rate, plus a margin of 30%’. Obviously, such a fixed margin is not univer-

sally applicable, nor does it guarantee no needless waste of resources on the

one hand, and availability of sufficient resources on the other hand. One

could, however, say that provisioning formulas typically are of the following

generic form:

ϕ(A, p) := M +αp ·V (1.1)

for (expected) average load M , some factor αp that reflects the desired per-

formance target p and some error term V to account for fluctuations of the

traffic rate (which we also refer to as burstiness in this thesis). We get back

to this at a later stage.

Let us now further explore the concept of bandwidth provisioning, by look-

ing at the performance p and offered traffic A in more detail.

(Perceived) performance

First, (perceived) performance is a subjective issue. At what level, e.g., sim-

ply ‘good’ or ‘bad’, the performance of networking is perceived, may vary
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from user to user. People who are patient may not be dissatisfied when hav-

ing to wait a few seconds for a webpage to load, whereas others may be dis-

turbed waiting ‘that long’. Such difference in how various people perceive

performance makes it difficult, if not impossible, to determine an objective

and universal desired p.

Second, people use the Internet for all kind of different applications, e.g., e-

mail, file transfer and video-streaming. Various applications may, however,

lead to different perceptions of ‘good’ and ‘bad’ performance from a user’s

point of view. For instance, a user may not be worried when an e-mail takes

a few seconds to be sent across the world, but the user will not be happy

when his video-conferencing application is stuck for the same few seconds

because of bandwidth shortage. Thus, a specific performance measure may

depend on the actual applications being used. In general, however, the

user’s perception of the performance will be determined at a timescale in

the order of seconds, or even less: one could argue that when browsing the

web, a user would like to have ‘the network’ respond within a second or so

after clicking on a hyperlink — if it takes longer, the user may well notice

the (extra) delay and interpret such (extra) as ‘bad performance’. One could

further argue that when it is no human user sitting behind the computer,

but computer programs using the network without human action, e.g., for

data exchange between nodes in a so-called grid-network, the timescale at

which performance is ‘perceived’ may be even orders of magnitude smaller

than one second.

Third, it is often unclear how performance as perceived by a user, precisely

relates to network level parameters. For some specific applications, this re-

lation is studied (e.g., voice quality, see [Uni03, Uni96, Uni01]), but there

is no general rule that describes the relation between ‘user perceived per-

formance’ and ‘network level performance’. It can be expected, however,

that for instance for Voice-over-IP (VoIP) applications, performance is af-

fected at a timescale of tens of milliseconds. As commonly used codecs in

VoIP send packets every 20 milliseconds (see, e.g., [MTK02, ZZX01]), link

overload situations at such a timescale lead to increased delay or delay vari-

ations, or even packet losses, and hence to performance degradation: the

perceived performance of the voice conversation decreases. Another appli-

cation that clearly benefits from good ‘network level performance’ at rather

small timescales, is (multi-user) on-line gaming (see, e.g., [PW02]).
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We recognize that there is no single performance criterion p that is accurate

for all users and for all possible applications. In this thesis we mainly use

a performance criterion p that we call link transparency. The idea behind

link transparency is as follows: a network link should be ‘transparent’ to a

user of that link, in that it may not have more noticeable (by a user) negative

impact on the performance than is inherent to the link’s properties (such as

distance). We translate our link transparency objective to the following ‘net-

work level’ performance measure: the fraction of disjoint (time-)intervals of

length T in which the offered traffic exceeds the link capacity, should be below

some (small) value ε. In other words:

P(A(T ) ≥C T ) ≤ ε. (1.2)

Note that the performance criterion can be chosen by a network operator.

Also, he can select the exact setting of the performance parameters (i.e., T

and ε in the above target). Whereas the above criterion focuses on achieving

link transparency, one may, e.g., also think of a criterion that limits the delay

or delay variation (jitter) incurred by traffic on the network.

Remark: In this thesis, T and ε are parameters that we set at

‘reasonable values’ in all examples. If other values were to be

chosen (within reasonable bounds), the conclusions that are

drawn throughout this thesis remain similar.

We consider a further study of the (precise) relation between network level

performance and user perceived performance out of scope for this thesis.

Offered traffic load

We now look at the offered traffic load A in more detail.

A common way to determine the offered load is to poll Interface Group

MIB counters via the Simple Network Management Protocol (SNMP) every 5

minutes (or even coarser); this yields the total amount of traffic sent through

the network interface over this time-interval, from which the average traffic

rate (per second) can be derived. The inherent drawback to this approach,

however, is that the characteristics of the traffic within the 5 minute interval

remain unknown.
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Consider the following illustrative example:

Example: The University of Twente has, at time of writing, a

1 Gbit/s uplink to SURFnet, the Dutch national research and

education network. The current bandwidth utilization aver-

aged over one week is around 400 Mbit/s in one direction, and

around 250 Mbit/s in the other direction. The peak utilization,

averaged over 5 minutes at the busy moments, is around twice

the weekly average (in both directions). Detailed analysis of the

traffic on the uplink at the busy moments has shown, however,

that the 1 Gbit/s is (almost) fully used during several 1 second

intervals. Hence, it is likely that the offered traffic load exceeds

the available capacity of the uplink, and, thus, the performance

as perceived by users is degraded. In other words, the 1 Gbit/s

connection may be deemed full, which is a motivation to up-

grade — even when the weekly average utilization is only some

tens of percents of the current available bandwidth.

An illustration of the differences between longer term average traffic rates,

and rates at more detailed timescales, is given in Figures 1.4 and 1.5. In Fig-

ure 1.4, the traffic load on an uplink is shown over a 42 hour period (the

‘area’ corresponds to outgoing traffic, the ‘line’ to incoming). The averages

shown are based on a 5 minute interval. In Figure 1.5, we zoom in to the

outgoing traffic in three such 5 minute interval (around 15.30h, as indicated

in Figure 1.4) by plotting the traffic loads based on averages over smaller

time intervals, down to 100 milliseconds. It can be seen that, whereas the

5 minute averages are around 330 Mbit/s, when zooming in to a 100 mil-

lisecond timescale, considerably higher traffic rates of up to 470 Mbit/s are

achieved.

This example is illustrative to common practice, in that it shows both how

traffic measurements are usually performed, as well as the mismatch be-

tween the measured offered load, and the actual traffic rates at timescales

that are relevant to a user’s perception of performance. Clearly, for band-

width provisioning to be successful, such mismatches introduced by coarse

measurements may not be ignored.

To quantify the fluctuations of the traffic rates at detailed timescales, net-

work operators could resort to fine-grained measurements. A drawback,
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Figure 1.4: Traffic rates based on 5 minute averages
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Figure 1.5: Zooming in: traffic rates at increasingly smaller timescales
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however, is that their standard measurement procedure does not support

such measurements: SNMP does not give reliable results at very detailed

timescales (mainly due to processing time and counter update intervals,

see [HvdMP02]).

In this thesis, we develop procedures for bandwidth provisioning, which do

not rely on detailed timescale measurements, but still provide (statistical)

guarantees at such detailed timescales.

Alternatives to bandwidth provisioning

We have introduced bandwidth provisioning as a concept to provide a de-

sired performance level, as indicated before. Recall from Section 1.1 that

there are various alternative approaches, often referred to as Quality of Ser-

vice (QoS) mechanisms. A QoS-mechanism describes an application or al-

gorithm used to guarantee the quality of the performance of a network. The

two main alternative QoS frameworks that have been developed for use in

the Internet are:

– Reservation-based — Integrated Services (IntServ): In IntServ, QoS is

guaranteed by means of reservations through the use of the RSVP

protocol. An application can reserve bandwidth by sending the re-

quired information to the network routers. If sufficient resources are

available to fulfill the reservation along the entire path, this applica-

tion is then guaranteed the specified number of resources in the net-

work [BCS94] (along a certain path). Note that the reservations have

to be kept at each network router along the path, which clearly leads

to scalability concerns.

– Prioritizing — Differentiated Services (DiffServ): In DiffServ, a byte

in the IP header of a packet holds information about the QoS of the

packet, and this is used by network routers to differentiate between

levels of service: packets belonging to a class with high QoS demands

are prioritized over others [BBC+98]. Note that DiffServ offers only

‘relative’ performance guarantees, whereas IntServ offers ‘absolute’

guarantees, as no hard reservations are made in DiffServ. Also, one

needs to make sure that ‘sufficient’ resources are available for the var-

ious so-called traffic classes associated with the different service lev-

els.
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Significant amounts of research and standardization efforts have been put

into the development of these QoS frameworks. Little is known about actual

deployment of these QoS frameworks in operational IP networks, but it is

generally accepted that they are currently not widely used, which may be

motivated by the following arguments [FTD03]:

– Bandwidth is abundant in backbone networks. If the utilization of

backbone networks is sufficiently low, prioritizing one packet over an-

other does not make much sense as both will get an ‘excellent treat-

ment’.

– Network equipment is more complex when QoS has to be provided,

compared with situations where no QoS support is required. Extra

complexity may lead to higher costs, and is likely more error-prone;

and

– Setup and maintenance of QoS support requires higher-trained, and

thus more expensive staff.

Therefore, it may not be cost-effective to deploy QoS mechanisms in en-

vironments where abundant bandwidth is available. Conversely, one may

expect that in situations where bandwidth is scarce, e.g., GPRS or UMTS ac-

cess networks, QoS mechanisms may be deployed to ensure service levels.

Our bandwidth provisioning approach is related to the aforementioned QoS

mechanisms, in that it does not completely replace but rather supports

them. Both IntServ as well as DiffServ assume that the network provides

a certain amount of bandwidth — but they do not determine how much

bandwidth is actually needed for a certain traffic stream. Our bandwidth

provisioning approach does exactly that: it yields the required bandwidth

capacity to fulfill a desired performance level for a given traffic stream, and

this can be used as input to, for instance, the reservation request in an

IntServ environment, or to configure the amount of bandwidth required for

a certain service level in a DiffServ environment.

1.3 Related work on network link dimensioning

A vast amount of research has been done over the last century in the area

of dimensioning of telecommunication networks. In order to put this thesis
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into perspective, and to further motivate the need for the research presented

in this thesis, this section gives a brief overview of the major developments

in the area of dimensioning of telecommunication network links.

In the traditional telephony world, the amount of offered traffic λ is denoted

in (the dimensionless unit) Erlang. Because of the circuit-switched nature

of those telephony networks, each call is assumed to occupy a fixed amount

of bandwidth capacity. In order to provide an adequate performance level,

network operators strive to keeping the probability of call blocking (i.e., a

user not being able to setup a connection to the remote end) below some

threshold ε. Hence, the crucial question in the context of dimensioning is:

‘what is the lowest (trunk) capacity C such that the probability that calls are

blocked, for given traffic load λ, is below ε?’ This basic question has long

been answered, as well as for many variants of this model that incorporate

features such as ‘automatic redialing’ (which was not supported by the orig-

inal model). See, e.g., [Tij94].

Later on, during the 1980s, the notion of multiservice networks emerged.

Multiservice networks deliver more services than just voice calls like the tra-

ditional telephony networks, e.g., high-speed data transmission, or video

conferencing. An example of a multiservice network is B-ISDN (see, e.g.,

[Onv94]). As various services occupy different amounts of bandwidth ca-

pacity (constant within a single call, however), the traditional assumption

that each source occupies a fixed amount of bandwidth no longer holds.

Therefore, so-called multirate models were developed, in which the total

amount of offered traffic was decomposed into traffic loads λi (i = 1. . .n) for

each service, and associated bandwidth requirements Ci . Clearly, the above

dimensioning question can be altered to incorporate the idea of various ser-

vices — the new target is to ensure that the probability that calls are blocked

for the set of all λi and Ci is below ε. See, e.g., [Kau81, Rob81, Kel91, RMV96]

for more information on multirate models and associated network dimen-

sioning issues.

As it turned out in the late 1980s and early 1990s, the above assumption

that sources generate traffic at a constant rate was no longer valid — in-

stead, traffic streams are in general of a variable bit rate (VBR) type: the

bit rate fluctuates over time [Onv94]. The notion of ‘effective bandwidth’

(or ‘equivalent bandwidth’) was introduced to overcome the problem with

non-constant rates: it assigns to each traffic stream a number between the
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mean and peak rate, reflecting the minimum bandwidth capacity that such

a traffic stream requires to meet a certain performance criterion. In VBR

models, this performance criterion is often specified at the ‘packet level’,

e.g., the probability that a packet is lost. Following that example, the effec-

tive bandwidth, say Ci (ε), incorporates some (maximum) packet loss prob-

ability ε — the lower ε, clearly, the higher Ci (ε), as more capacity is occu-

pied when the probability of packet loss decreases (i.e., the performance

criterion becomes more stringent). This effective bandwidth Ci (ε) is similar

to the bandwidth requirement Ci in the multirate models described above.

Therefore, when we assume that traffic of class i occupies Ci (ε) bandwidth

— guaranteeing a maximum loss probability ε at the packet-level — it is pos-

sible to compute the (maximum) blocking probability at the call-level (and,

hence, to dimension this system such that this blocking probability is below

a predefined level). Thus, one could say that two types of performance are

offered simultaneously: at the packet-level and at the call-level. See, e.g.,

[Hui88, GAN91, Kel96, EM93, RMV96] for more information on VBR mod-

els and associated network link dimensioning issues. The use of VBR mod-

els is not by definition limited to, say, use in ATM networks. VBR models,

however, still use the notion of calls and are not designed to deal with very

heterogeneous traffic sources. Internet traffic is generally known to be of

highly heterogeneous nature (thus, it may be hard to distinguish separate

‘classes’ of traffic with their own bandwidth requirements), ‘operates’ with

packets instead of circuits, and tends to be extremely unpredictable. Hence,

one can not straightforwardly apply VBR models to accurately capture the

behavior of Internet traffic.

The fundamentally different nature of the Internet (packet-oriented), com-

pared to the traditional telephony system, as well as ATM (both circuit-

oriented), inspired researchers to come up with traffic models, performance

criteria (e.g., packet delay or packet loss bounds, instead of call blocking

probability) and network dimensioning frameworks that focus primarily on

Internet traffic and achieving packet-level performance targets.

Studies that are closely related to the research presented in this thesis, are

by Fraleigh [Fra02] and Papagiannaki [Pap03]. In those theses, dimension-

ing for highly aggregated network links (‘backbone links’) is studied, with

a focus on delay-sensitive applications (such as VoIP). Therefore, they aim

at dimensioning such that the delay incurred on the network (due to queu-

ing) does not exceed a certain threshold. The results by Fraleigh and Pa-
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pagiannaki are validated using traffic measurements on operational ‘back-

bone’ networks. Another dimensioning approach is by Bonald et al. [BOR03]

— they look at data traffic at the flow-level (in fact, at TCP-connections),

aiming at dimensioning such that the throughput rates of TCP-connections

remain above a certain threshold. Another dimensioning study in which

traffic is modeled at the flow-level is by Barakat et al. [BTI+03], who aim at

keeping congestion below a certain threshold.

In our research, we primarily aim at achieving link transparency, i.e.,

P(A(T ) ≥C T ) ≤ ε. This ultimately yields different network link dimension-

ing rules, which we develop in Chapter 4. For T sufficiently small, our cri-

terion also bounds the delay in the network — in our research, we assume

that buffers are used to absorb traffic bursts at timescales smaller than T ,

thus, the impact of queuing in buffers (which contributes to delay) is also

limited to small timescales. Another difference between Fraleigh’s and Pa-

pagiannaki’s research and ours, is that our research is applicable to network

links with both low and high aggregation in terms of users, instead of only

‘backbone’ links. Evidently, fewer users are aggregated at the network links

close to the edges of the network, which implies that it is unclear whether

traffic models for ‘backbone’ traffic may still be used; we study this issue in

detail in Chapter 3.

1.4 Goal, approach and research questions

The motivation for the research presented in this thesis follows from the dis-

cussion in the previous sections, summarized by the following observations:

– To estimate the required bandwidth for a network link, operators rely

on information from coarse network traffic measurements, typically

in the order of 5 minutes;

– The user of a network experiences performance at more detailed

timescales, typically in the order of seconds down to 100 milliseconds

or even less; and

– Fluctuations of traffic rates at such detailed timescales are nonnegli-

gible: peak traffic rates can be up to hundreds of percents higher than

the 5 minute average traffic rate [vdMPM+03, vdMPM+04].
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Goal

The goal of the research presented in this thesis is:

to develop network link dimensioning formulas that determine

the minimum bandwidth needed to achieve a certain perfor-

mance level; these formulas should cater for traffic peaks at

small timescales, but not require traffic measurements at such

timescales.

Approach

A network link dimensioning formula (or, equivalent, bandwidth provision-

ing formula) gives the required bandwidth capacity level to achieve a cer-

tain performance criterion, for given input traffic — as was illustrated in

Figure 1.3. The input traffic will be described through a model of the real

network traffic, hence, we need to find one or more traffic models that accu-

rately describe real traffic. Thus, in order to validate whether a traffic model

does accurately describe the real traffic, measurements of real traffic are re-

quired.

Consequently, the steps that we take to achieve this objective are illustrated

by the following figure, and are further explained below:

provisioningmodels
traffic

measurements
traffic bandwidth

One of the novel aspects of the research presented in this thesis, is that it

integrates the use of measurements and modeling for network link dimen-

sioning. Other studies often rely on either a purely empirical approach, or

just on stochastic models that are not backed up by real traffic measure-

ments.

Research questions

In order to get an in-depth as well as broad understanding of real network

traffic, and in line with the identified typical application scenario that we
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have in mind (see Figure 1.1 on page 4), we observe the behavior of network

traffic on the uplinks of organizations and ISPs. We rely on measurements

to gain the desired understanding. These measurements are performed on

various uplinks of multiple organizations, which have different characteris-

tics in terms of numbers and types of users, link speeds, application usage,

etc. By considering these different network environments, we increase the

representativeness of our measurements (as opposed to studies that focus

on just a single environment), and, hence, broaden the applicability of the

results of our research.

The research questions that are associated with this step, are:

(i) How to perform measurements on a (high-speed) network link with

the required (detailed) granularity?

Also, as we would ultimately like to prevent the need for such detailed mea-

surements in practice:

(ii) Is it possible to infer detailed information about the traffic character-

istics, without relying on detailed measurements?

In order to abstract from individual measurements, each with possible ‘inci-

dental behaviors’2, we aim at finding a statistical Internet traffic model that

accurately describes the real traffic. We therefore investigate existing traffic

models to find a model that fits our measured traffic. Such models, for ex-

ample, parameterize the real traffic with a mean traffic rate and a burstiness

factor3 (as in (1.1)).

The research question we pose is:

(iii) Which statistical traffic model(s) describe the traffic we have measured

‘good enough’ to rely on for use in network link dimensioning?

If we find one or more traffic models that accurately describe the real traf-

fic, we may use these models to derive provisioning formulas, i.e., rules that

2An individual measurement may or may not be heavily influenced by events that are a-

typical to the regular network traffic patterns, e.g., a user downloading a DVD-image at high

speed.
3In this thesis, whenever we mention ‘burstiness’, we refer to fluctuations of the traffic

rates at some, typically small timescale.
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estimate the required bandwidth capacity to meet a (prespecified) perfor-

mance target. For instance, if the model would parameterize the traffic

through a mean traffic rate and burstiness, a provisioning formula based

on that model should also predict the required capacity with just these two

parameters.

The research questions associated with this step are:

(iv) What is an accurate bandwidth provisioning formula for a given traffic

model?

If we find the answers to these questions, we have all the ingredients re-

quired to successfully achieve the main research goal, as formulated on

page 16.

Remark: In order to achieve our main goal of bandwidth pro-

visioning, we have chosen to follow an inductive and empirical

approach, as indicated above. Empiricism is, in the philosophy

of science, the concept in which knowledge is derived from ex-

perience of the world. According to empiricism, scientific theo-

ries are developed (and tested) through experiments and obser-

vations. Roger Bacon argued, as early as in the 13th century, that

a scientific method consists of a repeating cycle of observation,

hypothesis and experimentation, as well as the need for inde-

pendent verification. Bacon’s arguments built upon Aristotle’s

portrait of induction [Tha01]. Another important contributor to

empiricism is Karl Popper, who argued that no number of pos-

itive outcomes at the level of experimental testing can confirm

a scientific theory; a single genuine counter-instance, however,

suffices to prove a scientific theory false. This is also known as

the asymmetry between verification and falsification [Pop71].

1.5 Organization

The structure of this thesis generally follows the steps in our approach iden-

tified in the previous section. Therefore, the remainder of the thesis is orga-

nized as follows:
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– Chapter 2 (Internet traffic measurements) provides an overview of

measurement technologies, and presents the measurements that we

have done as part of our research. Chapter 2 addresses research ques-

tion (i).

– We investigate existing statistical Internet traffic models, such as traf-

fic processes described by M/G/∞ input models or Gaussian arrivals,

in Chapter 3 (Traffic modeling). We aim at finding one or more mod-

els that accurately describe the real traffic as we have measured on

various uplinks, thereby addressing research question (iii).

– In Chapter 4 (Bandwidth provisioning rules) we derive various for-

mulas for bandwidth provisioning under different modeling assump-

tions. These formulas are of type (1.1), and are validated using mea-

surements from various uplinks. It turns out that there are various

formulas that estimate the required capacity. Chapter 4 addresses re-

search question (iv).

– The bandwidth provisioning formulas derived in Chapter 4 suffer

from the inherent drawback that they require an occasional detailed

estimation of the traffic burstiness, i.e., parameter V in (1.1), which is

rather involved in practice with regard to the required detailed mea-

surements. In Chapter 5 (Burstiness estimation), we develop a new ap-

proach to estimate V that eliminates the need for detailed measure-

ments — addressing research question (ii).

– Using the bandwidth provisioning rules from Chapter 4 and the new

‘indirect’ approach to estimate burstiness from Chapter 5, we de-

velop, showcase and validate (with the help of a prototype implemen-

tation) our bandwidth provisioning approach in Chapter 6 (Valida-

tion). The validation studies in Chapter 6 also address research ques-

tion (iv).

– Chapter 7 (Conclusions) summarizes the conclusions drawn in this

thesis, and identifies possible directions for further work.

The structure of the thesis is depicted in Figure 1.6.
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1

2

Traffic measurements

3

Traffic modeling

4

Provisioning rules

5

6

Validation

7

Introduction

Burstiness estimation

Conclusions

Figure 1.6: Structure of this thesis

1.6 Reading guide

The research presented in this thesis stands midway between the areas of

traffic measurement procedures, traffic modeling and queuing theory, in

that we combine research in these areas to achieve our objectives. An intro-

duction into traffic measurement procedures is given in Chapter 2, relevant

traffic modeling theory in Chapter 3 and relevant queuing theory in Chap-

ter 5. In this thesis it is assumed that the reader is to some extent familiar

with TCP/IP.

This thesis is intended for those who are interested in network link dimen-

sioning, traffic measurements, and traffic modeling. Chapters 2, 6 and 7 are

written from a more practical perspective, whereas Chapters 3, 4 and 5 of
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this thesis are of a more theoretical nature, although our objective has been

to keep the text accessible to a broad audience.

Parts of the following papers that are coauthored by the author of this the-

sis, are used in this thesis. Chapters 1 and 2 make use of [vdMPM+03].

Chapter 3 is partly based on [vdMM05] and [vdMMP06]. Chapter 4 is based

on [vdBMvdM+06] and [vdMPM+04]. Chapters 5 and 6 extend the results

from [MvdM05].





2 Internet traffic measurements

In Chapter 1 we introduced the concept of ‘bandwidth provision-

ing’. Bandwidth provisioning ultimately relies on accurate infor-

mation about the offered traffic. Such information can be col-

lected through network traffic measurements, and subsequently

captured in a ‘traffic model’, based on which the bandwidth pro-

visioning can be done. These steps are illustrated in the picture

below:

bandwidth
provisioningmodels

traffic
measurements

traffic

This chapter has two separate objectives, namely a discussion of

existing Internet measurement technologies including the rela-

tion of the research presented in this thesis with these technolo-

gies, and an overview of the measurements we have done in this

research. The organization of the present chapter is as follows:

– Section 2.1 introduces the broad area of Internet measure-

ments.

– Section 2.2 gives an overview of existing measurement tech-

nologies, and relates our research to these existing measure-

ment technologies. Note that we elaborate only on those ex-

isting measurement technologies that are relevant to the re-

search presented in this thesis. There are many more things

to measure about the Internet (than we need for our re-

search), and thus there are many more measurement tech-

nologies; we consider the latter technologies, however, out

of scope for this thesis.

– Section 2.3 describes the measurements that we have per-

formed in our research.

23
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– Section 2.4 presents some traffic characteristics that result

from our measurements, which give further insight into the

measurements and their environments that we used in our

research.

2.1 Introduction

Internet measurements are used in practice for a variety of purposes, e.g.,

collecting usage information for charging and billing, detecting errors on

networks, and performance monitoring. In this section, we give a list of ex-

amples that further illustrate the rationale behind Internet measurements.

Note, however, that our intention is not to give an exhaustive list: there are

many more reasons for performing measurements.

Internet measurements may be seen as part of network management, as

they support the operation of a network. The following examples are struc-

tured according to the five so-called ‘functional areas’ of OSI management,

i.e., FCAPS (a contraction of the initial letters of the functional areas) [Int89,

Pra95], as follows:

– Fault management, i.e., the set of facilities that enables the detection,

isolation and correction of abnormal operation. Measurements may

help an operator in finding a faulty network link, for instance through

the observation of counters that keep track of the number of faulty

packets.

– Configuration management involves, among other things, the modifi-

cation of network parameters, for instance link capacity assignments.

Traffic measurements are supportive to a network manager who has

to make a decision on how much capacity should be assigned to a

certain link: he may, for instance, monitor counters that keep track of

the traffic volume over a network link (see performance management,

below), and use the derived traffic rates to determine the required ca-

pacity to handle the offered traffic.

– Accounting management, i.e., the set of facilities that allow for estab-

lishment of charges and cost identification for the use of network re-
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sources such as transfer of data. Clearly, measurements are an impor-

tant instrument to determine usage, and hence cost.

– Performance management is needed to maintain and optimize Qual-

ity of Service in a network. For instance, a network manager may keep

records of packet loss through periodical monitoring of counters (i.e.,

measurements). Such records are called ‘performance logs’, and may

be used for other purposes than just performance management as

well (see, e.g.,, configuration management).

– Security management is related to traffic measurements in that mea-

surements can be used to identify anomalies in the behavior of a net-

work, e.g., the detection of so-called ‘Denial of Service’ attacks. The

information that is collected through traffic measurements can sub-

sequently be used for defense as well (say, by blocking specific traffic

sources) [BP01, QZCZ02, HvdM05].

Clearly, Internet measurements are used for a wide variety of purposes.

There are two fundamentally different approaches to Internet measure-

ments, viz., passive and active measurements [BL01, CDF+00, SF01]:

– passive measurements are carried out by observing normal network

traffic, such that this traffic is not perturbed. A common application

of passive measurement is counting the number of packets and bytes

traveling through Internet routers.

– active measurements, on the other hand, involves sending test traf-

fic into the network. For instance, the round-trip-delay between two

hosts can be measured using the PING tool, which sends out a se-

quence of IP packets that are echoed by the destination.

In this thesis on the topic of bandwidth provisioning, workload characteri-

zation (also referred to as bandwidth utilization) is important. The research

presented in this thesis is supported by numerous passive measurements, to

characterize the workload on various operational (i.e., carrying real traffic)

network links — we will elaborate on this in Sections 2.3 and 2.4. We re-

gard the workload of a network link equal to the amount of traffic (in terms

of the mean rate, but also its fluctuations) offered to this link (this, indeed,

neglects effects of possible buffering or loss).
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The (passive) measurement of Internet traffic typically is a two-step process:

(i) the observation of traffic on an Internet network link, and (ii) the infer-

ence of information from such observations. An example to illustrate this

division in two steps is given below:

Example: Bandwidth utilization graphs such as generated by

the Multi-Router Traffic Grapher (MRTG) [Oet03] tool, are made

in 2 steps. First, the amount of traffic that is sent through a net-

work interface is tracked internally by an Internet router and

represented in the Interfaces Group MIB (IF-MIB) [MK00]. Sec-

ond, a network manager (e.g., the MRTG tool) polls this IF-MIB

every (for instance) 5 minutes, computes the 5 minute average

utilization and plots this in a graph over time.

After this broad introduction, in the next section we discuss existing Internet

traffic measurement technologies.

2.2 Existing Internet traffic measurement technologies

Internet traffic measurements are widely used for a variety of purposes. One

of such purposes is bandwidth provisioning, the topic of this thesis. In this

section we give an overview of Internet traffic measurement technologies

that are relevant for bandwidth provisioning. Even with this limited scope,

there are a number of standards and tools that are relevant in the area of

bandwidth provisioning. A classification of them can be done in various

ways; we choose to order them by the granularity of the information on the

measured Internet traffic they provide. First, however, we give a conceptual

overview that fits all Internet traffic measurement technologies that will be

discussed, and make some remarks on standardization.

2.2.1 Conceptual overview of the Internet traffic measurement process

Figure 2.1 illustrates how an Internet traffic measurement process gener-

ally works. An observation point observes individual packets on some net-

work link. These packets are subsequently captured, which results in packet

records that contain (part of) the captured packets. From these packet
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Figure 2.1: Generic Internet traffic measurement process

records, a sample is taken (possibly a trivial 1:1 sample, i.e., ‘sampling ev-

erything’), and filtering is applied to remove unwanted records (might ac-

tually be ‘no filtering’). The remaining packet records may now be further

processed to ultimately infer the desired information (e.g., bandwidth uti-

lization). Such further processing may also involve the storage of informa-

tion on disk, e.g., ‘tcpdump’ [Law05b] packet capture files. Alternatively, the

filtered packet records may be input to some flow classification process. A

flow consists of (somehow) related packets (see Chapter 3 for a more elab-

orate discussion on flows). For instance, all packets belonging to a specific

TCP connection may constitute a single flow. The flow classification pro-

cess yields flow records, which may subsequently be sampled and filtered

(analogous to the corresponding packet records functions), before further

processing is done.

In short, the output of packet level processing are packet records. Tools for

packet capturing and further processing interact by using common formats

for packet records. The ‘pcap’ format [Law05a] is a well-known example of a

common format. Records can be exchanged between the various elements

of the Internet traffic measurement process using Application Programming

Interfaces (APIs), packet record files, packet records exchange protocols or

packet records in a database. Similar considerations apply to flow records.

