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METHODOLOGY ARTICLE Open Access

Network methods for describing sample
relationships in genomic datasets: application to
Huntington’s disease
Michael C Oldham1*, Peter Langfelder2 and Steve Horvath2,3*

Abstract

Background: Genomic datasets generated by new technologies are increasingly prevalent in disparate areas of

biological research. While many studies have sought to characterize relationships among genomic features,

commensurate efforts to characterize relationships among biological samples have been less common.

Consequently, the full extent of sample variation in genomic studies is often under-appreciated, complicating

downstream analytical tasks such as gene co-expression network analysis.

Results: Here we demonstrate the use of network methods for characterizing sample relationships in microarray

data generated from human brain tissue. We describe an approach for identifying outlying samples that does not

depend on the choice or use of clustering algorithms. We introduce a battery of measures for quantifying the

consistency and integrity of sample relationships, which can be compared across disparate studies, technology

platforms, and biological systems. Among these measures, we provide evidence that the correlation between the

connectivity and the clustering coefficient (two important network concepts) is a sensitive indicator of

homogeneity among biological samples. We also show that this measure, which we refer to as cor(K,C), can

distinguish biologically meaningful relationships among subgroups of samples. Specifically, we find that cor(K,C)

reveals the profound effect of Huntington’s disease on samples from the caudate nucleus relative to other brain

regions. Furthermore, we find that this effect is concentrated in specific modules of genes that are naturally

co-expressed in human caudate nucleus, highlighting a new strategy for exploring the effects of disease on sets of

genes.

Conclusions: These results underscore the importance of systematically exploring sample relationships in large

genomic datasets before seeking to analyze genomic feature activity. We introduce a standardized platform for this

purpose using freely available R software that has been designed to enable iterative and interactive exploration of

sample networks.

Keywords: Sample networks, Sample network analysis, Huntington’s disease, Clustering coefficient, cor(K,C),

Standardized C(k) curve, Data pre-processing, Microarrays, Gene expression

Background

Genomic studies capture an enormous amount of informa-

tion about the molecular organization of biological sys-

tems. Understanding this organization poses a challenge

for biologists. In most genomic studies, the number of fea-

tures (gene expression levels, methylation status, protein

abundance, etc.) far exceeds the number of biological sam-

ples under investigation. Consequently, while network

methods are often used to illuminate patterns among pair-

wise relationships of genomic features, the rich information

contained in the connectivity patterns among samples

remains comparatively untapped. However, patterns of co-

variation in genomic feature activity ultimately reflect het-

erogeneity among biological samples. It is therefore critical

to understand the extent of sample heterogeneity before

analyzing genomic feature activity, and whenever possible

to relate sample heterogeneity to known sample traits,
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which may include both biological and technical sources of

variation. In practice, biologists’ efforts to explore sample

relationships in genomic studies are an integral component

of data pre-processing, yet they are often performed in a

perfunctory fashion using platform-specific and qualitative

criteria.

A popular approach for exploring sample relationships

is cluster analysis. Cluster analysis is appealing for its in-

tuitive nature, and is typically used for sample outlier de-

tection, identification of globally distinct subgroups of

samples, and identification of distinct subgroups of sam-

ples using pre-selected lists of features (e.g. genes, vox-

els, etc.) [1-4]. Although widely used, cluster analysis

suffers from several shortcomings that are often under-

appreciated by biologists. Besides depending on the

measure used to quantify similarities among samples,

the results of cluster analysis can depend heavily on the

specific clustering algorithm that is employed. For ex-

ample, dendrograms produced by hierarchical clustering

algorithms acting on the same data may look quite differ-

ent depending on whether single, average, or complete

linkage is used to calculate distances between clusters

[2,5,6]. Other clustering procedures may involve additional

parameter choices that can have a substantial effect on

cluster assignments (e.g. the choice of k in k-means cluster-

ing) [1,5]. Finally, cluster analysis can be impractical for

very large datasets, in which the sheer number of samples

obscures the organization and characteristics of a dendro-

gram and produces ambiguous cluster boundaries.

In this study we explore alternative means of describing

sample relationships in topological terms by transforming

a (dis-)similarity matrix into a network adjacency matrix.

Our correlation-based sample network can be interpreted

as a polynomial kernel, which implies that the symmetric

adjacency matrix is positive semi-definite. Many methods

exist to address the challenge of mapping biological and

genomic information to kernel matrices [7,8]. Kernel meth-

ods involving genomic similarity measures are the basis of

many statistical analytic methods such as nonparametric

regression, mixed models, hierarchical regression models,

score statistics, and support vector machines [9]. Our pri-

mary approach in this study uses a signed weighted correl-

ation network, since the resulting kernel i) works well in

practice, as shown in our applications, and ii) allows for a

geometric interpretation of network concepts [10].

The approach we describe here is a useful complement

to cluster analysis, but does not actually require that cluster

analysis be performed. A novel feature of our approach is

that we show how distinctions among subgroups of sam-

ples can be identified using topological measures (both glo-

bally and for subsets of genes), which are based on

network concepts. Network concepts include the connect-

ivity (which quantifies the strength of each node’s connec-

tions with its neighbors) and the clustering coefficient

(which quantifies the strength of each node’s neighbors’

connections with each other) [11]. The definitions of these

and many other important network concepts are reviewed

below and elsewhere [10,12,13].

We illustrate our approach using microarray data gen-

erated from multiple human brain regions of control

(CTRL) subjects and patients with Huntington’s disease

(HD) [14]. HD is a progressive and incurable neurode-

generative disorder characterized by preferential destruc-

tion of medium spiny neurons in the striatum [15] and

caused by a CAG-repeat expansion in the coding region

of the huntingtin gene, which is thought to confer a

toxic gain-of-function to the mutant huntingtin protein

[16]. Alterations in gene expression are considered a

central feature of HD pathology, and the extent to which

specific gene expression changes precede disease path-

ology is an area of active investigation [14,17-20]. Our

results indicate that HD exerts a profound effect on

sample network topology in the caudate nucleus relative

to other (less affected) brain regions. Specifically, we find

that the relationship between the standardized sample con-

nectivity and the standardized sample clustering coefficient

follows a simple scaling law in unaffected brain regions,

but undergoes a sharp transition for HD caudate nucleus

samples that reflects the degradation of sample correlation

network structure in this brain region. By restricting sam-

ple network construction to modules (subsets) of genes

that are naturally co-expressed in human caudate nucleus

[21], we find that this degradation is most significant in a

neuronal signal transduction module. Our findings demon-

strate that sample networks can enhance the results of

cluster analysis not only with respect to relatively simple

tasks such as outlier identification, but also with respect to

more complex challenges such as group comparisons.

Results

The approach we describe in this study formalizes and

expands upon a strategy that has previously been used to

identify outlying samples in microarray data generated from

human brain tissue [21]. Our approach is applicable when-

ever a dissimilarity or similarity measure can be defined be-

tween samples (see Additional file 1). A major advantage of

defining a network adjacency measure between samples (as

opposed to a general similarity measure) is that it permits

specification of network concepts. In our implementation,

we define adjacencies among samples as signed weighted

correlations with values that approximate the underlying

correlations when these correlations are large, as is usually

the case in sample networks (Methods). A signed weighted

correlation network is attractive since it preserves sign in-

formation, is robust with respect to the soft threshold

(power) parameter (β), and preserves the continuous nature

of correlations (i.e. the result is a fully connected network

in which all nodes are neighbors with one another) [22]. In
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addition, a signed correlation network is equivalent to a

network based on the Euclidean distance between scaled

vectors (as described in Additional file 1).

