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Network medicine is an emerging area of research dealing with molecular and genetic

interactions, network biomarkers of disease, and therapeutic target discovery. Large-

scale biomedical data generation offers a unique opportunity to assess the effect

and impact of cellular heterogeneity and environmental perturbations on the observed

phenotype. Marrying the two, network medicine with biomedical data provides a

framework to build meaningful models and extract impactful results at a network

level. In this review, we survey existing network types and biomedical data sources.

More importantly, we delve into ways in which the network medicine approach, aided

by phenotype-specific biomedical data, can be gainfully applied. We provide three

paradigms, mainly dealing with three major biological network archetypes: protein-

protein interaction, expression-based, and gene regulatory networks. For each of these

paradigms, we discuss a broad overview of philosophies under which various network

methods work. We also provide a few examples in each paradigm as a test case of its

successful application. Finally, we delineate several opportunities and challenges in the

field of network medicine. We hope this review provides a lexicon for researchers from

biological sciences and network theory to come on the same page to work on research

areas that require interdisciplinary expertise. Taken together, the understanding gained

from combining biomedical data with networks can be useful for characterizing disease

etiologies and identifying therapeutic targets, which, in turn, will lead to better preventive

medicine with translational impact on personalized healthcare.

Keywords: network medicine, biological networks, biomedical big data, interactome, co-expression, gene

regulations, phenotype-specificity, systems medicine

INTRODUCTION

Biological systems are comprised of various molecular entities such as genes, proteins and other
biological molecules, as well as interactions between those components. Understanding a given
phenotype, the functioning of a cell or tissue, etiology of disease, or cellular organization, requires
accurate measurements of the abundance profiles of these molecular entities in the form of
biomedical data. Analysis of the biomedical data allows us to explain important features of the
interactions leading to a mechanistic understanding of the observed phenotype. The interplay
between different components at different levels can be represented in the form of biological

Abbreviations: CNV, copy number variation; ENCODE, ENCyclopedia Of DNA elements; FANTOM5, Functional
ANnoTation Of Mammalian Genome; GCNs, gene co-expression networks; GRNs, gene regulatory networks; GTEx,
genotype-tissue expression; HCA, human cell atlas; HMP, human microbiome project; HPA, human protein atlas;
modENCODE, model organism ENCyclopedia Of DNA Elements; NGS, next generation sequencing; PPIs, protein-
protein interactions; SNP, single nucleotide polymorphism; TCGA, the cancer genome atlas; TOPMed, trans-omics for
precision medicine.
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networks, for example, protein-protein interactions (PPIs) (Uetz
et al., 2000; Cusick et al., 2005) and gene regulatory networks
(GRNs) (Davidson, 2006). Different biological networks
capture the complex interactions between genes, proteins,
RNA molecules, metabolites and genetic variants in the cells
of organisms. These networks, also interchangeably known
as graphs, are representations in which the complex system
components are simplified as nodes that are connected by links
(edges) (Vidal et al., 2011). Networks provide a conceptual and
intuitive framework to model different components of multiple
omics data from the genome, transcriptome, proteome, and
metabolome (Figure 1; Liu and Lauffenburger, 2009).

The convenient representation of the biological components
in graphs led to the field of network biology – a discipline
that studies holistic relationships between various biological
components by combining graph theory, systems biology, and
statistical analyses (Lindfors, 2011; Walhout et al., 2012).
Moreover, the quantitative tools of network biology offer the
potential to understand cellular organization and capture the
impact of perturbations on these complex intracellular networks
(Wang et al., 2011). NetworkMedicine is an extension of network
biology with a set of focused goals related to disease biology,
including understanding disease etiology, identifying potential
biomarkers, and designing therapeutic interventions, including
drug targets, dosage, and synergism discovery (Loscalzo et al.,
2017). Research in network medicine heavily depends on large
datasets for building models, making predictions and assessing
their validity. The promise of network medicine research is
to develop a more global understanding of how perturbations
propagate in the system by identifying the pathways, sub-types
of disease states, and key components in the networks that
can be targeted in clinical interventions. Moreover, networks
are the centerpiece of the “new biology” in the biomedical
data revolution and translation to personalized medicine
(Schadt and Bjorkegren, 2012).

Advances in high-throughput biotechnologies have led to
the generation of massive amounts of biomedical data that
provides new research avenues. The rapid decline in costs due to
technological advancements such as next generation sequencing
(NGS) have provided the necessary impetus to generate
multiple large-scale multi-omics biomedical data-sets that
characterize various phenotypes. This includes exome and whole
genome sequencing, transcriptomics, proteomics, lipidomics,
microbiomics, etc. (Schadt and Bjorkegren, 2012). Constructing
appropriate networkmodels is a challenging problem that heavily
depends on the study design, the phenotype under study, the
molecular entities measured, and the type and size of the data.
The field of network medicine is largely discovery — rather
than hypothesis — driven, uncovering previously unknown
relationships and leading to the identification of new biomarkers.
The statistical rigor of network predictions comes from the study
design and the size of the datasets. Large-scale consortium-
based efforts looking at the various aspects of human biology
have allowed the application of network-based methods to
uncover new insights into the molecular mechanisms of the given
phenotype, such as tissue specificity or disease context. In this
review, we first examine various large-scale biomedical datasets

and types of biological networks as summarized by Figure 1.
We then provide three paradigms in which biological networks
can be combined with big biomedical data to understand the
given phenotype.