2.2.2 Standardization bodies and other organizations

Standardization is required for interoperability between components and

tools in Internet traffic measurement. Standardization may include not only

(for instance) the packet record format, but also configuration and control

of the measurement process, the measurement process itself, the transmis-

sion of the measured data, etc. The obvious standardization body for In-

ternet traffic measurements is the Internet Engineering Task Force (IETF),
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Acronym Name URL

3GPP 3rd Generation Partnerships Project http://www.3gpp.org

GGF Global Grid Forum http://www.ggf.org

IETF Internet Engineering Task Force http://www.ietf.org

IPDR IPDR.org http://www.ipdr.org

IRTF Internet Research Task Force http://www.irtf.org

ITU International Telecommunication Union http://www.itu.int

Table 2.1: Standardization bodies for Internet traffic measurements

Acronym URL

ANS http://www.advanced.org

CAIDA http://www.caida.org

NLANR http://www.nlanr.net

RIPE NCC http://www.ripe.net/ripencc/mem-services/ttm/

SPRINT ATL http://www.sprintlabs.com/

WAND http://wand.cs.waikato.ac.nz

Table 2.2: Organizations and groups working on Internet traffic measure-

ments

which develops Internet related standards and protocols. There are, how-

ever, also several other standardization bodies with activities in the area of

Internet traffic measurements. They are listed in Table 2.1.

There are also a number of organizations or groups that focus on various

aspects of Internet traffic measurements. We do not discuss these activities

extensively here, as they are only to a limited extent related to our usage of

Internet traffic measurements, i.e., bandwidth provisioning through traffic

measurements and modeling. A non-conclusive list of organizations and

groups is given in Table 2.2.

Note that for the research presented in this thesis, no individual organiza-

tions or institutes are of specific relevance, in that they do not specifically

address the bandwidth provisioning issue. Therefore, we only refer to the

URLs given in the tables for more information on these organizations and

institutes. In Sections 2.2.3 — 2.2.5 relevant (passive) measurement tech-

nologies are discussed, some of them developed by the organizations and

institutes mentioned above. In this discussion, a distinction is made be-

tween three levels, or granularities, of information, viz.:

– technologies that give information per (IP) packet;

http://www.3gpp.org
http://www.ggf.org
http://www.ietf.org
http://www.ipdr.org
http://www.irtf.org
http://www.itu.int
http://www.advanced.org
http://www.caida.org
http://www.nlanr.net
http://www.ripe.net/ripencc/mem-services/ttm/
http://www.sprintlabs.com/
http://wand.cs.waikato.ac.nz
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– technologies that give information per flow, i.e., a string of related

packets (see Chapter 3 for a more precise definition), such as all pack-

ets in a single TCP connection; and

– technologies that give high-level, information, such as the number of

packets flowing in or out a network interface card.

2.2.3 Measurement technologies: per-packet information

Packet-level measurement technologies are developed to collect detailed in-

formation about each packet transmitted over a single network link.

A simple technology like that is a computer running the libpcap/tcpdump

combination [Law05b] connected to a Ethernet link that carries the traf-

fic that is to be measured. libpcap/tcpdump records the packets1 received

on the computer’s network interface, together with the time at which each

packet was received. The libpcap/tcpdump measurement technology has

been used in various measurement studies, e.g., [PF95].

The packet records collected by the libpcap/tcpdump combination may be

further analyzed in real time, but can also be stored to disk for later post-

processing as so called packet traces. These are binary format packet records

in the ‘pcap’ format.

Existing or newly developed tools can be used to access and process these

traces. For instance, the ethereal tool [eth04] provides a (graphical) user in-

terface to perform all kind of post-processing tasks, varying from bandwidth

utilization computations to Voice-over-IP analyses, and more.

A shortcoming of libpcap/tcpdump based measurement systems is that the

packet timestamps are only as accurate as the system clock of the computer

that is used to collect the measurements. Depending on the accuracy of

this clock, as well as the objective of the measurement efforts, this may or

may not be a problem. With current state of the art software and hardware

(off-the-shelf PCs with Linux 2.6 kernels, for example), the accuracy of the

system clock is in the order of tens of microseconds.

1Depending on the measurement parameters, this can be limited to just the first n octets

of a packet, for instance corresponding to everything ‘up to’ the transport layer headers; also

a filter may be applied to, for example, only record packets from a particular source.
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Next to this clock precision issue, it may also be required that clocks are

synchronized between various installations of the measurement system (in

order to compare measurements, for instance to follow a packet traversing

the network). The standard protocol for network-based time synchroniza-

tion, the Network Time Protocol (NTP), gives accuracy in the order of tens of

milliseconds, which may not be good enough. In that case, dedicated clock

synchronization hardware or software may be needed, see, e.g., [Nie91].

There is yet another uncertainty in the timestamp: the timestamp is

recorded when the operating system receives the packet from the network

interface — not the time at which the packet was observed on the network

link. The packet spends ‘some’ time in the buffer of the network interface

card, before the operating system’s interrupt handler services the packet.

The exact delay is unknown, but is generally accepted as being smaller than

the timescales we aim at in the context of this thesis.

Based on libpcap/tcpdump, AT&T developed a measurement system called

PacketScope [ACD+97]. Others developed alternative packet level measure-

ment technologies, in which the packet timestamp resolution was improved

by using hardware that timestamps the packets immediately when they

are received at the network interface card. Examples of such systems are

OC3MON, OC12MON [ACTW96] and IPMON [FML+03].

A final initiative worth mentioning is the IETF’s psamp working

group [iet04b], which strives to develop a standard way of performing

packet-level sampling during measurements.

2.2.4 Measurement technologies: per-flow information

The big advantage of packet-level measurements, as discussed above, is that

those technologies give detailed per-packet information. The disadvantage

however, is that this results in a vast amount of measurement data. As it may

not be necessary to capture traffic with such great detail, one might resort to

flow-level measurement technologies, which only record information about

each flow. Definitions of what a flow is may differ, but generally they are

seen as strings of related packets, for instance TCP connections.

The information collected about each flow typically includes the start- and

end-time of the flow, the number of packets transmitted in the flow, and the



2.2. EXISTING INTERNET TRAFFIC MEASUREMENT TECHNOLOGIES 31

size of the flow. Note that this amounts to much less information than is

collected in packet-level measurement systems.

Examples of flow-level measurement systems include NeTraMet [Bro02]

(an implementation of the IETF’s real-time traffic flow measurement sys-

tem [BMR99]), and Netflow [net04], a feature built in to many Cisco routers,

which allows these routers to export flow information to external flow-data

collection systems. The IETF started a working group in 2001, ipfix [iet04a],

to standardize this information export process.

More detailed information on network traffic flows (in general) is given in

Chapter 3 of this thesis.

2.2.5 Measurement technologies: high-level information

Whereas flow-level measurement technologies already abstract from per-

packet information, one can even go one step further: providing high-level

information on all traffic that traverses a network link.

The arguably most widely used traffic measurement system on the Inter-

net is of this type: in the IF-MIB (Interface Group MIB) [MK00], counters

are kept of, e.g., the total amount of data sent through a network inter-

face. Tools such as MRTG (Multi Router Traffic Grapher) [Oet03] make use of

these counters to generate average traffic throughput graphs like Figure 1.4

on page 10.

Related to the IF-MIB is the RMONMIB [Wal00], which provides a bit more

detailed information on the traffic on a network link (such as counters of

how many packets in a certain size-range have passed), but this is still rel-

atively high-level information, compared to the level of detail provided by

per-flow or per-packet measurement technologies.

2.2.6 Traffic measurements for bandwidth provisioning

In the previous subsections we have discussed numerous technologies for

Internet traffic measurements. When discussing actual practices with net-

work operators, it is often admitted that their bandwidth provisioning poli-

cies are based on rules of thumb. For instance, the 5 minute average band-

width utilization is measured through SNMP (e.g., with help of MRTG), and



32 CHAPTER 2. INTERNET TRAFFIC MEASUREMENTS

some margin for fluctuations at smaller timescales is added, yielding the es-

timated required bandwidth capacity. Thus, despite the availability of more

sophisticated, and arguably more complicated, measurement technologies,

operators often resort to simple tools and technologies. Hence, it would be

useful to accurately estimate the required bandwidth capacity, and still only

rely on simple tools and technologies. In the course of this thesis we will

develop such an approach.

2.3 Traffic measurements in this study

We have performed numerous measurements on five distinct networks to

support our study. These networks, discussed later on in this section, cover

different network technologies, have a varying number of users as well as

different types of users and applications. Also various link speeds are cov-

ered by these different networks. All in all, we believe that a broad range

of realistic networking scenarios is covered by these locations, as to enlarge

the applicability of our entire study.

The purpose of the present section is to describe our measurements. In

Section 2.3.1 the measurement procedure followed is discussed, and Sec-

tion 2.3.2 gives an introduction to the networks (‘locations’) on which we

have performed measurements. The various locations have different char-

acteristics, in terms of, e.g., number of users, access link speeds and type of

users, in order to capture a broad range of realistic scenarios.

The next section, 2.4, provides several analyses of the measurements, to pro-

vide some fundamental characteristics of the measured network traffic, and

to illustrate the diversity of the networks. We discuss the average traffic rates

at each location, and actual traffic rates measured at small timescales —

as we have seen in Chapter 1, there are ‘spikes’ in the traffic rates at small

timescales, that presumably strongly influence the user’s perceived perfor-

mance.

2.3.1 Measurement procedure

We measure at so-called uplinks of the various networks. An uplink is the

communication link between the local network (or ‘access network’) of an



2.3. TRAFFIC MEASUREMENTS IN THIS STUDY 33

access
network

core
network

uplink

measurement
data

Figure 2.2: Conceptual measurement setup

organization and its ‘upstream’ network provider (often referred to as ISP,

Internet Service Provider; referred to as ‘core network’). An uplink carries

the network traffic of that organization that does not stay on the local net-

work (so-called ‘transit traffic’). For instance, when a user from within that

organization visits the website of another company, the associated traffic

typically does not stay on the local network, and thus is transit traffic, trans-

mitted over the uplink. Note that an uplink may carry both downstream as

well as upstream traffic (this is not required, however — there may be differ-

ent links for each direction).

Our measurement approach is to connect a PC running the GNU/Linux op-

erating system with libpcap/tcpdump, to a network router or switch that is

connected to the uplink of the organization whose link is measured. The

router or switch is then configured by its network manager to electroni-

cally copy (sometimes referred to as ‘mirroring’) all transit traffic (in both

directions) of that organization to our measurement PC. This PC receives,

through a Gigabit Ethernet network interface card and the libpcap/tcpdump

tool, the traffic, and timestamps it upon reception by the operating system.

The accuracy of this timestamp (see also the discussion in Section 2.2.3)

is deemed ‘good enough’ for our ultimate goal of bandwidth provisioning,

which — in our opinion — plays at a timescale of milliseconds or larger.

libpcap/tcpdump is configured to record only the first 64 octets of every

frame in packet traces, ensuring that we capture everything up to the trans-

port layer header (this includes, e.g., TCP headers), which is sufficient for

our post-processing purposes in the context of bandwidth provisioning. See

Figure 2.2 for a conceptual overview of the above described measurement

setup.
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Component Specification

CPU Pentium-III 1 GHz

Mainboard Asus CUR-DLS (64 bit 66 MHz PCI)

Hard disk multiple, >100 Gigabyte, UDMA/66

Operating system Debian GNU/Linux, kernel 2.4 / 2.6

Network interface 1 x Gbit/s Intel Pro/1000T

Main memory 512 MB reg. SDRAM

Table 2.3: Measurement PC Configuration

Our measurements generally consist of 15 minute windows in which all traf-

fic is captured. At the five locations, in total, some 850 packet traces were

collected. The individual packet trace sizes range from a few megabytes

(per 15 minutes) to a few gigabytes, depending on the utilization of the net-

work. In total, some 500 gigabytes of traces were collected. These were made

anonymous and are available online from the following URL:

http://traffic-repository.ewi.utwente.nl/

The configuration of our measurement PC is outlined in Table 2.3.

The post-processing part of the measurements is mostly handled by tools

we developed ourselves, in C, Perl and other programming languages. These

traces access the repository, analyze the trace and ultimately yield the de-

sired information, depending on our analysis objective.

2.3.2 Measurement locations

As outlined in the beginning of the present section, we have performed mea-

surements at 5 different locations, covering a broad range of networking

scenarios. Table 2.4 provides a short overview of these locations, on which

we will elaborate below. Note that in the remainder of this thesis we will use

the letters U, R, C, A, and S (see Table 2.4) to denote these locations. For

reasons of confidentiality, we cannot disclose the real names of the organi-

zations whose uplinks we have performed measurements on.

http://traffic-repository.ewi.utwente.nl/
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location short description no. of traces

U university residential network 15

R research institute 185

C college network 302

A ADSL access network 147

S server-hosting provider 201

Table 2.4: Measurement locations

Location #1: U

On location U the 300 Mbit/s (a trunk of 3 x 100 Mbit/s) Ethernet link has

been measured, which connects a residential network of a university to the

core network of this university. On the residential network, about 2000 stu-

dents are connected, each having a 100 Mbit/s Ethernet access link. The

residential network itself consists of 100 and 300 Mbit/s links to the vari-

ous switches, depending on the aggregation level. The measured link has

an average load of about 60%. Measurements have taken place in July 2002.

Location #2: R

On location R, the 1 Gbit/s Ethernet link connecting a research institute to

the Dutch academic and research network has been measured. There are

about 200 researchers and support staff working at this institute. They all

have a 100 Mbit/s access link, and the core network of the institute consists

of 1 Gbit/s links. The measured link is only mildly loaded, usually around

1%. The measurements are from May — August 2003.

Location #3: C

Location C is a large college. Their 1 Gbit/s link (i.e., the link that has been

measured) to the Dutch academic and research network carries traffic for

over 1000 students and staff concurrently (during busy hours). The access

link speed on this network is, in general, 100 Mbit/s. The average load on

the 1 Gbit/s link usually is around 10-15%. These measurements have been

done from September — December 2003.
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Location #4: A

On location A, the 1 Gbit/s aggregated uplink of an ADSL access network

has been monitored. A couple of hundred ADSL customers, mostly student

dorms, are connected to this access network. Access link speeds vary from

256 kbit/s (down and up) to 8 Mbit/s (down) and 1 Mbit/s (up). The average

load on the aggregated uplink is around 150 Mbit/s. These measurements

are from February — July 2004.

Location #5: S

Location S is a hosting-provider, i.e., a commercial party that offers floor-

and rack-space to clients who want to connect, for example, their WWW-

servers to the Internet. At this hosting-provider, these servers are connected

at (in most cases) 100 Mbit/s to the core network of the provider. The band-

width capacity level of this hosting-provider’s uplink (that we have mea-

sured) is around 50 Mbit/s. The measurements at this location have been

done from December 2003 — February 2004.

2.3.3 Privacy issues with traffic measurements

As an aside, we would like to address some privacy issues related to traffic

measurements.

Generally, one could say that the more detail in the measurements, the more

privacy issues may need to be addressed. When only looking at high-level

information, especially when the associated network link carries traffic from

many users, there is little privacy-sensitive information to deduce from that

high-level data. On the other hand, when individual packets are collected, it

clearly is possible to find out which user visited what websites, for instance.

This is because the packets that are collected contain the source and desti-

nation IP addresses, generally traceable to individual users and servers, and

depending on the measurement settings, even the ‘payload’ of packets can

be analyzed (for instance, to read email that is exchanged between users).

In our research, we have decided to make the packet traces anonymous, in

the sense that it will not be possible to find out which specific user visited

what website. Tools such as tcpdpriv [Ips97] or tcpurify [Bla02] can be used
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to achieve this, by, e.g., randomizing the IP addresses. We also did not cap-

ture the ‘payload’ of the observed packets, but rather the headers (up to the

transport layer).

2.4 Traffic measurements in this study: general results

In this section we present some general results that we obtained from anal-

ysis of our measurement data. The objective of the analyses presented here

is to ‘roughly’ characterize the traffic on the uplink to the various networks.

Importantly, it highlights the variety in network characteristics in terms of

workload and user applications.

2.4.1 Average workload

The average workload M (in this thesis used interchangeably with the terms

mean load, mean rate and average throughput) denotes the average traffic

offered per time interval, usually expressed in Mbit/s (i.e., million bits per

second).

Let A(s, t ) be the amount of traffic offered in time interval [s, t ], with s < t ,

expressed in bits. Then the average workload in [s, t ] is given by

M =
A(s, t )

t − s
.

In order to get a rough idea of the workload at a particular location, we aver-

age over the mean load of all measurements (each representing 15 minutes

of observation) at that specific location (also see Table 2.4). The resulting

‘mean average workloads’ are denoted with M⋆, and listed in Table 2.5 on

page 39.

Table 2.5 also lists the standard deviation and 95th percentile of the average

workloads at each location. These are an indication of the spread of the

workloads at each location (i.e., ‘usually the same workload’ or not) and how

the workload is at ‘busy times’ (‘busy times’ or ‘busy hours’ is referred to

when those times of the day when the most traffic is transmitted are meant),

respectively. The measurements have been performed at various times of

the day and night, but more or less evenly spread. Note that the numbers in
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Figure 2.3: Distribution of the average bandwidth utilization figures, across

the various measurement locations
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Loc. Avg. load M⋆ (Mbit/s) Std. error (Mbit/s) 95th percentile (Mbit/s)

U 168.3 70.0 288.1

R 5.7 4.5 13.1

C 34.9 44.5 125.1

A 120.4 42.7 189.7

S 12.0 7.0 23.0

Table 2.5: Average bandwidth utilization at our measurement locations

Table 2.5 represent characteristics between various traces at each location,

not characteristics within specific traces.

Remark: It is often noted in traffic measurement studies that

the offered traffic exhibits a 24 hour periodic, in that (for an

office environment) the traffic volume increases when people

start working, peaks at some hours during the work-day, and

decreases in the evening and night. This phenomenon can also

be seen in Figure 1.4 on page 10.

The detailed measurements that we have performed all have

duration of 15 minutes, and hence, do not exhibit this 24 hour

periodic characteristic. A noteworthy advantage of such ‘short

duration’ measurements is, however, that the traffic may be

assumed ‘stationary’ in the measurement interval, in that the

mean load, averaged over sufficient long time intervals, is more

or less constant. More on this follows in the next subsection.

Figure 2.3 graphically shows the distribution of the measured average

throughput at each measurement location. On the horizontal axes, the in-

dividual measurements are listed, ordered by the average work load. The

vertical axes represent the actual throughput. The shape of the graph is an

indication of ‘how common’ a measured workload is. For instance, at loca-

tion R a (relatively) high workload is rare, whereas this is not that exceptional

at location A.

2.4.2 Throughput at various timescales

Common practice is to measure the average workload over time intervals in

the order of minutes. Figure 1.5 showed that at smaller timescales, the fluc-
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tuations (i.e., burstiness) around the average workload figure may be signif-

icant. We will now further quantitatively investigate these fluctuations.

Figure 2.4 shows, for a trace taken from location U , the difference between

common ‘MRTG statistics’ (i.e., 5 minute averages) and measurements at

smaller timescales. The time-granularity T is increased from 5 minute

throughput averages, to 30 second averages and finally 1 second averages.

Note that the 5 minute average is around 170 Mbit/s. From the picture it is

clear that, within that interval, the average throughput in the first minute

is considerably higher than the 5 minute average. This is true for both the

30 seconds as well as the 1 second averages. Some of the measured 1 sec-

ond average throughput values are even 40% higher than the traditional 5

minute average value. It should be noted that all measurements span 15

minutes; for visualization reasons, the graphs show only part of that inter-

val.

Figure 2.5 zooms in on the first half second of the measurement of Fig-

ure 2.4. Time-granularity is further increased from 1 second, to 100 ms and

finally 10 ms. Note that each 10 millisecond interval still contains hundreds

of packets. The graph shows that the 100 ms averages are relatively close to

the 1 second average throughput. This is not a general rule, however; other

measurements on the same network have shown differences of up to tens

of percents. It is interesting to see spikes of over 300 Mbit/s for the 10 ms

averages — almost twice the value of the 5-minute average.

To gain even more insight into the fluctuations at small timescales, Fig-

ure 2.6 compares the 10 second average throughput values of a same exam-

ple trace as above, with the 10 millisecond averages, by plotting the highest

10 millisecond figure within each interval of 10 seconds, as well as the 95th

and 99th percentile of the 10 millisecond averages. Clearly, it is ‘not uncom-

mon’ that traffic rates at small timescales are considerably higher than at

larger timescales, which is, again, an important thing to keep in mind for

bandwidth provisioning.

Similar figures can be made for the other measurement locations. At a later

stage in this thesis, we will use detailed workload figures for the other loca-

tions as well.
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2.5 Concluding remarks

In this chapter we have first outlined how Internet traffic measurements are,

generally, organized (Section 2.1). Second (Section 2.2), we have given an

overview of existing measurement technologies, which are somehow related

to the concept of bandwidth provisioning.

Let us recall from Chapter 1 that for bandwidth provisioning, there are two

parameters to be found through measurements: mean load and some no-

tion of burstiness. An important conclusion of the overview of existing mea-

surement technologies is that (i) existing technologies allow both parame-

ters to be found, but that (ii) the existing measurement technologies to es-

timate the burstiness are — apparently — too involved for wide-scale use

in practice. In the course of this thesis we develop a novel measurement

approach to estimate the burstiness which is less involved than the existing

techniques.

The second part of this chapter has been dedicated to the measurements

that we have performed to assess the bandwidth provisioning problem. In

Section 2.3 we have described our measurement procedure, which com-

prises capturing packet headers from ‘network uplinks’. We have performed

this measurement procedure at 5 distinct locations: a residential network of

a university, a scientific research institute, a large college, an ADSL network

access infrastructure and a server hosting provider. By choosing various net-

works with different characteristics in terms of number of users, network

access technologies, etc., we — to some extent — reduce the chance that

the remainder of our research (which uses our measurements for modeling

and verification purposes) would significantly be affected by ‘coincidences’.

Furthermore, at each measurement location, we have measured a number

of times. In total, some 850 packet header traces were collected, each com-

prising 15 minutes of network traffic.

In Section 2.4 we have presented some preliminary analyses of the measure-

ments at the five different locations, giving an indication of the average traf-

fic load and burstiness. Clearly, these are important factors in bandwidth

provisioning, as we have seen in Chapter 1 as well. For now, they also serve

as an indicative characterization of the traffic at the various network links.
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In the next chapter we will continue with more in-depth analyses, ultimately

yielding statistical models that describe the network traffic.





3 Traffic modeling

Traffic modeling has a long history and serves a variety of pur-

poses, one of them being bandwidth provisioning. Traffic mod-

eling is an important tool to represent real Internet traffic in a

‘mathematical’ way, in that a traffic model captures the statisti-

cal characteristics of the real traffic. One can think of character-

istics such as mean traffic rate, fluctuations of the traffic rate, cor-

relation structures, packet sizes, data transfer times, inter-packet

spacing, etc.

In this chapter we first briefly discuss the current state of affairs

in traffic modeling. Second we use traffic modeling to represent

the real traffic that we have measured (see Chapter 2). The result-

ing traffic models will form the basis of our solution to the band-

width provisioning procedure that will be further developed in

the subsequent chapters, as is outlined in the picture below:

bandwidth
provisioningmodels

traffic
measurements

traffic

The organization of the present chapter is as follows:

– Section 3.1 describes the state of the art in traffic model-

ing. As this is a broad and widely studied research area,

we limit ourselves to a discussion on traffic modeling ap-

proaches that are relevant within the context of this thesis.

In our discussion, we choose to make a distinction between

two different approaches in traffic modeling: modeling of

‘traffic flows’ in which traffic of individual users is sepa-

rately captured, and modeling ‘aggregate traffic’ in which

all traffic on a network link is described (and hence, traf-

45
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fic flows are superimposed). We call the former ‘flow-based

modeling’ and the latter ‘black-box modeling’.

– In Section 3.2 we apply flow-based modeling to represent

real Internet traffic. We choose the (flow-based) M/G/∞
input model, as it is commonly used in literature (see e.g.,

[PM97, ACFG04]). Using data sets from our measurements,

we assess the fitting of real traffic using a M/G/∞ input

model. We also address (practical) limitations of the ap-

plication of this model.

– In Section 3.3 we apply black-box modeling to represent

real Internet traffic, and we choose to use a Gaussian model

to represent the aggregate traffic. This model is also com-

monly used in literature (see e.g., [KN02, Fra02]). Like-

wise the previous section, we investigate fitting a Gaus-

sian model to real traffic, and discuss the limitations of this

model.

– Section 3.4 concludes this chapter.

3.1 Overview of the traffic modeling research area

This section starts off with a short overview of the history of traffic modeling

in telecommunication networks, from the traditional telephony networks

to the modern Internet. As it turns out, traditional (telephony) modeling

cannot be used to describe Internet traffic, and therefore various alternative

models have been developed, which we introduce to the extent necessary

for the remainder of this thesis.

3.1.1 Traffic modeling in early telecommunication networks

In the early days of telecommunications, i.e., the beginning of the 20th cen-

tury, the Danish mathematician A.K. Erlang was hired by the Copenhagen

Telephone Company. While working there he was presented with the clas-

sical problem of determining how many circuits are needed to provide an

acceptable telephone service. Erlang is nowadays recognized as the founder

of the fields of queuing theory and traffic engineering.



3.1. OVERVIEW OF THE TRAFFIC MODELING RESEARCH AREA 47

Throughout the 20th century, the use of teletraffic theory1 has arguably

been one of the most successful applications of mathematical techniques in

industry [WP98]. One of the main reasons behind the success of (the appli-

cation of) teletraffic theory, is the ‘static’ nature of the traditional telephony

network, as well as the ever-present notion of ‘limited variability’. These

are characteristics of a ‘homogeneous system’, in that one may talk about

‘typical users’ and ‘generic behavior’, and hence, averages adequately de-

scribe the system’s performance. Thus, rather simple and efficient rules for

the number of circuits required, as function of the amount of traffic offered,

could be developed, such that the call blocking probability is below some

set level (see, e.g.,, [Tij94], and Section 1.3 of this thesis).

It is generally accepted that there are ‘universal laws’ governing (traffic on)

traditional telephony networks. The most significant of which is that calls

(presumably) arrive according to a Poisson process, when there is sufficient

(circuit-)aggregation. The presumption (or ‘law’) goes as follows2: call ar-

rivals are mutually independent, and the call interarrival times are all ex-

ponentially distributed with one and the same parameter λ (this is widely

described in literature — for an early overview see e.g., [Jen48]).

The Poisson law, or in fact all teletraffic theory, was originally based on em-

pirical studies on the public telephony networks. It has remained valid for

at least fifty years [WP98], and so has another ‘invariant’ of telephony traffic:

call durations (also referred to as holding times or sojourn times) are often

assumed exponentially distributed.

Changes came from the 1980s onward, with the rise of data-traffic on the

(in the past) primarily voice telephony networks. Starting with fax trans-

mission and later wide-spread Internet access, the nature of the traffic on

the telephony network changed. ‘Data calls’ tend to be significantly longer

and more variable than voice calls. (Telephony) network operators could

no longer rely on the traditional ‘laws’ and so-called multirate and later on

variable bit rate (VBR) models were developed to cope with the more so-

phisticated telecommunication networks (e.g., ATM) — see literature such

1Teletraffic theory (originally) encompasses all mathematics applicable to design, con-

trol and management of the public switched telephone networks, i.e., statistical inference,

mathematical modeling optimization, queuing and performance analysis [WP98].
2This may be true in most cases — however, calls to a power utility during a power failure

would not be considered Poisson.
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as [Kau81, Rob81, Kel91, RMV96] for more information on multirate and

VBR models.

3.1.2 Traffic modeling in IP networks

By now, it is clear that the (modeling) rules change when computers do the

talking instead of humans. Voice traffic has the property that it is relatively

homogeneous (and predictable). In contrast, data traffic is more variable,

and connections range from very short to very long, at very low to very high

rates. The design principle of modern data/IP networks is also different

from traditional voice/telephony networks: ‘packet-switched’ as opposed to

‘circuit-switched’. Instead of having an end-to-end circuit reserved for the

duration of a call, modern data/IP networks are based on individual packets

that are self-contained, and routers only look at such packets to determine

the destination. Consequently, routers do not need to keep track of each

currently active connection.

The shift from circuit-switched to packet-switched networks has numerous

implications. For example, networks are more efficient, as at any time ca-

pacity is available, newly arriving packets can benefit from that capacity.

Also, packet networks are more robust, as they transparently route around

failures in the network.

There are, however, also disadvantages to packet-switched networks. For

instance, there is no admission control, which reduces the ‘control’ over the

performance. A result of the lack of admission control is that links can be-

come overloaded because packets arrive for transmission at an (aggregated)

rate that may exceed the available transmission capacity. Such packets will

be buffered, awaiting transmission. If the excess rate is sustained, and the

buffer is full, packets will even be dropped, which is generally considered

as undesired. The situation when the offered load of a data communica-

tion path exceeds the capacity is called congestion. The protocols in use

on the Internet to transmit data, are designed (specifically TCP, the Trans-

mission Control Protocol, but also new protocols like DCCP [KHF03]) to in-

clude end-to-end congestion control mechanisms, that automatically de-

crease the rate at which traffic is transmitted (by the source) when conges-

tion is detected along the path, thus limiting packet drops.
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An important consequence of the use of congestion control mechanisms

like described above, is that characteristics of the traffic at any time may be

influenced by conditions in the past. Such possible influences are, clearly,

important for traffic modeling: Internet traffic may, thus, have (possibly

complicated) correlations across time. Correlations can also be caused by

the network application that generates the traffic (e.g., a web-browser, at

the request of a user, typically ‘fires’ a burst of traffic on the network to fetch

a web-page consisting of text and pictures, etc.). A good traffic model thus

has to support such correlation structures in order to accurately represent

real traffic.

Of course, researchers attempted to fit the traditional telephony models on

data traffic. A few measurements studies sufficed, however, to discover that

data traffic is highly variable, or bursty. It was also observed that traffic

bursts in networks occur not only at a single timescale, but at many differ-

ent timescales , see e.g., [LTWW94, Pax94]. Obviously, such multi-timescale

burstiness was not present in the world of traditional telephony traffic mod-

eling.

Let us now look more at the underlying mathematical ideas. Traditional

telephony traffic is characterized by limited variability: the traffic arrival

processes are independent or have temporal correlations that decay expo-

nentially fast. Also, one can talk about ‘typical’ users and ‘generic’ behav-

ior, where just averages accurately describe the system. The statistics for

data/IP traffic, however, is one of high variability. Informally, high variabil-

ity is a phenomenon where a set of samples takes values that vary over or-

ders of magnitude (and, generally, most samples taking a low value, and a

few samples taking very large values). For such a set of samples, describing

this set with just the average value is largely uninformative.

Leland et al. [LTWW94] observed that Internet traffic variability is invariant

to the timescale — the power-law behavior in time or space makes (some)

statistical descriptors of data/IP traffic processes fractal-like, also known as

self-similar. In the present context, we mean with fractal-like that a property

of a traffic process is exhibited at multiple timescales (for a more precise

definition, we refer to [WP98]).

A self-similar process can be described using heavy-tailed distributions.