Dataset

The proposed framework for sample network explor-

ation (Methods) was used to analyze microarray data

from “the HD study” [14]. These data were generated

from brain samples of patients with HD (n=44 individuals)

and unaffected controls (n=36 individuals, matched for

age and sex) [14]. The authors of this study used Affyme-

trix U133A microarrays to survey gene expression in caud-

ate nucleus (CN), cerebellum (CB), primary motor cortex

(Brodmann’s area 4; BA4), and prefrontal cortex (Brod-

mann’s area 9; BA9) in the CTRL group and across five

grades of HD severity, which were scored between 0 (least

severe) and 4 (most severe) using Vonsattel’s neuropatho-

logical criteria [23]. HD causes extensive neurodegenera-

tion in the CN, where medium spiny neurons are

preferentially destroyed in early stages of the disease

[15,23]; comparatively, the other analyzed brain regions are

relatively spared. In addition to disease status and severity,

sample information included age, sex, the country where

the experiment was performed (samples were processed in

the United States and New Zealand), and the microarray

hybridization batch (Additional file 2) [14]. In light of these

myriad biological and technical sources of variation, this

dataset presents a challenging analytical task.

A motivational example

Below we provide an example that illustrates how net-

work concepts can be used to distinguish samples when

hierarchical clustering cannot. Figure 1A depicts a subset

of samples from BA9 of CTRL subjects from the HD study.

As seen in this example, visual inspection of the dendro-

gram is sufficient to discern the outlying sample

(BA9_91_C). However, it is illustrative to consider an alter-

native depiction of sample relationships using the network

concept of standardized connectivity. Standardized con-

nectivity (Z.K; Methods) is a quantity that describes the

overall strength of connections between a given node and

all of the other nodes in a network. As seen in Figure 1C,

the standardized connectivity of sample BA9_91_C is sig-

nificantly lower than all of the other samples, confirming

its status as an outlier in the group. It is important to note,

however, that the distribution of standardized connectiv-

ities is independent of the choice or use of clustering

procedures.

Figure 1B shows the dendrogram produced by hier-

archical clustering of another subset of samples from the

HD study (CB of CTRL subjects). Here the dendrogram

is more complex, with at least two samples (CB_80_C

and CB_H123_C) that appear to be outliers, and others

that are questionable. If the same samples are depicted in

terms of Z.K (Figure 1D), it is evident that three samples

(CB_80_C, CB_H123_C, and CB_67_C) have Z.K values

that are significantly lower than the other samples in the

group. However, note that CB_H110_C, which is indistin-

guishable from CB_67_C in the dendrogram above

(Figure 1B), has much higher Z.K than CB_67_C, indicat-

ing that CB_67_C is an outlier whereas CB_H110_C is

not. By establishing a threshold (e.g. Z.K=−2), standar-

dized connectivity distributions can be used in a quantita-

tive and unbiased fashion to identify and remove outlying

samples, which may reflect hidden factors that can influ-

ence the results of genomic experiments [24] (this approach

is particularly useful when the number of samples is large,

making it difficult to distinguish outlying samples in a den-

drogram). Analogously, one can also make use of other net-

work concepts as described below.

Degradation of sample network topology in caudate

nucleus by Huntington’s disease

We used the SampleNetwork R function to process all 201

samples from the HD study simultaneously. As seen in

Figure S1 (Additional file 1) and our R tutorial (Additional

file 3 and http://www.genetics.ucla.edu/labs/horvath/Coex-

pressionNetwork/SampleNetwork), we observed a domin-

ant effect of brain region on gene expression that was

driven largely by the fact that gene expression in each non-

cortical (CN and CB) brain region was quite distinct from

gene expression in cortical (BA4 and BA9) brain regions, as

has been described previously [25-28]. In light of the strong

effect of brain region on gene expression, as well as the fact

that HD preferentially targets CN relative to the other ana-

lyzed brain regions, we next used SampleNetwork to exam-

ine samples from each brain region separately. Within each

brain region, we analyzed CTRL and HD samples as a sin-

gle cohort, but note that alternative strategies (e.g., analyz-

ing CTRL and HD samples as separate cohorts) may be

desirable, depending on the downstream application.

After constructing sample networks for each brain re-

gion (as described in Additional file 3), we examined the

relationship between the standardized sample connectiv-

ity (Z.K) and the standardized sample clustering coeffi-

cient (Z.C) for all samples in each brain region. We refer

to this relationship as the standardized C(k) curve. As

discussed below, (unstandardized) C(k) curves have been

used to study the topological properties of scale-free net-

works and other large complex networks [29-32]. We

propose using the Spearman correlation to measure the

standardized C(k) curve since it is invariant with regard

to monotonically increasing transformations. In particu-

lar, the Spearman correlation between Z.K and Z.C

equals that of the unstandardized measures, which is

why we denote it simply by cor(K,C) (Methods). In the

following, we will demonstrate that the standardized C

(k) curve is a valuable tool for i) assessing the overall
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consistency of sample behavior within a dataset, ii) iden-

tifying distinct groups of samples, and iii) identifying im-

portant subsets of features (e.g. genes).

For samples from prefrontal cortex (Figure 2A), motor

cortex (Figure 2B), and cerebellum (Figure 2C), we observed

that Z.K and Z.C formed nearly perfect inverse relation-

ships, with no obvious distinctions between CTRL and HD

subjects. In contrast, samples from the caudate nucleus

exhibited clear segregation according to diagnosis, with

CTRL and HD subjects forming two distinct groups

(Figure 2D). This segregation indicates that cor(K,C) is a

useful network concept that measures an important aspect

of the global architecture in weighted sample networks.

Interestingly, cor(K,C) for HD CN samples differed when

brain regions were analyzed together (cor(K,C) = 0.77,

P=1.7e–08; Figure S1D; Additional file 1) and when they

were analyzed apart (cor(K,C)=−0.78, P=4.0e–08; Figure 2D),

suggesting that the relationship between the node-based

measures Z.K and Z.C depends upon properties of the net-

work as a whole, a topic that has been the subject of recent

investigations [33].

Understanding the properties of the standardized C(k)

curve

As discussed below, the C(k) curve has been studied pri-

marily in biological networks in which nodes correspond to

gene products [30,32]. In contrast to the negative relation-

ship observed in sample networks (Figure 2), we observed

that Z.K and Z.C tended to exhibit a positive relationship in

gene-based networks (e.g. Figure S2A,B; Additional file 1).

A positive relationship was observed for genes that are

naturally co-expressed in human caudate nucleus [21] (cor

(K,C) = 0.7, P<2.2e-16; Figure S2A,C; Additional file 1), as

well as for genes that were selected at random (cor

(K,C) = 0.83, P< 2.2e-16; Figure S2B,D; Additional file 1).

To understand why cor(K,C) is often positive in gene-

based networks but negative in sample networks, consider

that in most microarray studies, and in particular when

analyzing similar biological specimens, samples are highly

correlated with one another (e.g. r > 0.95 when measured

across all genes). In contrast, most genes exhibit moderate

to weak correlations with other genes, such that the mean

correlation in a typical gene co-expression network is

close to 0 and follows an approximately normal distribu-

tion (e.g. Figure S2D; Additional file 1). Even for a module

of co-expressed genes, when compared with sample net-

works, the distribution of pairwise correlations is shifted

towards smaller values (e.g. Figure S2C; Additional file 1).

Therefore, we hypothesized that the contrasting relation-

ships between Z.K and Z.C in sample networks and gene

networks might relate to differences in the global topo-

logical organization of each network.

