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CHAPTER 1 

INTRODUCTION 

1. INTRODUCTION 
This dissertation seeks to develop models and algorithms to analyze 

perturbations in real-world network topologies. The term network topology is 

defined by Newman (2003) as the physical layout of the nodes and edges that 

are used to connect them. In mathematical literature, a network topology is often 

referred to as a graph. There are frequently a large number of alternative ways 

that a graph or network can be connected, which leads to thousands of potential 

network topologies for networks with as few as ten nodes. In practice, designing 

an initial network topology can be very challenging and this research has already 

been completed in many different fields. While network design is a very salient 

issue, this research focuses on the challenge of managing the changes that 

networks undergo even if they are well designed. 

 

1.1. Description of Network Problems 

Network topology transformations can be broadly placed into two categories; 

unintended changes and planned changes. Unintended changes in network 

topologies usually result from the failure of a component or an intentional attack 

on a component. When a network component fails as a result of an unintended 

change, the network is forced to either respond or continue to function in spite of
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 the failure. This could be the case of a hacker destroying a server in a computer 

network or a company running out of inventory in a supply chain network. In both 

cases, contingencies are necessary for the network to remain viable. Networks 

can also undergo planed or intentional changes. This could occur when an IT 

network undergoes hardware upgrades or when a company restructures the 

personnel structure and organizational network. This research focuses on the 

latter of these network transformations, since it is an area of untapped research. 

In these cases, decision-makers are able to plan which components of the 

network will be altered and in what sequence. This poses an interesting problem 

since there are often a large variety of feasible starting points, each having their 

own strengths and weaknesses. In addition, large networks present different 

sequential options for the order in which network conversion can take place. 

There are several performance metrics that are desired when a network has a 

planned modification. Unlike the field of network optimization where the amount 

of flow through a network is often the most important performance measure, 

amending the network topologies, as described above, presents additional 

performance metrics that are of equal importance to flow. The network topology 

modification is usually designed to be low cost, have minimal network downtime, 

and be able to transition rapidly from one configuration to the next. So while there 

are several ways that network topology can be altered, there are also many 

performance measures that need to be monitored while each change is being 

made. This problem presents the need for a methodology that can evaluate a 

large number of alternative options based on multiple criteria. This dissertation 
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presents Data Envelopment Analysis (DEA) as an analytical tool appropriate for 

evaluating alternative network topologies based on multiple performance 

measures. 

 

1.2. Data Envelopment Analysis (DEA) 

Data Envelopment Analysis (DEA) is a linear programming-based 

methodology that determines the relative efficiency of a set of similar Decision 

Making Units (DMUs) in transforming input(s) into output(s) with the goal of 

determining best practice. The definition of a DMU is wide-ranging in practice 

and is a generic and flexible concept that is used to refer to a set of peer entities. 

These entities can range from agencies in non-profit and government sectors to 

financial and educational institutions. This broad definition of a DMU leads to 

application areas that range from the evaluation of banks to the assessment of a 

university’s performance.1 This broad use of DEA as a methodology is possible 

since DEA can evaluate performance without many of the implicit assumptions of 

other methodologies, such as standard forms of statistical regression or utility 

functions as seen in economics. Another key strength of DEA is that it does not 

depend on information about the complex relationship among the multiple inputs 

and outputs. Thus, there is no need for a priori knowledge of the relative 

importance of inputs or outputs or associated weights. For these reasons, DEA is 

an appealing methodology for many application areas of performance 

measurement. 

                                            
1 A complete bibliography of over 2800 DEA related publications can be found in Cooper, Seiford, & Tone 

(2007). 
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Figure 1: DEA Frontier of best practice versus Regression central tendency 

 

DEA measures the relative efficiency by constructing an empirical frontier of 

best practice that has been compared to many efficient frontier estimation 

techniques in economics and many other disciplines. These frontiers make DEA 

different from statistical regression, which looks to construct a plane through the 

“center” of the data to understand central tendency. Instead DEA identifies best 

practice among a set of DMUs using a piecewise linear envelopment surface 

which is anchored by the most efficient DMUs (Figure 1). This allows efficient 

units to be identified as benchmarks for lower performing DMUs. Therefore, DEA 

is widely used in many applications for benchmarking best practice. 

The degree of efficiency of a DMU is determined by its ability to transform its 

given set of resources (inputs) into a set of products (outputs). According to the 

Extended Pareto-Koopmans definition (Koopmans, 1951), the DMUs that 

DEA Frontier 

Least Squares 
Regression Line 
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achieve 100% efficiency are those that can transform inputs into outputs such 

that none of the inputs or outputs can be improved without worsening any of the 

other inputs or outputs. This provides the theoretical lower bound to the efficiency 

of a DMU, which may or may not ever be observed, and thus the following 

definition of efficiency focuses only on the information that is available. 