BIOMEDICAL DATA SOURCES

Recent technological advancements in sequencing technologies,
resulting in a reduction in cost per base pair, have heralded an
era of massive data generation for different types of molecular
profiles across a broad range of phenotypes and diseases.
After the completion of the human genome project (Collins
et al., 2003), the HapMap project (The International HapMap
Consortium, 2003) created an extensive catalog of common
human genetic variants, the differences in DNA sequences,
based on microarray data. These studies eventually progressed
into the “1000 Genomes Project” (The 1000 Genomes Project
Consortium, 2015), which leveraged NGS technologies. In cancer
research, the cancer genome atlas (TCGA) (Cancer Genome
Atlas Research Network, 2008) contains profiles of tumors
and matched normal samples from more than 11000 subjects
for 33 cancer types. The repertoire of TCGA data includes
clinical information (demographic, treatment, and survival
information), gene expression profiling, microRNA profiling,
copy number variation (CNV) (genomic structural variations)
identifications, single nucleotide polymorphism (SNP), DNA
methylation (whole genome methylation calls for each CpG site),
and exon sequencing (expression signal of particular composite
exon of a gene). Together these data have helped in the
identification of driver somatic mutations, the molecular basis
of cancer progression, and potential therapeutic interventions
for cancer subtypes. To understand the role of the epigenetic
state in gene regulation and to characterize the functional
elements of the transcriptional machinery, the ENCyclopedia Of
DNA elements (ENCODE) consortium for humans (ENCODE
Project Consortium, 2012), model organism ENCyclopedia Of
DNA Elements (modENCODE) for model organisms (Yue
et al., 2014), and ROADMAP Epigenomics project (Romanoski
et al., 2015) were commissioned to improve the understanding
of how epigenomics contributes to disease. The Riken-led
Functional ANnoTation Of Mammalian Genome (FANTOM5)
(Andersson et al., 2014) project provided cell-type-specific
enhancer elements and identified pathobiological regulatory
SNPs. To further understand transcriptional patterns in human
tissues and their relationship with the genotype, genotype-tissue
expression (GTEx) data was generated (GTEx Consortium, 2015;
Mele et al., 2015). Trans-omics for precisionmedicine (TOPMed)
(Prokopenko et al., 2018) is another set of multi-omics data on
100k individuals that also includes clinical data and is aimed at
understanding the fundamental biological processes that underlie
heart, lung, blood, and sleep disorders. The Precision Medicine
Initiative or “All of Us” program1 aims to acquire a broad range
of data from about 1 million individuals.

1https://allofus.nih.gov/
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FIGURE 1 | Overview of network medicine approach depicting various biomedical data types discussed at length in the manuscript, along with network

representations that simplify different components of multiple omics data from the genome, transcriptome, proteome, and metabolome as nodes that are connected

by links (edges). Combining biomedical data with the appropriate network modeling approach allows derivation of disease associated information and outcomes like

biomarkers, therapeutics targets, phenotype-specific genes and interactions, and disease subtypes.

Since 2003, the human protein atlas (HPA) (Uhlen et al.,
2005; Uhlen et al., 2015), curated by Swedish consortium, has
been releasing data on protein expression levels in cells, tissues,
and various pathologies, including 17 cancer types. Similarly,
the human cell atlas (HCA) (Rozenblatt-Rosen et al., 2017)
aims to provide a reference map of single cell omics data in
human cells and cell types. The UK-Biobank (Allen et al., 2014;
Sudlow et al., 2015) is another commercial resource that has
an array of health-related measurements on patients, including
biomarkers, images, clinical information, and genetic data. The
human microbiome project (HMP) (Turnbaugh et al., 2007) is
a categorization of microbiota on different human body sites
whose goal is to understand the role of the microbiome and
the impact of its dysbiosis on human disease. Apart from these
large international databases looking at one or more aspects of
health or disease, many other resources from the concerted efforts
over decades of data collection are also available. This includes
the Nurses’ Health Study (Belanger et al., 1978; Colditz et al.,

2016), Health Professionals Follow-up Study (Grobbee et al.,
1990), Framingham Heart Study (Dawber et al., 1951; Mahmood
et al., 2014), and COPDGene (Pillai et al., 2009). This wealth
of biomedical data not only allows for a deeper probing of the
underlying biological systems, but also inspires the development
of novel methods that can maximize the information that can be
extracted from these data. The tools developed within the field of
network medicine are highly versatile, enabling their customized
application depending on the given biological or disease context.

Collecting large-scale multi-time point data across multiple
omics in different disease conditions is expensive and often
not feasible, especially for human subjects. However, small-scale
longitudinal data for a single omic, such as gene expression,
is available in biomedical databases (Jung et al., 2015; Bouquet
et al., 2016). High resolution mass spectrometry has also allowed
for the collection of longitudinal proteome data, for example
to test the effect of drugs (Fournier et al., 2010) or oxidative
stress (Vogel et al., 2011) in yeast. A longitudinal multi-omic
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dataset containing both human transcriptomic and proteomic
information has been analyzed to study changes in molecular
profiles (Chen et al., 2012). Multi-omic datasets such as this
one allows us to probe the relationship between biological
molecules based on the central dogma of biology, such as the
connection between transcript abundance and protein levels
(Marguerat et al., 2012; Liu et al., 2016). Longitudinal data is also
amenable to temporal or dynamical network analysis, wherein
one can evaluate the statistical dependence of the state of a
network on the gene expression patterns from previous time steps
(Kim and Kim, 2018; Dondelinger and Mukherjee, 2019). Kim
et al. provide a summary of several methods to infer temporal
regulatory relationships (Kim et al., 2014).

In the next section, we will review some of the main
types of biological networks constructed using high throughput
molecular profiling, literature mining, or manual curation of
scientific literature.

PRIMER ON BIOLOGICAL NETWORKS

Each network-based study has to primarily identify two things:
what are the critical entities in the system under investigation
(nodes), and what is the nature of the interactions between these
entities (edges) (de Silva and Stumpf, 2005). This information
often comes from multiple different data sources, dealing with
the various facets of the biological system. For example, PPIs,
also defined as the interactome, is a network of proteins and the
physical interactions between them (Cusick et al., 2005). These
interactions can be obtained from yeast-2-hybrid assays (Li et al.,
2004; Vidal and Fields, 2014), co-immunoprecipitation (Lin and
Lai, 2017), literature text-mining (Papanikolaou et al., 2015),
3D structure (Lu et al., 2013), co-expression of genes (Bhardwaj
and Lu, 2005), sequence homology (Shen et al., 2007), and
other sources. Each of these data sources have both merits and
demerits (Cusick et al., 2005). These networks inform us about
the overall topological properties of protein interactions as well
as the positions of specific proteins within this network. However,
extracting phenotype specific (i.e., cell, tissue or disease-specific)
information based on the PPI remains an open challenge and
requires the development of novel ways of integrating biomedical
data with these networks.