Figure 1 Network concepts provide a natural framework for describing relationships among samples in high-dimensional biological

datasets. A motivational example. (A) Dendrogram produced by average linkage hierarchical clustering using 1 – ISA (intersample adjacency) for

a subset of samples (prefrontal cortex [BA9] of CTRL subjects) from ref. [14]. (B) Dendrogram produced by average linkage hierarchical clustering

using 1 – ISA for another subset of samples (cerebellum [CB] of CTRL subjects) from ref. [14]. (C) Standardized sample connectivities (Z.K) provide

a different view of the BA9 CTRL samples. BA9_91_C (red) exhibited significantly lower connectivity than the other samples in this group,

consistent with the dendrogram (A). (D) Standardized sample connectivities for the CB CTRL samples. Three samples (CB_80_C, CB_H123_C, and

CB_67_C, in red) had Z.K values that were significantly lower than the others. Note that CB_67_C had much lower connectivity than CB_H110_C

(blue), yet these two samples were indistinguishable in the dendrogram above (B). Black horizontal lines in (C) and (D) correspond to an optional

Z.K threshold (here −2) for outlier removal; CTRL = control.
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To test this hypothesis, we conducted a simulation study

to explore the properties of cor(K,C) by systematically vary-

ing the network topology (mean node adjacency) and net-

work size (number of nodes). For simulated networks with

low mean node adjacency (i.e. mostly weak connections

among nodes, like most gene co-expression networks), we

observed values of cor(K,C) approaching 1 (Figure 3), indi-

cating a nearly perfect positive linear relationship between

Z.K and Z.C. As the strength of connections among nodes

(i.e. mean node adjacency) began to increase, cor(K,C)

began to shift, while also revealing a dependence on net-

work size (i.e. number of nodes; Figure 3). This shift accel-

erated dramatically as simulated networks began to consist

of mostly strong connections among nodes, producing a

“waterfall” effect reminiscent of a percolation transition

[33] (Figure 3). When simulated networks possessed very

high mean node adjacency (like most sample networks),

cor(K,C) approached −1 (Figure 3), indicating a nearly per-

fect negative linear relationship between Z.K and Z.C.

Collectively, these observations suggest that the divergence

of cor(K,C) for HD CN samples relative to CTRL samples

and other brain regions (Figure S1D [Additional file 1],

Figure 2D) reflects a degradation of global sample net-

work topology in CN by HD. To visualize this degrad-

ation more directly, we compared the distributions of

pairwise sample adjacencies between CTRL and HD

subjects for each brain region. The distributions of sample

adjacencies exhibited the greatest difference between

CTRL and HD subjects in CN, where HD sample adjacen-

cies were markedly degraded (Figure S3; Additional file 1).

Thus, degradation of global sample network topology by

HD in CN has shifted cor(K,C) for HD CN samples. This

relationship has begun to invert (i.e. it is “in the waterfall”

[Figure 3]), indicating that HD has initiated a percolation-

like transition in the global network topology of CN

samples.

Sample network topology reveals strong effects of

Huntington’s disease on specific gene co-expression

modules in human caudate nucleus

The degradation of global sample network topology by

HD in CN (Figures S1D, 2D, S3) was observed across all

analyzed probe sets (n = 18,631). We hypothesized that

this effect might vary for specific subsets of genes

involved in disparate biological processes, which in turn

might implicate specific biological processes in connec-

tion with HD pathology. By focusing on pre-selected gene

sets (informally referred to as modules), we illustrate below

how the standardized C(k) curve can be used to identify

clinically important subsets of features (i.e. genes). Toward

this end, we make use of a second R function called

Figure 2 Sample network concepts reveal the profound effect of Huntington’s disease in caudate nucleus. Comparison of standardized

sample connectivities (Z.K) and standardized clustering coefficients (Z.C) between control subjects (CTRL) and subjects with Huntington’s disease (HD)

in prefrontal cortex (A; n = 9 CTRL and 16 HD), motor cortex (B; n = 16 CTRL and 14 HD), cerebellum (C; n = 23 CTRL and 34 HD), and caudate nucleus

(D; n = 31 CTRL and 35 HD). Networks were constructed over all probe sets (n= 18,631) using all samples (CTRL and HD) from each brain region.
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ModuleSampleNetwork (and refer to the resulting sample

networks as “module sample networks”).

We have previously shown that the transcriptome of

normal human CN is organized into modules of co-

expressed genes, many of which relate to specific cell types

and functional processes [21]. For example, gene co-

expression modules corresponding to oligodendrocytes,

astrocytes, neurons, mitochondrial function, synaptic

function, immune response, gender differences, and the

subventricular neurogenic niche have been described in

human CN [21]. Subsequent work in rodents has con-

firmed that striatal gene co-expression network architec-

ture is robust across disparate strains of mice [35]. The

inherent organization of the CN transcriptome provides a

natural framework in which to study the effects of HD on

sample network topology. Therefore, we sought to deter-

mine the extent to which variation in sample network top-

ology was associated with particular gene co-expression

modules in CN. Specifically, we constructed sample net-

works in CN for each of the 23 gene co-expression mod-

ules that were previously identified in this brain region in

humans [21]. The 23 gene co-expression modules are

labeled by colors (e.g. the “palegreen” module), with pertin-

ent functional characterizations taken from ref. [21].

To assess the effects of HD on module sample network

topology, we calculated cor(K,C) for CTRL and HD sub-

jects in every module (Figure 4A). Based upon the relation-

ship observed between Z.K and Z.C for CTRL and HD

subjects in BA9, BA4, and CB (Figure 2A–C), we hypothe-

sized that in the absence of an effect of HD on module

sample network topology, cor(K,C) CTRL should approxi-

mately equal cor(K,C) HD. In addition, for module sample

networks characterized by strong connections among

nodes, we expected cor(K,C) to approach −1 (Figure 3).

The majority of modules clustered along the diagonal, indi-

cating relative preservation of cor(K,C) between CTRL and

HD subjects; however, a handful of modules were clearly

distinguished as outliers (Figure 4A). Among the outliers,

the difference in cor(K,C) between CTRL and HD subjects

was most significant for the salmon module (M8C), fol-

lowed by the black (M11C; Figure S4; Additional file 1),

royalblue (M36; Figure S5; Additional file 1), and red

(M19C; Figure S6; Additional file 1) modules (Figure 4B).

These results indicate that cor(K,C) is a useful measure for

highlighting differences in sample network topology among

subsets of genes.

In the original HD study [14], the authors determined

that a large fraction (~20%) of transcripts showed differen-

tial expression (DE) in post-mortem CN between CTRL

and HD subjects. DE in HD is thought to reflect both cell-

intrinsic changes in gene expression (i.e. changes in gene

expression induced by the mutant huntingtin protein), as

well as changes at the cellular population level due to neur-

onal cell death and subsequent astrogliosis [14,17,20]. In

light of such widespread changes, we asked whether par-

ticular gene co-expression modules were associated with

DE. As shown in Figure 4C, many modules were signifi-

cantly associated with DE. This result is perhaps not sur-

prising, inasmuch as cellular stoichiometry is altered by

HD and many modules have been shown to be enriched

with cell type-specific genes [21]. We next sought to relate

the extent of modular DE with the extent of modular deg-

radation in sample network topology. As shown in

Figure 4D, the salmon module was the most significant in

both of these dimensions, followed by the black and royal-

blue modules. Overall, however, the relationship between

these two measures was weak (r = 0.41, P=5.2e–02). In-

deed, one module (red) exhibited a very significant differ-

ence in cor(K,C) between CTRL and HD subjects, with no

significant evidence of differential expression (Figure 4D).

cor(K,C) can distinguish sample groups in the absence of

differential expression

To explore the basis for this observation, we conducted a

simulation study to determine whether cor(K,C) could dis-

tinguish subsets of samples in the absence of differential

Figure 3 cor(K,C) depends upon network topology and network

size. The Spearman correlation (cor(K,C); z-axis) between the

connectivity and the clustering coefficient as a function of network

density (mean node adj. [adjacency]; x-axis) and network size (nodes;

y-axis). Signed networks (β = 2) were simulated using the

simulateModule function from the WGCNA R package [34]. The seed

module eigengene (ME) consisted of 5,000 random, normally

distributed features (mean=0, sd= 1). The function parameters

“corPower” and “propNegativeCor” were set to 0.75 and 0, respectively.