 

Definition 1 (Relative Efficiency): A DMU is to be rated as 100% efficient on 
the basis of available empirical data if and only if the performances of other 
DMUs does not show evidence that some of its inputs or outputs can be 
improved without worsening some other inputs or outputs 

 

This definition does not require assumptions on the units of measure of the 

inputs and outputs, functional form or parameters of the distribution of the data, 

or the relative importance of the inputs and outputs. Thus, DEA can be formally 

defined as a non-parametric technique to measure the relative efficiency of a set 

of similar DMUs. 

 

1.3. DEA Background and History 

The beginning of Data Envelopment Analysis started in 1957 when 

researchers were inspired to develop a better method for evaluating productivity 

(Farrell, 1957). Farrell recognized that existing methods failed to include multiple 

inputs in the calculation of efficiency. Therefore, he set out to develop a method 

that could evaluate the productivity of an entire organization. Farrell’s work 

served as the basis for a group of researchers at Carnegie Mellon University who 

were evaluating a problem with educational program follow though and 
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eventually lead to the seminal paper in DEA by Charnes, Cooper, and Rhodes 

(Charnes et al., 1978). 

In the early 1970’s, Edwardo Rhodes was working on his thesis work under 

the direction of W.W. Cooper on evaluating a large-scale study of a series of 

federally funded educational programs that assisted disadvantaged students. 

After several failed attempts to analyze the data using traditional econometric 

techniques, Rhodes found Farrell’s seminal article, which led to the ideas that 

were used to generate the definition of relative efficiency (Definition 1) and were 

the foundation for future research. 

This line of research borrowed from the work of Vilfredo Pareto on the 

concept that became known as “welfare economics.” This theory stated that a 

social policy was just if it made a subset of the population better off without 

harming the remainder of the population. This avoids the need for understanding 

utility functions or interactions among individuals. This property is now known as 

the “Pareto criterion” and was extended to the idea of final goods by Koopmans 

(Koopmans, 1951). The “Pareto criterion" states that no final good is allowed to 

be improved at the expense of another final good. Farrell later extended Pareto-

Koopmans property to include both inputs and outputs and also added the 

concept of relative efficiency by utilizing the performance of other DMUs to 

determine the efficiency of one another, this became known as the “Farrell 

measure” (Farrell, 1957). However, the Farrell measure has several 

shortcomings; (1) it assumes that each DMU has equal access to all inputs 

although this does not imply that all DMUs will use an equal amount of inputs, (2) 
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the Farrell measure only accounts for “technical inefficiency,” thus ignoring the 

possibility of non-zero slacks and (3) the Farrell measure is restricted to the 

single output case and Farrell’s work with multiple outputs does not work for 

larger datasets. These shortcomings were addressed in the seminal DEA paper 

by Charnes, Cooper, and Rhodes in 1978. 

Charnes et al. (1978) formulated a pair of dual linear programs that were able 

to address the shortcomings of the Farrell measure. One of the major 

shortcomings of non-zero slacks leads to solutions with alternative optima. To 

handle this shortcoming a “non-Archimedean” element (ε > 0) was added to 

ensure that slacks were maximized and that the Farrell measure would remain 

unaffected. These were the fundamental contributions that lead to the original 

DEA models that will be presented in Chapter 2. 

 

1.4. Dissertation Objectives 

In summary, the central goal of this dissertation is to present a procedure for 

making planned modifications in network topologies based on multiple 

performance criteria using an expanded DEA model that handles reverse inputs/ 

outputs and gives shortest path improvement targets for inefficient DMUs. The 

focus is restricted to the use of DEA as a methodology in order to take advantage 

of the ability of DEA to use multiple factors to create a singular value for degree 

of fitness. The fact that DEA is a linear programming-based methodology allows 

for large problem instances that are often seen in network topology migration to 

be solved relatively quickly. The use of DEA as a tool for evaluating network 
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topologies also allows for a large number of network topologies to be evaluated 

simultaneously to explore a vast selection of the possible alterations in the 

network. This helps to ensure that suboptimal solutions are not generated since 

feasible network topology combinations were not explored. DEA improves in its 

discriminatory abilities when a large number of DMUs are being considered; 

therefore, DEA is a good methodology for evaluating large networks. 

This area of research in DEA spans both theoretical and empirical research. 

As such, my dissertation will highlight both areas of the field, examining the 

development of new models and the applications that these models are designed 

for and tested on. This unique approach helps to advance the field of DEA to 

tackle the challenging problems that are faced in an ever-evolving global 

marketplace. I employ this approach to answer the research question that is 

central to my dissertation research. 

A formal statement of my main research question is as follows: How does an 

organization effectively and efficiently transition its network structures using 

multiple performance measures? This question is of importance particularly in the 

current economic climate when mergers and acquisitions frequently occur, which 

force companies to reexamine the various network constructs that exist. 

There are three major objectives of this research. They are: 1) to present a 

detailed understanding of DEA as a methodology for efficiency evaluation and a 

viable tool for evaluating changes in network topologies, 2) to show the 

effectiveness of DEA as a methodology in empirical research and its 

effectiveness in identifying different types of inefficiency in airport operations, and 
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3) to develop a robust DEA model to handle reverse inputs/ outputs and produce 

shortest path projections. 