Gene co-expression and regulatory networks often make
direct use of phenotype-specific gene expression data in the
network construction, with additional analysis required to extract
meaningful biological information for the underlying phenotype.
The availability of transcriptomic data for a wide range of
phenotypes presents an opportunity to probe the patterns of
molecular co-abundance, albeit with limitations concerning the
interpretation of the biology. Gene co-expression networks
(GCNs) can be constructed in many ways, including information
theoretic, regression-based, and Bayesian approaches (Butte
and Kohane, 1999). Several common methods for constructing
GCNs include Weighted Gene Co-expression Network Analysis
(WGCNA; Langfelder and Horvath, 2008), Context Likelihood
of Relatedness (CLR; Faith et al., 2007), Algorithm for
the Reconstruction of Accurate Cellular Networks (ARACNe;

Margolin et al., 2006), Partial Correlation and Information
Theory (PCIT; Reverter and Chan, 2008), Gene Network
Inference with Ensemble of Trees (GENIE3; Huynh-Thu et al.,
2010), Supervised Inference of Regulatory Networks (SIRENE;
Mordelet and Vert, 2008), and Gene CO-expression Network
method (GeCON; Roy et al., 2014). GRNs are a related type
of network that attempts to look beyond the co-abundance of
gene expression and instead identify the influencing patterns of
transcription factor genes over others in a mechanistic fashion
(Marbach et al., 2012). Since transcriptional regulation depends
on cis and trans-regulatory elements as well as transcription
factor binding, GRNs often incorporate this information during
model construction. Many methods with a modified definition
of correlations have been proposed to infer GRNs. However,
identifying the putative cis-regulatory sequences, such as those
found in the promoter regions of genes, that are relevant
for a specific biological context is important to enable the
understanding of disease, tissue, or cell-specific regulatory
perturbations. The location of TF binding to the DNA can be
assayed using yeast-1-hybrid (Deplancke et al., 2004), ChIP-
Seq (Jaini et al., 2014), or inferred by other means (Mundade
et al., 2014). However, the cost and other limitations involved in
generating these data in a context-specific manner have meant
that incorporating this information when constructing putative
regulatory networks remains a challenge.

Other types of biological networks include metabolic
networks, which represent a collection of biochemical
interactions between metabolites and enzymes (Terzer et al.,
2009). Ecological networks, which represent biotic interactions,
can also be applied to microbiome data, the collection of
microbes’ genes, to construct microbiome networks (Coyte et al.,
2015; Layeghifard et al., 2017; Bauer and Thiele, 2018; Rottjers
and Faust, 2018). Together, genotype and transcriptomic data can
be used to map genetic variants to genes and then summarized
in an expression Quantitative Trait Loci (eQTL) network (Platig
et al., 2016; Fagny et al., 2017). A network of immune cell
communication has been constructed using high-resolution
mass spectrometry-based proteomics data and was shown to
exhibit social network-like properties. Disease networks, also
known as the diseasome, have been proposed; these networks
connect diseases and disorders with disease genes based on
Online Mendelian Inheritance in Man (OMIM) associations
(Boyadjiev and Jabs, 2000; Hamosh et al., 2002; Goh et al.,
2007; Wysocki and Ritter, 2011; Zhang et al., 2011). Similarly,
networks connecting symptoms with diseases have helped to
shed light on the shared genetic associations between diseases
(Zhou et al., 2014). Efforts to identify specific disease-causing
genes, using genomic intervals obtained from linkage mappings
or Genome-Wide Association Studies (GWAS), have been
undertaken using hybrid heterogeneous networks. These hybrid
networks often include a combination of disease-gene networks,
generic or tissue-specific molecular networks such as PPIs or
GCNs, and prior knowledge of disease similarities (Navlakha and
Kingsford, 2010; Moreau and Tranchevent, 2012; Ni et al., 2016).
Various network-based tools have been implemented in the
gene prioritization problem (Wu et al., 2008; Li and Patra, 2010;
Tian et al., 2017). All these aforementioned types of network
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biology approaches are particularly useful in understanding
complex diseases, which result from multiple genetic factors and
environmental influences (Moreau and Tranchevent, 2012).

Analysis of biological networks also necessitates
understanding their structural or topological properties.
This includes the identification of important modulators, driver
nodes, local network structures, and recurrent subgraphs in the
network. Local connectivity properties such as degree and other
centrality metrics can help to identify key molecular entities
that dominate various network neighborhoods, such as hubs,
bottlenecks, or core nodes. At the global level, properties like
average path length, degree distribution, diameter, clustering
coefficients, and controllability (Liu et al., 2011) help with
the characterization and comparison of network topologies.
Mesoscale measures such subgraphs or network motifs –
recurrent patterns connecting a fixed number of nodes (typically
3 or 4) – are considered fundamental components of biological
networks (Milo et al., 2002). An extension of network motifs to
include more nodes, or graphlets, has been used to analyze the
interactome (Przulj et al., 2004; Davis et al., 2015; Malod-Dognin
et al., 2017). Identifying the connectivity patterns enriched in
a network (i.e., over-represented with respect to a null model)
can help to compare, characterize, and discriminate between
networks (Shen-Orr et al., 2002; Alon, 2007; Przulj, 2007). These
patterns are also commonly associated with control substructures
that dominate information flow in the networks, especially in
transcriptional regulatory, neuronal, and social networks.

INTEGRATING BIOMEDICAL DATA WITH
NETWORKS: CHALLENGES AND WAYS

The ultimate aim of inferring biological networks using
biomedical data is to provide lab-testable hypotheses by
identifying biomolecular entities that play a crucial role in the
observed phenotype (Figure 1). Detecting changes in abundance
levels of these biomolecules and their interaction landscape in the
context of a tissue, cell, or disease-specific environment requires
both relevant data and the application of appropriate network
analysis. Each biological network analysis has strengths and
limitations based on how it incorporates phenotype specific data,
and the research question being addressed (Altaf-Ul-Amin et al.,
2014; Kanaya et al., 2014). In some cases, it is possible to identify
a baseline network from general physical interactions between
proteins, after which disease or phenotype-specific information
from specific experiments can be overlaid to generate a more
context-specific network.