The function parameter “minCor” was iteratively reduced from .95 to .05

by increments of .05, progressively degrading the strength of node

connections; for each iteration, cor(K,C) was calculated for module

networks of various sizes (n=10 to 100, by=10).
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expression. Specifically, we simulated a set of 500 genes

and 100 samples (referred to as a “module”), using the real

structure of the red module as an approximate guide

(Methods). Samples were assigned to one of three groups

using a simulated sample trait (referred to as “disease sta-

tus”), with 50 samples corresponding to control status, 25

samples corresponding to moderate disease status, and 25

samples corresponding to severe disease status (Methods).

The simulation model assumed i) that 60% of the module

genes were not related to the disease and ii) that these

noise genes had lower mean values than the 40% of (signal)

genes that were down-regulated by the disease. Figure 5A

depicts the dendrogram produced by hierarchical cluster-

ing of sample adjacencies for the simulated module. As

seen in Figure 5B, the observed module eigengene was not

related to disease status (P=0.18, Kruskal-Wallis test). In

contrast, cor(K,C) clearly delineated the control samples

from the affected samples (Figure 5C), despite inconsistent

gene expression differences among the three sample

groups (Figure 5D). These results provide further evidence

that cor(K,C) can distinguish meaningful groups of samples

in certain situations where differential expression analysis

cannot.

A neuronal signal transduction module is profoundly

degraded by Huntington’s disease

Figure 6 depicts the results of sample network construction

for the CN salmon module (similar depictions for the

black, royalblue, and red modules can be found in Figures

S4, S5, and S6, respectively). Hierarchical clustering of

Figure 4 Huntington’s disease exerts strong effects on specific gene co-expression modules in human caudate nucleus. Analysis of

human caudate nucleus (CN) sample network properties for each of 23 gene co-expression modules previously identified in CN; colors

correspond to the original gene co-expression module labels from [21]. (A) For each module sample network, the Spearman correlations cor(K,C)

are plotted for control (CTRL) and Huntington’s disease (HD) subjects. Each point corresponds to a module. Black line: y = x. (B) The log-

transformed P–value of the difference between cor(K,C) for CTRL and HD subjects is reported for each module (Methods). (C) The extent of

differential expression (DE) between CTRL and HD was assessed for each module by using Student’s t-test of DE for the module eigengene (ME;

i.e. the first principal component obtained by singular value decomposition of the module expression matrix) between CTRL and HD. (D)

Comparison of the module significance levels reported in (B) and (C); linear least squares regression line in black. p.Diff.cor(K,C) denotes the

P-value for testing the differences of cor(K,C) between the CTRL and HD module sample networks. (B–D) Blue lines: P= .05; red lines: Bonferroni

correction for multiple comparisons.
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sample adjacencies produced a dendrogram with two large

branches (Figure 6A). The first branch formed a cluster

comprised exclusively of HD samples (cluster 1), 85% of

which were Vonsattel grade 2 or higher (i.e. later stages of

disease progression). The second branch subdivided to

produce two sample clusters. 91% of the samples in cluster

2 corresponded to unaffected individuals, with the remain-

der consisting of grade 1 (n= 2) or grade 0 (n=1) HD sam-

ples. Cluster 3 was comprised almost exclusively of HD

samples, all of which were grade 2 or below (i.e. earlier

stages of disease progression).

Examination of the distribution of Z.K among samples in

the salmon module (Figure 6B) also revealed a distinction

among grades of HD severity. Grade 1 and a subset of

grade 2 HD samples possessed Z.K values that were com-

parable to those of unaffected individuals; however, a ma-

jority of grade 2 samples and grade 3 samples possessed Z.

K values that were substantially lower than all other sam-

ples (Figure 6B). In contrast, examination of Z.C revealed a

monotonic arrangement of samples, with CTRL>grade

1> grade 2 > grade 3 (Figure 6C). When plotted in both of

these dimensions, samples formed two distinct lines that

clearly delineated CTRL and HD subjects (Figure 6D).

Interestingly, three HD samples (two grade 1 and one

grade 0) fell upon the same regression line as the CTRL

samples (Figure 6D, black line); these were the same sam-

ples that belonged to cluster 2 in Figure 6A. It is possible

that the intermingling of some early stage HD samples

with CTRL subjects could reflect the continuum of neuro-

degeneration that spans from normal aging to neurodegen-

erative disease. We also observed that the distribution of

HD samples along their regression line tended to reflect

their grade of severity (Figure 6D, red line). These results

provide visual confirmation of the significant distinction

between CTRL and HD subjects in the salmon module

reported above (Figure 4A,B). In addition, multivariate lin-

ear regression using the salmon module eigengene (i.e. the

first principal component of gene expression in the salmon

module) as outcome confirmed an extremely significant ef-

fect of diagnosis (Dx) on gene expression in this module,

as well as significant independent effects for grade and age

(Figure 6E). The effect of diagnosis on gene expression was

evident when gene expression in the salmon module was

visualized directly (Figure 6F).

Figure 5 cor(K,C) distinguishes sample subgroups in the absence of differential expression. Analysis of a simulated gene expression

module consisting of 500 genes and 100 samples. Samples were assigned to one of three subgroups based on simulated disease status: “control”

(n = 50; darkgreen), “moderate” (n = 25; red), or “severe” (n = 25; turquoise) (Methods). (A) Average linkage hierarchical clustering of samples using

1 – ISA (intersample adjacency) as a dissimilarity measure. (B) Distributions of module eigengene (ME) values by sample subgroup. Note that

these distributions are not significantly different (P= 0.18, Kruksal-Wallis test), indicating that there is no differential expression associated with

disease status at the modular level. (C) When depicted in terms of Z.K and Z.C, control and affected subjects segregated into two distinct groups

(linear least squares regression lines in black [control] and red [affected]). (D) Heat map of simulated gene expression levels. Rows correspond to

genes and columns correspond to samples. Green = low expression; red = high expression.
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As can be seen in Figure 6F, the vast majority of genes

in the salmon module showed decreased expression

levels with increasing severity of HD, which would be

expected as a consequence of neuronal cell death (not-

withstanding cell-intrinsic changes in gene expression

induced by the mutant huntingtin protein). When it was

originally described, the salmon gene co-expression

module in human CN was found to be enriched with

genes that are preferentially expressed in neurons, genes

that encode synaptic proteins, and genes involved in

Figure 6 Caudate nucleus samples exhibit significant segregation by diagnosis in gene co-expression module M8C (salmon). Analysis of

caudate nucleus (CN) sample network properties for genes comprising the CN salmon co-expression module M8C [21]. (A) Average linkage

hierarchical clustering of samples using 1 – ISA (intersample adjacency) as a dissimilarity measure. Colors denote control (CTRL) subjects

(darkgreen; n = 31) and Huntington’s disease (HD) subjects with varying grades of disease severity: HD grade 0 (black; n = 2), HD grade 1 (red;

n = 11), HD grade 2 (turquoise; n = 16), HD grade 3 (blue; n = 5), and HD grade 4 (brown; n = 1). Standardized sample connectivities (Z.K; B) and

standardized sample clustering coefficients (Z.C; C). (D) HD and CTRL samples segregated into two distinct groups when depicted in terms of Z.K

and Z.C (linear least squares regression line in black [CTRL] and red [HD]). (E) Multivariate linear regression revealed a highly significant effect of

diagnosis (Dx) on the salmon module eigengene. Blue line: P= .05; red line: Bonferroni correction for multiple comparisons. (F) Heat map of

expression levels for genes comprising the salmon co-expression module M8C. Rows correspond to probe sets (genes) and columns correspond

to samples. Green= low expression; red = high expression. Samples in (B–D, F) are colored as in (A).
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signal transduction [21]. Analyses of differential expres-

sion, functional enrichment, and membership strength for

all genes in the salmon module are summarized in

Additional file 4. To dissociate changes in gene expression

caused by altered cellular stoichiometry in HD from

changes in gene expression caused by cell-intrinsic effects

of the mutant huntingtin protein, we cross-referenced CN

module composition with a set of genes that has been

found to be dysregulated in primary neuron models of HD

[20]. In the study by Runne et al., the effects of mutant

huntingtin on gene expression were measured before cell

death in primary striatal neurons cultured from rat brains

[20]. We observed that the salmon module was significantly

enriched with this set of dysregulated genes, and more so

than any other module (Figure S7; Additional file 1). We

also note that a number of genes in the salmon module

were previously found to be differentially expressed in

laser-microdissected striatal neurons of CTRL and HD

human subjects [14] (Additional file 4).