 

1.5. Organization of Dissertation 

The dissertation is organized into six chapters. The first is the introduction 

that describes situations of network topology migration and reasons why DEA is 

an attractive methodology for evaluating these changes. In addition, the basic 

concepts of DEA as a methodology along with a brief history of its origins are 

given to support its use as the principal methodology in this dissertation. 

Chapter 2 explains the intricacies of DEA and some of the many extensions 

that have been developed throughout the years in the field of DEA research. The 

fundamental question of model orientation and returns-to-scale are explored. In 

addition, the basic Additive model, Slacks-based model, and Malmquist Index are 

presented to support future empirical results and theoretical model development. 

Chapter 3 is an independent paper on an analysis of delays in airport 

operations. This paper is used to show the validity of DEA as a tool for empirical 

reports. The basic operational procedures of airports are described and the 

difference between hub operations and non-hub operations is explained. Models 

are developed to decompose the inefficiency in airports into scale efficiency, 

mixed efficiency, and pure technical efficiency. The Malmquist Index is then used 

to identify changes in efficiency post September 11th. 

Situations where reverse quantities occur in DEA are discussed in Chapter 4. 

Previous approaches to handling reverse quantities are described as well as the 
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types of solution invariance that are achieved. A range-based model that uses 

directional distance functions is presented in order to model reverse quantities 

and a numerical example of the model is also shown. 

Chapter 5 explores the area of network science and the developments in 

network migration strategies. An example of alternative configurations of the 

northeast United States power grid is given as a motivational example of the 

importance of understanding network topologies. Then a DEA based 

methodology is presented to show how four cases of company merger/ 

acquisition can be assessed. Chapter 5 closes with an example of a company 

changing their IT architecture to an Enterprise Resource Planning (ERP) system 

and suggests an algorithmic procedure for managing this network migration. 

Finally, Chapter 6 concludes this dissertation by summarizing the key 

contributions and also explores areas of potential future research in supply chain 

networks and airline networks. 
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CHAPTER 2 

DATA ENVELOPMENT ANALYSIS MODELS AND METHODS 

 
2. DATA ENVELOPMENT ANALYSIS MODELS AND METHODS 

2.1. Primal and Dual Models and Definition of Terms 

Data Envelopment Analysis is a linear programming-based methodology that 

determines the relative efficiency of a set of similar Decision Making Units in 

transforming inputs into outputs by solving a series of linear programs. For each 

DMU one solves a linear program for the “DMU under evaluation” to calculate its 

relative efficiency. Suppose there are n DMUs (k = 1, 2, …, n) being evaluated 

on their ability to transform r inputs (xi) (i = 1, 2, …, r) into t outputs (yj) 

(j = 1, 2, …, t). The mathematical notation is as follows: 

Data: 

 xik the amount of input i, consumed by DMU k 

 yjk the amount of output i, produced by DMU k 

 xio the amount of input i, consumed the DMU under evaluation 

 yjo the amount of output i, produced the DMU under evaluation 

 

Variables: 

 νi weight placed on input i, by the DMU under evaluation
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 μj weight placed on output j, by the DMU under evaluation 

Furthermore, we assume that xik ≥ 0 and yjk ≥ 0, with at least one non-zero input 

and output for each DMU. The above data and variables are used in a fractional 

programming formulation, where the decision variables (μ, ν) are the weights for 

the inputs and outputs. This creates an efficiency measure which is only a 

function of the weights, as seen in Equation 1. This objective function attempts to 

maximize the ratio of weighted outputs to weighed inputs.  

∑
∑

=

r
rr

t
tt

x

y

ν

μ
νμφ ),(max

 

Equation 1: Fractional Programming Problem Objective Function 

 

Each DMU has a similar objective function as the one depicted in Equation 1 

where a virtual output formed by the summation in the numerator is divided by a 

virtual input formed by the summation in the denominator. This allows each DMU 

to select a set of weights that serves to make it as efficient as possible. This 

objective function is unbounded without the presence of constraints, and thus a 

set of bounded constraints is needed to ensure that the set of weights selected 

by the DMU under evaluation is feasible for all other DMUs. The complete 

formulation of the Fractional Programming (F.P.) problem is shown in Model 1. 
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Model 1: The Fractional Programming Formulation of the CCR DEA model 

 
The solution to Model 1 has an infinite number of solutions as any optimal 

solution (μ*, ν*) has alternative optimal solutions (α μ*, α ν*) for α > 0. 