Protein-protein interaction networks provide a fabric of
potential interactions between proteins, but phenotype-specific
interactions can only be added as an extra layer from separate
biomedical data. The hypothesis behind analyzing such networks,
combination of baseline PPI with disease information added
as next step, is that the defects or mutations in only a few
genes or proteins may propagate to other components in the
network, and that this collection of affected genes constitute a
critical module in the network (Schadt and Bjorkegren, 2012).
Previous work along these lines has shown that these modules

are not only structurally related but are also functionally relevant
to the observed phenotype. This central tenet of network
medicine from the interactome has been successfully tested
for many diseases and other phenotypes (Lim et al., 2006;
Goh et al., 2007; Taylor et al., 2009; Sharma et al., 2013, 2015,
2018; Menche et al., 2015; Sahni et al., 2015; Huttlin et al.,
2017; Huang J.K. et al., 2018; Wang et al., 2018; Willsey
et al., 2018) and has also led to novel drug-target discoveries
(Yildirim et al., 2007; Guney et al., 2016; Luo et al., 2017)
along with novel interactions between genes. Despite recent
advances, the PPI is incomplete and inferring disease-specific
interactions requires innovative strategies in order to overcome
this deficiency.

Gene co-expression networks are by definition context-
specific, as they are constructed by calculating correlations
in a given gene expression data set. In contrast, GRNs
often are built starting from a baseline network composed
of all potential interactions between transcription factors and
genes. This baseline network can be derived from genetic
sequence information and DNA-binding domain sequences
within regulatory proteins, such that an interaction is inferred if
a given gene’s promoter contains the binding motif of a particular
TF. Disease or tissue-specific information then has to be
integrated with this baseline prior network to obtain meaningful
information about perturbations caused due to the disease.

In this review, we explore the PPI, GCNs, and GRNs, and
also provide exemplar methods for each. Based on these three
types of networks, we describe three complimentary philosophies
and modus-operandi to embed phenotypic specific molecular
information from biomedical data into a network framework, as
shown in Figure 2. We present these paradigms to demonstrate
that applying network phenomenology to big biomedical data
requires a nuanced, condition-specific approach. In the following
sections, we will focus on each paradigm separately, providing
their examples, the questions they intend to answer, and the
diagnostics of the outcomes. We mainly focus on reviewing
methods to integrate multi-omic data to extract phenotype
specific information, specifically disease and tissue specificity in
the PPI, GCNs, and GRNs.

PARADIGM I: Network-Based Approach
to Human Disease Using the Interactome
The high-throughput mapping of the interactome has provided a
molecular interaction map of the genes encoding proteins that
might drive an underlying pathophenotype (Kamburov et al.,
2009; Barabasi et al., 2011; Zhang et al., 2013; Rolland et al., 2014;
Hein et al., 2015; Huttlin et al., 2015). Understanding disease
associated biomedical data in the context of network principles
supports the discovery of more accurate biomarkers, localization
of the disease perturbation in the network, personalized
networks, better disease sub-type classifications, better targets
for drug development, and better drug repurposing. Using this
paradigm, one can extract disease-specific signals in a variety of
ways. One may consider topological properties of the nodes and
assess the functional role of their hubness, i.e., a node property
of having a higher number of connections. Alternatively, one can
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FIGURE 2 | Schematic of three paradigms for combining biological networks with phenotype-specific biomedical data, such as a set of disease genes and

transcriptomic profiles for case and control groups. (A) Identification of disease associated network components within the interactome, (B) Co-expression based

network modeling to identify disease biomarkers, (C) Constructing phenotype-specific GRNs to identify perturbations and condition-specific regulatory changes.

also identify new disease genes in the network by using “guilt-
by-association” (Aravind, 2000; Quackenbush, 2003; Stuart et al.,
2003; Lage et al., 2007; Sharma et al., 2010; Lee et al., 2011;
Sharma et al., 2013; Huang J.K. et al., 2018)— a property ascribed
not based on direct evidence but association with other disease
genes, albeit with care (Gillis and Pavlidis, 2012). In addition
to prioritizing candidate disease genes, molecular interaction
networks can assist in identifying the sub-networks that are
mechanistically linked to disease phenotypes (Menche et al.,
2015; Sharma et al., 2015; Emamjomeh et al., 2017; van Dam et al.,
2018). The proteins in these connected subnetworks may have
clinical importance by being therapeutic targets and biomarkers
(Sharma et al., 2015). Network tools can also provide a framework
for disease classification (Halu et al., 2017; Zhou et al., 2018).

Assessing disease genes from other, non-disease genes by
their topological properties on the interactome have provided
new insight into disease pathobiology. It was found that disease
genes tend to have non-hub properties (Goh et al., 2007). Later,
it was reported that genes from OMIM and those associated
with cancer are more central in a literature-curated interactome
(Jonsson and Bates, 2006; Xu and Li, 2006; Ideker and Sharan,
2008). Further, several studies demonstrated that disease genes,
in general, mostly have a high-degree and a low clustering
coefficient (number of mutual connections with the neighboring
nodes) (Feldman et al., 2008; Cai et al., 2010). Moreover, recently
it was reported that disease genes have a higher degree, but it
was discovered that the cancer-related genes are the primary

drivers of this trend (Wachi et al., 2005; Jonsson and Bates,
2006). Genes associated with either Mendelian or complex
diseases also have higher degree and lower clustering coefficients
compared to non-disease genes (Cai et al., 2010; Pinero et al.,
2016). The topological properties of disease-associated genes
vary significantly from disease to disease. The factors that
influence these discrepancies include the incompleteness of
the current interactome, bias toward well-studied genes, and
incomplete knowledge about the number genes associated with
various diseases (Menche et al., 2015). It is anticipated that
the alliance of different technologies like yeast-2-hybrid, affinity
purification mass-spectrometry (AP-MS), and cross-linking AP-
MS (Schweppe et al., 2018) will provide access to larger data
that will be helpful in providing knowledge about the missing
interactions. On the disease-gene discovery side, projects like the
UK biobank prospective cohort study, which includes in-depth
genetic and phenotypic data, will enhance knowledge regarding
the missing disease genes (Bycroft et al., 2018).