Lastly, we used Ingenuity Pathways Analysis (IPA) to de-

termine whether the salmon module was enriched with

annotated functional categories of genes. Out of more than

500 annotated functional categories of genes in the IPA

database, the two categories that showed the most signifi-

cant enrichment with genes from the salmon module were

“dyskinesia” (FDR P=1.4e–24) and “Huntington”s disease”

(FDR P=1.6e–24) (Additional file 5).

Discussion

To the best of our knowledge, this work provides the

first formal demonstration that network methods can

distinguish biologically meaningful relationships among

samples in genomic datasets. We have shown that sam-

ple networks can identify outlying samples when hier-

archical clustering procedures cannot, and even when

hierarchical clustering procedures are not used at all.

We have described a novel network statistic, cor(K,C),

and shown that it can be used to i) evaluate sample

homogeneity, ii) identify sample characteristics (e.g.

diagnosis) with global effects, and iii) enable compari-

sons among groups of samples using pre-selected lists of

features (e.g. gene co-expression modules). By applying

the latter approach to microarray data generated from

human brain tissue, we have identified a neuronal signal

transduction module that is an epicenter of transcrip-

tional dysregulation in striatal samples from individuals

with HD. The advantages of using network methods for

describing sample relationships in genomic datasets are

summarized below.

A major advantage of constructing sample networks is

that individual samples can subsequently be described using

established node-based network concepts such as the con-

nectivity and the clustering coefficient. These concepts are

independent of the choice or use of clustering algorithms

and depend only on the adjacency measure used to

construct the network. The distributions of standardized

node-based network concepts provide an unbiased and

quantitative framework for identifying samples that “be-

have” differently, even if the underlying causes of this be-

havior are unknown. Intuitively, if the connectivity for a

given sample (when measured over all genes) is significantly

lower than all other sample connectivities from the same

biological system, it suggests that there is something differ-

ent about that sample compared to the others. The investi-

gator must ask him/herself whether the observed difference

is likely to reflect biological or technical variation. In light

of the multiple steps that comprise a typical genomic ex-

periment, each of which may introduce technical variation,

a conservative approach is to exclude aberrant samples if

there are no obvious biological factors that might explain

their discordant behavior.

Compared with other methods for identifying outlying

samples in genomic data, our approach offers several

additional advantages. First, because sample relation-

ships are defined with respect to a correlation matrix, it

is platform-agnostic and does not require access to raw

data (although in practice it is preferable to process raw

data in a consistent fashion). Second, it is easily applied

to very large datasets, in contrast to clustering proce-

dures that rely upon visual inspection of dendrograms to

identify outlying samples. Third, it produces a battery of

measures for summarizing the consistency and integrity

of genomic datasets (e.g. mean intersample adjacency

[ISA, or density], decentralization, homogeneity, etc.),

which can be compared across disparate studies, tech-

nology platforms, and biological systems. Such measures

are especially useful for meta-analyses, where objective as-

sessment of data quality is highly desirable before seeking

to pool or compare results across studies. Finally, as imple-

mented in SampleNetwork and described in Additional file

3, our approach is both flexible and efficient, enabling users

to move quickly through large datasets in an iterative fash-

ion, specifying groups of samples for processing, identifying

and removing outliers, testing the significance of sample

covariates, and performing data normalization. To enhance

user-friendliness, we have also incorporated the R function

ComBat [36], which is an effective tool for removing batch

effects (Additional file 1). At each stage, relevant output

files are produced and exported automatically.

At the same time, there are several important caveats

associated with our proposed approach for using net-

work concepts to identify outlying samples in genomic

data. It should be noted that our approach works best

for datasets with large numbers of samples (e.g. more

than 10). It is also important to note that standardized

network concepts such as Z.K are relative measures

whose interpretation depends on context. For example,

in a relatively homogeneous sample network (e.g. mean
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ISA > 0.97), a Z.K value of −2.5 implies higher adjacen-

cies for the sample in question than it would in a more

heterogeneous sample network (e.g. mean ISA< 0.9). In

light of these considerations, it can be helpful to have

“targets” in mind, such as an expectation of what the

mean ISA should approach for a given biological system,

technology platform, and adjacency measure. These tar-

gets can be guided by prior experience (for example,

cancer datasets often exhibit substantial sample hetero-

geneity) or by the use of technical and biological repli-

cates. Lastly, although we have focused primarily on Z.K

and to a lesser extent Z.C as intuitive indicators of outly-

ing status, it is possible that other node-based network

concepts (or indeed, other measures of adjacency) could

produce different results.

Beyond facilitating relatively simple tasks such as outlier

identification, sample networks provide a novel perspec-

tive on more complex challenges such as group compari-

sons. Our results indicate that the standardized C(k) curve

in weighted sample networks is a powerful tool for identi-

fying sample characteristics with global effects on genomic

activity. The stark divergence of cor(K,C) for HD CN sam-

ples motivated us to explore how cor(K,C) would be

affected by other network topologies, leading to the

observation that cor(K,C) undergoes a percolation-like

transition that is related to network density and size. Al-

though cor(K,C) was inversely related to network density

in our simulations, we note that cor(K,C) is invariant if

one scales all off-diagonal adjacencies by a constant.

Therefore, it is more accurate to consider cor(K,C) as an

indicator of network heterogeneity (or homogeneity;

Additional file 1). In the special situation of an exactly fac-

torizable network, we find that cor(K,C) is determined by

the network heterogeneity (Methods). One practical impli-

cation of these findings is that cor(K,C) can serve as a use-

ful indicator of data “cleanliness”: with each iteration of

sample outlier removal or data normalization performed

using SampleNetwork, cor(K,C) should approach −1.

We note that our findings with respect to the

percolation-like transition for cor(K,C) are also applic-

able to unweighted (binary) networks. We have observed

a similar transition for cor(K,C) in unweighted gene net-

works as the threshold for dichotomizing the adjacency

matrix is progressively increased (Figure S8; Additional file 1).

At permissive (low) thresholds, which produce net-

works in which most nodes are connected, cor(K,C)

is negative; as the threshold is raised, producing net-

works in which most nodes are not connected, the rela-

tionship begins to invert, becoming positive at more

stringent (high) thresholds (Figure S8; Additional file 1).

In unweighted networks, the relationship between the

(unstandardized) connectivity and (unstandardized) clus-

tering coefficient of network nodes, i.e. the C(k) curve, has

previously been reported to follow a scaling law: C ffi k α

[29,31]. It has been shown that the value of the scaling ex-

ponent α is not universal, but negative values approaching

−1 have been observed in biological systems [30,32]. The

inverse relationship for the C(k) curve has been interpreted

as evidence of hierarchical modularity in network structure

[30,31]. Specifically, it has been suggested that in hierarch-

ically modular networks, nodes with low connectivity form

small, densely connected clusters, while nodes with high

connectivity serve to bridge these many small clusters into

one large, integrated network [31]. However, the C(k) curve

has primarily been studied in the context of metabolic,

protein interaction, and gene regulatory networks, as well

as other non-biological networks [30,32,37].

To the best of our knowledge, a percolation-like transi-

tion in the C(k) curve has not previously been reported.