However, this fractional program can be converted into a linear program using 

the Charnes-Cooper transformation (Charnes and Cooper, 1962), which 

normalizes the denominator to unity and linearizes all of the constraints. Charnes, 

Cooper, and Rhodes presented the first DEA model, known as the CCR model, 

which is given in Model 2 and Model 3 (Charnes et al., 1978). In the linear 

programming formulation, each of the DMUs that are rated efficient has an 

objective function value (efficiency score) equal to one. Convex combinations of 

these efficient units form the piecewise linear efficient frontier, which is the 

boundary of the production possibility set. All inefficient DMUs are given an 

efficiency score between 0 and 1 exclusively. This efficiency score represents the 

radial distance that the unit is from the efficient frontier; scores closer to one are 

naturally better. 
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Model 2: The Linear Programming Formulation of the CCR DEA model 
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Model 3: The Dual Linear Programming Formulation of the CCR DEA model 

 

Model 3 above introduces new notations in the form of the following: 

Variables: 

 θ the efficiency score of the DMU under evaluation 

 λk the intensity value for DMU k used by the DMU under 

  evaluation 

 

Multiplier 
Problem 

Envelopment 
Problem 
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Since Model 2 and Model 3 are duals of one another we can use the duality 

theorem of linear programming to show that an optimal objective function value 

for one model will reveal the optimal objective function for the other model, thus  

z* = θ*. We will focus on the dual linear program stated in Model 3. The feasible 

region for Model 3 is referred to as the production possibility set (P) and is 

defined in Definition 2. 

 

Definition 2: P = {(x,y) | λT
X ≤ x, λT

Y ≥ y, λ ≥ 0 } 
 

Model 3 has implicit slack variables for each of its first two sets of constraints. 

We define those slack variables as follows: 

 

Variables: 

 
−
is  the slack variable for input constraint i 

 
+
js  the slack variable for output constraint j 

 

This set of variables play a very important role in determining the efficiency of a 

DMU. When at least one of these slack variables are non-zero where, θ*=1, a 

DMU is said be “weakly efficient.” Thus, it is important to identify alternative 

optima with zero slack values and for this reason we introduce Model 4. 
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Model 4: The Second Stage Dual Linear Programming Formulation of the CCR DEA model 

 

The above model ensures that the selection of slacks 
−
is and 

+
js do not affect the 

optimal solution θ* given by Model 3, which can be combined with Model 4 to 

yield the following model that can give the optimal efficiency score (θ*) and the 

optimal slack values in the same linear program.  
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Model 5: The Two Stage Dual Linear Programming Formulation of the CCR DEA model 



 

17 

 

It is important to note the presence of the non-Archimedean element (ε) 

mentioned earlier in § 1.3. Technically, the non-Archimedean element (ε) is 

defined as 0 < ε < 1/N for any positive integer i.e., a positive number smaller 

than any positive real number. Thus the optimal efficiency score (θ*) remains 

unaffected by the selection of slack variables. This feature allows Model 5 to be 

grouped into a class of models known as radial models, because of the equal 

proportional contraction of inputs. Furthermore, we are now able to define a 

100% DEA efficient and a weakly DEA efficient DMU given Model 5 

(Cooper et al., 2004). 

 

Definition 3 (100% DEA Efficient): The DMU under evaluation is considered 

100% DEA efficient if and only if θ*=1 and all slack variables 0== +−
ji ss . 

 

Definition 4 (Weakly DEA Efficient): The DMU under evaluation is considered 
weakly DEA efficient if and only if θ*=1 and at least one slack 

variable 0≠≠ +−
ji ss . 

 

Given the previous definitions, efficient DMUs are assigned a score of 1 and 

inefficient DMUs are given an efficiency score on the open interval 

(0, 1) = {θ | 0 < θ < 1}. The distance the efficiency score is away from the 

100% efficient score of 1, represents the degree of inefficiency for a DMU. From 

this point forward 100% efficient DMUs will be referred to as efficient DMUs, 

while DMUs that are not 100% efficient will be referred to as inefficient DMUs. 



 

18 

 

2.2. Model Orientation and Returns-to-Scale 

Researchers have expanded and extended the CCR model and since its 

development in 1978 a host of new DEA models allow new options and 

additional possibilities for practitioners. When selecting a DEA model for analysis 

there are two important options to select, the choice of orientation for the DEA 

model and the economic returns-to-scale (RTS). Choosing the orientation for the 

DEA model allows the modeler to select how inefficient DMUs are projected to 

the piecewise linear frontier and which portions of that projection will be counted 

as inefficient. There are several ways that an inefficient DMU could potentially 

move onto the frontier, by reducing inputs, increasing outputs, or a combination 

of both. The reduction of inputs is commonly referred to as “input orientation,” 

which implies that only the amount of input reduction will be counted as 

inefficiency. The increasing of outputs is commonly referred to as “output 

orientation,” which implies that only the amount of output expansion will be 

counted as inefficiency. The combination of both reducing inputs and increasing 

outputs is called “non-orientated” and this option allows for both input contraction 

and output expansion to be counted as inefficiency. In situations where an input 

or output orientation is selected it is still possible to have solutions where DMUs 

are asked to move in the non-oriented direction, due to the slack variables that 

were introduced in Model 4. However, slack variables are not counted as 

inefficiency in radial models with one exception, which is identification of weakly 

efficient DMUs as defined in Definition 4. It is important to note that the selection 
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of a model orientation has no affect on the efficient DMUs or the efficient frontier, 

thus leading to Theorem 1 (Cooper et al., 2004). 