Self-similar processes are said to exhibit long-range dependency (LRD) —

see, e.g., [WAL04, WP98] (and Appendix A to this thesis).
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With the above described mathematical ideas in mind, researchers have

come up with various statistical models to describe IP traffic. We will not

discuss all these models in this thesis, but see e.g., [RMV96, TGV00] for an

overview. We would like to point out though, and elaborate on, two funda-

mentally different approaches in IP traffic modeling:

– black-box modeling, which captures the statistical features of the su-

perposition of many individual flows, and

– flow-based modeling, which considers the statistical features of indi-

vidual flows

In the above definition, the notion of flow plays a crucial role. A flow can

be described as follows. A stream of traffic is aggregated into flows that are

coherent strings of packets. There is no fixed (technical) definition of which

strings of packets should be considered a single flow, but some example def-

initions are given: a flow consists of all packets that

– belong to the same TCP connection or UDP stream,

– are exchanged between two IP addresses or (sub)networks,

– stem from the same traffic source (e.g. a single user),

– originate from the same (sub)network,

– etc.

In the next subsections we further elaborate on black-box and flow-based

modeling, and make a comparison. The focus is on two models that are

commonly used: Gaussian models for the black-box modeling approach,

and M/G/∞ input models for the flow-based modeling approach. Defini-

tions of these models are given in the respective subsections.

3.1.3 Black-box modeling

In the IP world, various statistical models have been proposed to character-

ize traffic streams. The simplest model assumes Poisson arrivals of pack-

ets, but such a model has the undesirable feature that it fails to incorporate

the correlations between packet arrivals observed in real traces. For this

reason, the model with (a superposition of) ON/OFF sources is an attrac-

tive alternative: a broad variety of correlation structures can be modeled by
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choosing appropriate distributions for the ON- and OFF-times — see, e.g.,

[BD98, LTWW94, PE95, Soh93].

More recently, the attention has somewhat shifted to Gaussian traffic models

and multi-fractal analysis. With A(s, t ) denoting the amount of traffic arriv-

ing in [s, t ], a Gaussian model with stationary increments is such that A(s, t )

only depends on the interval length t − s. More specifically, A(s, t ) follows a

Normal law, with mean µ ·(t − s) (for some mean µ> 0) and variance v(t − s)

(for some non-negative function v(·)), for any s, t such that s ≤ t .

It is clear that the Gaussian model is in some sense an ‘artifact’, as it, at least

in principle, allows for negative input. This can be seen as follows. The

probability for negative input (A(s, t ) < 0) is given by

P
(

A(s, t ) < 0
)

=Φ

(−µ · (t − s)
p

v(t − s)

)

,

where Φ is the probability distribution function of a standard-normal ran-

dom variable. When µ·(t −s) is substantially larger than the standard devia-

tion
p

v(t − s), however, the above probability is very small, thus, it is highly

unlikely that over an interval of length t − s the increment is negative.

The further development of Gaussian models3 was triggered by a number of

measurement studies performed in the early 1990s, such as the famous Bell-

core measurements [LTWW94]. These studies revealed extreme complexity

and self-similarity in Ethernet traffic. Clearly, such phenomena on the link

layer may relate to characteristics of traffic when regarding the higher layers

in the protocol stack. For instance, Paxson and Floyd showed that [PF95]

wide-area TCP traffic could also be modeled through a self-similar process.

A simple model with long-range dependency is a self-similar process char-

acterized by a slowly (hyperbolically) decaying autocorrelation function. A

stochastic model, advocated by Norros in [Nor94, Nor95], that has many

desirable properties (e.g. long-range dependency) is a self-similar Gaussian

process: fractional Brownian motion (fBm). In recent years the fBm model

(and other Gaussian models) found wide-spread use as a reference model

for IP traffic. In fBm, traffic arrives according to a Gaussian process with

3Note that, although the application of Gaussian models in telecommunication network

traffic modeling was started only relatively recently, the Gaussian distribution was already

developed by the German mathematician Gauß in the 19th century.
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variance function v(t ) =σ2t 2H , in which H ∈ [0,1] is the so called Hurst pa-

rameter. With 0.5 < H ≤ 1, fBm exhibits long-range dependence.

Apart from the above (more or less) empirically derived motivations for

Gaussian traffic models, there is also the argument of the Central Limit The-

orem (CLT): by this theorem, the sum of a large number of ‘small’ inde-

pendent (or weakly dependent), statistically more or less identical, random

variables (users) has an approximately normal (i.e., Gaussian) distribution.

Thus, one can expect that an aggregated traffic stream consisting of many

individual communications may be modeled by a Gaussian stochastic pro-

cess. The CLT argumentation does, however, not apply to all timescales: at

the timescale of transmission of (minimum size) packets, the traffic stream

is always ON/OFF (either there is transmission at link speed, or silence) —

which is obviously not Gaussian. Thus, apart from the number of users (re-

ferred to as ‘vertical aggregation’), there should also be sufficient aggrega-

tion in time (‘horizontal aggregation’). The necessity for some aggregation

in both directions for traffic to be Gaussian, was first pointed out by Kilpi

and Norros in [KN02].

3.1.4 Flow-based modeling

A variant of the (packet level) ON/OFF model as described in the previous

subsection, are so-called flow level traffic models.

The distinction between flow-based and the (packet-level) aggregate traf-

fic modeling is illustrated in Figure 3.1 on page 54: in the top figure, the

amount of traffic arriving per time interval is plotted for an aggregate traf-

fic stream; below, it is shown how three individual flows contribute to this

aggregate traffic stream. Note that in the bottom figure, the individual flows

are stacked (thus cumulative). Obviously, in order to model individual flows,

we need parameters to describe the properties of all these individual flows

— opposed to modeling the aggregate where we only need to have parame-

ters to describe the aggregated traffic.
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Flow-based modeling can, mathematically, be described as follows:

– flows arrive according to some random process, for which one usually

assumes a Poisson process with intensity λ;

– a flow stays in the system for some random duration D (e.g.,, this

could be determined by the flow size), and the durations of flows are

i.i.d.4; and

– during the time a flow stays in the system, the so-called sojourn time,

the flow generates traffic at some (bit-)rate r .

A widely used flow-based traffic model is the so-called M/G/∞ input model,

see, e.g., [PM97], which is the Kendall notation for the flow-based model

with the three properties described above.

There is vast body of literature on this topic. An overview of some ap-

proaches is given in, for instance, [TGV00, Ch.3] and references therein.

Remark: Note that we do not consider the actual queuing and

transmission of the offered traffic in this thesis, nor do we study

we effects of any closed loop control (such as TCP mechanisms)

on this traffic — there is a lot of literature available on those

topics, however. In this thesis, we rather focus on (modeling)

the arrival process, and its impact on dimensioning issues.

3.1.5 Flow-based versus black-box modeling

In the previous subsections we have introduced two different modeling ap-

proaches, namely black-box and flow-based models. We now briefly discuss

some advantages and disadvantages of both approaches.

The most prominent advantage of using flow-based models, in which

(through the modeling of flows) the characteristics of traffic of an individ-

ual user is considered, is that it facilitates sensitivity analysis. For instance,

it enables the assessment of the effect of the migration of (a part of) the

4In probability theory, a sequence or other collection of random variables is indepen-

dent and identically distributed (i.i.d.) if each has the same probability distribution as the

others and all are mutually independent (definition from Wikipedia)
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user population from a ‘slow’ access technology to a ‘faster’ one: what is

the impact on the bandwidth needed? Also the effect of a change in the

flow-size distribution could be quantified5. Black-box models, in which ag-

gregate traffic streams are modeled, however, do not model ‘individual user

behavior’, but rather attempt to find an accurate statistical description of

the aggregate of all users. Hence, a sensitivity analysis as described above

for flow-based models, is not possible for black-box models. A commonly

used subclass of black-box models are the Gaussian models.

A disadvantage of flow-based modeling over black-box modeling, in prac-

tice (see Section 3.2), is that the properties of various flows may differ sig-

nificantly — also called heterogeneity — which can make it hard to capture

the various flows in the same model. Heterogeneity between flows can have

several causes. In the first place, the end-users use different applications,

which are characterized by different bandwidth consumption patterns. For

instance: streaming applications could use a constant bit rate (possibly well

below the access rate), whereas file transfers are based on TCP (and grab as

much bandwidth as possible, constrained by the access rate, the maximum

window size, and the bottleneck elsewhere in the network). A second (per-

haps more important) cause of heterogeneity lies in the fact that the bottle-

neck for different flows could be at different links or routers somewhere else

in the network. For instance, two downloads from different servers at dif-

ferent locations in the network, could result in very different transmission

rates.

To cope with the problems related to the heterogeneity described above, one

could opt for splitting the user population in several subclasses, with their

own characteristics. For instance, flows with a size (in bits) smaller than f

could behave very differently from flows bigger than f (cf. the notion of

‘mice’ and ‘elephants’ as in, e.g., [GM01, ACFG04]). But of course, then this

parameter f should also be chosen and tuned, so this leads to similar prob-

lems. In addition, when the set of applications changes (which happens

every now and then), the parameter has to be tuned again.

Concluding, both models have their pros and cons, and hence, there is no

reason to rule out one of them at this point. As discussed before, in the

5For example, if newer encoding standards for multimedia content result in different

filesizes than before, this may well lead to a change in the flow-size distribution of Internet

traffic
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context of the research presented in this thesis, traffic models are used to

resemble real Internet traffic. The next steps therefore are to assess the fea-

sibility of modeling real traffic — as gathered through the measurements

presented in Chapter 2 — through two models that are commonly used to

model Internet traffic: M/G/∞ (as a flow-based input model) and Gaussian

(black-box). This is the topic of the next two sections.

3.2 Applying flow-based modeling to real traffic

In this section we will demonstrate how to apply flow-based modeling to

describe real Internet traffic. As said before, a prominent advantage of flow-

based modeling is that it allows sensitivity analysis of ‘user-level parame-

ters’ — an attractive feature for bandwidth provisioning purposes: as illus-

trated by the following practical example:

Example: In The Netherlands, various DSL service providers

are active on the market. Probably as part of their effort to gain

as much market-share as possible, the DSL service providers in-

creased the access link speed (i.e., the bandwidth capacity of the

link between the ADSL modem at the customer’s premises and

the DSLAM6) their customers a number of times — a quadru-

ple increase over a period of about 2 years (early 21st century).

These access links are generally seen as the ‘bottlenecks’ for the

user’s data traffic.

In a flow-based model, the access link speed could thus deter-

mine the rate r at which traffic is generated. Obviously, an in-

crease in r due to an access link speed upgrade, has impact on

the characteristics of the traffic on the network. A relevant ques-

tion for a DSL service operator could be: how much extra capac-

ity would be required in its backbone to facilitate an increasing

r . If a flow-based model is used to model the users’ traffic, with

the r just a parameter in the model, the required extra backbone

capacity could be estimated beforehand.

6DSL access multiplexer; the device is installed at a telecommunication company’s site,

and separates the voice and data components from the subscriber lines and aggregates the

data for sending over the company’s network.
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We choose to use the M/G/∞ input model as the flow-based model, be-

cause of its widespread use in the research community. For an M/G/∞ in-

put model to be applicable to real traffic, the model parameters need to be

known: the traffic rate r , the distribution of the duration D , and the arrival

rate λ. In this section, we assess whether it is possible to estimate such pa-

rameters from the real traffic that we have measured on various Internet

links (see Chapter 2). The approach taken in this assessment is as follows:

We first investigate whether traffic within a single flow is transmitted at a

(more or less) constant rate (Section 3.2.1). Secondly (Section 3.2.2), we

compare traffic rates among various flows, and assess whether each flow

generates traffic at the same, i.e., fixed, rate as other flows. Motivated by

measurements that show that most of the traffic is generated by only a lim-

ited number of large flows (so-called ‘elephants’), we then repeat this exer-

cise only taking into account these large flows. As access rate limitations are

imposed on the user’s transmission rate rather than the transmission rate of

an individual flow, we also aggregate all (concurrent) flows as generated by

the same user and investigate whether these aggregated traffic flows streams

exhibit homogeneity. Based on these observations we argue that the model

with a constant and deterministic rate does not apply, and therefore we shift

our attention to the model with a constant but random transmission rate

(Section 3.2.3).
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3.2.1 Are traffic rates fixed and constant?

Various definitions of a flow of network traffic are in use, as discussed before.

At this point, we define a flow following the common 5-tuple definition: a

flow comprises all packets with the same:

– source IP address,

– destination IP address,

– transport protocol (e.g. TCP or UDP),

– source port, and

– destination port,

as long as the ‘gap’ between such packets does not exceed some predefined

time interval7. For instance, in this definition all IP packets within the same

TCP connection belong to a single flow.

Furthermore, in the remainder of this thesis we use the following properties

of flows:

– the flow size is the amount of data transmitted as part of that flow,

denoted in bytes or bits;

– the flow duration or flow length is the time difference between the first

and the last packet of the flow, in seconds;

– the traffic rate is the rate at which traffic is generated (in a flow); when

talking about the flow rate, this is averaged over the entire flow, i.e.,

flow duration divided by flow size.

Figure 3.2 shows four (relatively large) flows, picked from the approximately

60000 flows in a random packet trace taken from the traces collected at mea-

surement location R (see Chapter 2 for descriptions of the various measure-

ment locations). The slopes of the lines indicate the rate of the flows; the

traffic rate of the ‘fastest’ flow is about eight times as high as the rate of the

‘slowest’. The traffic rate within the flows, however, appears more or less

constant (given the fairly straight lines). The differences in traffic rates may

be explained by heterogeneity, for instance because the various flows stem

7We choose 20 seconds for the ‘gap’, as this turned out, from experiments, to be reason-

able in that, for instance, TCP connections were almost always completely captured (and not

more than that) through this definition.
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Figure 3.2: Accumulated traffic within four flows over time

from different applications with varying demands from the network, or oc-

cur at different bottleneck links (that limit the rate) on the network.

Remark: For instance, a bit speculatively, the top flow trans-

mits over 20 megabyte in over 500 seconds, which corresponds

to some 320 kbit/s, a bit-rate that may be used in high quality

MP3 music streams. Another possible explanation for the dif-

ferent traffic rates may be that various end-to-end paths may

have different bottlenecks that restrict the transmission rate.

From the example flows given in Figure 3.2, we may conclude that it is not

accurate to assume the traffic rate r to be a fixed value (in terms of M/G/∞
modeling). They do, however, look constant within a single flow.

3.2.2 Are traffic rates fixed?

In this subsection we further compare traffic rates between flows. We as-

sume, motivated by the discussion in the previous subsection, that traffic

rates within single flows are constant — every flow itself may have a differ-

ent traffic rate though. Figure 3.2 already gave the impression that traffic

rates between flows may not be fixed, as the slopes for the different flows

were not equal — we further study this in the present subsection by looking

at all flows within a trace.
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Figure 3.3: Flow durations compared to flow sizes

To investigate the variations of traffic rates between flows, we plot the dura-

tion of every flow against its size — their ratio is the traffic rate. As the traffic

rate within a single flow appeared constant in Figure 3.2, we choose to rep-

resent each flow with a single point in Figure 3.3, instead of the lines used in

Figure 3.2.

Figure 3.3 shows all flows (according to the above 5-tuple definition) in the

trace from location R. If the traffic rates would be fixed (i.e., all flows gener-

ate traffic at the same rate), the points in Figure 3.3 should be on one line.

Clearly, however, various flows of the same size, may take longer or shorter

to complete. Similarly, the duration of a flow does not provide us with any

information on the flow’s size. In fact, we observe an extreme heterogeneity.

One may wonder whether this heterogeneity may be caused by the mice-

elephants dichotomy, or by the fact that we should aggregate flows per user.

We investigate both options.

The widely used assumption that Internet traffic is heavy-tailed, motivates

our choice to ‘zoom in’ on larger flows. Therefore we first investigate which

percentage of the flows cause what fraction of the traffic. Figure 3.4 clearly

shows that only a small percentage of all flows accounts for most of the traf-

fic. Hence, we decide to ‘zoom in’ on the approximately 3000 largest flows

(corresponding to 95% of all traffic, and about 5% of all flows). For this sub-

set of all flows, the duration-size pair of each flow is plotted in Figure 3.5;

again, the spread of the (duration,size)-tuples suggests great heterogeneity.
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Figure 3.4: Cumulative distribution of flows and their contribution to all

traffic
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Figure 3.5: Flow durations compared to flow sizes (5% largest flows)

A single user can have multiple flows generating traffic concurrently, e.g.,

he may be browsing the web while a file download is going on in the back-

ground. These flows may interact with each other with regard to the rate at

which each flow generates traffic when (partly) following the same Internet

path; in any case, they share the access line. Such interaction may affect

the ‘homogeneity’ in terms of rates of individual flows. Therefore, we ag-

gregate flows generated by the same user that are ‘overlapping in time’, and

with this new definition of flow we again plot the duration-size tuples. Note

that we left out the 95% smallest flows, like above, because of their negligi-

bly small contribution to the total traffic. With the new definition of flow,
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some 160 ‘aggregated flows’ remain. Figure 3.6 shows the resulting (dura-

tion,size)-tuples. The cloud in Figure 3.6 is not as dense as before, however,

but the ‘spread’ is still considerable.

From the discussion above we conclude that traffic rates in this trace from

location R are not fixed between flows; this conclusion remains valid when

only ‘elephants’ are considered, and when flows are aggregated per user.

This conclusion is also supported by analysis of an extensive number

of other traces, taken from the same and other networks; although the

specifics of the achieved rates, and spread of flow sizes and durations dif-

fer, the clouds suggest strong rate heterogeneity.

3.2.3 Traffic rate as a random variable?

The previous section showed that one cannot assume that the traffic rate

is fixed between flows, although they appear constant within a single flow.

Therefore, we now consider another option: the transmission rates are con-

stant within flows, but the value R of this rate is random. In this subsection,

we thus try to ‘fit’ real traffic with an M/G/∞ input model with random rate

R.
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Figure 3.7: Ratios ED ·ER/ES

For every single flow, the rate R is determined by its size and duration, ac-

cording to S = R ·D , where S denotes the flow’s size and D its duration. We

first investigate whether rate R and D are independent.

Note that ES = E (R ·D). If R and D are independent random variables,

E (R ·D) equals ER ·ED . Hence, a necessary condition for independence is:

ED ·ER

ES
= 1. (3.1)

We compute ED , ER, and ES for 10 different traces from location R, and plot

the resulting fraction as in (3.1) in Figure 3.7. The same fraction is also plot-

ted for the set of all flows that together constitute 95% of all the traffic in

every trace, leaving the majority of flows (i.e., the smaller flows) out (‘top

contributing flows’). Clearly, in only 2 of the 10 traces the resulting fraction

comes close to 1. Therefore, from Figure 3.7 we conclude that R and D are

not independent in these traces of real traffic. This implies that we cannot

fit the M/G/∞ input model with random rates to our measured real traffic.

3.2.4 Discussion

From the discussion in Sections 3.2.1 — 3.2.3 we conclude that the traces

considered do not simply fit in the framework of the M/G/∞ input model.

A few remarks are appropriate here:
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Of course one could split the aggregate traffic stream into various smaller

‘sub-streams’, on the basis of size, application, etc., and then attempt to ‘fit’

these sub-streams with M/G/∞ input models. Such an approach was pur-

sued in recent studies on flow-based modeling, see, e.g., [ACFG04]. There it

was found that it is possible to describe real traffic using an M/G/∞ input

model, but the accuracy of the fit is at the expense of the number of sub-

streams, and the corresponding tuning parameters (for instant the thresh-

old that distinguishes the mice from the elephants). We remark that a lot

of effort is put into grouping flows that are similar, for instance elephants,

together.

The extra effort that is required to estimate the modeling parameters ac-

curately, may be unattractive to network operators. As Willinger and Paxson

argue [WP98], for a traffic model to be widely used in practice, it should fit in

many environments, and the model parameters should be relatively easy to

guess or estimate. Also, when the nature of the traffic changes, for instance

because of new popular applications, the estimation of the parameters has

to be redone, which may, again, require significant effort.

An other important remark is that we have not succeeded in recognizing the

access rate in our traces: the transmission rates (which were, as said before,

constant during the flow’s holding time) are apparently limited by other bot-

tlenecks than the access rate. As a consequence, it appeared infeasible to do

sensitivity analysis of the required bandwidth as a function of the access rate

(at least in the cases that we investigated).

We thus have seen that the strong heterogeneity of the traffic in our traces

appears to be a key problem to flow-based modeling. We now shift our focus

to black-box modeling, which captures the statistical features of the aggre-

gated traffic of many individual flows.

3.3 Applying black-box modeling to real traffic

In this section we turn to a black-box model, i.e., describing a traffic aggre-

gate. We focus on the case of Gaussian traffic (see Section 3.1.3).

We first describe how to investigate whether traffic is Gaussian or not, fol-

lowing a procedure similar to the one discussed in [KN02]. In fact, it in-

vestigates whether the amount of traffic A arriving in intervals of length T
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is normally distributed with mean µT and some standard deviation being

the square-root of the variance of the amount of traffic per interval
(

i.e.,

v(T ) := Var(A(T )
)

. In other words:

A(T )
?∼ Norm

(

µT, v(T )
)

.

Note that µT and v(T ) completely describe the Gaussian (normal) distri-

bution at timescale T , thus an estimate of those two parameters suffices to

describe the entire distribution at timescale T .

We investigate if a Gaussian model accurately describes the traffic aggregate

in our traces, starting with a timescale of T = 1 second (Section 3.3.1).

Second (Section 3.3.2), we determine a simple quantitative measure for

the ‘goodness-of-fit’ (i.e., ‘normality’), dubbed the linear correlation coef-

ficient. There are various alternative methods for determining goodness-

of-fit, e.g., the de facto standard Kolmogorov-Smirnov test. As it turns out,

different tests for normality sometimes give different results — as an aside,

we assess whether the method we use gives similar results as the standard

Kolmogorov-Smirnov test.

Furthermore, we repeat the procedure for many of our measurement traces

in order to get an understanding of how Gaussian traffic generally is.

Third, we assess Gaussianity at other timescales than T = 1 second (Sec-

tion 3.3.3). In particular we wonder what the minimum timescale is at which

traffic is Gaussian — this relates to the ‘horizontal aggregation’ requirement

mentioned in Section 3.1.3.

And finally, fourth, we investigate (Section 3.3.4) the minimally required ag-

gregation in terms of users (traffic sources) (‘vertical aggregation’ in Sec-

tion 3.1.3) for traffic to be Gaussian, extending the study by Kilpi and Norros

[KN02]. Based on Central Limit Theorem type of arguments, it is expected

that the more traffic sources are aggregated, the ‘more Gaussian’ the traffic

tends to be.
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3.3.1 A procedure for testing Gaussianity

In this section, we investigate whether the traffic in our traces is accurately

described by a Gaussian process:

A(T )
?∼ Norm

(

µT, v(T )
)

.

Note that literature suggests that this may be true for T not too small

[FTD03, KN02]. We choose T = 1 second to start with, motivated by our ex-

pectation that timescales of roughly this order are relevant for performance

as perceived by end-users of interactive applications like web-browsing.

Later on, in Section 3.3.3, we will investigate other timescales.

The estimates µ̂ and v̂(T ) of the average and (sample) variance of the traffic

rates in our traces can straightforwardly determined:

µ̂=
1

nT

n
∑

i=1

Ai ,

and

v̂(T ) =
1

n −1

n
∑

i=1

(Ai − µ̂)2,

where Ai denotes the amount of traffic offered in an interval of length T ,

and n the number of slots. Given our typical measurement interval of 900

seconds, we use T = 1 second and n = 900 slots at this point.

Remark: We note that the convergence of the estimator of the

sample variance could be rather slow when traffic is long-range

dependent [Ber92, Ch. I]. Although our traffic likely is long-

range dependent, 900 samples turns out to be sufficient to de-

termine an accurate estimate.

We find that, for an example trace from location R, µ̂ = 18.9 Mbit/s and

v̂(1 sec) = 24.3 Mbit2.

We use a so-called quantile-quantile plot (Q-Q plot) for visualizing the de-

gree of Gaussianity of the traffic — Q-Q plots can be used to determine if

two sets of data come from a common distribution. One of these two sets of

data could be a reference distribution. As we assess the Gaussianity of the
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traffic, we use the normal distribution as the reference distribution. A Q-Q

plot presents the pairs
(

Φ
−1

[

i

n +1

]

, s(i )

)

,

where n is the number of samples, s(1), . . . , s(n) are the order statistics, and

Φ
−1 is the inverse of the normal cumulative distribution function with mean

µ̂ and variance v̂(T ). When the resulting points in a Q-Q plot lie (roughly)

on the diagonal, the distributions are the same. Hence, the closer the point-

pairs are to the diagonal in our Q-Q plots, the more Gaussian the distribu-

tion of A(T ) is. Additionally, one can also see from a Q-Q plot in what part(s)

of the ‘spectrum’ a sample distribution does or does not match with the ref-

erence distribution. For instance, suppose that at the right-hand side of a

Q-Q plot the point-pairs are above the diagonal. This is an indication that

‘spikes’ in the traffic rates are higher than would be expected from the ref-

erence distribution with such mean and variance (in case a Gaussian distri-

bution is used as the reference distribution to compare the samples with).

Figure 3.8 shows the comparison between the traffic trace from location R

and the Gaussian traffic model. Visually, the traffic seems to be ‘fairly Gaus-

sian’, as most point-pairs are close to the diagonal. Note, however, how the

Gaussian model fails to capture the head and tail of the distribution of A(T ):

at both the left- and right-hand side of the graph in Figure 3.8, the point-

pairs are above the diagonal. Because the point-pairs at the right-hand side

are above the diagonal, ‘spikes’ in the traffic rates are higher than expected

by this Gaussian model, which in turn motivates somewhat conservative

bandwidth provisioning: the model underestimates the peak traffic rates.

3.3.2 Testing the goodness-of-fit

In order to get a quantitative measure of goodness-of-fit, we use the linear

correlation coefficient as in [KN02, JSPA05]:

γ=
∑n

i=1
(s(i ) − µ̂)(xi −x)

√

∑n
i=1

(s(i ) − µ̂)2 ·
∑n

i=1
(xi −x)2

,

where the ‘average model quantile’ x = 1
n

∑n
i=1

xi , and xi =Φ
−1

[

i
n+1

]

. Note

that −1 ≤ γ≤ 1, and γ= 1 means that the empirical distribution is identical

to the reference distribution.
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Figure 3.8: Q-Q plot — trace from location R compared to Gaussian

Remark: The linear correlation coefficient γ gives a quantita-

tive measure for the goodness-of-fit. In this thesis, this is equiv-

alent to the ‘Gaussianity’ of network traffic, as we only use this

measure to compare a traffic trace with a Gaussian distribution.

It is noted however, that the goodness-of-fit is not a test, in that

it determines whether or not a traffic trace is Gaussian — an ac-

tual test is, e.g., the Kolmogorov-Smirnov test discussed below.

We remark that we consider a traffic trace to be ‘more Gaussian’

when the value of γ is closer to 1 (when compared to another

traffic trace). In the course of this thesis, we use rather subjec-

tive measures such as ‘fairly Gaussian’ to indicate that γ is ‘quite

close’ to 1, but we intentionally do not propose precise thresh-

olds as in ‘for γ between 0.95 and 0.98, the traffic is fairly Gaus-

sian’.

We find that γ= 0.994 for the trace from location R used in Figure 3.8, sup-

porting the earlier ‘fairly Gaussian’ characterization, at timescale T = 1 sec-

ond.

One may wonder how representative the example trace from location R is.

Therefore we now look at all traces collected from our measurement loca-

tions. For each of these traces, we compute the goodness-of-fit γ, and we

plot the results as to see how common certain values of γ are. The outcome

is presented in Figure 3.9.
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Figure 3.9: Distribution of the determined linear correlation coefficient γ

over all measurements

From Figure 3.9 we may conclude that, for all locations except R, in about

80% of the cases γ is above 0.9, suggesting fairly Gaussian traffic. For lo-

cation R, we will later see that the somewhat reduced Gaussianity is likely

caused by the fact that there are fewer users active at the same time.

Comparison with Kolmogorov-Smirnov test

We have introduced γ (linear correlation coefficient) as a simple goodness-

of-fit measure to compare an empirical distribution to a model (e.g. Gaus-

sian) distribution. As we remarked, the linear correlation coefficient is not a

real ‘test’ for Gaussianity, as it does not either accept or reject the hypothesis

that an empirical distribution is Gaussian. In this section, we compare the

linear correlation coefficient measure with a common (real) test for Gaus-

sianity: the Kolmogorov-Smirnov (K-S) test , see e.g., [DS86]. The goal is to

see whether or not a low γ value for a trace corresponds to the K-S test re-

jecting the hypothesis that the trace is Gaussian, and a γ value close to 1

corresponds to the K-S test not rejecting this hypothesis (also see remark

below).
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Figure 3.10: Comparison betweenγ and D (Kolmogorov-Smirnov) statistic,

using all traces.

The Kolmogorov-Smirnov test can be described as follows: the cumulative

frequencies of both the sample distribution as well as the model distribu-

tions are calculated. The greatest discrepancy between the observed (sam-

ple) and expected (model) distribution function is compared with a thresh-

old (which is tabulated in statistical textbooks, e.g., [DS86]). If the discrep-

ancy is above the threshold, one has to conclude that the observations do

not stem from the model distribution.

Remark: It is noted that the Kolmogorov-Smirnov statistical

tests for normality (as well as the alternative Anderson-Darling

test) are not able to guarantee that a sample is indeed normally

distributed — they are only able to reject the hypothesis that a

sample is normally distributed; if the test does not reject this

hypothesis, one may not conclude that the sample is normally

distributed.

We have compared the values of γ that are computed from hundreds of our

traces, with the outcome of the Kolmogorov-Smirnov test (modified for es-

timations of mean and variance, see [DS86, Sect.4.8]). The results are de-

picted in Figure 3.10. It shows that, in about 80% of the cases, thus, roughly

speaking, if the correlation coefficient is high (say, γ > 0.9, as indicated by

the vertical line in the Figure 3.10), then the Kolmogorov-Smirnov test (at
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significance level 0.05, with the corresponding threshold indicated by the

horizontal line in Figure 3.10) does not reject the hypothesis that the under-

lying distribution of A(T ) is normal. In other words, the methods are in line

with each other, and, as a consequence, it seems justifiable to use the ‘easy’

goodness-of-fit test based on γ, rather than the Kolmogorov-Smirnov test.

3.3.3 Time aggregation and Gaussianity

As pointed out, the use of Gaussian traffic models requires ‘some’ aggrega-

tion in time and number of users. In the present and the next section, we

investigate ‘how much’ aggregation is required in terms of time and num-

ber of users, for traffic to be (close to) Gaussian.

We already investigated Gaussianity of traffic at a fixed timescale of T =
1 sec. In this section we will look into Gaussianity at other timescales, rang-

ing from T = 5 msec to T = 5 sec. The choice for this range of timescales

T is motivated by our expectation that these dominate the ‘user-perceived

performance level’, and hence should be used for provisioning purposes.