An important area in which the interactome has helped in
understanding complex diseases is the prediction of disease
associated genes. The goal is to identify novel genes and
proteins, which are involved in the regulation of tissues, or
dysregulated in the case of disease, through the association with
observed disease candidate genes using the biological hierarchy
of molecular interactions. Figure 2A depicts this paradigm where
the PPI network serves as map of potential biological interactions
between various proteins over which disease associated genes
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are mapped to uncover relevant biology. The central philosophy
in most methods under this paradigm is that the neighbors of
the disease associated components or network modules, such
as a set of differentially expressed genes (Chuang et al., 2007)
or genes with disease-associated SNPs (Oti et al., 2006; Lage
et al., 2007; Feldman et al., 2008; Barrenas et al., 2012), could
potentially be associated with similar diseases (Goh et al., 2007),
and are closer to each other as compared to the other nodes
in the network. The definition of this closeness, or vicinity of
nodes, just like the definition of modules and clusters, varies with
different research strategies. Some methods assume topological
closeness in terms of the number of shortest paths connecting
given nodes, while others take the similarity of biological function
into account. Guilt-by-association methods focus on identifying
new disease genes by optimizing based on both the local and
global properties of the network and by considering the role
of other disease genes and their neighborhood. Network-based
strategies to find disease genes and their associated mechanisms
can be divided in two types: exploratory and analytic methods
(Carter et al., 2013). In exploratory methods one can analyze the
biological trends due to perturbations. For example, Chu et al.
(2012) expanded on known angiogenesis pathways to construct
a PPI network for angiogenesis. In contrast, analytic methods
aim to identify specific genes and pathways associated with a
disease. For example, Gilman and group developed a method
for network-based analysis of genetic associations to identify a
biological network of genes affected by rare de novo CNVs in
autism (Gilman et al., 2011). Recently, Huang J.K. et al. (2018)
systematically evaluated 21 protein-interaction networks for the
ability to recover disease genes sets. After correcting for size, they
found that the Database for Interacting Proteins (DIP) network
(Xenarios et al., 2000) had the highest efficiency in recovering
disease genes (Huang J.K. et al., 2018).

In contrast to predicting the disease candidate proteins,
finding the associated disease-related network components, or
sub-networks, provides a more substantial network space to
discover the pathways and mechanisms that influence disease.
Goh et al. (2007) proposed a correlation between the location
of disease-associated genes and the topology of the molecular
interaction network. The tendency of disease-associated genes
to interact more often with others compared to random genes
in the interactome led to the establishment of the ‘local impact’
hypothesis (Barabasi et al., 2011). According to this hypothesis,
molecular entities involved in similar diseases have an increased
tendency to interact with each other and to localize in a specific
neighborhood of the interactome (Barabasi et al., 2011). The
search for these modules involves exploring the structural and
topological properties of the PPI network. Community detection
algorithms (Spirin and Mirny, 2003), clique percolation (Sun
et al., 2011), and genetic algorithms (Liu et al., 2018) have been
applied to uncover disease modules using network properties
(Vlaic et al., 2018). Module prediction and identifying non-
overlapping clusters with the PPI remains challenging since the
PPI network has a short diameter, i.e., most nodes are close to
all other nodes in terms of network distance. Novel distance
metrics and community detection algorithms have been proposed
to overcome this problem (Hall-Swan et al., 2018). The recently

proposed DIseAse MOdule Detection (DIAMOnD) algorithm
(Ghiassian et al., 2015) associates the functional modules of
known disease-associated proteins (seed proteins) and identifies
the close neighbors of these genes (candidate disease-associated
proteins) using topological properties of the interactome. The
method suggests that the connectivity significance among the
disease-associated proteins is the best predictive quantity to
find the disease related components in the interactome. The
underlying hypothesis is that close neighbors of known disease
proteins may be involved in the disease. The working principle of
DIAMOnD is as follows: first, a pool of disease genes encoding
proteins is identified for a disease of interest from biological
experiments, GWAS, linkage analysis, or other disease associated
data sources (Pinero et al., 2017). Next, these disease proteins
(seeds) are mapped onto the interactome. Further, neighbor
proteins are added iteratively to the set of seed proteins based
on the condition that each neighbor added is most significantly
connected to the seed proteins. A hypergeometric test assigns a
p-value to the proteins that share more connections with seed
proteins than expected by chance. Finally, the seed proteins plus
the added neighbor proteins are part of network components
that represent a disease module, or a subnetwork of proteins in
the interactome, the members of which are more functionally
and topologically related to each other than to other portions
of the network. These subnetworks are designated as disease-
specific modules based on the source of initial seed proteins.
Disease module identification has also led to endophenotypes,
intermediate pathophenotypes, and network modules describing
their common and distinctive molecular mediators (Lage et al.,
2008; Ghiassian et al., 2016).

As mentioned previously, significant progress has been made
in mapping the interactome by high-throughput approaches
like yeast-2-hybrid (Rual et al., 2005; Venkatesan et al., 2009;
Dreze et al., 2010; Rolland et al., 2014), AP/MS (Hein et al.,
2015; Huttlin et al., 2015, 2017) and various literature-curated
data sources, such as ConsensusPathDB, STRING, and PCNet,
which collate the known and predicted interactions between
proteins (Klingstrom and Plewczynski, 2011). Despite these
efforts, the current interactome mapping is 80% incomplete
(Hart et al., 2006; Venkatesan et al., 2009; Mosca et al., 2013;
Menche et al., 2015) and is affected by many experimental and
literature biases. Given the incompleteness of the interactome, it
is possible that the disease modules are also far from complete.
An attempt to overcome this limitation was made using a
network-based closeness approach that compares the weighted
distance between different disease and seed-gene neighborhoods
to random expectation on the network. In the context of
Chronic Obstructive Pulmonary Disease (COPD), 140 potential
candidate genes (Sharma et al., 2018) were identified. Another
shortcoming of disease module detection related to the lack
of context-dependence and tissue-specificity within the PPI
was studied by Kitsak et al. (2016). They found that the
genes expressed in a particular tissue tend to form localized
connected subnetworks, which overlap between similar tissues
and are situated in the different neighborhoods for pathologically
distinct pairs of tissues. The perturbations in tissue-dependent
subnetworks may help us understand disease manifestations
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or pathophenotypes. Integrating multi-omics data, including
epigenomics, proteomics, and metabolomics, with PPI analysis
remains challenging, but is critical for identifying disease or
tissue-specific modules in the interactome.