 

Theorem 1: A DMU is efficient in a model with an input orientation if and only if it 
is efficient with an output orientation. 

 

 
Figure 2: Options for Projection Directions 

 

Three options for DMU A to be projected to the frontier are shown in Figure 2. 

Point X corresponds to the selection of an input orientation. Point Y corresponds 

to the selection of a model with an output orientation. And point Z corresponds to 

the selection of a non-orientated model. All three points provide a very different 

target for improvement for DMU A and in certain situations not all of the options 

may be feasible. The proper selection of model orientation is crucial. Up until this 

point all of the modeling has been done based on using an input orientation; the 

concepts for the output orientation follow the same logic and are presented in 
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Model 6. In the output formulation φ  is used to represent the efficiency score for 

the DMU under evaluation, all other notation remains the same as previously 

presented. It is important to note that φ  is related to θ  from Model 5 via the 

following relationship θφ 1= , thus [ )∞∈ ,1φ  and efficient DMUs will have an 

efficiency score of 1=φ  while inefficient DMUs will have an efficiency of 1>φ . 

Non-oriented models and the corresponding notations will be presented in § 2.4. 
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Model 6: Output-orientated of the CCR DEA model 

 

It is important to note that in input and output orientations there is the 

possibility that projections will require movement in a non-orientation direction. 

Thus with input orientations, outputs may have to be increased, and in output 

orientations, inputs may have to be reduced. This is due to the slack that is often 

needed to project inefficient DMUs to the efficient frontier. This slack can occur in 

the orientation direction and the non-orientation direction as seen in Model 5 with 
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slack variables 
−
is and 

+
js  present for inputs and outputs respectively. Thus, the 

total movement to reach to the frontier can be thought of as movement due to 

inefficiency plus movement due to slack. The projection is thus governed by 

Equation 2 through Equation 5. 

Input Orientation 

−−⋅= SXX o
*ˆ θ  

 ++= SYY o
ˆ

 
Equation 2: Input Projections  Equation 3: Output Projections 

   

Output Orientation 

−−= SXX o
ˆ

 

 ++⋅= SYY o
*ˆ φ

 

Equation 4: Input Projections  Equation 5: Output Projections 

 
The notation in Equation 2 and Equation 5 is as follows: 

Data: 

 oX  a [r x 1] vector representing original input values of the 
  DMU under evaluation 

 oY  a [t x 1] vector representing original output values of the 
  DMU under evaluation 

 X̂  a [r x 1] vector representing the projected point for the inputs 
  of the DMU under evaluation 

 Ŷ  a [t x 1] vector representing the projected point for the 
  Outputs of the DMU under evaluation 
Variables: 

 
−S  a [r x 1] vector representing slack variables for the input 

  constraints for the DMU under evaluation 

 
+S  a [t x 1] vector representing slack variables for the output 

  constraints for the DMU under evaluation 

 
*θ  the efficiency score given by the optimal solution to Model 5 
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  for the DMU under evaluation 

 
*φ  the efficiency score given by the optimal solution to Model 6 

  for the DMU under evaluation 
 

The second option given to a modeler involves the economic returns-to-scale 

(RTS) choice. If a constant RTS is assumed, a proportional increase in all inputs 

yields an equally proportional increase in all outputs. In contrast, if a variable 

RTS is assumed, a proportional increase in all inputs yields a disproportionate 

increase in at least one output. A smaller proportional increase for at least one 

output in the dataset describes a decreasing RTS. The converse is true when an 

amount that is more than the proportional increase is expected for at least one 

output, which describes a dataset with increasing RTS. Up until this point all of 

the modeling has been done assuming constant RTS, as was presented in the 

seminal DEA paper by Charnes, Cooper, and Rhodes in 1978. Variable RTS was 

first introduced by Banker, Charnes, and Cooper in 1984 and led to the 

development of a model known as the BCC model. The necessary modification 

to Model 5 to express the other economic RTS possibilities is achieved with the 

addition of a single constraint. Table 1 gives the full summary of all economic 

RTS possibilities. 

 

Variable RTS Increasing RTS Decreasing RTS 

1

1

=∑
=

n

k

kλ
 

1

1

≥∑
=

n

k

kλ
 

1

1

≤∑
=

n

k

kλ  

Table 1: Additional Constraints for Economic RTS Possibilities 
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The selection of an economic RTS can greatly affect the efficiency of DMUs 

and likewise the shape of the efficient frontier. This leads to several important 

theorems (Banker et al., 2004) that relate the efficient units in the CCR and BCC 

models.  

 

Theorem 2: A DMU that is efficient in the CCR model implies that the DMU is 
efficient in the BCC model 
 
Theorem 3: A DMU that is efficient in the CCR model and the BCC model will 
exhibit constant RTS. 
 