An important question here is whether a computed value of γ at a given

timescale gives a clear indication of γ at another timescale. Or in other

words: if traffic is fairly Gaussian at a certain timescale, does that say any-

thing about Gaussianity at other timescales? Suppose that a particular traf-

fic stream exhibits strong Gaussianity at a timescale of, say, 5 seconds, and

that such characteristic typically would be constant across timescales. If

this is true, then, after having verified Gaussianity at a timescale τ, one could

also assume Gaussianity at other timescales. Of course it would be tempting

to also assume traffic to be Gaussian at smaller — possibly harder to mea-

sure — timescales as well, but, as remarked earlier, this reasoning could be

dangerous (as, at very small timescales, traffic is certainly not Gaussian).

First, we look at an example with only a few traces. We determine γ at var-

ious timescales; the results, with five traces from measurement location R,

are plotted in Figure 3.11. The impression from the examples in Figure 3.11

is that, as reflected by the more or less horizontal lines, the Gaussianity is

quite constant over different timescales.
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Figure 3.11: Comparing Gaussianity at different timescales, for 5 example

traces from location R.

Next, we investigate this for all traces. We introduce νγ as measure of the

‘variation of γ’. More precisely, we define νγ as the square root of the sample

variance of the γτ values at all assessed timescales τ1, . . . ,τn ∈ T :

νγ :=
√

ˆVar
(

γτ1
, γτ2

, . . . , γτn

)

,

where we choose T =
{

5 msec, 10 msec, 25 msec, 50 msec, 100 msec,

500 msec, 1 sec, 2 sec, 5 sec
}

. The interpretation is that when νγ is low, the

traffic is (more or less) equally Gaussian (or non-Gaussian) across multiple

timescales.

We have computed νγ for all traces at all 4 measurement locations. After

ordering them from low to high values of νγ, they are plotted in Fig. 3.12.

Clearly, νγ is small in most cases: in over 95% of the traces, νγ is below 0.05.

Thus we may conclude that γ is quite constant over different timescales; in

other words: traffic that exhibits Gaussian characteristics at one timescale,

is likely to be Gaussian at other timescales as well (for the timescales that we

investigated, at least).

Finally we have computed the ‘average Gaussianity’ of all traces at various

timescales, i.e., the average value of γ for all traces at a particular location,

for various timescales. These are plotted in Figure 3.13, together with error

bars that represent the standard deviation of the computed γ values at a

specific timescale.
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Figure 3.13: ‘Average Gaussianity’ at different timescales

3.3.4 User aggregation and Gaussianity

We discussed the impact of the horizontal aggregation, i.e., the timescale,

on the Gaussianity of network traffic. Now we will look into the effect of the

vertical aggregation, i.e., the number of users whose traffic is aggregated.

When traffic of a ‘sufficiently large’ number of users is aggregated, the re-

sulting traffic mix exhibits strong Gaussianity [KN02]. We now investigate in

further detail what ‘sufficiently large’ means. We do this by comparing the

Gaussianity of network traffic as function of the number of users involved.
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We rely on the same traces as used earlier. In these traces the traffic of a

large number of users was aggregated, however. Therefore, we took from

these traces a subset of all packets, namely just the packets that relate to a

random subset of users. In this way we can investigate the Gaussianity of a

traffic in which just a fraction p of all users is aggregated (as a function of

this p). Our procedure to reduce the number of users involved is as follows:

We process the trace per packet; when a new IP address within the local net-

work address range is found, with a probability p all of this IP address’ traffic

in the trace will be taken into account, with a probability 1−p traffic of this

user is not selected, thus reducing the number of users as desired. The ex-

periment is repeated with the same p, evidently leading to different results

due to the random nature of the selection process, as well as with different

p. The experiments yield input to our ‘Gaussianity quantification proce-

dure’ described earlier: for various numbers of ‘active users’, a Gaussianity

figure is computed.

The number of ‘active users’ is defined as follows. Per T , e.g. 1 second, it is

observed how many distinct IP addresses (within the local network address

range) send or receive traffic in that interval. The number of active users

per experiment is then the average number of distinct IP addresses over all

intervals (which is evidently not necessarily an integer number).

It is assumed that the traffic of the users that are not taken into account,

does not influence the characteristics of the traffic of the users whose traffic

is taken into account; this can be justified by the relatively high degree of

overprovisioning of the measured network links.

Figure 3.14 shows for locations R (top) and S (bottom) how the number of

active users relates to the Gaussianity of the network traffic, taking only a

few example traces into account. We have limited ourselves to locations R

and S, as these are the locations with the least number of users. As could be

expected, Gaussianity increases with the number of active users. Also, for a

given number of active users, there is typically quite some variation in the

Gaussianity (between traces as well as within the same trace but for different

experiments, i.e. with different subsets of selected users). Notably, there are

cases when only a few users are active on average, but still the Gaussianity is

almost 1. In these cases, a small number of users were dominating the trace

and happened to be selected, and apparently their traffic plus the ‘noise’ of
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Figure 3.14: Gaussianity compared to number of active users

the others is Gaussian. Note that analysis of the measurements at the other

locations gives similar results.

Figure 3.14 gives a first impression on the relation between the number of

active users and the Gaussianity of the resulting aggregated traffic. For il-

lustration purposes we have added (least squares) fits for the data plots; the

fits are based on the formula α ·Nβ, where N denotes the number of users

and α and β are (scaling) parameters. Next, we want to get a more thorough

expression of this relation.

We compute the γ values for various experiments (as described above), and

aggregate the results in two dimensions: (i) the number of users involved is

grouped per 5, and (ii) the γ values are averaged and plotted together with

an error bar indicating the standard deviation. The results are plotted in

Figure 3.15. The top picture shows the result for location R; below for loca-
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Figure 3.15: Gaussianity compared to number of active users (grouped)

tion S. As the primary interest here is on the lower side of the spectrum of

the number of users (as, for large numbers of users, we already know traffic

is quite Gaussian), we have limited ourselves here to the two locations with

the least number of users.

From Figure 3.15 it can be seen that, as expected, an increase in the number

of users involved tends to increase the Gaussianity. It is not possible, how-

ever, to give a hard number saying ‘above N users, traffic may be assumed

Gaussian’. It seems justified to claim that ‘only a few tens of users’ make

the resulting traffic fairly Gaussian (at this timescale). These results are in

line with Fraleigh [Fra02] and Kilpi and Norros [KN02], although it seems

that, for our traces, even less (user) aggregation is required than in theirs for

traffic to be safely assumed Gaussian — obviously, many facets are involved

here.
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3.4 Concluding remarks

In this chapter we have discussed network traffic modeling in both the tradi-

tional telephony network as well as the modern Internet. It was shown that

models for telephony do not hold for the current Internet. A main cause of

this is the high variability of Internet traffic compared to the limited vari-

ability of (voice) telephony traffic, in terms of both time and offered traffic.

The high variability of Internet traffic has led to the popular belief that it is

self-similar (fractal-like), long-range dependent and heavy-tailed.

The role of the present chapter in this thesis is to determine traffic mod-

els that can be used to represent real traffic, as a foundation for our further

research on bandwidth provisioning. We have made a distinction into two

modeling approaches, viz. flow-based modeling that considers individual

flows (such as TCP connections), and black-box modeling in which the su-

perposition of many flows is considered. We have compared both model-

ing approaches, and found that both have their own merits as well as draw-

backs.

A merit of flow-based modeling is the sensitivity analysis for flow parame-

ters, i.e., it can be determined what the influence of a change in for instance

the distribution of flow durations, is on the resulting traffic stream. Trying to

fit a flow-based model, i.e., the M/G/∞ input model, on real traffic that we

have measured on various networks, however, turned out to be rather cum-

bersome. This is caused by the strong heterogeneity that we observed in

our analysis of the real traffic. We note that, by grouping flows that are more

or less similar, leading to reduced heterogeneity, Azzouni et al. were able

to model a traffic stream using the M/G/∞ approach [ACFG04]. A practi-

cal drawback of such grouping, however, clearly is the increased number of

parameters that need to be estimated (as for every group, the model param-

eters need to be found), as well as the effort that comes with the grouping

itself.

Black-box modeling does not consider individual flows, and hence does not

allow for the above mentioned sensitivity analysis. Focusing on the com-

monly used Gaussian (black-box) model, an advantage of this model is that

there are only two parameters that need to be estimated: the mean offered

traffic rate and variance of the offered traffic at the desired timescale. Af-

ter fitting the Gaussian traffic model on numerous traffic traces, we may
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conclude that real traffic can be accurately represented through a Gaussian

model, for timescales as low as 10 milliseconds and traffic aggregated from

some tens of users or more.

Thus, we believe that the Gaussian model is to be preferred in operational

environments. The main reason for this choice is that Gaussian models

seem to hold under many circumstances, and it is relatively easy to estimate

the model parameters. Nevertheless, M/G/∞ modeling is also attractive,

but is more difficult to use in practice.

In the next chapter, we will use the Gaussian and M/G/∞ input models to

develop various bandwidth provisioning rules that are based on these mod-

els.



4 Bandwidth provisioning rules

Various traffic models were introduced in Chapter 3, and it was

shown that these models (to a certain extent) accurately describe

real network traffic. In the present chapter, these traffic mod-

els are used in derivations of various mathematical ‘bandwidth

provisioning formulas’. Such formulas determine the (estimated)

required bandwidth capacity, based on the traffic model and its

parameter estimates, which together represent the actual traffic.

Of course, the required capacity also heavily depends on the cho-

sen performance criterion, and hence, this criterion is also part

of a bandwidth provisioning formula — recall from Section 1.2

that our intention is to achieve link transparency, i.e., the link

should not be the ‘bottleneck’, which is achieved by choosing C

such that P(A(T ) ≥C T ) ≤ ε.

The figure below illustrates the position of the present chapter in

this thesis.

provisioningmodels
traffic

measurements
traffic bandwidth

This chapter is organized as follows:

– In Section 4.1 a generic bandwidth provisioning formula is

derived with minimal modeling assumptions on the offered

traffic — in fact, no other modeling assumptions but sta-

tionarity are made.

Next, we use the two traffic models introduced in Chapter 3

to further detail the generic provisioning formula:

– In Section 4.2 it is assumed that the traffic may be described

by an M/G/∞ input model. This is used to determine a

79
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bandwidth provisioning formula that is parameterized us-

ing M/G/∞ modeling parameters (traffic rate r , etc.).

– In Section 4.3 a bandwidth provisioning formula is derived

based on the assumption that the traffic is accurately de-

scribed via a Gaussian process — giving a provisioning for-

mula that is parameterized through the mean traffic rate µ

and its variance v(·) at timescale T (note that the choice of

T depends on the specified performance criterion).

In order to validate the provisioning formulas found above,

we use our traffic traces to get an idea of how much capacity

would be required to cater for the traffic in those traces.

– In Section 4.4 we compare the required capacity as esti-

mated through analysis of the traces, with the estimated fig-

ure from the provisioning formulas derived in this chapter.

As it turns out from the analysis of the traces, there may

exist alternative provisioning formulas, or better, rules of

thumb, that may estimate the required bandwidth capacity

about equally well. We will briefly discuss these alternatives

as well.

Note that in the previous chapter we have found that a Gaussian

traffic model is very attractive in practical environments. There-

fore, importantly, the bandwidth provisioning rule for Gaussian

traffic that we develop in Section 4.3, is attractive to use in prac-

tical situations. Nevertheless, in cases where alternative models

are more attractive, one could resort to, e.g., a provisioning rule

based on M/G/∞ modeling, as also presented in this chapter.

4.1 Provisioning formula for general traffic

The typical network environment that we focus on in the research presented

in this thesis, is a network link with a considerable amount of users (e.g., the

link between an enterprise and the backbone of its ISP) that carries mostly

TCP traffic (e.g., from web-browsing). For such environments, it is impor-

tant that the network link is more or less ‘transparent’ to the users, in that
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the users should not (or almost never) perceive any degradation of their per-

formance due to a lack of bandwidth.

Clearly, this objective will be achieved when the link rate is chosen such that

only during a small fraction of time, denoted with ε, the aggregate rate of

the offered traffic (measured on a sufficiently small timescale T ), exceeds

the link rate. Here ε and T are performance-parameters: the smaller they

are chosen, the more stringent the performance criterion — see Chapter 1.

Reiterating from Chapter 1, the objective ‘link transparency’ can be stated

as follows: the fraction (corresponding to ‘probability’) of sample intervals

of length T in which the aggregate offered traffic rate A(T )/T exceeds the

available link capacity C , should be below ε, for pre-specified values of T

and ε. In other words, the performance criterion is, cf. (1.2):

P
(

A(T ) ≥C T
)

≤ ε

This criterion can be seen as a statistical guarantee on the performance: it

is accepted, with a certain (small) probability ε, that the offered traffic per

time interval exceeds the bandwidth capacity.

For bandwidth provisioning purposes, the crucial question is: what is, for

given T and ε, the (minimally) required bandwidth capacity C (T,ε) to meet

the above performance criterion? In the remainder of the present section as

well as the next two sections, we will derive formulas to find this C (T,ε) (for

some given traffic models).

General traffic. Based on the Markov inequality P(X ≥ a) ≤ E(X )/a for a

non-negative random variable X , we have, by putting X = exp(θA(T )), for

θ ≥ 0, the following upper bound on the ‘overflow probability’:

P
(

A(T ) ≥C T
)

= P

(

eθA(T ) ≥ eθC T
)

≤ EeθA(T )−θC T .

Note that EeθA(T ) is the so-called moment-generating function for A(T ).

Thus, it implicitly captures the entire ‘distribution’ of A(T ): the average

amount of traffic, variances, etc. See also Appendix A to this thesis for more

information on a moment-generating function.
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Because the above holds for all non-negative θ, we can choose the tightest

upper bound1:

P
(

A(T ) ≥C T
)

≤ inf
θ≥0

(

EeθA(T )−θC T
)

. (4.1)

This bound, which is also known as the Chernoff bound, is usually quite

tight. It is rather implicit, however, as it involves the computation of the

entire moment generating function Eexp
(

θA(T )
)

and an optimization over

θ.

We can now derive a formula that calculates the minimally required C , as

follows. Of course, to meet our criterion it suffices that the right-hand side

of (4.1) is below or equal to ε:

inf
θ≥0

(

EeθA(T )−θC T
)

≤ ε.

Clearly, there should be at least one value for θ that meets the above:

∃θ : EeθA(T )−θC T ≤ ε.

Now we take the logarithm of both sides of the equation, and rewrite to iso-

late C , to arrive at:

∃θ : C ≥
logEexp

(

θA(T )
)

− logε

θT
.

Thus, for our performance criterion to hold, it suffices to choose C as fol-

lows:

C (T,ε) ≥ inf
θ≥0

logEexp
(

θA(T )
)

− logε

θT
. (4.2)

We refer to (4.2) as the generic bandwidth provisioning rule. For any traffic

arrival process — as long as it is completely known — (4.2) gives the min-

imally required capacity to meet our ‘link transparency’ performance cri-

terion (1.2), as long as the traffic is stationary2. We note that, very roughly

1In this and other expressions, inf (for infimum) may be read as minimum, and sup (for

supremum) as maximum.
2Stationarity may be described as follows: with A(s, t ) denoting the traffic arrived be-

tween times s and t , the stationarity assumption is that the distribution of A(s+δ, t +δ) does

not depend on δ but only on the interval length t − s. In this thesis we use the abbreviation

A(t ) := A(0, t ).
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speaking, if there is no stationarity, there basically is no way to accurately

model the traffic at all, let alone to do proper bandwidth provisioning.

Assuming realistic traffic3, one can also see in (4.2) that C (T,ε) decreases in

T and ε, corresponding to the intuitive argument that less bandwidth ca-

pacity is required when the performance criterion is loosened.

Performance criterion (1.2) that we used so far does not take into account

the option of buffering packets. As an aside to the main text of this the-

sis, which focuses on achieving link transparency through the performance

criterion (1.2), we mention the following alternative performance criterion.

This alternative criterion, which takes buffering into account, is as follows:

P(Q > B) ≤ ε, (4.3)

where B denotes the size of the buffer (or queue) of the network link. The

associated bandwidth provisioning question is ‘what is the required band-

width capacity C such that (4.3) holds?’ Note that B/C could be interpreted

as an upper bound on the delay incurred by packets that go through the

buffer.

One can derive a formula to estimate C to meet performance criterion (4.3),

which turns out to be similar to the previous derivation for the ‘link trans-

parency’ criterion (1.2), as follows (see also [AMN02, FTD03]).

To start, note that the probability of buffer ‘overflow’, i.e., P(Q > B) is equiv-

alent to the probability that more traffic is offered over an interval than can

be handled by the network link, plus an amount of data B in the buffer:

P(Q > B) ≡ P
(

∃T : A(T ) ≥C T +B
)

.

Following the ‘principle of the largest term’, we can approximate the right-

hand side of the above equivalence:

P
(

∃T : A(T ) ≥C T +B
)

≈ sup
T≥0

P
(

A(T ) ≥C T +B
)

.

3Realistic in the sense that it has properties as generally seen in Internet traffic: station-

arity, long-range dependence, self-similarity, increasing v(·), etc. For instance, we rule out

cases in which v(·) is locally decreasing, such as in the so-called Brownian bridge, where

v(t ) = t (1− t ).



84 CHAPTER 4. BANDWIDTH PROVISIONING RULES

We then use the Chernoff bound again, viz.:

P
(

A(T ) ≥C T +B
)

≤ inf
θ≥0

(

EeθA(T )−θC T−θB
)

.

The remainder of the derivation of C is analogous to the earlier derivation,

and leads to the following formula for required bandwidth which ensures

that P(Q > B) ≤ ε:

C ≥ sup
t≥0

inf
θ≥0

logEexp
(

θA(t )
)

− logε−θB

θt
. (4.4)

Note that the above required bandwidth formula (4.4) to meet performance

criterion (4.3) requires the entire moment generating function Eexp
(

θA(t )
)

to be known, for all t ≥ 0. This is a similar requirement as for the required

bandwidth formula (4.2) to meet our ‘link transparency’ criterion (1.2): in

the latter case, the moment generating function of A(t ) has to be known at

timescale t = T . We stress that the estimation of the moment generating

function may be demanding and not straightforward to do.

By imposing additional structure on the input traffic A(·), however, we may

simplify the estimation of the required bandwidth. Clearly, if we have a

well-defined A(·), and the moment-generating function of A(·) can be de-

termined, the above formulas for bandwidth provisioning might be simpli-

fied. A traffic model may be seen as a well-defined A(·); we have discussed

the modeling of real traffic in Chapter 3. For both discussed models, i.e.,

M/G/∞ and Gaussian input, we derive more simple provisioning formulas

(that do not require the entire moment-generating function to be estimated)

in the next two sections. Note that both models (or classes of models, in fact)

are rich in the sense that they allow for any possible correlation structure in

A(·).

4.2 Provisioning formulas based on M/G/∞ input

In order to derive the minimally required bandwidth for M/G/∞ input, we

determine the (log-)moment generating function in the generic bandwidth

provisioning formula (4.2). Clearly, if we have the moment generating func-

tion, we can also simplify (4.4), but this is left out of this thesis.
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Recall the following about the M/G/∞ input model:

– flows arrive according to a Poisson process with intensity λ;

– a flow stays in the system for some random duration distributed as

the random variable D (i.i.d.);

– during the flow’s sojourn time, traffic is generated at some rate r .

Let the mean flow duration ED be denoted by δ. Now the mean (aggregated)

input rate µ equals λδr .

By choosing D appropriately, a broad range of input (correlation) structures

may be covered. For instance, a heavy-tailed distribution corresponds to

long-range dependent traffic.

Now let us work further on determining the sought (log-)moment generat-

ing function logEexp
(

θA(t )
)

:

First, denote by FD (·) the distribution function of D , and by FDr (·) the dis-

tribution function of the residual flow length. The corresponding densities

are denoted by fD (·) and fDr (·). The relations between these functions are

given by:

fDr (t ) :=
1−FD (t )

ED
, and

FDr (t ) :=
∫t

0
fDr (s)d s =

∫t

0

1−FD (s)

ED
d s.

Then, with A(t ) the amount of traffic generated by a single M/G/∞ input

in an interval of length t , we have to distinguish between flows that are al-

ready active at the start of the interval, and flows that newly arrive during

the interval, as these groups clearly do not equally contribute to A(t ):

– The number of flows that were already active at the start of the interval

has a Poisson distribution with mean λδ. Their residual duration has

density fDr (·); with probability (1−FDr (t )) they generate traffic during

the entire interval;

– The number of flows that arrive during the interval has a Poisson dis-

tribution with mean λt . Given that the number of these arrivals is a

non-negative integer, their arrival epochs are i.i.d. random variables,

uniformly distributed over the interval (with density 1/t ). Their dura-

tion has density fD (·).
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Finally, straightforward computations (see [MSS05] for details) now yield

the desired log-moment generating function:

logEeθA(t ) =λδ(Mt (rθ)−1)+λt (Nt (rθ)−1), (4.5)

with

Mt (rθ) :=
∫t

0
erθx fDr (x)d x +erθt (1−FDr (t )), and

Nt (rθ) :=
∫t

0

∫t

u

1

t
·erθ(x−u) · fD (x −u)d xdu

+
∫t

0

1

t
·erθ(t−u) · (1−FD (t −u))du.

The expression (4.5) for the (log-)moment-generating function appears

rather complex. It only requires, however, knowledge of r , the flow dura-

tion distribution D and the flow arrival intensity λ, to use it and thus be able

to compute the minimally required bandwidth capacity. Note that finding

proper estimates for these variables may be too complicated (if possible at

all) for use in practical environments — see the discussion in Chapter 3.

If one would be able to find the above mentioned estimators, it is straight-

forward to determine Mt (rθ) and Nt (rθ), use these in (4.5), and then find

the minimally required capacity according to (4.2), assuming an M/G/∞
input model to represent the input traffic.

Next, we use the generic bandwidth formula (4.2) and assume a Gaussian

model to represent the input traffic, to derive a bandwidth provisioning for-

mula for Gaussian traffic.

4.3 Provisioning formulas based on Gaussian input

Recall the notion of a ‘black-box’ model, in that it abstracts from modeling

individual users or flows. A commonly used subclass of black-box models

are the Gaussian models. Assuming that the traffic aggregate A(T ) contains

contributions of many individual users, in many situations it is justified to

assume that A(T ) is Gaussian if T is not too small, see e.g., [FTD03, KN02],

as well as the discussion in Section 3.3 of this thesis.
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In other words, A(T ) ∼ Norm
(

µT, v(T )
)

(and note that µ denotes the long-

term average offered traffic rate). In the next few steps, we derive an ex-

pression for the log-moment generating function for this Gaussian model,

to plug into the generic bandwidth provisioning formula (4.2).

An alternative way of looking at the distribution of the offered traffic, equiv-

alent to the above mentioned A(T ) ∼ Norm
(

µT, v(T )
)

, is the following:

A(T ), i.e., the amount of traffic offered over an interval of length T > 0, is

distributed as µ ·T +
p

v(T ) ·U , where U follows the standard normal distri-

bution. Then, by using the definition of the integral of the normal distribu-

tion function (which obviously integrates to 1), we derive

EeθU =
∫∞

−∞

1
p

2π
eθx e−

1
2

x2

d x

=
∫∞

−∞

1
p

2π
e−

1
2

(x−θ)2

e
1
2
θ2

d x

=e
1
2
θ2

,

and inserting this into A(T ) ∼µ ·T +
p

v(T ) ·U , we obtain

EeθA(T ) = eθµT+ 1
2
θ2v(T ).

We conclude that the log-moment generating function in the generic band-

width provisioning formula (4.2) evidently is given by:

logEeθA(T ) = θµT +
1

2
θ2v(T ). (4.6)

The bandwidth provisioning formula for Gaussian input for performance

criterion (1.2) can now be determined by inserting (4.6) into (4.2):

C (T,ε) ≥ inf
θ≥0

θµT + 1
2
θ2v(T )− logε

θT

=µ+ inf
θ≥0

(

1
2
θv(T )

T
−

logε

θT

)

,
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which reduces to the following formula for the minimally required band-

width capacity after optimizing over θ, assuming Gaussian input:

C (T,ε) =µ+
1

T

√

(−2logε) · v(T ). (4.7)

The following observations can be made from expression (4.7):

– The required capacity depends on the ‘long-term’ mean traffic rate

µ, added with a term that incorporates burstiness, i.e., the variance

v(T ) of the traffic arrivals. Note that this is in line with the observa-

tions in Chapter 1, especially (1.1). Also, it follows from (4.7) that the

larger v(T ), thus the burstier the traffic, the more capacity is required

to cater for the total traffic.

– The required capacity increases when the performance criterion be-

comes more stringent: if the ‘overflow probability’ ε gets smaller, C

increases; and also, as v(T ) cannot increase faster than quadratically,p
v(T )/T decreases in T , or in other words, when a smaller interval

length T is taken, more capacity is required. These properties clearly

correspond to one’s intuitive expectation.

– µ being the ‘long-term’ mean traffic rate, it can easily be estimated

through coarse measurements (like the traditional SNMP measure-

ment approach). Estimating v(T ), however, is more involved as it re-

quires measurements on the typically small timescale T (say 1 second

or less). This may not be a problem when detailed information about

the traffic is available, as is the case in our measurements, but this

may not be realistic in practice. In Chapter 5 we will describe a novel

method to estimate v(T ) for small T , without requiring such detailed

measurements.

In Section 4.4.2, and extensively in Section 6.2, we will investigate if the re-

quired bandwidth formula for Gaussian traffic (4.7), indeed accurately es-

timates the bandwidth that is required to handle a traffic stream modeled

through a Gaussian distribution with mean µ and variance v(T ).

Remark: As an aside to the main text of this thesis, we return to

provisioning under an M/G/∞ modeling regime, as described
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in Section 4.2. Let us assume that the input traffic stream follows

a Gaussian distribution, in that it is completely described by its

first two moments, i.e., mean and variance. Furthermore, as-

sume that the correlation structure of this input traffic follows

an M/G/∞ model (with arrival rate λ, flow duration distribu-

tion D , δ= ED , and traffic rate r as before). We can then derive

an explicit required bandwidth formula as follows.

First, note that the mean traffic rate is given by µ ≡ λ · δ · r .

Secondly, we derive the variance function v(t ), as follows. Re-

call the (log-)moment generating function for the M/G/∞ in-

put model, i.e., (4.5), and compute the second moment (i.e., the

variance) by taking the second derivative of the log moment-

generating function (with respect to θ) and then substituting 0

for θ. This yields

v(t ) =λδ

(∫t

0
x2 fDr (x)d x + t 2(1−FDr (t ))

)

+λ
(

∫t

0

∫t

u
(x −u)2 fD (x −u)d xdu

+
∫t

0
(t −u)2(1−FD (t −u))du

)

.

Now rewrite the above expression for v(t ) as follows: v(t ) ≡
λ ·β(t ,r,D), for some function β(·) that depends on t , r and

D (and, importantly, not on λ). Then, by inserting the above

definitions for µ and v(t ) into the required bandwidth for-

mula for Gaussian traffic (4.7), we derive the following required

bandwidth formula for the so-called ‘Gaussian counterpart’ of

M/G/∞ input traffic:

C = µ+
1

t

√

(

−2logε
)

v(t )

= λδr +
1

t

√

(

−2logε
)

·λ ·β (t ,r,D)

= µ+α ·pµ, with α :=
1

t

√

(

−2logε
) β (t ,r,D)

δr
.
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Hence, α depends exclusively on the distribution of the flow du-

ration D , the traffic rate r and the desired performance crite-

rion. Importantly, it does not depend on the flow arrival rate

λ. A possible practical interpretation of the latter is as follows:

when more traffic sources (users) are added, the required band-

width ‘scales’ with the aggregated traffic rate (assuming the be-

havior of individual users does not change) — for more infor-

mation, see [vdBMvdM+06].

Although the above required bandwidth formula looks nice and

simple, it is, however, only applicable in environments where

it is indeed possible to properly estimate the distribution of D

and r , or to estimate α directly through, for instance, empiri-

cal determination (we will do this in Section 4.4). We have seen

in Chapter 3 that an easy estimation of D and r is not gener-

ally possible, thus we do not advocate this simple formula; we

rather prefer a formula based on models that are (more or less)

generally applicable, such as Gaussian traffic models.

This concludes the more theoretical part of the present chapter. Next, we

will validate the bandwidth provisioning formulas derived so far, by com-

paring their outcome (while estimating the required model parameters)

with what can be seen in real traffic. Recall that we actually assumed (and

also concluded) that our traffic models are not a perfect fit for real traffic. As

a consequence, it is interesting to see to what extent the derived provision-

ing formulas correspond to the real demands, given that those formulas are

based on models that are not perfectly matching the real traffic.

4.4 Empirical validation and alternative formulas

In this section we validate whether the derived provisioning formulas match

with measurements of real traffic. In particular, we investigate whether the

following formulas hold:

(i) The bandwidth provisioning formula based on the ‘Gaussian counter-

part’ of M/G/∞ input:

C =µ+α
p
µ.
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This is done through measurements taken from an ADSL access net-

work where the access link speeds were, indeed, much smaller than

the backbone capacity, yielding a relatively small factor α. See Sec-

tion 4.4.1.

(ii) The bandwidth provisioning formula based on Gaussian input:

C =µ+
1

T

√

(−2logε) · v(T ).

The approach taken here is that µ and v(T ) are actually estimated

from the packet traces — a rather cumbersome process in real envi-

ronments, because of the required measurement effort to determine

v(T ) for small T . See Section 4.4.2.

In the validations introduced above, in total hundreds of packet traces are

used. We relate the mean traffic rate in each trace with the peak traffic rate

found within the same trace. While doing so, it appears that alternative pro-

visioning formulas might be valid as well, from a purely empirical perspec-

tive. Some considerations on this topic are presented in Section 4.4.3.

4.4.1 Validation of first bandwidth provisioning formula

The approach taken in the validation of the M/G/∞ input model based pro-

visioning formula is as follows, based on our measurements on various net-

works:

The packet traces are analyzed, to find rates at which traffic is sent across

the link, on a per-second basis. Hence, for every 5 minute interval, 300 traf-

fic rate figures are collected. The average rate of these 300 numbers, equal

to the 5 minute average traffic rate, is computed and referred to as µ. In ad-

dition we determine p, which denotes the 99th percentile of the 1 second

traffic rates.

Note that the above procedure is closely related to our performance crite-

rion (1.2), when T is chosen 1 second, and ε is chosen 1%. One could, then,

say that the link capacity should be equal to, (or just above,) the determined

peak rate p.

This procedure is repeated for all the packet traces at the various locations,

resulting in numerous mean and corresponding peak traffic rate combina-
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Figure 4.1: Mean rate µ vs. peak rate p for network R (outliers not removed)

tions: (µ, p)-tuples. These tuples are then plotted — see Figure 4.1 for the

measurements taken at location R.