However, prior work has revealed that global topological

properties of unweighted networks, such as those em-

bodied in the C(k) curve, can be predicted by knowledge of

local motif structure, and vice versa [33]. Motifs, or sub-

graphs, describe basic interaction patterns among small

groups of nodes [38,39]. In unweighted networks, it has

been shown that subgraphs naturally segregate into two

classes: highly abundant type I subgraphs, which are

sparsely interconnected, and less abundant type II sub-

graphs, which are densely interconnected [33]. It has also

been shown that a phase boundary separating type I and

type II subgraphs can be accurately predicted using global

network topological properties, including the C(k) curve

[33]. Therefore, we propose that the transition in the stan-

dardized C(k) curve observed in our analysis reflects a con-

comitant transition in local motif structure, which in turn

reflects the degradation of sample network topology in CN

by HD. Although motifs have been studied almost univer-

sally in the context of unweighted networks, we are aware

of at least one study that has presented an approach for

generalizing motif scoring to weighted networks [40]. Our

results suggest that future research investigating the rela-

tive strengths of distinct motifs in weighted networks and

their relationship to global network topological properties

is warranted.

The effect of HD on the standardized C(k) curve for CN

samples was initially observed over all genes, which is con-

sistent with the large impact that HD exerts on the CN

transcriptome [14,17,19,20,41]. Because the transcriptomes

of human brain regions, including CN, are organized into

biologically meaningful gene co-expression modules [21],

we reasoned that constructing sample networks for previ-

ously identified CN modules might expose variation in the

standardized C(k) curve, which in turn might implicate

specific biological processes in connection with HD path-

ology [42]. This approach constitutes a novel strategy for

exploring the effects of disease on sets of genes. We identi-

fied several modules that exhibited highly significant differ-

ences in cor(K,C) between CTRL and HD subjects in CN.
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One potential drawback of our approach is that relatively

small differences in cor(K,C) can appear significant as |cor

(K,C)| approaches 1; for example, M34 was significant

despite a relatively small difference between CTRL (cor

(K,C) =−0.98) and HD (cor(K,C) =−0.91) subjects. For the

four most significant modules, however, the differences in

cor(K,C) were > 1, indicating that the standardized C(k)

curve had flipped from negative (CTRL) to positive (HD).

As illustrated above, differences between standardized

C(k) curves are not simply a proxy for differences in net-

work density, but also relate to network size and hetero-

geneity. We have also observed that small numbers of

samples that are highly discordant (i.e. severe outliers) can

have a large impact on the standardized C(k) curve (M.C.

O. and S.H., unpublished observations). Thus, the standar-

dized C(k) curve is an aggregate measure, and one that

may be used to complement existing strategies for con-

ducting both unsupervised and supervised analyses. We

also note that in the present study, the overall relationship

between differential expression (DE) and differences be-

tween the standardized C(k) curves of CTRL and HD sub-

jects was weak. For example, although the salmon module

(which exhibited the most significant difference in cor(K,C)

between CTRL and HD) was strongly associated with DE,

the red module (which also exhibited a significant differ-

ence in cor(K,C) between CTRL and HD) was not. Further-

more, our simulation study confirms that situations may

exist in which cor(K,C) can distinguish meaningful sample

subgroups in the absence of DE. These findings deserve

additional study.

Conclusions

As genomic technologies proliferate and genomic studies

grow ever larger, it is critical that methods to assess sample

heterogeneity evolve in parallel. We have presented a stan-

dardized approach for sample network analysis that can

detect outlying samples in the absence of hierarchical clus-

tering. We have also described a novel network statistic,

cor(K,C), and demonstrated that it can be used to assess

sample homogeneity, identify sample traits with global

effects, and facilitate supervised comparisons among

groups of samples using pre-selected subsets of features.

Application of the latter approach to microarray data gen-

erated from human brain tissue identified a neuronal signal

transduction module as an epicenter of transcriptional dys-

regulation in striatal samples from individuals with HD. To

the best of our knowledge, these findings provide the first

formal demonstration that network methods can distin-

guish biologically meaningful relationships among samples

in genomic datasets. The dataset analyzed in this study,

along with the SampleNetwork and ModuleSampleNetwork

R functions and a comprehensive tutorial illustrating their

usage, are available on our web site (http://www.genetics.ucla.

edu/labs/horvath/CoexpressionNetwork/SampleNetwork).

Methods
R software implementation

We have implemented the sample network approach in a

freely available, custom R software function called Sample-

Network. SampleNetwork has been designed to facilitate

detailed exploration of sample relationships and expedite

genomic data pre-processing decisions via sample network

analysis. SampleNetwork enables semi-automatic, inter-

active sample network construction and network concept

calculations. Network concepts include node-based mea-

sures such as the standardized sample connectivity (Z.K)

and the standardized sample clustering coefficient (Z.C), as

well as network-based measures such as cor(K,C) and

the mean inter-sample adjacency (ISA, or density). These

concepts and many others are defined below and in Supple-

mentary Methods (Additional file 1). By calculating the dis-

tributions of node-based sample network concepts,

SampleNetwork enables the user to identify and remove

outlying samples in an iterative and interactive fashion; by

calculating network-based sample network concepts, Sam-

pleNetwork enables the user to gauge overall progress to-

wards data cleanliness and sample homogeneity. These

features are described in detail in our online tutorial (see

below and Additional file 3). SampleNetwork also enables

significance testing of sample covariates with respect to

sample metrics, and data normalization. Data normalization

may be performed pursuant to outlier removal using the

quantile normalization method proposed in ref. [43].

Because sample networks often reveal groupings of sam-

ples that reflect batch effects (technical variation), which

are typically not removed by standard normalization pro-

cedures, we have also incorporated existing methods that

allow the user to automatically correct for batch effects.

Specifically, we have found that the R function ComBat

created by Johnson and colleagues [36] is quite adept at

removing batch effects. Consequently, if batch effects are

present, the user has the option of correcting for them by

calling ComBat from within SampleNetwork, which

automates its execution. SampleNetwork also requires in-

stallation of the following R (http://www.r-project.org/)

and Bioconductor (http://www.bioconductor.org/) packages:

affy [44], cluster, impute [45], preprocessCore, and WGCNA

[34]. With each successive round of data processing,

SampleNetwork produces and exports the results of

sample network analysis automatically (e.g. Figure S1;

Additional file 1).

We have also created a companion R software func-

tion called ModuleSampleNetwork to explore the prop-

erties of sample networks when formed over subsets of

features. In our application, subsets of features corres-

pond to modules of co-expressed genes [21], but we

note that subsets can be defined by the user according

to any criteria. ModuleSampleNetwork does not enable

outlier testing and removal or data normalization, but
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instead seeks to compare module sample network prop-

erties between subgroups of samples (e.g. Figure 6) and

across modules (e.g. Figure 4). An example workflow

would involve using SampleNetwork to pre-process a

microarray dataset, then using WGCNA [34] to identify

modules of co-expressed genes, and finally using Modu-

leSampleNetwork to explore sample network properties

at the modular level.

While both SampleNetwork and ModuleSampleNetwork

are user-friendly, they are interactive and require judicious

feedback from the user (for example, regarding thresholds

for outlier removal). To illustrate how the software can be

used in practice, we provide a detailed, annotated tutorial

with R code (Additional file 3) highlighting the required in-

put files, parameter choices, user interactions, and resulting

output files. The beneficial effects of outlier detection and

removal, data normalization, and correction for batch

effects, as implemented using SampleNetwork, are clearly

delineated by significance testing of sample covariates with

respect to sample metrics, analysis of differential expres-

sion, and analysis of network concepts with each successive

round of data processing, as described in the online tutor-

ial. This tutorial, (Additional file 3) along with the required

input files and the SampleNetwork and ModuleSample-

Network R functions, is available on our web site (http://

www.genetics.ucla.edu/labs/horvath/CoexpressionNet-

work/SampleNetwork).