Theorem 4: The number of efficient DMUs in the CCR model is less than or 
equal to the number of efficient DMUs in the BCC model. 
 

2.3. Numerical Example 

Many of the models presented above have been used in various applications 

over the past 30 plus years that DEA has been a proven methodology for 

performance measurement. These applications often allow the theoretical 

models to come to life in practice. This section applies DEA to an example from 

branch banking in order to demonstrate the power of DEA as a methodology. 

The problem facing the branch banks in this example is how to measure the 

productivity at a group of banks with a varying number of tellers that conduct 

banking transactions and collect revenue from customers. This situation can be 

modeled as a one input, two output problem in DEA. The singular input is the 

number of tellers for each bank and the two outputs are the performance metrics 

of the number of transactions and the total revenue collected. The dataset is 

presented below in Table 2. 
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The first four columns represent the data as used in the linear programming 

model to calculate the DEA efficiency score. The last two columns represent the 

two outputs divided by the input and are calculated to allow the solution to be 

graphed in a two dimensional space. This example will assume an output 

orientation with constant RTS, thus Model 6 used. The graphical representation 

of the data and the DEA efficient frontier is given in Figure 3. The plot allows us 

to see that Bank E and Bank H lie on the efficient frontier and all the other points 

lie closer to the origin at a given distance from the frontier. Banks E & H have a 

DEA efficiency score of 1, as indicated by their position on the frontier. All other 

banks will have a DEA efficiency score greater than 1, and are operating 

inefficiently. A complete listing of efficiency scores for all branch banks can be 

seen in Appendix A. 

Bank 
(I) Num 

of 
Tellers 

(O) Total 
Revenue 

(O) Total 
Bank 

Deposits 

Total 
Revenue/ 

Teller 

Total Bank 
Deposits/ 

Teller 

A 16 7.25 206 0.453 12.875 
B 20 5.68 300 0.284 15.000 
C 33 8.15 324 0.247 9.818 
D 40 6.35 397 0.159 9.925 
E 10 6.02 187 0.602 18.700 
F 65 9.43 468 0.145 7.200 
G 72 12.82 342 0.178 4.750 
H 11 4.98 278 0.453 25.273 

Table 2: Branch Banking Data 
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Figure 3: Branch Bank Efficiency Frontier 

 

The degree of inefficiency is determined by its distance from the efficient frontier. 

An example for branch bank C is given in Figure 4, where there is a ray starting 

from the origin (O) that ends at the frontier at point (P). The point (P) has 

coordinates (0.54, 21.45) in the 2-dimensional solution space and represents the 

projected data point for branch bank C. Theses are the levels that branch bank C 

would have to operate in order to be considered efficient. The ray and point (P) 

can also be used to calculate the degree of inefficiency of branch bank C. 

 

DEA Efficient 
Frontier 
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Figure 4: Projection for Branch Bank C 

 

The length of line segment OP  divided by the length of line segment OC  gives 

the efficiency score for branch bank C. This calculation is seen in Equation 6 

using the L2 distance norm to calculate distances in the 2D solution space. This 

calculation results in the same efficiency that is given by Model 6. The projection 

targets for the other inefficient DMUs can be calculated in a similar manner and 

are found in Appendix A. 

 

185.2
821.9

457.21 ==
OC

OP
 

Equation 6: Efficiency Score Calculation for Branch Bank C 
 

This example shows that the results of a DEA analysis are able to give the 

empirical frontier, the best practice DMUs, targets for inefficient DMUs, and a 

single metric for an efficiency score. While it is important to understand what a 

DEA analysis can provide, it is also important to understand the limitations of the 

methodology. DEA does not give a measure of absolute efficiency (only relative 
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efficiency), thus it is possible that all DMUs in the test set are performing poorly 

and significant gains are possible in all DMUs. DEA is unable to identify 

underlying causes of inefficiency, therefore, while projections from a DEA 

analysis are able to provide an improvement direction for inputs and outputs, the 

underlying causes of excesses or shortfalls are unknown. Despite these 

shortcomings, DEA still is a proven methodology in performance measurement. 

 

2.4. Additive (ADD) and Slacks-based Models (SBM) 

The CCR and BCC models covered in the previous sections have depended 

on the selection of an input or an output orientation. This is seen as a limitation 

with regards to how the inefficiency is calculated, because DMUs will often have 

to decrease inputs and increase outputs to reach the efficient frontier. It may be a 

more intuitive approach to have all movement to the frontier counted as 

inefficiency. This insight brought about the Additive (ADD) model, which presents 

a non-orientated approach that removed the implicit assumption of radial 

contraction of inputs or expansion of outputs (Charnes et al., 1985). 
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Model 7: Additive Model with Variable RTS 
 

The ADD model is presented in Model 7 with the convexity constraint to imply 

variable RTS. Without loss of generality, these results can be presented for the 

constant RTS case with the removal of the convexity constraint 1=∑λ . Note 

that the objective function is linear and includes the slack variable for the 

constraints for the inputs and outputs. Thus, it can be decoupled into input 

inefficiency and output inefficiency. Moreover the efficiency score (z) is no longer 

bounded by the half closed interval of (0, 1], instead z can take on any 

non-negative real number. This can be an undesirable characteristic of the ADD 

model and, when coupled with the fact that the formulation is not units invariant, 

can require that the data be scaled to the same units of measurement in order to 

use Model 7. These two weaknesses are reconciled in the Range Adjusted 
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Model (RAM) and the Slacks-based Model (SBM), the latter of which will be 

discussed in detail later in this section (Cooper et al., 1999; Tone, 2001). 