Figure 4.1 shows a dense cloud for relatively small values of µ. For larger val-

ues of µ, there is less information because such relatively high (sustained)

traffic rates are, apparently, less common. It can also be observed that a

group of some 10 tuples falls outside (i.e., above) the cloud. The tuples

above the cloud are caused by 5 minute intervals in which there are a few

seconds with a large throughput rate, which is possible by relatively small

flows that have a large throughput rate. Such flows are possible because

of the high access link speed at this specific measurement location. These

relatively excessively high peak rates are called ‘outliers’, and ignored in the

sequel.

Since the context of our study is bandwidth provisioning, we are not so

much interested in finding an α that, for given µ, estimates the average p,

but rather fits the maximum value of p. If ‘outliers’ are ignored, the cloud in

Figure 4.1 is fitted in this respect with µ+4.86 ·µ. It is noted, however, that

this fit deviates from the cloud considerably, because of the ‘spreading’ of

the cloud. Therefore, one could argue that the C = µ+α ·µ rule would not

give an accurate estimation of the required bandwidth capacity (at least in

this example).
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4.4.2 Validation of second bandwidth provisioning formula

The approach taken in the validation of the Gaussian-model-based provi-

sioning formula is as follows (again, based on our measurements on various

networks):

We choose to set the performance criterion parameters T = 1 second, and

ε= 1% — the approach is similar for other settings of these parameters. Now

the packet traces are analyzed, and the 15 minute average throughput rate is

determined, yielding µ. Furthermore, the variance v(·) of the offered traffic

is calculated, based on the traffic offered in each second of the 15 minute

interval: v(1 sec).

The estimates for µ and v(1 sec) are inserted into the Gaussian provisioning

formula (4.7), yielding the estimated required bandwidth capacity C (for the

given packet trace, and the choices for T and ε).

Now we can compare the estimated C with the actual packet trace. We do

this by plotting the traffic rates (per second) in one graph together with the

estimated C — see Figure 4.2, in which we did this, as an example, for two

of our traces (each at a different location).

Figure 4.2 clearly shows that, for these example traces, the Gaussian band-

width provisioning formula predicts the required bandwidth capacity level

quite accurately: sufficiently high to cater for most of the 1 second inter-

vals, in accordance with the prespecified performance criterion (i .e.,T =
1 sec, ε = 1%). One might argue that C is slightly over-estimated — this is

likely caused by the fact that a bound rather than an exact value is given for

the ‘overflow probability’. In the context of bandwidth provisioning, how-

ever, a slight over-estimation is favorable over under-estimation, as the lat-

ter may lead to performance degradation. From a ‘Service Level Agreement

(SLA) perspective’, performance degradation may lead to violation of the

SLA, which a network operation will probably try to prevent. Thus, we be-

lieve that the apparent slight over-estimation of the required bandwidth ca-

pacity is not a problem.

A more extensive validation of the bandwidth provisioning formula for Gaus-

sian traffic, in which hundreds of traffic traces are used, is given in Section 6.2.
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(b) Location A: C ≈ 118 Mbit/sec

Figure 4.2: Comparing the estimated bandwidth capacity figure C with the

actual traffic rates (T = 1 sec, ε= 0.01).
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4.4.3 Possible alternative provisioning formulas: empirical rules of

thumb

In the previous subsections we have shown both the M/G/∞-based as well

as the Gaussian-based provisioning formulas to give reasonably good re-

sults in terms of estimating the required bandwidth capacity, although we

prefer the Gaussian-based provisioning formula as it is expected to have

broader applicability.

As a ‘bonus’ to this chapter, we now return to the ‘mean compared to peak’

traffic rate framework from Section 4.4.1. By looking at the cloud of (µ, p)-

tuples, one may wonder whether the p = µ+α
p
µ formula is the only ade-

quate rule to describe the relation between mean and peak traffic rates. In

this section we investigate another possible relation.

Clearly, any provisioning formula (and hence, any formula relating the long-

term mean traffic rate with the peak traffic rate on smaller timescales) would

have to incorporate the (relatively) long-term average traffic rate, and then

add something to cater for fluctuations (peaks) on smaller timescales. In

other words: p = µ+ X . Here, X could be various things, e.g., a constant, or

a function of (for instance) the long-term average traffic rate µ.

In Figure 4.3, we have plotted (for locations R and C) the respective clouds

with (µ, p)-tuples, and added a ‘fit’ corresponding to the following rule: p =
µ+α ·µ+ γ. Here, the ‘baseline’ µ can be recognized, plus a function of

µ, plus a constant. As Figure 4.3 shows, such a rule appears to be as valid

as the previously derived theoretical formulas. Obviously, other alternative

formulas could be thought of as well; see [vdMPM+04] for more examples.

It is not possible to give a definitive judgment on what provisioning rule

would be the best — even after quantifying their quality (by assessing the

‘relative overestimation’) there is no clear winner. In practical environ-

ments, network managers should therefore look at formulas and/or graphs

which suit their needs best.
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4.5 Concluding remarks

In this chapter we have derived various bandwidth provisioning rules:

– A formula that gives the (minimally) required bandwidth capacity

with no assumptions on the input traffic process but stationarity:

C = inf
θ≥0

logEexp
(

θA(T )
)

− logε

θT
.

The disadvantage of this formula is that the entire traffic arrival pro-

cess A(T ) has to be known. When additional modeling assumptions

are imposed, in that the arrival process is properly parameterized, one

can come to more explicit results, like below.

– When Gaussian input traffic is assumed, the above generic formula

reduces to:

C =µ+
1

T

√

(−2logε) · v(T ).

– When M/G/∞ modeling can be used to accurately describe the input

traffic process, the following bandwidth provisioning formula can be

derived, using the ‘Gaussian counterpart’ of the M/G/∞ input model:

C =µ+α
p
µ,

for an α that depends on just the per-flow characteristics (i.e., rate r

and the distribution of the flow duration D , but not on the arrival rate

λ), and the desired performance.

Importantly however, this formula has limited use, because as we

have shown in Chapter 3 of this thesis, it is not generally possible to

(practically) describe the traffic process within the framework of an

M/G/∞ input model. Hence, α would have to be estimated empiri-

cally (requiring detailed traffic measurements).

The bandwidth provisioning formula for Gaussian traffic relies on the (long-

term) average traffic rate, which is easy to estimate, and the variance of

the offered traffic (as well as the performance criterion). Estimation of the

variance is cumbersome, as it requires knowledge of the traffic process at

(small) timescale T . In the next chapter, however, we present an indirect
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approach to determine the sought v(T ) without requiring measurements at

such small timescale T .



5 Burstiness estimation

Burstiness, i.e., the fluctuations in traffic rates, and the average

traffic load, are together the dominant factors in determining the

required bandwidth capacity for a network link — as was shown

in the previous chapters.

Burstiness has to be determined at small timescales that corre-

spond to the perception by a network user of the service level,

perhaps 1 second but usually (considerably) smaller. Directly

measuring burstiness at such small timescales may be too large

a measurement effort. In this chapter, we propose an indirect

method for estimating the burstiness, which does not rely on

measurements at such small timescales. Instead, our indirect

method relies on taking snapshots of the amount of data (also

referred to as ‘occupancy’ or ‘contents’) in a buffer in front of the

‘to-be-sized’ network link.

This chapter is organized as follows:

– Section 5.1 further details the problem of estimating bursti-

ness.

– Section 5.2 introduces the theoretical framework upon

which we build our indirect method to estimate the bursti-

ness: Gaussian queues. Particular attention is paid to

some dimensioning formulas for various types of network

resources, which can be derived using the preliminaries on

Gaussian queues, additionally to the formulas derived in

Chapter 4.

– The theoretical framework and associated provisioning for-

mulas lead to our indirect method for determining bursti-

ness. This is explained in Section 5.3.

99
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– The indirect method for determining burstiness assumes

Gaussian traffic. In Chapter 3 it was shown that although

traffic is generally ‘fairly Gaussian’, it is certainly not ‘100%

Gaussian’. The impact of such a deviation from Gaussian

traffic on our burstiness estimation is investigated in Sec-

tion 5.4, together with an assessment of possible estimation

errors.

– Section 5.5 concludes.

5.1 Introduction

As we discussed in Chapter 1, there are in principle three prerequisites for

bandwidth provisioning:

1. the traffic offered (in terms of the average load, but also its fluctua-

tions, i.e., burstiness), described through a traffic model;

2. a performance target to be met; and

3. (provisioning) formulas computing the required bandwidth capacity

for a given traffic stream and performance target.

In Chapter 4 we have derived and discussed various provisioning formulas

for different traffic models, one of them based on Gaussian traffic modeling.

In Chapter 3 we have found that real Internet traffic may, in general, fairly

well be described through a Gaussian traffic model. Given the performance

criterion P (A(T ) ≥C T ) ≤ ε, recall that the required bandwidth formula for

Gaussian input is, cf. (4.7) on page 88:

C (T,ε) =µ+
1

T

√

(

−2logε
)

· v(T ),

with µ denoting the average traffic rate, v(T ) the burstiness at timescale T

(equal to the variance of the amount of traffic offered per time interval of

length T ), and T and ε corresponding to the performance criterion of ‘link

transparency’.

Thus, for proper bandwidth provisioning with prespecified T and ε, and as-

suming Gaussian traffic, a network manager should estimate µ and v(T ).
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As we will see in Section 5.2.2, provisioning using some other performance

criteria would even require knowledge of the entire variance curve v(·).

As argued earlier, µ can be determined by standard coarse-grained traffic

measurements, e.g., polling the IF-MIB counters via SNMP every 5 minutes.

Determining the traffic’s burstiness v(T ) is more involved. The standard

way, i.e., estimating v(T ) by measuring the amount of traffic per (disjoint)

time interval of length T and then determining the (sample) variance, is

what we refer to as the ‘direct approach’1. An important drawback of this

approach, however, is that it requires measurements at timescale T . As T is

presumed to be rather small (e.g., at most 1 second, but usually smaller),

and accurate SNMP measurements can hardly (if at all) be done at such

small timescales, the measurement effort to estimate v(T ) may be too sub-

stantial to be feasible in practice.

In the present chapter we develop a procedure to estimate v(·) in an in-

direct way, i.e., not directly from the traffic stream. We propose to do so

by coarse-grained sampling of the buffer occupancy, estimating the buffer

content distribution and ‘inverting’ this into the variance curve. Our pro-

cedure does, indeed, not only give the variance at timescale T but instead

the burstiness at all timescales (of course up to some finite time-horizon).

Importantly, this procedure eliminates the need for traffic measurements

at small timescales. In this respect, we remark that our proposed proce-

dure is rather counter-intuitive: without doing measurements of the traffic

at timescale T , we are still able to accurately estimate v(T ). Apparently, the

occupancy of the buffer provides enough information to estimate the full

curve v(·).

5.2 Gaussian queues

In this section we review some basic principles of Gaussian traffic, and re-

capitulate the main fundamental (large-deviations) theory for queues with

Gaussian input. These principles and fundamental theory are used to de-

velop our novel approach to estimate the burstiness of network traffic. As

an aside, we also derive, for this Gaussian setting, a number of provision-

1It is noted that the convergence of this estimator could be prohibitively slow when traf-

fic is long-range dependent [Ber94, Ch. I]
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ing rules for different network resources. These formulas motivate the need

for estimating specific traffic characteristics, viz., the mean rate µ and the

entire variance function v(·).

5.2.1 Many sources asymptotics

Consider n independent, statistically identical Gaussian sources. It is as-

sumed that the traffic pattern generated by an individual source corre-

sponds to a Gaussian process with stationary increments2. Thus, each

source is completely characterized by its mean traffic rate µ, and its vari-

ance function v(t ), for t ≥ 03.

Now suppose that the n sources feed into a queue with capacity Cq
4, and ap-

ply the scaling Cq ≡ ncq . Consider the probability that the queue length (or

buffer content — we use these terms interchangeably) exceeds some thresh-

old nb, i.e., P (Qn > nb). It is well-known (see, e.g., [DM03a]) that the sta-

tionary queue length, say Qn has the same distribution as the maximum of

the corresponding ‘free-buffer process’:

P (Qn > nb) = P

(

sup
t>0

(

n
∑

i=1

Ai (t )−ncq t

)

> nb

)

, (5.1)

with Ai (t ) denoting the amount of traffic generated by the i th source in an

interval of length t ≥ 0, EAi (t ) =µt , and VarAi (t ) = v(t ).

Now, we use the above in the following fundamental result that can be found

in, e.g., [AMN02]:

2The term ‘stationary increments’ means, in the present context, that the distribution

of the offered traffic A(T ) is fixed for each interval of length T . Hence, the distribution only

depends on the length T of the interval, and not on ‘the position’ of the interval. In other

words: for any t0, A(to +T )− A(t0) has the same distribution as A(T ).
3Note that in the sequel, µ refers the aggregated mean rate of multiple sources, whereas

the overlined version refers to the mean rate of a single traffic source, and likewise for v .
4The capacity Cq of a queue refers to the rate at which the queue is drained, i.e., Cq bits

per second. In this thesis, unless otherwise noted, we assume that the queue itself has an

infinite size.
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Lemma 5.1: To exclude certain degenerate cases, suppose that

there is an α< 2 such that v(t )/tα → 0 for t →∞. Then, for any

b > 0, and cq >µ,

I (b) := − lim
n→∞

1

n
log P (Qn ≥ nb)

≡ − lim
n→∞

1

n
log P

(

∃t > 0 :
n
∑

i=1

Ai (t )−ncq t ≥ nb

)

= inf
t>0

(b + (cq −µ)t )2

2v(t )
.

In Lemma 5.1, I (b) can be seen as the exponential decay rate of the proba-

bility that the queue length Qn exceeds some threshold nb, as a function of

b. In other words, P(Qn ≥ nb) ≈ e−n·I (b). Lemma 5.1 serves as a source of

inspiration in the remainder of this section.

Hence, Lemma 5.1 shows that there is some relation between the probabil-

ity distribution of the queue length, and the variance of the traffic. We will

further detail this relation, and exploit it in our methodology to indirectly

estimate the variance, which will be further described in the remainder of

this section and in Section 5.3.

Lemma 5.1 holds for the system ‘scaled by n’, but gives rise to an approxi-

mation for the ‘unscaled’ situation, see also for instance [AMN02], [FTD03,

Eq. 3]. The ‘unscaled’ situation corresponds to our notion of traffic streams

with ‘some’ aggregation (in terms of users). With B ≡ nb, consider the prob-

ability that the buffer content Q exceeds B , i.e., P(Q > B). We ‘unscale’ by

specifying µ ≡ nµ as the aggregate mean, and v(t ) ≡ nv(t ) as the aggregate

variance5. We then rewrite Lemma 5.1 as follows, to get the variant of this

lemma for aggregated traffic. First define

I (B) := inf
t>0

(

(Cq −µ)t +B
)2

2v(t )
. (5.2)

5It is noted that these definitions are in line with the ‘black-box paradigm’ used through-

out this thesis.



104 CHAPTER 5. BURSTINESS ESTIMATION

In the next few steps, we will develop the relation between P(Q > B) and

I (B). We start with rewriting the right-hand side of (5.1) for the unscaled

situation:

P

(

sup
t>0

(

A(t )−Cq t
)

> B

)

.

It is noted that the above supremum over t can also be seen as a union of

events:

P

(

sup
t>0

(

A(t )−Cq t
)

> B

)

≡P

(

⋃

t

{

A(t )−Cq t > B
}

)

.

We may now apply the ‘principle of the largest term’, which says that the

probability of a union of (rare) events can be accurately approximated by

the probability of the most likely event. Evidently, we arrive at:

sup
t>0

P
(

A(t ) >Cq t +B
)

. (5.3)

We can now perform the same procedure as followed in Chapter 4 on

page 81, i.e., applying ‘Chernoff’. ‘Chernoff’ gives an upper bound on (5.3),

but the upper bound in many cases is remarkably accurate. We thus arrive

at:

P

(

sup
t>0

(

A(t )−Cq t
)

> B

)

≈ sup
t>0

inf
θ≥0

EeθA(t )−θCq t−θB .

Now recall from (4.6) on page 87 that Eexp(θA(t )) = exp
(

θµt + 1
2
θ2v(t )

)

. We

can exploit this to compute the above infimum over θ ≥ 0 explicitly. Start

with inserting A(t ) as in (4.6) into the above Chernoff bound, which gives

after some rearranging of terms6:

inf
θ≥0

EeθA(t )−θCq t−θB = exp

(

−sup
θ≥0

(

θ
(

B +Cq t
)

−θµt −
1

2
θ2v(t )

))

.

6Besides rearranging, also the infimum over θ is changed to a supremum over θ. This

is possible, as by definition the following holds for a non-empty set of values S: inf(S) =
−sup(−S).
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To compute the supremum, we now have to maximize a quadratic function

of θ, and the first order condition (i.e., take the derivative of this function

with respect to θ, and setting this equal to zero) reads

B +Cq t −µt = θv(t ),

such that the optimizing θ is
(

B +Cq t −µt
)

/v(t ). Plugging this into our ob-

jective function, we arrive at:

inf
θ≥0

EeθA(t )−θCq t−θB = exp

(

−
(

B +Cq t −µt
)2

2v(t )

)

.

This finally leads to the following approximation of the overflow probability:

Approximation 5.1 For any B > 0, and Cq >µ,

P(Q > B) ≈ e−I (B) =sup
t>0

exp

(

−
(

B + (Cq −µ)t
)2

2v(t )

)

=exp

(

− inf
t>0

(

B + (Cq −µ)t
)2

2v(t )

)

. (5.4)

Hence, Approximation 5.1 gives the buffer content distribution P(Q > B) as

a function of the burstiness of the traffic as in v(t ), and other variables. The

question that remains is whether it is possible to ‘invert’ this function, i.e.,

to write v(t ) as a function of P(Q > B), etc. We will show, in Section 5.3, that

such an ‘inversion’ is indeed possible, and gives an ‘indirect’ way to estimate

the burstiness of network traffic.

5.2.2 Provisioning formulas

One of the major tasks in network management is the provisioning of re-

sources: choose the link capacity and/or buffer size such that some pre-

specified performance criterion is met. In this thesis we so far focused on

achieving ‘link transparency’. Approximation 5.1 provides us with a tool to

dimension, next to the discussed link transparency, other resources as well.
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Note that Section 5.2.2 is to be seen as an aside from the main text of this

thesis. We recall provisioning for link transparency, and discuss provision-

ing of a buffered link and just a buffer itself:

Dimensioning for ‘link transparency’

Suppose the goal is to provision the link such that the probability of exceed-

ing the capacity Cq for a period of length T is smaller than ε, with B = 0 (as

the performance criterion does not take into account presence of a buffer).

Hence we have to find the smallest Cq =Cq (T,ε) such that

exp

(

−
(

(Cq −µ)T
)2

2v(T )

)

≤ ε,

cf. Approximation 5.1. It is readily checked that this yields

Cq (T,ε) =µ+
1

T

√

(

−2logε
)

v(T ),

cf. (4.7) on page 88.

Remark: It is noted that, in practice, there will always be a

buffer. The above provisioning rule for an unbuffered link

should be seen in the light that in such cases a buffer is to be

used as a last resort — the objective is to (almost) never use it,

but only as a last resort. This holds for timescale T ; hence, one

could say that in these cases, a buffer is used to absorb bursts of

traffic at timescales smaller than T .

Dimensioning of a buffered resource

In the setting of provisioning rule (4.7) we considered an unbuffered re-

source. In practice, however, network elements are often equipped with a

queue, to absorb traffic rate fluctuations. If the router has a queue of size B ,

and suppose we wish to provision the capacity, we have to find the minimal
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Cq = Cq (ε) such that (5.4) in Approximation 5.1 is below ε. Hence, we are

searching for:

min
{

Cq | ∀t > 0 : exp

(

−
(

B + (Cq −µ)t
)2

2v(t )

)

≤ ε
}

.

To find this minimal Cq , we rearrange terms as follows:

min
{

Cq | ∀t > 0 :
(

B + (Cq −µ)t
)2 ≥−2 · v(t ) · logε

}

,

and, hence,

min
{

Cq | ∀t > 0 : Cq ≥µ+
(

1

t

√

(

−2logε
)

v(t )−
B

t

)

}

.

Clearly, the contribution of µ to the minimal Cq is not influenced by t . Thus,

we find that:

Cq (ε) =µ+ inf
t>0

(

1

t

√

(

−2logε
)

v(t )−
B

t

)

. (5.5)

Like in the case of the unbuffered link, the bandwidth required decreases in

ε. Moreover, it also decreases in B : the larger the queue, the better traffic

fluctuations can be absorbed by the buffer, and hence less link capacity is

needed.

It is noted that (5.5) requires knowledge of the entire variance function v(·),

instead of only the variance at timescale T as in the case of the unbuffered

link — this is caused by the fact that the timescale with the largest contribu-

tion to the buffer occupancy is not fixed.

Buffer dimensioning

Similarly to the procedure above, the minimum required buffer B = B(ε) can

be determined:

B(ε) = inf
t>0

(

√

(

−2logε
)

v(t )−
(

Cq −µ
)

t

)

. (5.6)

Note that B(ε) decreases in ε and C , as can be expected. Also, again,

knowledge of the entire variance function is required.
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We finish this section on Gaussian queues with an example, in which we

use artificial traffic to derive explicit provisioning figures using the formulas

presented above, to demonstrate how the formulas work. We focus on the

relevant case of fBm traffic (see also Chapter 3), i.e., Gaussian traffic with

v(t ) =σ2t 2H (take for ease σ= 1).

Example: (Provisioning for fBm traffic) Straightforward com-

putations give for (4.7):

Cq (T,ε) =µ+
√

−2logε

T 1−H
.

When computing Cq (ε) in (5.5), the optimizing t is given by

B 1/H (1−H)−1/H
√

−2logε
−1/H

,

yielding

Cq (ε) =µ+
√

−2logε
1/H

(

1−H

B

)1/H−1

H .

In buffer provisioning rule (5.6) the optimizing t is given by

(δH)1/(1−H)(Cq −µ)−1/(1−H) ,

such that

B(ε) =
(
√

−2logεH

(Cq −µ)H

)1/(1−H)
1−H

H
.

An important conclusion from this section is that the above provisioning

formulas indicate that it is of crucial importance to have accurate estimates

of the average traffic rate µ, as well as the variance curve v(·) (i.e., v(t ) as

a function of t ≥ 0); having these at our disposal, we can find the required

bandwidth capacity or buffer size.

In the next section we present a method to find v(·) that does not rely on

detailed measurements at (small) timescale T .
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5.3 An indirect method to estimate burstiness

This section presents a powerful alternative to the ‘direct method’ of de-

termining burstiness; we refer to it as the inversion approach (or indirect

method) as it ‘inverts’ the buffer content distribution to the variance curve.

We rely on the many-sources framework from Section 5.2.1.

5.3.1 Derivation of the inversion formula

Recall the ‘unscaled’ variant of Lemma 5.1, i.e., cf. (5.2):

I (B) := inf
t>0

(

(Cq −µ)t +B
)2

2v(t )
,

where I (B) can be seen as the exponential decay rate of the probability that

the queue length Q exceeds some value B , i.e., P(Q > B): Approximation 5.1

says that P(Q > B) ≈ exp(−I (B)).

Now define tB as the most likely timescale (or epoch) at which such an over-

flow occurs, for a given buffer size B > 0:

tB := arg inf
t>0

(B + (Cq −µ)t )2

2v(t )
.

It was noted in, e.g., [AMN02, Man04, MK01], that tB is not necessarily

unique. Define the set T as follows, containing all tB s:

T := {t > 0 | ∃B > 0 : t = tB } .

The next step is to hypothesize that we may ‘invert’ the above formula in

which I (B) is defined as a function of variance v(t ) (and others), in such a

way that v(t ) is written as a function of I (B). The following theorem gives,

for any t > 0, an upper bound on the variance v(t ), for given I (B), and

presents conditions under which this upper bound is tight.
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Theorem 5.2:

1. For any t > 0,

v(t ) ≤ inf
B>0

(

B + (Cq −µ)t
)2

2I (B)
. (5.7)

2. There is equality in (5.7) for all t ∈T

3. If 2v(t )/v ′(t )− t grows from 0 to ∞ when t grows from 0 to

∞, then T = (0,∞).

PROOF: Clearly, due to (5.2), for all B > 0 and t > 0, we have that

I (B) ≤
(

B + (Cq −µ)t
)2

2v(t )
.

Hence also, for all B > 0 and t > 0:

v(t ) ≤
(

B + (Cq −µ)t
)2

2I (B)
,

which implies claim 1 immediately.

Now consider a t ∈T . Then there is a B = Bt > 0 such that

I (B) =
(

B + (Cq −µ)t
)2

2v(t )
.

We thus obtain claim 2.

Now consider claim 3. We have to prove that for all t > 0 there

is a B > 0 such that t = tB . Evidently, tB solves 2v(t )(Cq −µ) =
(B + (Cq −µ)t )v ′(t ), or, equivalently,

B = Bt :=
(

2
v(t )

v ′(t )
− t

)

(Cq −µ). (5.8)

Hence, it is sufficient if Bt in the right hand side of (5.8) grows

from 0 to ∞ when t grows from 0 to ∞.

Remarkably, it apparently holds that if one knows the probability distribu-

tion of the queue length, one can derive the probabilistic properties of the

input process to that queue. Thus, Theorem 5.2 gives, loosely speaking, that
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for Gaussian sources the buffer content distribution uniquely determines

the variance function. This property is exploited in the following heuristic,

for which we coin the term ‘inversion formula’:

Approximation 5.3 The following estimate of the function v(t ) (for t > 0)

can be made using the buffer content distribution:

v(t ) ≈ inf
B>0

(B + (Cq −µ)t )2

−2logP(Q > B)
. (5.9)

Hence, if we can estimate P(Q > B), then ‘inversion formula’ (5.9) can be

used to retrieve the variance; notice that the infimum can be computed for

any t , and consequently we get an approximation for the entire variance

curve v(·) (of course up to some finite horizon). These ideas are exploited in

the procedure described in the next section.

5.3.2 Procedure to estimate burstiness through the buffer occupancy

In this section, we show how the theoretical results of the previous subsec-

tion can be used to estimate v(·). We first propose an algorithm for estimat-

ing the (complementary) buffer content distribution P(Q > B) (in the sequel

abbreviated to BCD), such that, by applying Approximation 5.3, the variance

curve v(·) can be estimated.

Inversion procedure

The inversion procedure consists of two steps: (1) determining the BCD,

and (2) ‘inverting’ the BCD to the variance curve v(·) by applying Approxi-

mation 5.3. We propose the following algorithm:

Algorithm 5.4

1. Collect ‘snapshots’ of the buffer contents: q1, . . . , qN ; here qi denotes the

buffer content as measured at time τ0 + iτ, for some τ > 0. Estimate

the BCD by the empirical distribution function of the qi , i.e., estimate

P(Q > B) by

φ(B) =
#{i : qi > B}

N
.



112 CHAPTER 5. BURSTINESS ESTIMATION

2. Estimate v(t ), for any t ≥ 0, by

inf
B>0

(B + (Cq −µ)t )2

−2logφ(B)
. (5.10)

In the above algorithm, snapshots of the buffer content are taken at a con-

stant frequency. To get an accurate estimate of the BCD, both τ and N

should be chosen sufficiently large. We come back to this issue in Sec-

tion 5.4. Notice that we chose a fixed polling frequency (i.e., τ−1) in our algo-

rithm, but this is not strictly necessary; the BCD-estimation procedure ob-

viously still works when the polling epochs are not (exactly) equally spaced.

One could also argue that a specific polling scheme may be preferable, e.g., if

the polling epochs are Poisson-distributed, this would eliminate possible ef-

fects of period traffic on the resulting BCD-estimation (because of Poisson-

Arrivals-See-Time-Averages (PASTA) arguments).

5.3.3 Demonstration of the inversion procedure

We now demonstrate the inversion approach of Algorithm 5.4 through a

simulation with synthetic input, i.e., traffic generated according to some

stochastic process. Concentrating on slotted time7, we focus on the (prac-

tically relevant) case of fBm input8, but we emphasize that the procedure

could be followed for any other stochastic process. The simulation of the

queue fed by the synthetic input yields an estimate for the BCD; this esti-

mated BCD is then ‘inverted’ to obtain the estimated variance curve v(·).

Finally we compare, for fBm, our estimation for v(·) with the actual variance

curve, yielding a first impression of the accuracy of our approach (more de-

tailed validation follows in the next section on error analysis, and in Chap-

ter 6).

We have simulated fBm by a fractional Brownian motion simulator [Die]

(based on Davis and Harte’s circulant method, see [DM03b, Die] for more

information). The traffic stream is fed into a queue with link rate Cq . The

buffering dynamics are simulated follows:

7Slotted time means that time is divided into discrete intervals.
8See Chapter 3, page 51, for a description of fBm
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Algorithm 5.5 Simulation of the buffer dynamics:

1. Using the fBm simulator we generate fBm input, with a specific Hurst

parameter H ∈ (0,1). This yields a list A1, . . . , AZ , for some Z ∈N, where

A j denotes the amount of traffic offered in the j th slot.

2. The list A1, . . . , AZ is used to simulate the buffer dynamics. This is done

recursively:

Q j+1 := max
{

Q j + A j −Cq ,0
}

,

where Q j denotes the amount of contents in the buffer at the beginning

of slot j .

3. The buffer content Q j is observed every τ slots, which results in N = Z /τ

snapshots qi of the buffer content. These snapshots are used to estimate

P(Q > B), as described in Algorithm 5.4.

In (standard) fBm, the average traffic rate µ equals 0. Trivially, fBm with

non-zero ‘drift’ µ can be simulated by replacing the list A1, . . . , AZ by A1 +
µ, . . . , AZ +µ.

In this demonstration of the inversion procedure, we generate an fBm traffic

trace with Hurst parameter H = 0.7 (motivated by our earlier observation

that Hurst values between 0.6 and 0.8 are generally found for several types

of real traffic) and length Z = 224 slots. The link capacity Cq is set to 0.8, and

we take snapshots of the buffer content every τ= 27 = 128 intervals.

We can then estimate the BCD. A plot is given in Figure 5.1; for presentation

purposes, the (natural) logarithm of the BCD, i.e., logP(Q > B), is plotted.

It can be seen that the BCD in Figure 5.1 is ‘less smooth’ for larger values of

B . This is due to the fact that large buffer levels are rarely exceeded, leading

to less accurate estimates.

Using the estimated BCD, the variance v(t ) for t equal to the powers of 2

ranging from 20 to 27 is estimated. The resulting variance curve is shown in

Figure 5.2 (‘inversion approach’). The minimization (over B) in (5.10) was

done by straightforward numerical search techniques.