PARADIGM II: Identifying Important
Genes Using Patterns of Co-abundance
of Biomolecules
Measuring transcript abundance or gene expression patterns
for given phenotypes (case-control) across multiple samples is
one of the main research strategies used to probe the system
as it is connected to the central dogma of molecular biology.
Performing differential gene expression analysis often identifies
important genes affected by the disease. However, it does not
provide information regarding how these genes are influenced
by or influence other genes. It has been observed that genes with
similar expression patterns might be part of complexes, influence
each other, or be part of the same pathways or mechanisms
(Serin et al., 2016). This inspired the construction of GCNs where
the patterns of transcript abundance are studied in the context
of the disease. The central philosophy of this paradigm is to
combine important seed genes with an organic network of co-
expression patterns derived from the gene expression data from
the same system.

There are many ways to compute co-expression or co-
abundance patterns, including using Pearson correlations (Stuart
et al., 2003), Spearman rank correlations (Song et al., 2012;
Liesecke et al., 2018), mutual information (Butte and Kohane,
1999;Margolin et al., 2006;Meyer et al., 2007), Gaussian graphical
models (Toh and Horimoto, 2002), regression-based methods
(Yeung et al., 2002; van Someren et al., 2006; Pirgazi and
Khanteymoori, 2018), Bayesian approaches (Friedman et al.,
2000; Perrin et al., 2003; Li et al., 2007; Xing et al., 2017),
random matrix theory (Luo et al., 2007; Jalan et al., 2010;
Jalan et al., 2012), and partial correlations (Reverter and Chan,
2008). GCNs identify the functionally coordinated participation
of genes in response to an external stimulus or condition. GCNs
can be signed or unsigned, weighted or unweighted, and may
either be constructed using microarray or RNA-Seq data. Care
must be exercised when using thresholding methods to obtain
unweighted co-expression networks as these are subjective and
can change the network structure and topology (Elo et al.,
2007); methods based on the clustering coefficient (Boyadjiev
and Jabs, 2000), random matrix theory (Luo et al., 2007), or
soft thresholding, which raises the weights by a certain power to
penalize weaker edges (Langfelder and Horvath, 2008), have been
used to address this limitation. Along with total gene expression
levels, isoform abundance and alternative splicing can also be
used in constructing GCNs (Saha et al., 2017).

Gene co-expression networks are also used to identify co-
expression modules. Clusters, modules, or subgraphs of genes
that have similar functions are often highly interconnected in
GCNs. These clusters can be identified using network topology-
based methods like community detection (Girvan and Newman,
2002), modularity maximization (Newman, 2004), K-means
clustering (Stuart et al., 2003), or variants of hierarchical

clustering methods (Langfelder and Horvath, 2008; Serin
et al., 2016). The genes in the most significant modules are
then assessed for their biological importance using functional
enrichment methods. The genes in the clusters are also often
tested for their enrichment with differentially expressed genes
from transcriptomic analysis, as illustrated in Figure 2B.
Based on these results, other non-differentially expressed genes
in the enriched clusters can be implicated in the disease
using ‘guilt-by-association’ approaches. The newly implicated
genes may have clinical importance as potential therapeutic
targets and biomarkers.

Despite the aphorism “correlation is not causation”, partial
yet informative insights can be gleaned from co-expression
networks, such as an underlying regulatory framework mediating
the co-expression patterns. New methods based on partial-
correlations, Bayesian, and graphical Gaussian models (Werhli
et al., 2006) take into account local connectivity when estimating
edge strengths and a few methods work by combining prior-
knowledge of expression patterns of TFs with co-expression
information (Huynh-Thu et al., 2010; Rotival and Petretto,
2014). Gene-gene interaction network methods like ARACNe
(Margolin et al., 2006) and CLR (Faith et al., 2007) attempt to
better capture these regulatory associations by accounting for
connections within a shared neighborhood of genes in order to
infer the strength of a link between two genes. Applying these
approaches in complex conditions, like a gene being regulated by
many regulators, becomes more challenging. Inferring the direct
regulatory influence of transcription factors on target genes is
central to interpreting the regulatory networks. Concerted efforts
to support network-inference, such as the DREAM5 benchmark
challenge (Marbach et al., 2012), have summarized different
strategies that can be employed to infer regulatory networks.
The accuracy of reconstruction approaches is often tested
by comparing the predicted networks with high-confidence
transcription factor binding data (He and Tan, 2016). However,
integrating multi-omic data into these models to understand the
pathobiology of disease states is an open challenge. Methods
like CellNet (Cahan et al., 2014), an extension of CLR, and
MOGRIFY (Rackham et al., 2016) take into account differentially
expressed genes within the co-expression network framework
in order to predict cellular reprogramming by transcription
factors. Thus, co-expression methods have also been used
to infer regulatory networks and to delineate the influence
of regulatory genes, such as transcription factors, on their
targets. However, obtaining condition-specific GRNs requires
information regarding transcription factor binding activity in the
given context. We will review some of the methods that utilize TF
binding information in the next section.