In prior models, efficient DMUs received an efficiency score of 1, however in 

the ADD model efficient DMUs have an efficiency score of 0. Inefficient DMUs 

are monotonically increasing in score as they become more inefficient. The 

optimal solution to Model 7 yields the following set of notation: 

 

Variables: 

 *−S  a [r x 1] vector representing the optimal slack variables for 
  the input constraints of  the DMU under evaluation 

 
*+S  a [t x 1] vector representing the optimal slack variables for 

  the output constraints of  the DMU under evaluation 
 

This notation leads to a new definition of efficiency for Model 7 (Cooper et al., 

2007) and the resulting set of projections given in Equation 7 and Equation 8. 

Note that the efficiency score and projections are only based on the slack 

variables. 

 

Definition 5 (ADD Efficiency): A DMU is efficient in the ADD model if and only if 

0* =−S  and 0* =+S . 

 
Non-Orientation Projections 

*ˆ −−= SXX o   

*ˆ ++= SYY o  

Equation 7: Input Projections  Equation 8: Output Projections 
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The Slacks-Based Model (SBM) was developed by Tone in 2001 to overcome 

some of the shortcomings of the ADD model, while maintaining the desirable 

properties of being non-orientated and its view of “total inefficiency.” Thus, the 

SBM provides a units invariant form of the ADD model that has a bounded 

objective function that is monotonically decreasing like the CRR and BCC models 

that preceded it. These properties result in the use of the SBM model in many 

applications. The SBM is able to achieve units invariance by scaling the slack 

variables by the corresponding data elements in the objective function. The 

additional notation and corresponding model for the SBM is presented below. 
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Model 8: The Slacks-based Model formulation for variable RTS 
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In Model 8, the variable ρ represents the SBM efficiency measure. Note that ρ 

is bounded on the same half-closed interval of (0, 1]. Model 8 also makes the 

same assumption as previous models that all the data elements will be non-

negative. This assumption can create problems when data elements are zero 

given the SBM efficiency measure divides by these data elements. Thus, any 

input data elements that take on values of zero will have their quotient ( )ioi xs−  

eliminated from the numerator of the SBM efficiency measure. This can be done 

without loss of generality because zero is the lower bound of the range of 

allowable values for the data elements which are contracted in all projections, 

thus { }00 =∀=−
ioi xis . For any output data elements that take on values of zero 

will have a quotient ( )ioj ys+  that is undefined that yio will be augmented by a 

small positive number. This allows all output slacks to be included in the measure 

of inefficiency. These two modifications make Model 8 a viable model for all data 

variations; however Model 8 is a fractional program thus the Charnes-Cooper 

transformation (Charnes and Cooper, 1962) is applied to create the linear 

program in Model 9 with the positive scalar, m. 

 



 

32 

kjiss

m

tjysmy

rixsmx

y

sm

t
m

ts

x

sm

r
m

jik

n

k

k

jo

n

k

jkjk

ioi

n

k

kik

t

j jo

j

r

i io

i

,,0,,

1

,...,2,1

,...,2,1

1
1

..

1
min

1

1

1

1

1

∀≥

=

=∀=−

=∀=+

⋅
⋅+=

⋅
⋅−=

+−
=

=

+

−

=

=

+

=

−

∑

∑

∑

∑

∑

λ

λ

λ

λ

τ

 

Model 9: The SBM linear programming model with variable RTS 
 

The linear program in Model 9 allows the SBM to be solved with the same 

computational effort as the other DEA models presented earlier, with an optimal 

solution (τ*, m*, λ*). This defines projections in Model 9 as given in Equation 7 

and Equation 8 and a SBM efficient DMU is defined as follows: 

 

Definition 6 (SBM Efficiency): A DMU is efficient in the SBM if and only if 
τ* = 1. 

 

Taking advantage of the non-orientated nature of the SBM, Model 9 will be used 

as the base model for much of the work presented in the following sections. 
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2.5. Window Analysis and Malmquist Index 

There is often a need to analyze data that has been collected over several 

time periods. Two techniques in DEA, window analysis and Malmquist Index, 

allow one to gain this temporal perspective and uncover trends in the data and 

efficiency changes over time. These models allow a decision-maker to use panel 

or time-series data to draw conclusions on the efficiency of DMUs. 