To get an impression of the accuracy of the inversion approach, we have also

plotted in Figure 5.2 the variance curve as can be estimated directly from the

synthetic traffic trace (i.e., the ‘direct approach’), as well as the real variance

function for fBm traffic, i.e., v(t ) = t 2H .
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Figure 5.2 shows that the three variance curves are remarkably close to each

other. This confirms that the inversion approach is an accurate way to esti-

mate the burstiness. We note that the graph shows that the inversion ap-

proach slightly overestimates the variance; hence, when using this curve

for provisioning purposes, for instance by applying rules (5.5) or (5.6), this

would result in conservative numbers. An extensive validation of the use of

the inversion approach for provisioning purposes is performed in Chapter 6

of this thesis.

5.4 Error analysis of the inversion procedure

In the previous section the inversion approach was demonstrated. It was

shown to perform well for fBm with H = 0.7, under a specific choice of N

and τ. Evidently, the key question is whether the procedure still works under

other circumstances. To this end, we first identify the three possible sources

of errors:

– The inversion approach is based on the approximation (5.4).

– P(Q > B) is estimated; there could still be an estimation error involved.

In particular, we wonder what the impact of the choice of N and τ is.

– The procedure assumes perfectly Gaussian traffic, although real net-

work traffic may not be (accurately described by) Gaussian (as also

seen in Chapter 3).

We will now quantitatively investigate the impact of each of these errors on

our ‘indirect approach’. These investigations are performed through simu-

lation as outlined in the previous section.

5.4.1 Approximation of the buffer content distribution

In (5.4) an approximation of the BCD is given. As the inversion approach is

based on this approximation, evidently, errors in (5.4) might induce errors

in the inversion. This motivates the assessment of the error made in (5.4).

We first determine the infimum in the right-hand side of (5.4), which we

consider as a function of B . In line with the previous section, we choose
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Figure 5.3: P(Q > B) and theoretical approximation (H = 0.5)

fBm input: µ = 0 and v(t ) = t 2H . Straightforward calculations now reveal

that we can rewrite (5.4), viz.:

logP(Q > B) ≈−
1

2
·
(

B

1−H

)2−2H

·
(

Cq

H

)2H

.

We verify how accurate the approximation is, for two values of H : the purely

Brownian case H = 0.5, and a case with long-range dependence H = 0.7.

Several runs of fBm traffic are generated (with different random seeds), 224

slots of traffic per run. We then simulate the buffer dynamics. For H = 0.5 we

choose link rate Cq = 0.2, for H = 0.7 we choose Cq = 0.8; these choices Cq

are such that the queue is sufficiently often non-empty (in order to obtain

a reliable estimate of the BCD); see also Chapter 6 for more discussion on

choosing an appropriate Cq .

Figures 5.3 and 5.4 show for the various runs the approximation of the BCD,

as well as their theoretical counterpart. It can be seen that, in particular for

small B the empirically determined BCD almost perfectly fits the theoretical

approximation9.

9It is noted that the simulator uses slotted time, whereas (5.3) involves an optimization

over continuous time. This actually means that we should take the minimum over t ∈ N in

(5.3), instead of t ∈ R. Computation of the minimum over N shows that this does not have

significant impact.
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5.4.2 Estimation of the buffer content distribution

A second possible error source in our inversion approach, relates to the esti-

mation of the BCD. As we estimate the BCD on the basis of snapshots of the

buffer content, there will be some error involved. The impact of this error is

the subject of this subsection. It could be expected that the larger N (more

observations) and the larger τ (less correlation between the observations),

the better the estimate.

First, we investigate the impact of N . The simulator is run as in previous

cases (with H = 0.7), with the difference that we only use the first x% of the

snapshots samples to determine P(Q > B). Figure 5.5 shows the estimation

of the buffer content distribution, for various x ranging from 0.1 to 100. The

figure shows that, in particular for relatively small B , a relatively small num-

ber of observations suffice to get an accurate estimate of the BCD.

Second, we investigate the impact of the interval length between two con-

secutive snapshots τ. One might expect that the more often the buffer oc-

cupancy is polled, the closer the resulting buffer content distribution would

look like the theoretical approximation. Note, however, that when the snap-

shots are taken close together, the observations may be highly correlated

due to the long-range dependence of the simulated fBm traffic, which might

(negatively) affect the accuracy of the estimate. Figure 5.6 shows the deter-

mined BCD for τ ranging from observing every 32 to every 8192 slots. It can
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be seen that, particularly for small B the fit is quite good, even when the

buffer content is polled only relatively rarely.

5.4.3 The impact of the Gaussianity assumption

Approximation (5.4) explicitly assumes that the traffic process involved is

Gaussian. Various measurement studies find that real network traffic on

the Internet is (accurately described by) Gaussian, see, e.g., [LTWW94] and

Chapter 3 of thesis, but the fit is of course not perfect. In this subsection we

investigate the impact of the Gaussianity assumption on the inversion, i.e.,

we test how the procedure works for traffic that is not (perfectly) Gaussian

(which is better ‘in line with reality’, see again Chapter 3).

We study the impact of non-Gaussianity as follows. Mix the trace Ai _[fBm]

generated by the fBm simulator with traffic Ai _[alt] from an alternative (non-

Gaussian) input stream:

Ai :=α · Ai _[fBm] + (1−α) · Ai _[alt],

where α ∈ [0,1] corresponds to the fraction of fBm traffic in the mixture. The

resulting traffic stream is fed into the queue, cf. Algorithm 5.5. Clearly, by

definition, the variance of the traffic mixture is (as we consider the [fBm]

and [alt] components of the mixtures to be independent of each other, and

hence, having zero covariance):

v(t ) =α2v[fBm](t )+ (1−α)2v[alt](t ). (5.11)

For α = 1 we are in the pure-Gaussian case, of which we have seen that the

inversion procedure performed well. We now vary α from 1 to 0, to see the

impact of the non-Gaussianity.

The alternative input model that we choose here is an M/G/∞ input model,

inspired by, e.g., [AMN02]. In the M/G/∞ input model, jobs arrive according

to a Poisson process. The job durations are i.i.d., and during their duration

each job generates traffic at a constant rate r . In line with measurements

studies, we choose Pareto(β) jobs, obeying the distribution function

FD (x) = 1−1/(x +1)β.
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As the objective is to assess the impact of varying the parameter α, we have

chosen to select the parameters of the M/G/∞ input model such that the

processes Ai _[fBm] and Ai _[alt] are ‘compatible’, in that their mean µ and vari-

ance v(·) are ‘similar’. This has been done as follows:

– The mean of the described M/G/∞ input model is given by µ[alt] =
λr /(β−1). We choose λ= 10 and r = 1 for ease; the other involved pa-

rameters will be used to achieve the desired ‘compatibility’. The mean

of the original fBm traffic model is µ[fBm] = 0; however, as argued ear-

lier, we may add a drift of µ[alt] to the Ai _[fBm]-values to ensure that

µ[alt] =µ[fBm].

– In earlier work, see e.g. [MSS05], an exact formula for the variance

curve v[alt](t ) has been derived. It is not possible to achieve the de-

sired ‘compatibility’ of the variance at all timescales. As long-range

dependence is mainly a property of long timescales, we choose to fo-

cus on these. For larger timescales, the variance v[alt](t ) from [MSS05]

roughly looks like, assuming β ∈ (1,2),

v[alt](t ) ≈ r 2λ
2

(3−β)(2−β)(β−1)
t 3−β.

The variance of the original fBm traffic model is also known:

v[fBm](t ) = σ2t 2H . Assuming H = 0.7 and sufficiently large t , we can

now determine the remaining parameters: β ≈ 1.6, σ ≈ 7.72, and

µ ≈ 16.67. The variance function of the traffic mixture may now be

computed using (5.11).

The next step is to run, for different values of α, the simulation, and to deter-

mine the theoretical variance curve of (5.11), and to perform the inversion

procedure of Algorithm 5.4.

In Figure 5.7 we focus on the ‘nearly-Gaussian’ cases α = 0.8 and α = 0.9,

which are plotted together with their theoretical counterparts. The figure

shows that the presence of non-Gaussian traffic has some, but no crucial

impact on our inversion procedure.

We also consider the (extreme) case of α= 0, i.e., no Gaussian traffic at all, to

see if our inversion procedure still works. In Figure 5.8 the various variance
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curves are shown: the theoretical curve, the curve based on the ‘direct ap-

proach’, as well as the curve based on the inversion approach. Although not

a perfect fit, the curves look similar and still relatively close to each other

(but, of course, the fit is worse than for α= 0.8 and 0.9). Note that the non-

Gaussian traffic may ‘have some Gaussian characteristics’ as long as there

is a large degree of aggregation, by virtue of central-limit type of arguments,

which may explain that the fit is still reasonable.

This concludes our analysis of the possible errors in the indirect method to

estimate burstiness. Extensive validation of the indirect method to estimate

burstiness when used in the context of link dimensioning, is presented in

Chapter 6.

5.5 Hints on implementation

The experiments with artificial traffic, as described in Sections 5.3 and 5.4,

have been performed off-line, in that we have used scripts that ‘parse’ the

synthetic traffic trace, mimicking the buffer content dynamics — more de-

tails on the mimicking are given in Section 6.3.1.

An interesting question is whether the approach that we proposed to indi-

rectly determine the burstiness is feasible in run-time, in operational envi-

ronments. From the proposed procedure, see Algorithm 5.4, we can derive

the following functional requirements for an implementation of the inver-

sion procedure:

1. a notion of the amount of data in a buffer;

2. a way to regularly poll this information;

3. software/hardware to determine the BCD, and then determine the re-

sulting estimate of v(·).

To our best knowledge, these requirements do not lead to any fundamental

or conceptual problems. The first requirement is already addressed: Ran-

dom Early Detection (RED) queuing algorithms, which are widely imple-

mented in modern routers, also keep track of the amount of queued data. In

RED the buffer content (or, more precisely, a proxy of the buffer contents in

the near past) is used to randomly discard packets (to which the TCP-users
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react by reducing their window size), see [FJ93]. It is evident that informa-

tion on the buffer occupancy can also be used for other purposes, such as

the estimation of the BCD.

The second requirement may be fulfilled by, for instance, the use of SNMP

(in case the entire procedure is not run on the router itself). We have, how-

ever, not found an (IETF-standardized) MIB that gives access to buffer occu-

pancy data. The most close comes the ifOutQLen object, described as ‘the

length of the output packet queue (in packets)’ in the Interfaces Group MIB.

At time of writing, however, use of this object has been deprecated by the

IETF. Also, the specification of the ifOutQLen object states that it returns

the length in packets, whereas our methodology uses the queue length in

bits (or bytes). One could possibly circumvent this ‘incompatibility’ by us-

ing deterministic or probabilistic computations to come from amount of

packets to (expected) packet sizes. We recommend that implementers of

our inversion approach seek standardization through the IETF or other ap-

propriate forums, of a process to poll the buffer occupancy.

The last requirement has already been addressed — see our results in this

and the next chapter. Hence, we conclude that there are no fundamental or

conceptual problems preventing the actual application of our approach in

practice.

Remark: Virtual queues — Interestingly, there is the possibility

of decoupling the inversion procedure from the actual queue in

the router. More precisely: in software, one could keep track of

a ‘virtual queue’ that is drained at a link rate Cq that might be

different from the actual link rate C of the router. The idea of

such decoupling is illustrated in Figure 5.9. Particularly when

the ‘real queue’ is empty during a substantial fraction of the

time, which inevitably results in poor estimates of the BCD, one

could better use a virtual queue that is drained at a lower rate

Cq .
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Figure 5.9: Decoupling the real queue from a virtual queue used in the in-

version procedure

5.6 Concluding remarks

There are two fundamentally different methods to estimate burstiness in

network traffic:

1. directly inferring the variance at small timescales by measuring the

traffic rates at small timescales. This may not be attractive, as mea-

suring at such small timescales is not feasible using SNMP in practice;

and

2. indirectly estimating the variance through coarse-grained polling of

the buffer occupancy, and then ‘inverting’ to the variance curve.

For the second approach, we have found that we can accurately estimate

the variance of the traffic at any timescale, through the following ‘inversion

formula’:

v(t ) ≈ inf
B>0

(B + (Cq −µ)t )2

−2logP(Q > B)
,

in which the distribution of the queue length (or buffer occupancy), which is

known to determineP(Q > B) for any B > 0, is found through coarse-grained

polling of the buffer occupancy.

We have performed simulation experiments illustrating the inversion pro-

cedure, and assessing possible (numerical) errors in the indirect estimation

of the variance curve. We conclude that our simulation experiments show

the ‘robustness’ of the inversion procedure. Despite the approximations in-

volved, with a relatively low measurement effort, the variance curve is es-

timated accurately, even for traffic that is ‘not perfectly Gaussian’. Given

the evident advantages of the inversion approach over the ‘direct approach’

(minimal measurement effort required, retrieval of the entire variance curve
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v(·), etc.), the indirect method is to be preferred. In the next chapter we ver-

ify whether this conclusion also holds for real (i.e., not artificially generated)

network traffic — we find that it does.

We have also given some hints on implementation of our methodology to

indirectly estimate the burstiness of network traffic. An analysis of the re-

quirements has shown that there are no fundamental impediments to im-

plementation.

We finish this chapter with some notes on related methodologies:

Comparison with alternative measurement methodologies

The purpose of our inversion method is to retrieve the essential traffic char-

acteristics at a low measurement cost. We remark that several other ‘cheap’

(i.e.,, with low measurement effort) methods have been proposed. We now

briefly discuss some of these, and compare them with our approach.

The method described in Duffield et al. [DLO+95] aims to estimate the

‘asymptotic cumulant function’, i.e.,

Λ(θ) := lim
t→∞

1

t
logEeθA(t ),

from traffic measurements. This function is useful, because, under some as-

sumptions on the traffic arrival process, it holds that logP(Q > B) ≈ −θ⋆B ,

for B large, where θ⋆ solves Λ(θ) = Cqθ. The crucial assumption on the in-

put traffic is that it should be short-range dependent — otherwise Λ(·) does

not even exist (think of fBm, for which Eexp(θA(t )) is of the form 1
2
θ2t 2H ).

Of course, this requirement is quite restrictive. It is noted that the estima-

tion of Λ(·) turns out to be far from straightforward (block-sizes need to be

chosen, etc.). A crucial difference with our approach is that [DLO+95] mea-

sures traffic, whereas we propose to measure (or, better: to poll) the buffer

content.

Another related study is by Kesidis et al. [CKR+95]. Like in our method,

their approach relies on the estimation of the buffer content distribu-

tion logP(Q > B). Under the assumption of short-range dependent input,

logP(Q > B) is linear for large B (with some slope −θ⋆). Having estimated

θ⋆, the probability of overflow over higher buffer levels can in their view
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be estimated, by extrapolating the function logP(Q > B) linearly. Also this

method does not deal with long-range dependent input. Comparing this

‘extrapolation of a linear function’ idea with Figure 5.1 on page 114, it be-

comes clear that such extrapolation may not be realistic: Figure 5.1 empiri-

cally shows that P(Q > B) does not decay exponentially in B (it rather decays

at a slower rate: log(P(Q > B) ∼ θ⋆B 2−2H , with 2−2H < 1 (because H > 0.5)).



6 Large-scale validation

In the previous chapters we developed rules and procedures to

find the required bandwidth capacity level for a traffic stream

and a prespecified performance criterion. In the present chap-

ter we verify whether the estimated required bandwidth is in-

deed accurate. Our approach in this verification is to perform

an extensive number of case studies that use the traces that we

collected at five locations.

This chapter is organized as follows:

– Section 6.1 introduces the framework in which we perform

our validation study, and describes some implementation

aspects.

– Section 6.2 presents large-scale validation results of our

bandwidth provisioning formula assuming Gaussian traf-

fic, i.e., C =µ+ 1
T

√

(

−2logε
)

v(T ), using hundreds of packet

traces.

– Section 6.3 provides an empirical validation of our

methodology to indirectly estimate the burstiness v(T ), as

required in the bandwidth provisioning formula, of real

traffic through coarse-grained polling of the buffer occu-

pancy, again using many traces of real traffic.

– Section 6.4 concludes.

6.1 Introduction

The purpose of this chapter is to validate the theoretical results from the pre-

vious chapters, using hundreds of packet traces that we collected through

network traffic measurements at various locations.

127
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In Chapter 4, we developed rules to estimate the required bandwidth capac-

ity, based on the stochastic characteristics of the offered traffic and a per-

formance criterion. For Gaussian traffic, this required bandwidth formula

is C = µ+ 1
T

√

(

−2logε
)

v(T ) — hence it involves some mean µ and bursti-

ness v(T ). In Chapter 5, we then proposed an indirect way to estimate the

burstiness of network traffic. In the present validation study, we evaluate

both elements of network link dimensioning:

– We consider the accuracy of the estimation of the required band-

width, i.e., formula (4.7) in Chapter 4, for real network traffic. This

formula has as argument the burstiness, and this burstiness is esti-

mated through the direct approach.

– We investigate the accuracy of our methodology to indirectly estimate

burstiness as described in Chapter 5, for real network traffic. As noted

earlier, this indirect approach to estimate the burstiness has as main

advantage over the direct approach that it does not require measure-

ments at small timescales.

The ‘decoupling’ in our assessment allows us to gain precise insight into,

— and thus a good validation of — both elements of network link dimen-

sioning. Hence, it allows to precisely determine where possible errors in the

end-result (i.e., network link dimensioning) stem from. A description of the

approach followed during both validation studies is given at the start of Sec-

tion 6.2 and 6.3, respectively.

In the validation of the required bandwidth estimation, we choose to fo-

cus exclusively on the required bandwidth formula for Gaussian input traf-

fic. This choice is motivated by the observation in Chapter 3 that it can be

difficult (if at all possible) to estimate the modeling parameters for, say, an

M/G/∞ input model to accurately describe real traffic. As we will see in

Section 6.2, for the validation of a required bandwidth formula, it is neces-

sary to be able to estimate the modeling parameters for the traffic model

that is assumed in that required bandwidth formula. Hence, we choose to

focus on validating the required bandwidth formula for Gaussian traffic —

we saw, in Chapter 3, that it is feasible to estimate the modeling parameters

for a Gaussian traffic model from our traces.
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6.2 Validation of the required bandwidth estimation

6.2.1 Approach

In Chapter 3, we found that real traffic can (in most cases) appropriately be

described through a Gaussian traffic model. In Chapter 4, we then derived a

formula that estimates the required bandwidth capacity C , for a given mean

traffic load µ and burstiness v(·), and a prespecified performance criterion.

We focus on achieving ‘link transparency’: in no more than a fraction ε of

time intervals of length T , the offered traffic may exceed the link’s capacity.

Recall that this formula to estimate the required bandwidth capacity is as

follows, cf. (4.7) on page 88:

C =µ+
1

T

√

(

−2logε
)

v(T ).

Our approach in the present validation study of the above required band-

width formula is as follows. Each packet trace is processed, using the

Net::Pcap Perl module and rather straightforward computations in the Perl

programming language. The Net::Pcapmodule gives access to each packet

in a trace (and as such, the timestamp associated with the packet, and the

packet size). Hence we can determine the average traffic rate µ, and com-

pute the variance v(·) of the offered traffic at timescale T , as follows (where

Ai denotes the amount of traffic offered over the i th interval of length T ):

µ=
1

nT

n
∑

i=1

Ai ,

v(T ) =
1

n −1

n
∑

i=1

(Ai −µ)2.

Then, it is a matter of inserting the resulting µ and v(T ), as well as the spec-

ified values of T and ε, into the above formula for C to get the (estimated)

required bandwidth. As we argued in Chapter 5, it may not be feasible to

find v(T ) in such ‘direct’ way in practice, because of the required measure-

ments at small timescales. At this point, however, we want to only validate

the required bandwidth formula (4.7), as motivated in Section 6.1.
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We choose to determine the average traffic rate µ per 15 minutes (recall that

each trace contains 15 minutes of traffic), and set T to 1 second, 500 mil-

liseconds and 100 milliseconds (and thus determine the variance at those

timescales), which are timescales that we believe are important to the per-

ception of quality by (human) users. We set ε to 1%. After the case studies,

we will give a few examples of validation using other parameter settings, in

Section 6.2.7. It is noted that a network operator may choose its own set-

tings of T and ε, depending on, e.g., the application(s) being used, Service

Level Agreements, etc.

In order to validate if the estimated bandwidth capacity C indeed corre-

sponds to the required bandwidth, we introduce the notion of ‘realized ex-

ceedance’, denoted with ε̂. We define the realized exceedance as the frac-

tion of cases in which the amount of offered traffic Ai exceeds the estimated

required capacity C — we stress the fact that ‘exceedance’ in this context

should not be confused with ‘packet loss’. In other words:

ε̂ :=
#
{

Ai | Ai >C T
}

n
(i ∈ 1. . .n) .

By definition, exceedance (as in A(T ) >C T ) may be expected in a fraction ε

of all intervals. There are, however, (at least) two reasons why ε̂ and ε may

not be equal in practice. Firstly, the bandwidth provisioning formula as-

sumed ‘perfectly Gaussian’ traffic, but real traffic may not be ‘perfectly Gaus-

sian’, as we already observed in Chapter 3. Deviation of ‘perfectly Gaussian’

traffic (in other words: violation of the modeling assumption) may have an

impact on the estimated C . Secondly, in the derivation of the generic band-

width provisioning formula upon which the required bandwidth formula for

Gaussian traffic is based, an approximation (Chernoff bound) is used (see

(4.1)).

To assess to what extent the provisioning formula for Gaussian traffic is ac-

curate for real traffic, it is clearly interesting to compare ε with ε̂. Thus, we

study the difference between ε and ε̂ to get insight into the deviation be-

tween the outcome of the model-based formula and the real traffic.

The validation study as described above is performed using the hundreds of

traces that we collected at five different locations. For more information on

the measurement locations, see the descriptions from page 35 onward.
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6.2.2 Case-study #1: location U

The first case-study deals with two example traces taken from the measure-

ments at location U. In this case-study as well as in the other case-studies in

the subsequent sections, we have chosen to select traces that are interesting

in that they either show positive or even negative results, or provide us with

useful insights. We have tried to select representative traces from the hun-

dreds of traces in total. After these graphical examples, validation results are

tabulated, comprising results for all traces of this location.

Figure 6.1 on the next page shows a first example trace from location U. The

top row of graphs in Figure 6.1 shows the Q-Q plots (see Chapter 3 for more

information on Q-Q plots) at timescales T = 1 second, 500 and 100 millisec-

onds, comparing the empirical distribution of the offered traffic per inter-

val, to the Gaussian distribution with mean and variance equal to the cor-

responding empirical values. Given the ‘goodness-of-fit’ γ values that are

close to the ‘perfectly Gaussian’ value of 1, one can say that the traffic in this

trace is ‘fairly Gaussian’.

One can also see from Figure 6.1 that the highest peaks in the traffic rates

are ‘unexpectedly high’, if one would assume Gaussian traffic: these high-

est peaks correspond to the few points in the top-right corners of the Q-Q

plots. The fact that these are above the ‘diagonal’ indicate that these peaks

are higher than could be expected from a Gaussian distribution with such

mean and variance.

It can clearly be seen, in the second row of graphs, that although the aver-

age rate over the entire 900 seconds interval is some 207 Mbit/s, at smaller

timescales the peak rates are significantly higher, i.e., up to 300 Mbit/s. The

fluctuations also show from the variances: at a timescale of T = 1 second,p
v(T ) is some 15.5 Mbit.

Next, we determine the estimated bandwidth capacity using the required

bandwidth formula (4.7). As can be seen in the captions under the bottom

row graphs in Figure 6.1, the required bandwidth capacities C are estimated

at some 254.3, 257.0 and 266.4 Mbit/s, for T = 1 second, 500 and 100 mil-

liseconds, respectively.

Subsequently, the realized exceedance figures are determined, and these are

also shown in the captions. The realized exceedance is clearly within the
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(a) T = 1 sec, γ= 0.983
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(b) T = 500 msec, γ= 0.985
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(c) T = 100 msec, γ= 0.987
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(d) T = 1 sec, ε= 0.01,p
v(T ) = 15.5 Mbit,

C = 254.3 Mbit/sec,

ε̂: 0.0089

 160

 180

 200

 220

 240

 260

 280

 300

 0  100  200  300  400  500  600  700  800  900

tr
a
ff
ic

 r
a
te

 (
M

b
it
/s

)

time (sec)

(e) T = 500 msec, ε= 0.01,p
v(T ) = 8.2 Mbit,

C = 257.0 Mbit/sec,

ε̂: 0.0061
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(f) T = 100 msec, ε= 0.01,p
v(T ) = 1.9 Mbit,

C = 266.4 Mbit/sec,

ε̂: 0.0059

Figure 6.1: Case-study #1 (location U), example trace #1 (µ= 207 Mbit/sec)

 160

 180

 200

 220

 240

 260

 280

 300

 320

 160  180  200  220  240  260  280  300  320

o
rd

e
re

d
 s

a
m

p
le

N(mu,sigma
2
)

(a) T = 1 sec, γ= 0.980
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(b) T = 500 msec, γ= 0.984
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(c) T = 100 msec, γ= 0.992
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(d) T = 1 sec, ε= 0.01,p
v(T ) = 24.3 Mbit,

C = 312.6 Mbit/sec, ε̂:
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(e) T = 500 msec, ε= 0.01,p
v(T ) = 12.6 Mbit,

C = 314.8 Mbit/sec, ε̂:
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(f) T = 100 msec, ε= 0.01,p
v(T ) = 2.7 Mbit,

C = 320.8 Mbit/sec, ε̂:

0.0003

Figure 6.2: Case-study #1 (location U), example trace #2 (µ= 239 Mbit/sec)
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limit of ε = 0.01. Hence, the required bandwidth capacity is correctly esti-

mated: the desired performance target is met.

It is noted that in this example there is only a relatively small difference be-

tween the estimated required bandwidth capacity, and the peak traffic rates

at the timescales we assessed. Thus, one could argue, one could also mea-

sure the peak traffic rates at such timescales and dimension for the result-

ing averages. As we will see in the case-studies for some other locations,

however, this claim does not always apply: the differences between the es-

timated required bandwidth capacity, allowing for e.g., 1% exceedance, and

the maximum traffic rates can be large, especially at small timescales (up to

hundreds of percents). It is also noted that the (relative) differences between

the estimated bandwidth capacities at different timescales (which are rather

small in this example), are not typical for all traces nor for all locations. The

other examples in these case-studies clearly show that larger differences oc-

cur as well.

Figure 6.2 shows another interesting example trace from measurement loca-

tion U. This is one of the few traces we have found that have actually lower-

than-expected peak traffic rates, which is indicated by right-top data points

in the Q-Q plots that are this time below the diagonal. Looking at the traf-

fic rates graph in the bottom row of Figure 6.2, these lower-than-expected

peak rates might be explained1 by the observation that there is a significant

interval, from the approximately 280th to 420th second in the trace, over

which the average rate is higher than in the other parts of the trace. Such a

long interval obviously increases the average rate over the entire measure-

ment interval of 900 seconds, and actually leads to over-estimations of the

(expected) rates outside the 280-420 second interval. This can also be seen

from the Q-Q plot, where quite a few data points in the middle are below

the diagonal. The mentioned over-estimations ultimately lead to an esti-

mated required bandwidth level, which is somewhat higher than needed, as

is reflected by the near-zero realized exceedance fractions.

After having discussed two example traces for measurement location U, we

now turn to the error statistics of the estimation of the required bandwidth

capacity for all traces at location U. Therefore we list, in Table 6.1, the aver-

1Another reason could be that the measured link was actually fully loaded at some time

during this measurement interval. Our measurement setup does, however, not allow us to

further investigate this in much detail.
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T avg |ε− ε̂| stderr |ε− ε̂|
1 sec 0.0095 0.0067

500 msec 0.0089 0.0067

100 msec 0.0077 0.0047

Table 6.1: Required bandwidth estimation errors (location U) (ε= 0.01)

T avg dimensioning factor stderr dimensioning factor

1 sec 1.33 0.10

500 msec 1.35 0.09

100 msec 1.42 0.09

Table 6.2: Required bandwidth versus mean load (location U) (ε= 0.01)

age difference between the realized exceedance fractions ε̂ and the specified

ε. Table 6.1 shows that the required bandwidth formula results in an estima-

tion that is on average less than 1%-point off the projected error. We also list

for completeness the standard deviation (i.e., ‘stderr’) of the errors over all

traces.

For bandwidth provisioning ‘rules of thumb’-purposes, it is interesting to get

an idea of the required ‘dimensioning factor’, i.e., the (estimated) required

bandwidth capacity compared to the average load (in other words: C /µ).

The dimensioning factor, averaged over all traces at location U, is shown in

Table 6.2. It shows that in the case of location U, some 30-40% extra band-

width capacity is required on top of the ‘long-term’ average traffic rate, to

cater for peaks on smaller timescales. Later on in this section, we will see

that these values can be much larger in other networking environments.

There are various reasons that these overdimensioning figures change from

location to location, e.g., it depends on the utilization of the network (‘is

there room for large traffic rate peaks?’), and the access link speeds (‘what is

the impact that a single user can have on the aggregated network traffic?’).

6.2.3 Case-study #2: location R

Figure 6.3 on page 136 shows a first example trace taken from location R. The

trace is ‘almost perfectly Gaussian’ at the all timescales we assessed, accord-

ing to the goodness-of-fit γ of over 0.99 at all three investigated timescales.
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T avg |ε− ε̂| stderr |ε− ε̂|
1 sec 0.0062 0.0060

500 msec 0.0063 0.0064

100 msec 0.0050 0.0053

Table 6.3: Required bandwidth estimation errors (location R) (ε= 0.01)

T avg dimensioning factor stderr dimensioning factor

1 sec 2.91 1.51

500 msec 3.12 1.57

100 msec 3.82 1.84

Table 6.4: Required bandwidth versus mean load (location R) (ε= 0.01)

The bottom row graphs in Figure 6.3 show the actual traffic rates at these

timescales, as well as the estimated required bandwidth capacity to meet

the performance criterion with ε = 0.01 at the different T s. Given the real-

ized exceedance values that are well below the ‘limit’ 0.01, the performance

criteria are easily met.

Figure 6.4 shows a second example trace from location R. In contrast with

Figure 6.3, this second trace is not at all Gaussian: γ< 0.9. Still, however, the

performance criteria are met at all three timescales, as is indicated by the

realized exceedance values in the bottom row captions.