To summarize, inferring disease-specific information from
GCN is possible from co-expressed or co-regulated clusters,
differentially expressed and co-expressed genes, as well as the
topological and functional properties of these. Biomedical big
data measuring the transcriptome is highly leveraged by GCNs.
For example, human tissue-specific GCNs have been constructed
and analyzed (Pierson et al., 2015) using consortium data such as
GTEx (Mele et al., 2015). These analyses revealed that genes with
tissue-specific function are not hubs but connect to tissue-specific
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transcription factor hubs. Explorations using relative isoform
ratios (RNA transcripts from the same genes with different
exons removed) and splicing data revealed distinct co-expression
relationships unique to the tissues (Saha et al., 2017). Tissue
specificity of GCNs have also been assessed in rats (Xiao et al.,
2014), humans (Prieto et al., 2008; Xiao et al., 2014; Kogelman
et al., 2016; Ni et al., 2016; Farahbod and Pavlidis, 2018), bats
(Rodenas-Cuadrado et al., 2015), and plants (Aravind, 2000).
Similarly, TCGA data has been analyzed using WGCNA in order
to study the system-level properties of prognostic genes (Yang
et al., 2014). Similar to gene co-expression, protein co-abundance
networks can also be used to pinpoint influential proteins as
potential regulators of the observed phenotype, and have been
used to study inflammation (Halu et al., 2018), HCV infections
(McDermott et al., 2012), and cancer, including breast cancer
(Ryan et al., 2017) and glioblastoma (Kanonidis et al., 2016).

PARADIGM III: Inferring Phenotype
Specific Gene Regulatory Networks
In the previous sections, we studied various ways to construct
networks and integrate molecular data to extract phenotype-
specific biology in the form of gene prioritization, disease
modules, or therapeutic targets. Those included immutable PPIs
allowing disease-specific information to be embedded onto them
and organic ways to model disease-specific information using co-
expression networks. Here, separate networks are built for each
phenotype which may be case-control, disease-specific, tissue
or cell-specific, sex-specific, or for different disease subtypes.
The network comparison model stems from the axiom of
“differential networking” over “differential expression.” Many
examples of differential networking can be found, including
the INtegrated DiffErential Expression and Differential network
analysis (INDEED) (Zuo et al., 2016) and DICER (Amar
et al., 2013) algorithms. In this paradigm, we aim to discuss
ways of leveraging phenotype-specific biomedical information to
construct condition-specific GRNs. In principle, GCNs can also
be phenotype-specific and can be used to infer condition-specific
signals, but they lack the underlying set of canonical interactions
unlike GRNs which include protein-DNA interaction in the form
of TF binding information.

Instead of combining data from cases and controls to obtain
key molecular elements, such as differentially expressed genes or
genes annotated to GWAS SNPs, in this paradigm the data is used
to construct separate networks for each of the conditions. This
construction of phenotype specific networks helps to mitigate
systematic experimental biases and errors in both conditions
(de la Fuente, 2010; Ideker and Krogan, 2012). It allows the
comparison of networks to help uncover the specific rewiring
of pathways, such as those induced by disease, pharmacological
treatment (Bandyopadhyay et al., 2010), or environmental
stimuli. GCNs can also be constructed in a phenotype-specific
manner, as seen in the previous section. In Figure 2C, we depict
an approach where phenotype-specific networks are constructed
to uncover differentially targeted interactions. In this section,
we focus on transcriptional regulatory networks that depend
not only on co-expression, but also on modeling the binding

propensities of TFs. These networks may also incorporate other
multi-omic data to obtain condition-specific regulatory models.

The primary benefit of comparing phenotype-specific
networks, particularly in GRNs, is to better delineate the role
of genes in each condition. The “rewiring” of the TFs targeting
each of the genes can be tracked and the perturbations leading to
these changes can convey information regarding the mechanistic
underpinnings of the observed phenotype. An apt extension
of “differential networking” to the transcriptional regulatory
network framework is “differential targeting,” which captures
the highly dynamic nature of gene regulation. Changes in
network topology, driven by underlying condition-specific
data, can yield valuable insights and help to identify driver
nodes and network biomarkers, such as a set of strengthened
or weakened interactions between TF and target genes in the
context of disease.

We review the Passing Attributes between Networks for Data
Assimilation (PANDA) algorithm (Glass et al., 2013) as an
exemplary method for constructing condition-specific regulatory
networks, allowing for robust differential targeting analysis.
PANDA is initiated by constructing a prior regulatory network
consisting of potential routes for communication by mapping
transcription factor motifs to a reference genome and assigning
them to genes if they are in the regulatory region of the
genes. PANDA then integrates other sources of information
to iteratively optimize the flow of information through the
network, modifying the prior to obtain a condition-specific
regulatory network. The phenotype-specific regulatory networks
are then compared to identify the structures most affected by this
“rewiring” and their biological significance. PANDA models the
interactions between transcription factors based on the following
principles. Firstly, if two transcription factors have a similar
targeting profile, i.e., target similar genes or have binding motifs
in the promoters of the same genes, they are more likely to
physically interact or be members of the same TF complex
(Hemberg and Kreiman, 2011; Guo et al., 2016). Cooperative
binding of TFs is found to be evolutionarily constrained and
conserved (Goke et al., 2011; He et al., 2011), and impacts crucial
eukaryotic functions (Hochedlinger and Plath, 2009; Wilson
et al., 2010; He et al., 2011;Will andHelms, 2014). Likewise, if two
genes are targeted by the same set of TFs, these genes are likely
to share similar expression patterns (Yu et al., 2003; Kim et al.,
2006;Marco et al., 2009), or be part of the same functionalmodule
(Goh et al., 2007; Feldman et al., 2008). For this purpose, PANDA
incorporates PPI networks to determine the “responsibility” of
TFs co-binding based on shared targets. It also uses GCNs
to determine the “availability” of genes to be simultaneously
co-regulated, as evidenced by common co-expression. A vital
component in PANDA is a “prior” network composed of all
potential regulatory routes based on the existence of binding
sites for TFs in the regulatory regions of genes. All three
ingredients (PPI, GCN, and a network prior) are then assimilated
to uncover consistent patterns among these networks using a
message-passing framework similar to affinity-propagation (Frey
and Dueck, 2007). The outcome is a network elucidating the
edges that form self-consistent modules, identifying relevant
biological processes.
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The phenotype-specific applications of PANDA are broad
and include the comparison of disease and control networks
in both complex diseases and cancers. For example, PANDA
has been used to identify potential drug targets in ovarian
cancer subtypes (Glass et al., 2015). Comparing PANDAnetworks
between poor and good responders to asthma therapies identified
potential transcriptional mediators of corticosteroid response
in asthma (Qiu et al., 2018). The role of serotonin (5HT)
dysregulation in mitral valve disease was explored using PANDA
to find upregulation in 5HTR2B expression and an increase
5HT receptor signaling (Driesbaugh et al., 2018). The effect of
weight-loss on decreased risk of colorectal cancer was evaluated
by applying PANDA to gene expression data on rectal mucosa
biopsies (Vargas et al., 2016). In cancer research, PANDA
network analysis in triple-negative breast cancer (TNBC)
identified new core modules of functionally essential TFs and
genes in cancer cells (Min et al., 2017). PANDA has also
been used to investigate non-epithelial cancers like glioma to
identify prognostic biomarkers mainly concerning mesenchymal
signatures (Celiku et al., 2017). Sexual dimorphism, where
the phenotypes are males and females, is another area where
PANDA has been applied extensively, from sex-related targeting
differences in COPD (Glass et al., 2014), colorectal cancer
(Lopes-Ramos et al., 2018), and understanding crucial sex-related
differences in various tissues in the human body (Chen et al.,
2016). Differences between cell-lines and their host tissues have
also been investigated using PANDA (Lopes-Ramos et al., 2017).