Microarray data pre-processing

Raw microarray data (.CEL files) [14] were downloaded

from Gene Expression Omnibus (http://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE3790). Detailed information

on sample characteristics and sample processing can be

found in [14]. A summary of sample characteristics can also

be found in Additional file 2. To eliminate non-specific and

mis-targeted probes prior to generating expression values,

a mask file (“HG-U133A”) was obtained from http://

masker.nci.nih.gov/ev/ [46] and applied to the raw micro-

array data using the R (http://www.r-project.org/) package

“ProbeFilter” [47] (http://arrayanalysis.mbni.med.umich.

edu/MBNIUM.html#ProbeFilter). After applying the mask

file, only probe sets with at least seven remaining probes

were retained for further analysis (n = 18,631). Expression

values were generated in R using the “expresso” function

of the “affy” package (http://www.bioconductor.org/) [48]

with “mas” settings and no normalization, followed by

scaling of arrays to the same average intensity (200).

Sample networks based on general similarity or

dissimilarity measures

The input of most clustering procedures is a similarity or

dissimilarity measure. In Additional file 1, we define these

measures and describe general approaches for turning a

similarity or dissimilarity matrix into a sample network.

Defining sample adjacency

To construct sample networks, a measure of connection

strength, or adjacency, is defined for each pair of samples i

and j and denoted by aij. A mathematical constraint on aij
is that its values must lie between 0 and 1. In our imple-

mentation, we defined the adjacency between (microarray)

samples Si and Sj as follows:

aij ¼
cor Si; Sj

� �

þ 1

2

� �β

where β = 2. Technically, aij is a signed weighted adjacency

matrix [22,49]. A major advantage of defining a network

adjacency measure (as opposed to a general similarity

measure) between samples is that it allows specification of

network concepts (see below). Our proposed sample adja-

cency measure (based on β = 2) also has several other

advantages. First, it preserves the sign of the correlation

(although in most applications negative correlations among

samples are unlikely to occur). Second, it preserves the

continuous nature of the correlation information; alterna-

tive approaches based on thresholding the correlation coef-

ficient may lead to information loss. Third, while any other

power β could be used, the choice of β = 2 results in an ad-

jacency measure that is close to the correlation when the

correlation is large (e.g. larger than 0.6, which is often the

case among samples in microarray data).

We note that SampleNetwork also allows the user to de-

fine sample adjacencies using Euclidean distance, which

may be desirable in some applications. Future efforts may

seek to compare the properties of sample networks using

these and other adjacency measures.

Network concepts

After constructing an adjacency matrix, nodes (samples)

can be characterized in terms of a number of existing net-

work concepts (see refs. [10,12] for comprehensive over-

views of network concepts). Several of these concepts are

reviewed briefly below, including the connectivity (also

known as degree in unweighted networks) and the cluster-

ing coefficient, which we find to be particularly useful in

the context of sample networks.

Connectivity

The connectivity (k) of the i-th network node is defined

by:

ki ¼ ∑
j≠i
aij:

The maximum connectivity is defined as:

kmax ¼ max
j

kj
� �

:
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The scaled connectivity Ki of the i-th network node is

defined as:

Ki ¼
ki

kmax
:

The standardized connectivity Z.Ki of the i-th network

node is defined as:

Z:Ki ¼
Ki−mean Kð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var Kð Þ
p

Sample network interpretation of the connectivity:

Using our proposed measure of sample adjacency

(signed weighted network with β = 2), we find that

ki≈∑i≠jcorðSi; SjÞ

if all sample correlations are > 0.6. In other words, samples

with high connectivity tend to be highly positively corre-

lated with other samples. The connectivity is the most

widely used concept for distinguishing the nodes of a net-

work. As illustrated in the motivational example above

and as detailed in our R tutorial (Additional file 3), sam-

ples with low connectivity may represent outliers.

Clustering coefficient

The clustering coefficient (C) of node i measures the

density of local connections, or “cliquishness” [11]. For

weighted networks, 0 ≤ aij ≤ 1 implies that 0≤Ci ≤ 1 [22]:

Ci ¼
∑l≠i∑m≠i;lailalmami

∑l≠iailð Þ2−∑l≠i ailð Þ2
� � :

The standardized clustering coefficient Z.Ci of the i-th

network node is defined as:

Z:Ci ¼
Ci−mean Cð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var Cð Þ
p

Sample network interpretation of the clustering coeffi-

cient: The higher the clustering coefficient of a sample,

the higher is the average pairwise correlation among its

closest neighbors. If all of a sample’s closest neighbors

have pairwise correlations of −1, the clustering coeffi-

cient will be zero.

Density and mean intersample adjacency (ISA)

We find it useful to characterize sample networks using

the mean (off-diagonal) adjacency measure, i.e.

mean Að Þ ¼
∑i∑j≠iaij

n n−1ð Þ

where A= [aij]. The mean adjacency is also known as the

density of the network. In sample networks, we often

refer to the density as the mean intersample adjacency

(ISA).

Sample network interpretation of the density: Using our

proposed measure of sample adjacency (signed weighted

network with β = 2), we find that

mean Að Þ≈
∑i∑i≠jcor Si; Sj

� �

n n−1ð Þ

if all sample correlations are > 0.6. Thus, the mean adja-

cency is roughly equal to the mean correlation in sample

networks.

The standardized C(k) curve and cor(K,C) network concept

Empirical results obtained through application of the Sam-

pleNetwork R function to many datasets indicated that as

outlying samples are removed, data are normalized, and

technical artifacts (e.g. batch effects) are corrected, Z.K and

Z.C exhibit a progressively linear, inverse relationship. A

similar relationship has been observed in unweighted (bin-

ary) networks, where the relationship between the (unstan-

dardized) connectivity and (unstandardized) clustering

coefficient of network nodes, i.e. the C(k) curve, has previ-

ously been reported to follow a scaling law (C ffi k α

[29,31]), with values approaching −1 often observed for the

scaling exponent α in biological systems [30,32]. It has been

suggested that this relationship may emerge as a conse-

quence of hierarchically modular networks, where nodes

with low connectivity form small, densely connected clus-

ters, and nodes with high connectivity serve to bridge these

many small clusters into one large, integrated network [31].

We define the standardized C(k) curve as a scatter plot

between Z.K and Z.C where Z.K and Z.C denote the stan-

dardized sample connectivity and the standardized sample

clustering coefficient, respectively. We also introduce a new

network concept, cor(K,C), which we define as the Spear-

man correlation between Z.K and Z.C. We note that other

measures of correlation could also be used (e.g. Pearson

correlation). Since the Spearman correlation is invariant

with respect to a monotonically increasing transformation

(e.g. standardization), we find that

cor K ;Cð Þ ¼ cor Z:K ;Z:Cð Þ ¼ cor k;Cð Þ;

where k denotes the unscaled connectivity. As described in

Results, we find that cor(K,C) is inversely related to the

density (i.e. mean adjacency) in simulated networks. How-

ever, because cor(K,C) is invariant if one scales all off-

diagonal adjacencies by a constant, it is more accurate to

Heterogeneity ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

var kð Þ
p

mean kð Þ
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consider cor(K,C) as an indicator of network heterogeneity.

The network concept Heterogeneity is defined as:

Let us briefly consider the special case of an exactly

factorizable network in which the network adjacency

factors into node-specific contributions (aij=CF(i) CF(j))

[10,50]. In this case, we have shown that the Spearman

correlation cor(K,C) is actually determined by the net-

work heterogeneity:

cor K ;Cð Þ ≈ 0:96−2:19

∑
i
ki

� �2

n∑
i
k2i

¼ 0:96−2:19
1

1þ Heterogeneity2
:

Thus, cor(K,C) close to 1 indicates that network het-

erogeneity is high. Divergence of cor(K,C) from 1 (in a

negative direction) implies increasing homogeneity; once

a critical level of homogeneity in the network is breached

(analogous to a percolation transition [33]), cor(K,C)

becomes negative. In practice, however, the relationship

described above does not generalize to non-factorizable

networks. In our real data applications that involve non-

factorizable networks, cor(K,C) also exhibits a dependence

on the network size n.