As for the case-study for location U, we list the required bandwidth estima-

tion errors for all traces at location R in Table 6.3. The errors are, again,

small, which means that the required bandwidth is accurately estimated

given the performance criterion that should be met. The dimensioning fac-

tors are also listed, in Table 6.4. Clearly, there is (relatively) more extra band-

width capacity required to cater for fluctuations on small timescales, than

was the case at location U. This is due to the low utilization of the network,

and the relative high access link speeds: a single user with a 100 Mbit/s ac-

cess link can have significant impact on the 1 Gbit/s ‘uplink’. This causes

the peak traffic rates in the network to be relatively high (i.e., high variance

or burstiness); to cater for these peaks, the network should be overdimen-

sioned by, in this case, some factor 3 to 4.
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(a) T = 1 sec, γ= 0.994
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(b) T = 500 msec, γ= 0.991
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(c) T = 100 msec, γ= 0.991
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(d) T = 1 sec, ε= 0.01,p
v(T ) = 4.9 Mbit,

C = 33.9 Mbit/sec,

ε̂: 0.0044
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(e) T = 500 msec, ε= 0.01,p
v(T ) = 2.7 Mbit,

C = 35.3 Mbit/sec,

ε̂: 0.0078
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(f) T = 100 msec, ε= 0.01,p
v(T ) = 0.70 Mbit,

C = 40.2 Mbit/sec,

ε̂: 0.0067

Figure 6.3: Case-study #2 (location R), example trace #1 (µ= 18.9 Mbit/sec)
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(a) T = 1 sec, γ= 0.895
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(b) T = 500 msec, γ= 0.897
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(c) T = 100 msec, γ= 0.895
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(d) T = 1 sec, ε= 0.01,p
v(T ) = 2.1 Mbit,

C = 9.5 Mbit/sec, ε̂: 0.0100
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(e) T = 500 msec, ε= 0.01,p
v(T ) = 1.0 Mbit,

C = 9.7 Mbit/sec, ε̂: 0.0094
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(f) T = 100 msec, ε= 0.01,p
v(T ) = 0.24 Mbit,

C = 10.1 Mbit/sec,

ε̂: 0.0094

Figure 6.4: Case-study #2 (location R), example trace #2 (µ= 3.3 Mbit/sec)
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6.2.4 Case-study #3: location C

The third case-study deals with traces from measurement location C. The

first example trace, shown in Figure 6.5 on the next page, nicely fits the

Gaussian model (γ≈ 0.99). As could be expected by now, the required band-

width estimation is rather accurate as indicated by the realized exceedance

fractions.

The second example trace at location C, shown in Figure 6.6 is particularly

interesting. There is clearly more network usage in the last part of the mea-

surement interval compared with the first part. This fuels the idea of this

trace being an example of observing non-stationary traffic: the character-

istics of the offered traffic change too much within the trace, and therefore

they cannot be accurately modeled. The shape of the Q-Q plot curve does

reflect this: it has a rather irregular shape with both significant under- as

well as over-estimations of the expected traffic rates. It can also be seen

from the realized exceedance fractions, which are too large: in more than

a fraction ε of intervals, more traffic is offered than can be handled, should

the link be dimensioned at the proposed estimated required bandwidth ca-

pacity. Consequently, the performance criterion would not be met in this

example.

A bit of speculation on the reason of the presumed non-stationarity of this

particular trace (which is not representative for the traces at this location,

but is included as an example of a case in which the theory fails): measure-

ment location C is the uplink of a college’s network. This particular mea-

surement interval started just after noon, at 12:05. Speculatively, it could be

the case that lessons stop around 12:10 or 12:15, and that students then rush

to computers to log on to the network, browse the web, read mail, download

files, etc. This would explain the rather drastic increase in traffic rates in

the course of the measurement interval. The described example also shows

the ‘limitations’ of an approach like ours in link dimensioning: no formula

would ‘predict’ such significant traffic growth.

As for the other locations we have estimated the required bandwidth for all

traces at location C, and compared the realized exceedance fraction num-

bers with the target ε = 0.01. The results of this comparison are listed in

Table 6.5 on page 139. The table shows that the estimations are rather accu-

rate, again.



138 CHAPTER 6. LARGE-SCALE VALIDATION

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5  10  15  20  25  30  35  40  45

o
rd

e
re

d
 s

a
m

p
le

N(mu,sigma
2
)

(a) T = 1 sec, γ= 0.987
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(b) T = 500 msec, γ= 0.991
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(c) T = 100 msec, γ= 0.988
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(d) T = 1 sec, ε= 0.01,p
v(T ) = 5.8 Mbit,

C = 41.5 Mbit/sec,

ε̂: 0.0011
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(e) T = 500 msec, ε= 0.01,p
v(T ) = 3.1 Mbit,

C = 42.7 Mbit/sec,

ε̂: 0.0028
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(f) T = 100 msec, ε= 0.01,p
v(T ) = 0.79 Mbit,

C = 48.0 Mbit/sec,

ε̂: 0.0044

Figure 6.5: Case-study #3 (location C), example trace #1 (µ= 23.4 Mbit/sec)
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(a) T = 1 sec, γ= 0.924
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(b) T = 500 msec, γ= 0.934
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(c) T = 100 msec, γ= 0.967

 120

 140

 160

 180

 200

 220

 240

 260

 280

 0  100  200  300  400  500  600  700  800  900

tr
a
ff
ic

 r
a
te

 (
M

b
it
/s

)

time (sec)

(d) T = 1 sec, ε= 0.01,p
v(T ) = 28.1 Mbit,

C = 247.9 Mbit/sec,

ε̂: 0.0178
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(e) T = 500 msec, ε= 0.01,p
v(T ) = 14.5 Mbit,

C = 249.5 Mbit/sec,

ε̂: 0.0178
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(f) T = 100 msec, ε= 0.01,p
v(T ) = 3.3 Mbit,

C = 261.4 Mbit/sec,

ε̂: 0.0126

Figure 6.6: Case-study #3 (location C), example trace #2 (µ= 162 Mbit/sec)
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T avg |ε− ε̂| stderr |ε− ε̂|
1 sec 0.0069 0.0047

500 msec 0.0066 0.0043

100 msec 0.0055 0.0041

Table 6.5: Required bandwidth estimation errors (location C) (ε= 0.01)

T avg dimensioning factor stderr dimensioning factor

1 sec 1.71 0.44

500 msec 1.83 0.49

100 msec 2.13 0.67

Table 6.6: Required bandwidth versus mean load (location C) (ε= 0.01)

In Table 6.6 the required overdimensioning figures are shown for the traces

from location C. To cater for peaks on small timescales, some 2 times the

amount of the 15 minute average traffic rate is required.

6.2.5 Case-study #4: location A

Case-study #4 deals with the ADSL access network, i.e., measurement loca-

tion A.

First, two example traces are presented, see Figures 6.7 and 6.8 on the next

page. Both traces are ‘almost perfectly Gaussian’, which is reflected by the

goodness-of-fit γ values that are very close to 1. A reason for this near-

perfect Gaussian traffic likely is, e.g., that the access links are relatively small

(up to 1 Mbit/s) compared to the ‘backbone’ (up)link of 1 Gbit/s. There

is large aggregation in terms of users: the traffic of hundreds (if not more)

users is aggregated (at our measurement point). Central-limit-theorem type

of arguments then dictate that the resulting traffic stream tends to Gaussian.

Another observation, related to the relatively small access links, is that the

fluctuations in the aggregated traffic rate are small. For instance, as can be

seen from the caption in Figure 6.7 for example trace #1, the square-root of

the variance at timescale 1 second is just 6.9 Mbit, which is low compared

to the average traffic rate of 147 Mbit/s.

Interestingly, while the traffic in the second example trace is ‘almost per-

fectly Gaussian’, the exceedance is significantly below the projected level of
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(a) T = 1 sec, γ= 0.997
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(b) T = 500 msec, γ= 0.998
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(c) T = 100 msec, γ= 0.998
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(d) T = 1 sec, ε= 0.01,p
v(T ) = 6.9 Mbit,

C = 168.1 Mbit/sec,

ε̂: 0.0033
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(e) T = 500 msec, ε= 0.01,p
v(T ) = 3.6 Mbit,

C = 169.4 Mbit/sec,

ε̂: 0.0028

 80

 100

 120

 140

 160

 180

 200

 220

 0  100  200  300  400  500  600  700  800  900

tr
a
ff
ic

 r
a
te

 (
M

b
it
/s

)

time (sec)

(f) T = 100 msec, ε= 0.01,p
v(T ) = 0.97 Mbit,

C = 176.6 Mbit/sec,

ε̂: 0.0027

Figure 6.7: Case-study #4 (location A), example trace #1 (µ= 147 Mbit/sec)
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(a) T = 1 sec, γ= 0.999
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(b) T = 500 msec, γ= 0.999
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(c) T = 100 msec, γ= 1.000

 130

 135

 140

 145

 150

 155

 160

 165

 170

 0  100  200  300  400  500  600  700  800  900

tr
a
ff
ic

 r
a
te

 (
M

b
it
/s

)

time (sec)

(d) T = 1 sec, ε= 0.01,p
v(T ) = 6.6 Mbit,

C = 168.0 Mbit/sec,

ε̂: 0.0000
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(e) T = 500 msec, ε= 0.01,p
v(T ) = 3.5 Mbit,

C = 169.1 Mbit/sec,

ε̂: 0.0000
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(f) T = 100 msec, ε= 0.01,p
v(T ) = 0.86 Mbit,

C = 174.2 Mbit/sec,

ε̂: 0.0008

Figure 6.8: Case-study #4 (location A), example trace #2 (µ= 148 Mbit/sec)
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T avg |ε− ε̂| stderr |ε− ε̂|
1 sec 0.0083 0.0027

500 msec 0.0083 0.0024

100 msec 0.0079 0.0020

Table 6.7: Required bandwidth estimation errors (location A) (ε= 0.01)

T avg dimensioning factor stderr dimensioning factor

1 sec 1.13 0.03

500 msec 1.14 0.03

100 msec 1.19 0.03

Table 6.8: Required bandwidth versus mean load (location A) (ε= 0.01)

0.01. The reason for this can be seen from the top-right corners of the Q-Q

plots in Figure 6.8: the highest peak rates are quite a bit below the ‘expected

peak rates’, given a Gaussian distribution of the offered traffic. It can be seen

that the actual peaks are lower than the traffic model expects, and hence, the

required bandwidth formula (which is based on that traffic model) indeed

over-estimates the required capacity to cater the offered traffic.

A traffic model that would put more emphasis on the (upper)tail of the ac-

tual traffic, with a suitable required bandwidth formula, could help here to

more accurately predict the bandwidth needed to handle the offered traf-

fic. A similar argument goes for cases where the (upper)tail of the distribu-

tion of the actual traffic is unexpectedly high according to the presently used

Gaussian model — this could now lead to under-estimation of the required

bandwidth, whereas a model that puts more emphasis on the tail possibly

would not.

As for the other locations we have estimated the required bandwidth for all

traces at location A, and compared the resulting realized exceedance frac-

tions with the target ε = 0.01. The results of this comparison are listed in

Table 6.7. The table shows that the estimations are rather accurate, again.

The dimensioning factors for location A in Table 6.8 are low: close to 1, and

very stable over all traces as indicated by the (rounded) zero standard devi-

ation. This all is most likely caused by the relatively small access links in this

ADSL network.
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(a) T = 1 sec, γ= 0.982
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(b) T = 500 msec, γ= 0.980
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(c) T = 100 msec, γ= 0.949
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(d) T = 1 sec, ε= 0.01,p
v(T ) = 2.9 Mbit,

C = 23.2 Mbit/sec,

ε̂: 0.0056
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(e) T = 500 msec, ε= 0.01,p
v(T ) = 1.6 Mbit,

C = 24.3 Mbit/sec,

ε̂: 0.0083
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(f) T = 100 msec, ε= 0.01,p
v(T ) = 0.45 Mbit,

C = 27.8 Mbit/sec,

ε̂: 0.0100

Figure 6.9: Case-study #5 (location S), example trace #1 (µ= 14.3 Mbit/sec)
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(a) T = 1 sec, γ= 0.980
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(b) T = 500 msec, γ= 0.972
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(c) T = 100 msec, γ= 0.943
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(d) T = 1 sec, ε= 0.01,p
v(T ) = 0.91 Mbit,

C = 5.6 Mbit/sec, ε̂: 0.0089
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(e) T = 500 msec, ε= 0.01,p
v(T ) = 0.51 Mbit,

C = 6.0 Mbit/sec, ε̂: 0.0094
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(f) T = 100 msec, ε= 0.01,p
v(T ) = 0.15 Mbit,

C = 7.5 Mbit/sec, ε̂: 0.0112

Figure 6.10: Case-study #5 (location S), example trace #2 (µ= 2.9 Mbit/sec)
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6.2.6 Case-study #5: location S

Figure 6.9 on the preceding page shows a first example trace from our last

measurement location. The traffic is ‘fairly Gaussian’, as can again be seen

from the γ values, and the required bandwidth capacity to meet the perfor-

mance criteria are well estimated.

Interestingly, there is quite a difference between the estimated required

capacity and the maximum achieved traffic rate, especially at timescale

T = 100 milliseconds. We saw in other traces, e.g., case study #1 (location

U), that the estimated required bandwidth capacity was only just below the

maximum achieved traffic rate (at the assessed timescales) for that trace.

In the present case, however, looking at the T = 100 milliseconds timescale

(bottom-right graph in Figure 6.9), there is a factor 3 difference between the

estimated required bandwidth (which still meets the desired performance

criterion, as can be seen from the realized exceedance fraction of 0.01, equal

to ε), and the highest traffic rate in the trace. A network manager who is in-

terested in providing ‘good performance’ with as little bandwidth as possi-

ble, would thus clearly benefit from using our approach.

Figure 6.10 shows a second example trace from measurement location S.

The difference with the trace presented in Figure 6.9 is that the average traf-

fic rate is rather low (this second example trace was taken during the night,

which likely explains the low utilization). Still it can be seen that the traffic

is, again, ‘fairly Gaussian’. Only at our smallest timescale of T = 100 millisec-

onds, the required bandwidth capacity is slightly underestimated. As the Q-

Q plot shows, at the 100 milliseconds timescale there is a quite significant

upper tail. Hence, the peak traffic rates are higher than ‘expected’ under a

normal distribution, which in turn leads to the slight underestimation of the

required bandwidth.

Finally, Table 6.9 and Table 6.10 show the average required bandwidth es-

timation errors and overdimensioning figures for all traces from measure-

ment location S. It is clear that the bandwidth estimation formula gives

accurate results: it yields on average only a small deviation from the pro-

jected ε. The average required overdimensioning to cater for peaks on small

timescales, compared with the 15 minute average traffic rates, is some factor

2-2.5 in the case of location S.
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T avg |ε− ε̂| stderr |ε− ε̂|
1 sec 0.0052 0.0050

500 msec 0.0049 0.0055

100 msec 0.0040 0.0059

Table 6.9: Required bandwidth estimation errors (location S) (ε= 0.01)

T avg dimensioning factor stderr dimensioning factor

1 sec 1.98 0.78

500 msec 2.10 0.87

100 msec 2.44 1.01

Table 6.10: Required bandwidth versus mean load (location S) (ε= 0.01)

This almost concludes our validation of the required bandwidth formula for

Gaussian traffic. We finish with a few examples using different parameter

settings for T and ε, to study the impact of the settings of these parameters

on the required bandwidth.

6.2.7 Case-studies with other performance criterion settings

The case-studies presented in Sections 6.2.2 to 6.2.6 focused on validating

the required bandwidth formula (4.7) for timescales T = 1 second, 500 mil-

liseconds and 100 milliseconds, and ε = 0.01. Network operators, however,

may want to use other settings of the parameters T and ε, depending on the

applications, business aspects, etc.

In this section, we give a few examples of using other settings for the perfor-

mance criterion parameters T and ε, namely T = 10,50,100 and 500 msec,

and ε ranging from 0.00001 to 0.1. We use the first example trace of each lo-

cation as discussed in the previous sections. For each of these examples, we

compute the required bandwidth capacity C according to (4.7), as a func-

tion of T and ε; the burstiness levels v(T ) at each timescale T are computed

(directly) from the traffic trace, and so is the average throughput µ (per 15

minutes, i.e., the length of the trace). The results are presented in Figure 6.11

on page 146, where each curve corresponds to a specific setting of T .

It can clearly be seen from Figure 6.11 that the required bandwidth C de-

creases in both T and ε, which is intuitively clear. The figures show that C
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is more sensitive to T than to ε — take for instance Figure 6.11.(a), i.e., loca-

tion U, example trace #1; at ε = 10−5, the difference in required bandwidth

between T = 10 msec and T = 100 msec, is some 20%. At T = 100 msec, the

difference in required bandwidth between ε = 10−5 and ε = 10−4 is just 3%

approximately. For other examples, the precise differences may change but

the impression stays the same: a tenfold increase in stringency with respect

to T requires (relatively) more extra bandwidth, than a tenfold increase in

stringency with respect to ε (of course, this could already be expected given

the required bandwidth formula).

We have verified whether the required bandwidth is accurately estimated

for these case-studies with different settings of T and ε. The estimation er-

rors in these new situations are similar to the earlier obtained results (cf.,

e.g., Table 6.9 for location S). It should be noted however, that we have not

been able to verify this for all possible combinations of T and ε: for ε= 10−5

and T = 500 msec for instance, there are only 1800 samples in our traffic

trace (which has a length of 15 minutes) and hence, we cannot compute the

accuracy of our estimation. Another remark that should be made here, is

that for locations with only limited aggregation in terms of users (say some

tens concurrent users), combined with a small timescale of T = 10 msec, the

traffic is no longer Gaussian (i.e., γ≪ 1). As a consequence, the accuracy of

our required bandwidth estimation decreases.

The dimensioning factors (cf., e.g., Table 6.10 for location S) for the present

case-studies can be obtained through division of C at certain T and ε, and

µ. As indicated above, the dimensioning factor increases when the perfor-

mance criterion (through ε and T ) becomes more stringent (as can be ex-

pected, given the required bandwidth formula (4.7)).

This concludes our validation of the required bandwidth formula. In the

next section, the focus is on validating our indirect approach to estimate

the burstiness of network traffic.
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(b) Loc. R ex. #1, µ≈ 19 Mbit/s
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(c) Loc. C ex. #1, µ≈ 24 Mbit/s
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Figure 6.11: Required bandwidth for other settings of T and ε
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6.3 Validation of the indirect burstiness estimation

In the previous section, we have validated the required bandwidth estima-

tion formula for Gaussian traffic (4.7). In that validation, we directly esti-

mated the burstiness (variance) of the real traffic. The validation using hun-

dreds of traces of real traffic showed that the required bandwidth is accu-

rately estimated by this formula.

The required bandwidth formula (4.7) requires the variance v(T ) to be

known on timescale T . As we argued in Chapter 5, given that T may be

rather small, it may be difficult to directly determine v(T ) in real scenar-

ios. In Chapter 5, we proposed a methodology in which v(T ) was indirectly

estimated through infrequent polling of the occupancy of a buffer in front

of the network link. This methodology does not require measurements on

small timescale T to actually estimate v(T ).

The purpose of this section is to validate our methodology using our traces

of real traffic: is v(T ), indeed, properly estimated through (5.9)? We first out-

line the validation approach (Section 6.3.1), and then perform an extensive

number of case-studies using our traces (Section 6.3.2).

6.3.1 Approach

In Chapter 5 we described a methodology to estimate the variance v(·) at

timescale T using the empirical distribution function of the buffer contents.

The approximation for v(·) is as follows, cf. (5.9):

v(t ) ≈ inf
B>0

Φ(B),

with

Φ(B) :=
(B + (Cq −µ)t )2

−2logP(Q > B)
.

In order to validate whether the above approximation is accurate, when us-

ing real traffic2, we have implemented a simulation environment: the traces

of real traffic are ‘replayed’ by inserting them into a virtual queue with ca-

2In Chapter 5 we used synthetic traffic, fBm, to validate whether the methodology is

correct.
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pacity Cq which is emulated in a Perl script. The approach to validate our

methodology is described in the following pages.

First, like in the case-studies of Section 6.2, determine the average traffic

rate µ from the traffic offered to the virtual queue. Similarly, compute the

(sample) variance directly from the offered traffic stream, at some selected

timescale T . In the sequel of this section, we denote this directly estimated

variance with vdirect(·).

We recall that such direct estimation of vdirect(T ) may be difficult in real

world environments, as argued in Chapters 1, 4 and 5 of this thesis, as T

is likely chosen to be rather small.

Second, the variance is also indirectly estimated through the formula for

the approximation of the variance as indicated above, which is in the sequel

denoted with vindirect(·).

The approximation of vindirect(·) consists of two steps:

1. estimation of the empirical distribution function of the buffer occu-

pancy P(Q > B), denoted with BCD, i.e., the probability that there are

more than B bytes in the buffer (at a random point in time);

2. an optimization of Φ(B) over B , i.e., the infimum as indicated in the

approximation.

Step 2 is straightforward. Step 1, however, involves setting various ‘under

the hood’ parameters, which we detail next.

Recall from Chapter 5 that the BCD is estimated as follows (in line with Algo-

rithm 5.5 on page 112, and the illustration of this procedure in Figure 5.9 —

although there is no decoupling of real and virtual queue (like the decou-

pling shown in Figure 5.9) in our simulation, as we simulate only a virtual

queue):

1. The trace with real traffic is processed packet by packet, say p1, . . . , pn

for n the total number of packets in the trace. In the trace, each

packet has an associated len and ts attribute, which are the original

packet’s size (including payload) in bytes and the timestamp at which

the packet was measured, respectively. As for notation, p j ,len is the

size of the j th packet, and p j ,ts its timestamp. In the same order as the

packets in the trace, they are fed one-by-one into the virtual queue.
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2. After each packet, the occupancy of the virtual queue is computed.

With Q j we denote the occupancy of the virtual queue (in bytes) after

the j th packet has been fed to the virtual queue. Hence,

Q j := p j ,len+max
{

Q j−1 − Cq ·
(

p j ,ts−p j−1,ts

)

, 0
}

,

which says that the occupancy after the i th packet is equal to that

packet’s size plus any data that was still left in the virtual queue, if any.

Note that the virtual queue is drained through time at rate Cq , reflect-

ing a virtual link with bandwidth capacity Cq that serves this virtual

queue.

3. An observation qi of the buffer occupancy is scheduled every τ sec-

onds. For ease, we choose to perform this observation after the first

packet that arrives at the virtual queue when τ seconds are passed

since the last scheduled observation. As there are, depending on the

trace, hundreds to thousands of packets fed into the virtual queue per

second (real time, not simulation time), this only leads to a tiny devi-

ation of the actual observation times from the scheduled observation

times. Moreover, we have already argued in Chapter 5 that it is not

important to perform this observation at very specific points in time.

As we use traces with 900 seconds of real traffic, we get 900/τ snap-

shots qi of the occupancy. These are used to determine the empirical

distribution function of the virtual queue’s occupancy (BCD), as in Al-

gorithm 5.4 on page 111.

In the case-studies have chosen to set τ to 1 second, which ensures that

we have a sufficient number of snapshots to reliably estimate the BCD (see

Section 5.4). Furthermore, we set T , the timescale that we aim to determine

the variance for, to 100 milliseconds. As we argued before, such a timescale

is in line with timescales at which the (perceived) level of performance is

determined. Of course, a similar procedure can be followed for different

settings of τ and T — experiments have shown that other settings do not

influence our conclusions.

The remaining ‘under-the-hood’ parameter to be set is Cq , the virtual

queue’s (virtual) service rate. Clearly, when Cq is too small, say Cq < µ, the

system is not stable in that it will never be able to (timely) service all the

traffic offered. Hence, we choose Cq ≥µ. On the other hand, if Cq is chosen
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much larger than µ, the virtual queue’s occupancy will, obviously, be zero at

most observation times. As this would lead to an unreliable estimation of

the BCD (if any), setting Cq too large is to be avoided.

We have performed numerous experiments to see if there is a generally us-

able Cq , for instance Cq = c ·µ where c is some constant, that ultimately

leads to an accurate approximation of vindirect(T ). We report on these exper-

iments in Appendix B of this thesis. As it turns out, there is no single value of

c or Cq that is generally usable. Choosing Cq anywhere between 1·µ and 2·µ,

however, gives reasonable results: vindirect(T ) is always in the same order of

magnitude as vdirect(T ), and in most cases within 5-20% of each other.

We stress that the impact of an estimation error in vindirect(T ) on our ulti-

mate goal of bandwidth provisioning is somewhat mitigated: in the required

bandwidth formula, first the square-root of the variance v is taken, and sec-

ondly it then is added to some average rate µ.

The third and last step in our validation is to compare the determined

vdirect(T ) and the estimated vindirect(T ) with each other. Clearly, if they are

close to each other, it means that the estimation is good. We therefore intro-

duce ν as an indicator of the accuracy of the estimation:

ν :=
vindirect(T )

vdirect(T )
.

The approach described above is applied using real traffic, as reported next.

6.3.2 Case-studies

In this section we apply the validation approach outlined in the previous

section using the measurement traces. We use the same example traces

from each measurement location as in Section 6.2.

The case-study starts with determining the BCD. We use the same two ex-

ample traces from location R that were used in Section 6.2. Figure 6.12 on

page 152 shows the (log)plot of the respective BCDs, where in the case of

example trace #1, Cq = 1.2 ·µ, and for example trace #2, Cq = 1.3 ·µ.

Next, v(·) is estimated at some timescale T ; at this point we choose T =
100 milliseconds. Note that this is 10 times as small as the ‘measurement
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timescale’ τ of 1 second: one snapshot of the buffer occupancy is taken ev-

ery second, and still stochastic characteristics are inferred at the 100 mil-

liseconds timescale. In Figure 6.13, for the entire BCD the corresponding

values of Φ(B) are plotted. Minimization over B then yields the approxima-

tion of v(T ) at this timescale. Note that, as can been seen especially in the

first example trace in Figure 6.13, it may not be exactly clear at which buffer

occupancy level B the minimal value of v(T ) may be achieved (in that the

graph is rather flat). Importantly, as we only need the value of the minimum

v(T ), however, and not the B at which the minimum ofΦ(B) is achieved, this

does not cause (stability) problems for the minimization. In other words,

despite the ‘flat’ behavior of Φ(B) around the minimum, the procedure is

still highly robust.

One of the attractive features of our methodology to indirectly estimate the

burstiness through polling of the buffer occupancy, is that it gives the entire

variance function v(t ) for t ≥ 0, once the BCD is known. Figure 6.14 shows

this feature by plotting v(t ) against t , after the BCD is only estimated once.

We have done the same validation as described above for traces from loca-

tion R, using traces from the other measurement locations. Motivated by

our ultimate goal of network link dimensioning, we would like to compare

the required bandwidth Cdirect as estimated using the directly computed

variance, with the required bandwidth Cindirect as estimated using the vari-

ance estimation approach. We have already seen in Section 6.2 that Cdirect

is an accurate estimation of the required bandwidth. Next to that, we would

also like to compare the required bandwidth as estimated through the in-

direct approach, with the ‘empirical’ minimally required bandwidth, which

gives the absolute minimum bandwidth that, according to the trace, suffices

to meet the performance criterion:

Cempirical := min
{

C :
#{Ai |Ai >C T }

n
≤ ε

}

.

We introduce ∆ as an indicator of the ‘goodness’ of the estimation of the re-

quired bandwidth through the indirect approach. We compare this estima-
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Figure 6.12: Statistical distribution of the buffer occupancy (BCD)
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Figure 6.13: Φ(B) (at timescale T = 100 msec)

 0

 1e+13

 2e+13

 3e+13

 4e+13

 5e+13

 6e+13

 0  0.5  1  1.5  2

v
(t

) 
(b

it
2
)

t (sec)

(a) location R, example trace #1

 0

 1e+12

 2e+12

 3e+12

 4e+12

 5e+12

 6e+12

 7e+12

 8e+12

 9e+12

 1e+13

 0  0.5  1  1.5  2

v
(t

) 
(b

it
2
)

t (sec)

(b) location R, example trace #2

Figure 6.14: Entire variance function v(t )
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tion with both the result from the direct approach to determine the variance,

i.e., Cdirect, as well as Cempirical. Hence,

∆var :=
Cindirect

Cdirect

,

and

∆cap :=
Cindirect

Cempirical

.

Thus, if ∆var is close to 1, our methodology to (indirectly) estimate the

burstiness of network traffic, as proposed in Chapter 5, leads to similar re-

quired bandwidth capacity levels as the ‘direct’ approach, which we vali-

dated to be accurate in Section 6.2. If ∆cap is close to 1, our ‘indirect’ bursti-

ness estimation approach ultimately yields a similar required bandwidth

capacity level as the absolute minimum bandwidth that, according to the

traces of real traffic, suffices to meet the performance criterion.

Table 6.11 on the following page lists the results of the case-studies, in which

we used the same example traces as in Section 6.2. The timescale at which

the variances v(T ) are determined and estimated, is T = 100 milliseconds. It

can clearly be seen from Table 6.11 that the variances are rather accurately

estimated. Table 6.12 continues the validation results, by comparing the

estimated required capacity (with ε= 0.01, T = 100 milliseconds) computed

via both the direct and indirect approaches, cf. (4.7). Also the empirically

found minimum required bandwidth is tabulated.

As can immediately be seen from the values of ∆var in Table 6.12, the re-

quired bandwidth capacity as estimated through the indirect approach to

estimate the variance, is remarkably close to the direct approach: on av-

erage, the differences are less than 1%. Also, comparison with the empiri-

cal minimum required bandwidth, through ∆cap, shows that the our coarse-

grained measurement (i.e., indirect) procedure leads to estimations for the

required bandwidth that are, remarkably, not more than 7% and on average

less than 4% off.

Comparing the respective values for ν and ∆var in Table 6.11 and Table 6.12,

it becomes clear that an estimation error in v(·), indeed, has only limited

impact on the error in C .
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trace µ
p

vdirect(T )
p

vindirect(T ) ν

loc. U ex. #1 207.494 1.942 2.006 1.067

loc. U ex. #2 238.773 2.704 2.773 1.052

loc. R ex. #1 18.927 0.701 0.695 0.981

loc. R ex. #2 3.253 0.241 0.249 1.062

loc. C ex. #1 23.894 0.796 0.802 1.018

loc. C ex. #2 162.404 3.263 3.518 1.162

loc. A ex. #1 147.180 0.969 1.032 1.133

loc. A ex. #2 147.984 0.863 0.864 1.003

loc. S ex. #1 14.254 0.447 0.448 1.004

loc. S ex. #2 2.890 0.152 0.152 1.022

Table 6.11: Validation results (rounded) for the burstiness estimation

methodology (µ is in Mbit/sec,
p

vs are in Mbit).

trace Cempirical Cdirect Cindirect ∆var ∆cap

loc. U ex. #1 258.398 266.440 268.385 1.007 1.039

loc. U ex. #2 302.663 320.842 322.934 1.007 1.067

loc. R ex. #1 37.653 40.221 40.020 0.995 1.063

loc. R ex. #2 10.452 10.568 10.793 1.021 1.033

loc. C ex. #1 44.784 48.033 48.250 1.005 1.077

loc. C ex. #2 265.087 261.444 269.182 1.030 1.015

loc. A ex. #1 171.191 176.588 178.480 1.011 1.043

loc. A ex. #2 168.005 174.178 174.218 1.000 1.037

loc. S ex. #1 27.894 27.843 27.873 1.001 0.999

loc. S ex. #2 7.674 7.482 7.532 1.007 0.981

Table 6.12: Validation results for the burstiness estimation methodology

(continued) (C s are in Mbit/sec).