The issue of tissue-specificity can also be addressed by the
paradigm of condition-specific networks, where the phenotype
is the tissue or cell type. Various methods use gene expression
data with regression trees (Huynh-Thu et al., 2010) or consider
the context of pathways (Jambusaria et al., 2018). Enhancer and
promoter data (Marbach et al., 2016) have been used to construct
tissue-specific networks in humans and plants (Huang J. et al.,
2018). Using GTEx transcriptome data, PANDA has been used
to construct GRNs for 38 distinct human tissues (Sonawane
et al., 2017). This analysis assessed the inter-relationship between
tissue-specific genes and TFs based on expression data and
tissue-specific interactions and the topological positions of
functionally important genes in respective tissues. This study
also used network centrality measures like betweenness and
degree to assess the topological properties of the nodes to
identify rewiring around these genes in various tissues. Another
significant contribution of this work is the elucidation of the
tissue-specific regulatory roles of transcription factors, which
were found to be independent of their expression levels.
Instead, transcription factors appeared to mediate critical tissue-
specific processes through subtle shifts in the GRNs, providing
functional redundancy and, as a consequence, phenotypic
stability of tissues.

CONCLUSION AND
FUTURE DIRECTIONS

Above we reviewed a limited set of network medicine
philosophies that seek to integrate biomedical big data to uncover

meaningful biology. Network medicine approaches provide
customized and optimized ways to leverage biomedical data. The
choice of the appropriate network method is largely dictated
by the underlying biological inquiry, hypotheses, study design,
and available data. Although this review is not meant to be
exhaustive, our intent was to give a essence of how biomedical
data requires a nuanced approach when selecting network
analyses and provide a resource for both network scientists and
biologists to better understand the lexicon of network modeling
of biomedical data.

We believe that network medicine approaches will be
vital in the future with the increasing emergence of diverse
technologies, multi-omic data types, deeper levels of inquiry
from tissues to cellular levels, platforms that include large
amounts of publicly available biomedical data, and efforts
in precision medicine, which aim to find the right drugs
for the right patients at the right time. There is a growing
realization that genomics is only a part of the story when
it comes to cancer and other complex diseases. The field is
working to augment genetic information (mutations, deletions,
and other somatic genetic alterations) with other omics data,
such as epigenomics (methylation, non-coding RNAs, histone
modifications, chromatin structures), proteomics (in vitro studies
on proteins), and lipidomics (survey of cellular lipids), to name a
few. The network medicine framework presents a promising way
of thinking about and integrating these heterogeneous data types
by elucidating their mutual influences to help explain disease
etiologies and cellular functions and providing the basis for
personalized therapeutics.

Multi-omics data integration using networks has already
started gaining a wide amount of attention in the scientific
community (Gligorijevic and Przulj, 2015; Tuncbag et al.,
2016; Yugi et al., 2016; Hasin et al., 2017; Huang et al.,
2017; Malod-Dognin et al., 2019). Moreover, relatively
newer network tools like multiplex networks (Didier et al.,
2018), network fusion (Wang et al., 2014), more innovative
community detection strategies (Gligorijevic et al., 2016),
and higher order structural modularity (Didier et al., 2018),
have the potential to be applied to these problems to gain an
even deeper and more nuance understanding of biological
systems. Multilayer network approaches (De Domenico
et al., 2015) for human diseases have unraveled important
associations between rare and complex diseases (Halu et al.,
2017). Despite several open challenges (Stegle et al., 2015;
Ziegenhain et al., 2017), new technologies like single-cell
transcriptomics (Hon et al., 2018), have started to be used
to construct GRNs (Herbach et al., 2017; Fiers et al., 2018)
and cell-specific coactivation networks (Ghazanfar et al.,
2016). As the field of network medicine moves forward,
one thing that is required more than ever before is the
development of methods for systematically validating network
predictions. Such validation will provide a greater confidence
in network predictions and facilitate their incorporation into
translational medicine. We also think active trans-disciplinary
collaboration between biologists and scientists from the field
of complex networks is required to infuse the field of network
medicine with novel algorithms and innovative strategies.

Frontiers in Genetics | www.frontiersin.org 10 April 2019 | Volume 10 | Article 294

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Sonawane et al. Network Medicine

The application of network methods to biomedical data presents
a great opportunity to test and improve upon the tools
originating from the general field of complex networks. We
also take this opportunity to thank the many experimental
biologists whose operose efforts have led to the generation of
the vast amount of invaluable biomedical data, and to the
numerous individuals who have donated their data for the
sake of science.
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