Identification of significant differences between cor(K,C)

Differences in standardized C(k) curves may distinguish

biologically interesting groups of samples. For example,

assume two sample networks (corresponding to two

groups of samples) and two corresponding measures of

cor(K,C). To identify significant differences in cor(K,C)

between two sample networks, we use a test for asses-

sing the significance of differences in correlations from

samples of different sizes. First, cor(K,C) for each sample

group is transformed using the Fisher transformation:

zk¼ 0:5 � log
1þ cor K ;Cð Þk
1−cor K ;Cð Þk

� �

where k indexes the sample networks being compared.

For the comparison between groups (sample networks)

1 and 2, the difference between the resulting z-scores is

divided by the joint standard error:

zdiff ¼
z1−z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n1−3ð Þ þ

1
n2−3ð Þ

q

where n1 and n2 represent the number of samples in

groups 1 and 2, respectively. Under the null hypothesis

of equal cor(K,C), zdiff follows asymptotically a normal

distribution (under weak assumptions). Therefore we

calculate significance levels (P-values) for zdiff based

upon the standard normal distribution.

Simulation model for illustrating the ability of cor(K,C) to

distinguish sample groups in the absence of differential

expression

To further illustrate the utility of cor(K,C), we simulated a

set of 500 genes (referred to as a “module”) with the fol-

lowing properties: i) the first principal component (the

observed module eigengene [ME]) exhibited no relation-

ship to a simulated sample trait (referred to as “disease sta-

tus”), and ii) cor(K,C) distinguished “control” subjects from

those with “moderate” or “severe” disease status. The mod-

ule was simulated to contain two unrelated sub-modules of

200 and 300 genes, respectively. The first sub-module con-

tained a signal for the simulated sample trait, while the sec-

ond sub-module contained noise genes with no relation to

disease status. The first sub-module was simulated in two

steps. First, we used a seed ME as input for the simulate-

Module function from the R package WGCNA [34]. This

function simulates genes with varying correlations around

the seed ME and exports standardized gene expression

values (i.e. each gene has mean=0 and variance= 1). Sec-

ond, we added a mean value to each module gene. Import-

antly, the mean gene expression values depended on the

value of the seed ME. For subjects whose seed ME values

were above the median, mean expression values were

drawn from a normal distribution with mean=2 and

standard deviation=2. For subjects whose seed ME values

were below the median, mean expression values were 2/3

those of the control subjects (i.e. it was assumed that the

disease lowered the mean gene expression values in sub-

module 1). Analogously, we simulated the expression

values for the second sub-module. However, we assumed

that the mean gene expression values were derived from a

normal distribution with mean=2/3 and standard devi-

ation=2/3 (i.e. the mean values of these genes tended to

have lower expression values than those of the first sub-

module). The sample trait was simulated by thresholding

the seed ME of the first sub-module. We assumed that

healthy control subjects have a high value of the seed ME.

Specifically, we simulated 100 individuals, with 50 desig-

nated as “control” subjects (darkgreen), 25 designated as

“moderate” disease status (red), and 25 designated as “se-

vere” disease status (turquoise), as indicated in Figure 5. In

practice, the seed ME was not known. Instead, the

observed ME for the entire module was obtained as the

first principal component of the set of 500 genes.

Additional network concepts for sample networks

In addition to characterizing sample networks via the con-

nectivity and the clustering coefficient, it is also possible to

characterize sample networks using additional network

concepts. Such concepts include decentralization and

homogeneity, as well as summaries of node-based measures

such as the mean correlation, mean connectivity, mean

clustering coefficient, mean intersample adjacency (or
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density), and mean maximum adjacency ratio (MAR).

When applied to sample networks, these concepts provide

a battery of measures for comparing the consistency of

sample behavior within and across datasets. These network

concepts are calculated automatically by SampleNetwork

and are discussed further in Additional file 1 and our R tu-

torial (Additional file 3).

Differential expression analysis

To determine whether specific CN gene co-expression mod-

ules were associated with DE in HD, for each CN module

we calculated the ME (i.e. the first principal component

obtained by singular value decomposition), which is a vector

that summarizes the characteristic expression pattern of a

module [10]. We then used Student’s t-test to determine

whether the mean expression levels of the ME differed be-

tween groups (distinguished by HD diagnosis). An advantage

of this approach is that the extent of modular DE can be

summarized by a single P-value. Future efforts may seek to

incorporate higher-order representative features (beyond the

first principal component) to explore additional relationships

between gene co-expression modules and disease status [51].

Differential gene expression in CN between CTRL and HD

subjects (Additional file 4) was assessed using Student’s t-test

on log2-transformed expression values. The resulting P-

values were corrected for multiple comparisons by control-

ling for the false-discovery rate [52]. The resulting local

false-discovery rates (referred to as Q-values), along with

mean expression levels for CTRL and HD, are reported for

all genes in the salmon module in Additional file 4.

Ingenuity pathways analysis

Ingenuity Pathways Analysis (IPA; http://www.ingenuity.

com/) was used to determine whether gene co-expression

modules identified in [21] were enriched with functional

interactions among their constituent genes. For each mod-

ule, probe sets that were positively correlated with the

module eigengene (P<0.001) were used to search for en-

richment. Network construction was restricted to experi-

mentally verified, direct physical interactions. IPA reported

false-discovery rate (FDR)-corrected P-values for the 500

most enriched functionally annotated categories of genes

in each module. Results for the salmon module are

reported in Additional file 5.

Additional files

Additional file 1: Supplementary information. PDF file containing

Supplementary Methods, Supplementary References, and Supplementary

Figures (1–8).

Additional file 2: Sample information. XLS table that summarizes

sample information, including Gene Expression Omnibus (GEO:

http://www.ncbi.nlm.nih.gov/geo/) sample ID, sample labels, diagnosis,

severity grade, age, sex, individual ID, hybridization date, hybridization

batch assignment, and country of processing, as described in ref. [14].

Additional file 3: SampleNetwork R tutorial. DOC file containing

annotated R code and detailed instructions for executing the

SampleNetwork and ModuleSampleNetwork R functions. The datasets

that are referenced in the tutorial and analyzed in this study can be

downloaded from: http://www.genetics.ucla.edu/labs/horvath/

CoexpressionNetwork/SampleNetwork.

Additional file 4: Summary of differential expression, functional

enrichment, and module membership for genes in the salmon

module. XLS table that summarizes the extent of differential expression,

functional enrichment, and membership strength for the salmon module.

Differential expression analyses include CTRL vs. HD human caudate

nucleus samples [14], CTRL vs. HD human laser-microdissected striatal

neurons [14], and wild-type mice vs. a mutant mouse model of HD

cultured primary striatal neurons [20]. Functional enrichment categories

included G-protein coupled receptors, phosphatidylinositol signaling,

calmodulin binding, ion transport, and calcium ion binding; all of these

categories were significantly enriched in the salmon module [21]. Module

membership values and corresponding P-values are taken from ref. [21].

Additional file 5: Ingenuity Pathways Analysis of salmon module

genes. XLS table that reports false-discovery rate (FDR)-corrected P-

values for the 500 most enriched functionally annotated categories of

genes in the salmon module from Ingenuity Pathways Analysis (IPA;

http://www.ingenuity.com/).
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Adj: adjacency; BA4: Brodmann’s area 4 (primary motor cortex);

BA9: Brodmann’s area 9 (prefrontal cortex); CB: cerebellum; CN: caudate

nucleus; cor(K,C): the Spearman correlation between the standardized

connectivity and the standardized clustering coefficient; CTRL: control;

DE: differential expression; Dx: diagnosis; HD: Huntington’s disease;
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the significance of differential expression; p.Diff.cor(K,C): P-value for the
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