Finally, to gain further insight in the accuracy of our burstiness estimation

methodology in the context of link dimensioning, we determine ∆var and

∆cap taking all traces into account.

Table 6.13 on the next page shows the averages and standard deviations of

both metrics at all five locations. For all locations but R, ∆var is very close to

1, indicating that the required bandwidth as estimated through the indirect

approach is equal to the required bandwidth as estimated through the di-

rect approach. Thus, our methodology to infer the burstiness of the traffic

without measuring at correspondingly small timescales, gives a reliable es-

timate of the burstiness for use in network link dimensioning. The deviation
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location avg ∆var stderr ∆var avg ∆cap stderr ∆cap

U 1.00 0.01 1.01 0.07

R 0.96 0.10 0.90 0.19

C 1.00 0.03 1.04 0.11

A 1.00 0.01 1.04 0.02

S 1.00 0.03 0.99 0.10

Table 6.13: Validation results for the burstiness estimation methodology

(overall results) — all traces

location avg ∆var stderr ∆var avg ∆cap stderr ∆cap

U 1.00 0.01 1.03 0.06

R 1.00 0.02 1.00 0.10

C 1.00 0.02 1.05 0.08

A 1.00 0.01 1.04 0.01

S 1.00 0.01 1.01 0.05

Table 6.14: Validation results for the burstiness estimation methodology

(overall results) — traces with γ> 0.9

in ∆var from 1 may be caused by the observation (see Chapter 3) that traffic

at location R is on average ‘less Gaussian’ compared to the other measure-

ment locations — as our methodology to indirectly estimate the burstiness

assumes Gaussian traffic, some error in the resulting estimate can be ex-

pected when the traffic is ‘not so Gaussian’. To further investigate this, we

computed the same statistics as in Table 6.13, but limiting ourselves to all

traces that have a (Gaussian) goodness-of-fit γ > 0.9, i.e., traffic that is ‘al-

most Gaussian’. The results are presented in Table 6.14; the ∆var are all 1.00

now, indicating that the deviation mentioned above in Table 6.13 for loca-

tion R, is indeed caused by traces that are ‘not so Gaussian’.

The values of ∆cap in Tables 6.13 and 6.14 further confirm our earlier obser-

vation that the estimated required bandwidth using the indirect approach,

is on average only a few percents off the empirically found minimally re-

quired bandwidth levels: especially for traces with ‘almost Gaussian’ traffic

(Table 6.14), the differences are less than 5% on average.
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6.4 Concluding remarks

In this chapter we have extensively validated our theoretical results on net-

work link dimensioning from Chapters 4 and 5.

The first conclusion is that, after validating the required bandwidth formula

(4.7) in Section 6.2, is that the bandwidth estimation is very accurate.

Secondly, we validated our methodology to indirectly estimate the bursti-

ness (variance) of network traffic using course-grained measurements of

the buffer occupancy. From this validation study, we may conclude that the

burstiness is accurately estimated through our methodology. In our vali-

dation scenario, we looked at the variance at a timescales 10 times smaller

than the timescale of the buffer occupancy measurements. The estimation

of the bandwidth is, generally, off by less than 5%.



7 Conclusions

This chapter presents the contributions and conclusions for the

research presented in this thesis, and suggests some directions for

further research.

The organization of this chapter is as follows:

– Section 7.1 gives a brief overview of the research presented

in this thesis;

– Section 7.2 lists the contributions of this thesis;

– Section 7.3 provides answers to the research questions that

were formulated in Section 1.4;

– Section 7.4 identifies directions for further research.

7.1 Overview

For network link dimensioning, network operators generally rely on infor-

mation from coarse measurements: typically, they determine the 5 minute

average traffic rate. Network users, however, experience performance at

timescales that are orders of magnitudes smaller, in the order of seconds

to 100 milliseconds or even less. Hence, traffic rate fluctuations at those

small timescales — which are nonnegligible as the peak traffic rates at such

timescales can be up to hundreds of percents higher than the 5 minute av-

erage rate — should be taken into account for network link dimensioning.

Therefore, adequate network link dimensioning requires thorough insight

into the interrelationship between:

– the traffic that is offered to the network link, in terms of the average

load but also its fluctuations;

– the desired performance level; and

157
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– the required bandwidth capacity level.

It is clear that the required bandwidth capacity level increases when the av-

erage offered traffic load becomes higher, the fluctuations become fiercer,

or the desired performance level increases. Insight into the aforementioned

interrelationship between these elements of link dimensioning is a neces-

sary condition for making precise predictions about the amount of capacity

that should be added. Such predictions are of importance, as too scarce a

dimensioning inevitably leads to performance degradation, whereas ‘gen-

erous’ dimensioning policies essentially result in a waste of resources.

The goal of the research presented in this thesis, is to develop network link

dimensioning formulas that determine the minimum bandwidth needed to

achieve a certain performance level. These formulas should cater for traf-

fic peaks at small timescales, but not require traffic measurements at such

timescales. In the course of this thesis, we have achieved this goal by follow-

ing an approach that stands midway between the areas of traffic measure-

ment procedures, traffic modeling, and queuing theory.

We have performed hundreds of detailed measurements of Internet traffic,

at five different locations. These locations have different characteristics in

terms of number of users, type of users, etc., increasing the representative-

ness of our measurements, which ensures that our findings that are based

on these measurements can be used in a broad variety of Internet environ-

ments. A typical application scenario that we envisage, is that of a small

to medium sized organization that wants its Internet-connection to be ad-

equately dimensioned. Other possible application scenarios include that

of a Virtual Private Network that interconnects various office locations of a

single organization, etc.

After statistical analysis of the measurement data, we have concluded that a

Gaussian traffic model can be used to accurately represent real Internet traf-

fic, as long as sufficient aggregation in terms of time and number of users

is maintained. A Gaussian model describes the real traffic through the av-

erage traffic load, and fluctuations around this load at some timescale T .

This timescale T should be chosen such that it corresponds to the timescale

that determines the performance that network users experience — the exact

choice depends on aspects such as the applications that are used, business

level decisions, etc.
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We used the Gaussian traffic model as the basis for deriving a network link

dimensioning formula that predicts the (minimum) required bandwidth ca-

pacity level to achieve a certain performance level, for a traffic stream (de-

scribed through a Gaussian model).

Although the average traffic rate is easy to determine in practice, deter-

mining fluctuations around this mean rate at small timescales is harder,

as measuring traffic at small timescales is involved (in practice). We have

developed a novel methodology that estimates the fluctuations at small

timescales, by coarse-grained polling of the buffer occupancy, thereby re-

moving the need for traffic measurements at small timescales.

Finally, we have verified the link dimensioning formula and our methodol-

ogy to estimate the traffic rate fluctuations at small timescales, again using

large-scale statistical analysis of our measurement data.

Concluding, all the ingredients for network link dimensioning, relying on

just coarse measurements, are present. For instance, a procedure to use

this research in practice could be summarized as follows:

– determine the average traffic rate through, e.g., standard SNMP mea-

surements;

– estimate the fluctuations of the traffic rate using our new methodol-

ogy; and

– estimate the required bandwidth by inserting these two traffic char-

acteristics in the required bandwidth formula.

7.2 Contributions

This thesis describes how to determine the required bandwidth capacity level

to meet a prespecified performance target, using network traffic measure-

ments.

The major contributions of this thesis are:

– A systematic assessment of real Internet traffic: hundreds of detailed

measurements of network traffic are performed at 5 different loca-

tions. each with different characteristics in terms of number of users,

type of users, access link speeds, etc. Analysis of these measurements
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shows that real network traffic can often be described using a Gaus-

sian traffic model, as long as there is sufficient aggregation in time (in

the order of milliseconds and up) and number of users (some tens or

more) (Chapters 2, 3).

– Link dimensioning formulas that give the required bandwidth capac-

ity to achieve link transparency for a given offered traffic load. For-

mulas are derived for the case of general traffic (i.e., no modeling as-

sumptions are made), for the case of using an M/G/∞ input model,

and the case of using a Gaussian model to describe the real network

traffic (Chapter 4).

– A novel methodology to estimate the burstiness (fluctuations) of net-

work traffic at small timescales is proposed. This methodology relies

on coarse-grained polling of the occupancy of the buffer in front of

a network link to, indirectly, infer the burstiness of the offered traffic.

Hence, it removes the need for detailed measurements of the network

traffic in order to estimate the fluctuations of the traffic at timescales

that (we belief) are important to the user’s perception of the perfor-

mance of a network link (Chapter 5).

Next we detail the contributions per chapter:

Chapter 2: Internet traffic measurements

– Provides a state-of-the-art overview of Internet traffic measurement

technologies that are relevant to network link dimensioning.

– Describes the measurements that we have performed as part of the

research presented in this thesis, and provides general results about

these measurements.

Chapter 3: Traffic modeling

– Provides a state-of-the-art overview of traffic models to describe In-

ternet traffic.

– Discusses the advantages and disadvantages of black-box (e.g., Gaus-

sian) and flow-level (e.g., M/G/∞) modeling techniques to describe

real Internet traffic in the context of link dimensioning.
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– Argues that, based on a comparison of both modeling approaches to

describe real traffic, using our measurements, Gaussian traffic mod-

eling is attractive for wide-scale use to describe real network traffic,

especially in the context of link dimensioning.

– Shows that real network traffic can accurately be described using a

Gaussian traffic model, as long as there is sufficient aggregation in

terms of time (i.e., milliseconds or more) and users (i.e., some tens

of users or more).

Chapter 4: Bandwidth provisioning rules

– Proposes a generic mathematical formula that estimates the required

bandwidth capacity to meet a prespecified performance criterion,

without any assumptions on the input traffic process (besides station-

arity), as long as this traffic process is known.

– Specializes the generic formula for the case that the input traffic pro-

cess is described using an M/G/∞ input model.

– Specializes the generic formula for the case that the input traffic pro-

cess is described using a Gaussian model.

– Presents and evaluates some alternative, empirically derived formulas

to estimate the required bandwidth capacity.

Chapter 5: Burstiness estimation

– Reviews basic principles of Gaussian traffic and queues.

– Inspired by earlier work by Addie et. al [AMN02], the distribution of

the occupancy of a buffer in front of a network link is written as a func-

tion of, among other things, the fluctuations of the traffic rate.

– Proposes a new methodology that ‘inverts’ the above function. The in-

verted function thus estimates the traffic burstiness (i.e., fluctuations

of the traffic rate), with the buffer occupancy distribution as an argu-

ment. As the buffer occupancy distribution can be estimated through

just coarse measurements, the burstiness of network traffic at small

timescales can be estimated without requiring measurements at such

timescales, using this methodology.
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– Discusses and evaluates the impact of possible numerical errors in

this new methodology.

– Outlines an approach to implement the methodology in practice.

Chapter 6: Large-scale validation

– Validates the Gaussian link dimensioning formula from Chapter 4, by

comparing the estimated required bandwidth capacity with the infor-

mation obtained through the measurements.

– Provides a sensitivity analysis of the required bandwidth, with respect

to the performance criterion parameters.

– Validates the novel methodology to estimate traffic burstiness

through coarse measurements from Chapter 5, by comparing the

burstiness as obtained from the detailed measurements, with the

burstiness estimated through our proposed methodology.

7.3 Conclusions per research question

This section provides answers to the research questions posed in Section 1.4

of this thesis:

Research question (i): how to perform measurements on a (high-speed)

network link with the required (detailed) granularity?

In Chapter 2, we reviewed existing network traffic measurement technolo-

gies. SNMP is the commonly used protocol to fetch information about the

amount of data sent over a network link from the IF-MIB that is present in

most ‘manageable’ network nodes. SNMP can certainly be used to retrieve

information about the long-term average load, for instance based on mea-

surement intervals of 5 minutes.

Fluctuations of the traffic rate at timescales that are relevant for the user’s

perception of the performance of a network link (which we argue is in the

order of milliseconds to seconds), are hard or impossible to measure us-

ing SNMP. Alternatively, one could capture the traffic using a tool such as



7.3. CONCLUSIONS PER RESEARCH QUESTION 163

libpcap/tcpdump, which does work at the aforementioned detailed granu-

larity.

Research question (ii): is it possible to infer detailed information (in case

needed) about the traffic characteristics, without relying on detailed

measurements?

In Chapter 5, we proposed a novel methodology to infer information about

the fluctuations of the traffic rate (which we refer to as burstiness in this the-

sis), by coarse-grained measurements of the buffer occupancy. In Chapter 6

we then (positively) validated this methodology by comparing the estimated

burstiness with the burstiness as obtained through libpcap/tcpdump, for

hundreds of traces of real network traffic.

Research question (iii): which statistical traffic model(s) describe the

traffic we have measured ‘good enough’ to rely on for use in network link

dimensioning?

We have found, in Chapter 3, that a Gaussian traffic model can, in most

cases, accurately describe real network traffic. From our validation study

in Chapter 6, it (implicitly) follows that a Gaussian traffic model (at least)

suffices for our goal (i.e., network link dimensioning).

Research question (iv): what is an accurate bandwidth provisioning

formula for a given traffic model?

In Chapter 4, we derived bandwidth provisioning (i.e., link dimensioning)

formulas for general, M/G/∞ and Gaussian traffic. The formula for Gaus-

sian traffic is: C =µ+ 1
T

√

(

−2logε
)

v(T ).

We validated this required bandwidth formula for Gaussian traffic in Chap-

ter 6, and concluded that it accurately predicts the required bandwidth ca-

pacity level. We also validated if this formula gives an accurate prediction

of the required bandwidth capacity when our methodology to estimate the

fluctuations of the traffic rate v(T ) is used, and showed that it does.
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7.4 Future research

We suggest some possibilities to continue the research presented in this the-

sis:

– Although we have found (in Chapter 3 of this thesis) that most traffic

streams can be accurately described using a Gaussian traffic model,

we have also seen that it is quite common that the ‘upper tail’ of the

Gaussian distribution underestimates the upper tail of real Internet

traffic, e.g., in a scenario where the users’ access link is high-speed,

compared to the average rate of the (aggregated) network traffic. In

order to further improve the accuracy of the traffic model, it is inter-

esting to research traffic models that better approximate the upper tail

of real network traffic, yet are simple enough for practical use.

– In this thesis we focused on dimensioning of high-speed, wired In-

ternet links. Further research is required to determine whether the

models, formulas and methodologies presented in this thesis are also

applicable to other types of networks, for instance GPRS or UMTS ac-

cess networks: wireless, lower speed, and possible less aggregation in

terms of (concurrent) users — in such situations, the Central Limit

Theorem may no longer apply, and hence, the applicability of a Gaus-

sian traffic model is questionable.

– In this thesis, we have mainly used P(A(T ) ≥ C T ) ≤ ε as the perfor-

mance target, for instance in our derivation of the required bandwidth

formulas. It would be interesting to study the relation between this

performance target and measures such as delay, throughput, etc. It

would also be interesting to develop required bandwidth formulas for

other performance criteria, e.g., an upper bound on the delay or jit-

ter that is incurred on a network link, as these may better correspond

to certain application requirements (for instance, VoIP benefits from

low delay and jitter).

– We focused on dimensioning of a single network link in this thesis.

Clearly, dimensioning may get more complicated when (optimizing

the) dimensioning (of) an entire network: How to guarantee a perfor-

mance target network-wide? Also, other factors may come into play,

e.g., routing can also help in improving network-wide performance.
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– Another dimension could be added to this research by incorporating

business level (as in economics) elements. For instance, the mapping

of resource usage to pricing, or letting the performance target depend

on pricing, etc.





A Mathematical background

information

The purpose of this appendix is to provide some relevant mathe-

matical background information.

Distribution function

A cumulative distribution function (cdf) completely describes the probabil-

ity distribution of a random variable X . For all x, the cdf F (x) is given by

F (x) =P
(

X ≤ x
)

.

The probability that x lies between a and b is:

P
(

a ≤ X ≤ b
)

= F (b)−F (a) =
∫b

a
f (x) d x,

where f (x) is called the probability density function (pdf). For instance, the

standard normal distribution has pdf f (x) = e−x2/2/
p

2π.

The mean (or expected value) of a distribution is given by

EX =
∫∞

−∞
x · f (x)d x.

When dealing with observations, the empirical (cumulative) distribution

function (ecdf) is commonly used. The ecdf is a cdf that concentrations

probability mass 1/n at each of the n observations. Hence,

Fn(x) =
number of obserbations ≤ x

n
.

167



168 APPENDIX A. MATHEMATICAL BACKGROUND INFORMATION

Heavy-tailed distribution

A distribution is said to be heavy-tailed, when its probability distribution

function assigns relatively high probabilities to regions far from its mean (or

median). A more formal condition is given below:

P(X > x) ∼ x−α when x →∞,1 <α< 2 .

An interpretation of this is as follows. Regardless of the distribution for small

values of a random variable X , the distribution of X is heavy-tailed if the

asymptotic shape of the distribution is hyperbolic (with 1 < α < 2). For 1 <
α< 2, the mean EX of the probability distribution exists, but the distribution

has infinite variance.

A relevant example: if one considers the sizes of files transferred over a net-

work link, then, the distribution of these sizes is heavy-tailed if there are a

large number of small files transferred, but (crucially) the number of very

large files transferred is still significant. This is common on Internet links.

A well-known distribution that is heavy-tailed, is the Pareto distribution (hy-

perbolic over its entire range).

Moment-generating function

A moment-generating function allows for computation of the moments of

a distribution. By definition, the first moment is the mean, the second mo-

ment the variance. The moment-generating function MX (θ) of a random

variable X is given by:

MX (θ) := E

(

eθX
)

, θ ∈R,

wherever this expectation exists.



169

The moment-generating function for a random variable X which has a con-

tinuous probability density function f (x), is given by:

MX (θ) :=
∫∞

−∞
eθX f (x) d x

=
∫∞

−∞

(

1+θx +
θ2x2

2!
+·· ·

)

f (x) d x

= 1+θM (1) +
θ2M (2)

2
+·· · ,

where M (i ) is the i th moment.

Using the above, the i th moment for the random variable A(T ) (as used

throughout this thesis) can be found as follows:

E

[

(

A(T )
)(i )

]

=
d i

dθi

[

EeθA(T )
]∣

∣

∣

θ=0





B Addendum burstiness

estimation validation

The purpose of this Appendix is to investigate the parameter Cq in the in-

version formula, which we introduced in Chapters 5 and 6 of this thesis.

The inversion formula is as follows, cf. (5.9) on page 111:

v(t ) ≈ inf
B>0

(B + (Cq −µ)t )2

−2logP(Q > B)
,

where v(t ) denotes the traffic’s variance, B denotes the buffer occupancy,

Cq denotes the drain capacity of a queue, and µ denotes the average traffic

rate.

In operational environments, Cq could be the link rate of the link that may

need to be upgraded. By polling the occupancy of the (output) buffer in

front of that link, one estimate the buffer occupancy distribution and sub-

sequently estimate the variance of the traffic — after inserting the variance

into the required bandwidth formula (e.g., (4.7) on page 88), one could de-

termine whether the link needs to be upgraded.

In the traffic measurement environments that we reported on in this thesis,

however, the (measured) link is (sometimes excessively) overprovisioned.

In such cases, it is unlikely that an (output) buffer would be filling up, and

hence, one would likely not be able to get an accurate estimate of the buffer

occupancy distribution. Therefore, in the validation study of the inversion

formula in Section 6.3, we used a virtual queue — see Figure 5.9 on page 124

— to simulate a buffer that fills with input traffic and drains at some rate Cq .

The bottom line is that the buffer (in our case the virtual queue) should be
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Figure B.1: Frequency distribution of the ‘optimal c’ in Cq = c ·µ
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filled ‘sufficiently often’ such that a ‘realistic buffer occupancy distribution’

can be estimated.

An obvious choice is to take Cq = c ·µ, where c > 1 is some constant. In order

to investigate if there is some c that (always) ultimately yields an accurate

estimate of the variance v(t ), we ‘replay’ each traffic trace through a virtual

queue with drain capacity c ·µ, for c = 1,1.05,1.10, . . . ,1.95,2, and µ the 15

minute average throughput of that trace. For each trace, we then determine

the ‘optimal c’, i.e., the value of c which yields in the best estimate of the

variance (at timescale T = 100 msec), compared to the variance estimated

through the direct approach.

Figure B.1 reports on these experiments. The horizontal axes represent the

optimal c, whereas the vertical axes represent the relative frequency that a

certain c is considered optimal (across all traces at each location).

A first observation is that it becomes clear from Figure B.1 that there is no

‘generally optimal c’, as the optimal c that is found most often, differs from

location to location: whereas at location U the optimal Cq is often 1.2 ·µ,

at location R the best estimate of the variance is most likely obtained using

Cq = 1.75 ·µ.

A second observation from Figure B.1 is that, at all locations, there is a single

(or a few similar) c that most often gives the best estimates for v(T ). The

advantage of this, is that the ‘optimal c’ for a specific location apparently

is stable. The precise value of the ‘optimal c’ at a location likely depends

on the burstiness of the traffic itself (and possibly other aspects as well):

it intuitively is clear that when traffic is very bursty, it is more likely to fill

a buffer, compared to traffic that is not so bursty. For instance, when the

access link speeds are relatively high (compared to the ‘uplink’ capacity), a

single user can cause bursts with relatively high traffic rates on the uplink —

e.g., such is the case at location R — which leads to relatively high variability

of the traffic. Compared to location A, where the traffic is relatively smooth

(i.e., not so bursty), at location R the ‘optimal c’ indeed is higher (1.75 and

1.25 for locations R and A, respectively, according to Figure B.1). It is noted

that when a ‘non-optimal c’ is used, this ultimately leads to some error in

the estimate of the burstiness v(·). Experiments have shown, however, that

these errors are small in that the estimate of v(·) while using a ‘non-optimal

c’, is generally within 25% of the best estimate.
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Finally, as a last remark, recall from Chapter 6 that estimation errors in v(·)
only have limited impact on the ultimate required bandwidth estimation.

Therefore we argue that the above conclusion that there is no ‘generally op-

timal c’ does not lead to fundamental problems with our burstiness estima-

tion approach. Should the need for using a virtual queue arise (because of

an overprovisioning situation, for instance), a reasonable choice (possibly to

determine through ‘trial and error’) for c suffices to get accurate estimates

of the burstiness, i.e., v(·).
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A(T ) amount of traffic offered over an interval of length T

A(s, t ) amount of traffic offered over the interval [s, t ]

A(t ) amount of traffic offered over the interval [0, t ]

Ai amount of traffic offered in i th slot of length T

B amount of data in a buffer or queue

C link bandwidth capacity level

Cq capacity (i.e., drain rate) of a virtual queue

D flow duration distribution, with mean δ= ED

ε ‘blocking’ or ‘overflow’ probability

γ linear correlation coefficient (i.e., goodness-of-fit)

λ flow arrival rate

µ (long-term) average or mean traffic rate

r traffic rate (i.e., amount of traffic offered per time interval)

t time

v(T ) variance of the offered traffic at timescale T , i.e., Var(A(T ))

v(·) entire variance curve of the offered traffic
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overprovisioning, 2

perceived performance, 6

187



188 INDEX

provisioning

bandwidth, 5, 106

buffer, 107

buffered link, 106

dimensioning formula for M/G/∞ input, 86

dimensioning formula for Gaussian input, 88

dimensioning formula for general traffic, 81

Q-Q plot, 66–67

QoS mechanism, 11

realized exceedance, 130

traffic load, 8

traffic measurements

flow-level, 30

high level, 31

locations, 34

packet-level, 29

passive and active, 25

process, 26

repository, 34

traffic modeling
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Samenvatting

Het adequaat dimensioneren van netwerkverbindingen vereist een goed in-

zicht in het onderlinge verband tussen (i) het netwerkverkeer dat aangebo-

den wordt (in termen van het gemiddelde aanbod maar ook de fluctuaties

rondom dat gemiddelde), (ii) het gewenste kwaliteitsniveau en (iii) de be-

nodigde bandbreedte. Uiteraard is meer bandbreedte benodigd als het ge-

middelde verkeersaanbod groeit, de fluctuaties toenemen, of het gewenste

kwaliteitsniveau stijgt.

Vaak worden netwerkverbindingen gedimensioneerd aan de hand van

vuistregels, bijvoorbeeld: ‘bepaal het gemiddelde verkeersaanbod geduren-

de drukke uren, en tel hier 30% bij op om de fluctuaties aan te kunnen’. Der-

gelijke vuistregels houden niet expliciet rekening met de sterkte van de fluc-

tuaties van het verkeersaanbod, noch met het gewenste kwaliteitsniveau.

Een gebruikelijke methode om het gemiddelde verkeersaanbod te bepalen,

is de volgende. Een netwerkbeheerder leest regelmatig de zogeheten ‘In-

terfaces Group MIB’ uit, via het ‘Simple Network Management Protocol’

(SNMP), meestal door middel van een programma als de ‘Multi-Router Traf-

fic Grapher’ (MRTG). Hieruit is het gemiddelde verkeersaanbod van een ver-

binding af te leiden. Het is gebruikelijk dit ongeveer eens per 5 minuten te

doen. Deze methode stelt de beheerder niet in staat om inzicht te verkrijgen

in de sterkte van de fluctuaties van het verkeersaanbod binnen deze 5 minu-

ten. Het is echter bekend dat deze fluctuaties behoorlijk groot kunnen zijn,

en merkbaar voor netwerkgebruikers. Stel bijvoorbeeld dat op een tijds-

schaal van 5 seconden meer verkeer aangeboden wordt dan de netwerk-

verbinding kan afhandelen. Dan kan een deel van het aangeboden verkeer

verloren gaan. Het is algemeen bekend dat een dergelijk verlies kan leiden

tot een voor netwerkgebruikers merkbare kwaliteitsverslechtering. Zo kun-
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nen bijvoorbeeld hele woorden in een telefoongesprek over Internet verlo-

ren gaan. Het is dus in het belang van netwerkgebruikers, en uiteindelijk

ook van leveranciers van netwerkverbindingen, dat voldoende bandbreedte

beschikbaar is om het verkeersaanbod goed af te handelen, ook op tijds-

schalen die veel kleiner zijn dan 5 minuten.

Dit proefschrift beschrijft een alternatieve methode om netwerkverbindin-

gen te dimensioneren. Deze methode houdt expliciet rekening met het ge-

middelde verkeersaanbod, de sterkte van de fluctuaties van dit verkeersaan-

bod op kleine tijdsschalen en het gewenste kwaliteitsniveau. Dit wordt uit-

gedrukt door middel van wiskundige formules waarmee, gegeven de karak-

teristieken van het aangeboden verkeer en het gewenste kwaliteitsniveau,

de benodigde bandbreedte berekend kan worden.

Verkeersmodellen beschrijven de karakteristieken van het aangeboden ver-

keer. Om goede verkeersmodellen te vinden, zijn honderden gedetailleer-

de metingen aan netwerkverkeer uitgevoerd, op vijf verschillende locaties

in Nederland. Omdat deze locaties verschillen in types en aantallen ge-

bruikers, applicaties, netwerktechnologieën, etc., is een brede inzetbaar-

heid van de gekozen verkeersmodellen gewaarborgd.

We hebben geconcludeerd dat een zogeheten Gaussisch verkeersmodel, in

het algemeen, goed aansluit bij echt netwerkverkeer. Een Gaussisch ver-

keersmodel beschrijft netwerkverkeer als volgt: de hoeveelheid aangeboden

verkeer A(T ), aangeboden over een interval van duur T , is verdeeld volgens

de Gaussische (normale) verdeling, en wel met gemiddelde EA(T ) en va-

riantie VarA(T ). Vaak geziene karakteristieken van Internet verkeer, zoals

‘long-range dependency’ en ‘self-similarity’, passen in het kader van Gaus-

sische verkeersmodellering.

De kwaliteitsmaat waarmee we in dit proefschrift werken, richt zich op het

transparant maken van de netwerkverbinding voor de gebruiker; in niet

meer dan een fractie ε van de intervallen van duur T mag de hoeveelheid

aangeboden verkeer A(T ) groter zijn dan de beschikbare bandbreedte C .

Anders gezegd: P (A(T ) ≥C T ) ≤ ε.

We tonen in dit proefschrift aan dat voor Gaussisch verkeer geldt dat de vol-

gende formule de benodigde bandbreedte schat om aan bovenstaande kwa-

liteitseis te voldoen: C =µ+1/T ·
√

(−2logε) ·VarA(T ), waarbij µ het gemid-

delde verkeersaanbod voorstelt.



191

Het gemiddelde verkeersaanbod µ kan bepaald worden met behulp van de

gebruikelijke methode, via relatief ruwe SNMP metingen. Het bepalen van

de fluctuaties van het verkeersaanbod, VarA(T ), vereist metingen op tijds-

schaal T . Aangezien T waarschijnlijk klein zal zijn (in de orde van seconden

of kleiner, in lijn met een tijdsschaal die bepalend is voor de kwaliteit), lijkt

het nodig te zijn om relatief gedetailleerde metingen te doen om VarA(T ) te

bepalen. Het is (in het algemeen) niet haalbaar om dit soort gedetailleerde

metingen te doen met SNMP. In dit proefschrift ontwikkelen we een alter-

natieve methode om VarA(T ) te schatten.

Onze methode om VarA(T ) te schatten maakt gebruik van relatief ruwe me-

tingen aan de bezetting van een buffer voor de netwerkverbinding die we

willen dimensioneren. Deze ruwe metingen zijn vergelijkbaar met de me-

tingen die nodig zijn om µ te schatten. Door regelmatig de bufferbezetting

te bepalen, kan de empirische verdelingsfunctie worden bepaald van deze

bufferbezetting. We leiden in dit proefschrift een formule af die deze verde-

lingsfunctie ‘inverteert’ tot VarA(T ). Merk op dat we hierdoor in staat zijn

om VarA(T ) te schatten zonder metingen op (kleine) tijdsschaal T nodig te

hebben.

We hebben onze alternatieve methode om netwerkverbindingen te dimen-

sioneren, in het bijzonder de formule voor de benodigde bandbreedte en de

‘inversie’ om VarA(T ) te schatten, uitgebreid gevalideerd. Bij deze validatie

is gebruik gemaakt van de honderden metingen van echt netwerkverkeer.

Beheerders van netwerken kunnen de resultaten van dit onderzoek gebrui-

ken voor netwerk-dimensionering. Een voorbeeld is het bepalen van de be-

nodigde capaciteit om in een aanbodsgroei te voorzien zonder dat kwali-

teitsverslechtering optreedt, of om aan ‘Service Level Agreements’ te kun-

nen voldoen. Te denken valt hierbij bijvoorbeeld aan kleine tot middelgrote

organisaties die een adequaat gedimensioneerde verbinding met Internet

willen hebben, of een ‘Virtual Private Network’ tussen diverse locaties van

die organisatie willen opzetten.
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