Window analysis was introduced by A. Charnes et al. (1985) as a technique 

to better understand the effectiveness of U.S. Army recruiting practices. The 

basic technique treats each data observation for a time period as a separate 

DMU, thus each DMU is independent of observations in previous time periods. 

For example, if 20 DMUs are being compared over a period of 10 years, window 

analysis treats the problem as 20 x 10 = 200 DMUs to be considered. The time 

periods are then broken into buckets known as windows, each of which consists 

of several observations for each DMU. All of the DMUs in a window are 

compared against one another to generate a relative efficiency score. The 

window is then moved forward one time period and efficiency scores are once 

again generated in a similar manner. This is continued until the last time period is 

included in a time window, in a manner similar to a moving average. This 

procedure creates several efficiency scores for each time period observation of 

every single DMU. This approach allows for several interpretations of the data for 

each DMU. By observing how the scores changes across time periods within a 

window or across multiple windows for a particular DMU, an individual decision-

maker is able to identify any trends in the efficiency. By observing multiple 
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efficiency scores for a particular time period of a DMU, the decision-maker is able 

to quickly recognize any stability or trends in the efficiency scores. Finally, the 

multiple observations for a DMU can be averaged for all time periods to obtain a 

ranking of the overall performance of the DMU over the entire time horizon. 

Given the multiple interpretations of the results, window analysis is very useful in 

multiple application areas specifically in analyzing time-series data 

(Charnes et al., 1985; Sun, 1988; Sueyoshi, 1992). 

The Malmquist Index was first introduced by Sten Malmquist (1953) and has 

been extended to non-parametric cases by several researchers (Caves et al., 

1982; Färe and Grosskopf, 1992; Färe et al., 1998; Thrall, 2000). The Malmquist 

Index is used to evaluate the productivity change over two time periods and is 

defined based on two components, the Catch-Up Effect (CU) and the Frontier 

Shift (FS). The Catch-Up Effect, CU, is a measure of how a DMU improves or 

declines in performance from one time period to the next. The Frontier Shift, FS, 

is a measure of how the efficiency frontier changes from one time period to the 

next. The product of these two measures is defined as the Malmquist Index. This 

concept is illustrated with an example in Figure 5. 
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Figure 5: Malmquist Index CU and FS 

 

Let A1 represent the input / output mix for DMU A in time period 1 and A2 

represent the input / output mix for DMU A in time period 2. The CU from 

Period 1 to Period 2 is given by the efficiency of DMU A2 relative to the Period 2 

frontier divided by the efficiency of DMU A1 relative to the Period 1 frontier. Given 

the example in Figure 5, CU can be defined by Equation 9. The FS from Period 1 

to Period 2 is an expression of the difference in the frontiers between the two 

periods. The calculation of FU requires two quantities, one for each time period. 

The first quantity is denoted by Ω1 in Equation 10 and gives the efficiency of 

DMU A1 with respects to the Period 1 frontier dived by the efficiency of DMU A1 

with respects to the Period 2 frontier. Similarly, the second quantity is denoted by 

Ω2 in Equation 11 and gives the efficiency of DMU A2 with respects to the 

Period 1 frontier dived by the efficiency of DMU A2 with respects to the Period 2 

frontier. The geometric mean of these two quantities yields the FS given in 

Equation 12. With the CU and FS calculated, the Malmquist Index is computed 

Period 1 
Frontier 

Period 2 
Frontier 
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as the product of these two quantities and is given in Equation 13. When the 

Malmquist Index is greater than 1, this indicates that the DMU under evaluation is 

making progress from Period 1 to Period 2. When the Malmquist Index is equal 

to 1, then there is no change in the efficiency from Period 1 to Period 2. And 

when the Malmquist Index is less than 1, the DMU under evaluation has 

experienced a decline in efficiency from Period 1 to Period 2. 
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Equation 9: Malmquist Index Catch- Up (CU) Effect 
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Equation 10: Malmquist Index Frontier Shift (FS) for Time Period 1 
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Equation 11: Malmquist Index Frontier Shift (FS) for Time Period 2 
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EF
BC

EG
BD

BA

EAFSCUIndexMalmquist ××=×=
2

1

  Equation 13: Malmquist Index for DMU A 
 

2.6. Other DEA Models 

In addition to the CCR, BCC, ADD, and SBM models there have been a host 

of other extensions developed in the past 30 years of DEA research to handle 

special situations that occur in practice. A brief sampling of those extensions and 

their use is listed below: 

1. Nondiscretionary Data – This model is able to handle situations 

where there are inputs and/or outputs that are outside of the 

manager’s control. These inputs / outputs are important to the 

analysis, but they remain exogenously fixed. This could be the case 

with inputs like weather, population, or the number of competitors. 

The resulting nondiscretionary DEA models are able to incorporate 

these variables into the analysis without penalizing managers for 

excessive use of these inputs or conversely shortcomings in 

production of nondiscretionary outputs (Banker and Morey, 1986a). 

2. Categorical Data – One of the assumptions of basic DEA models is 

that all DMUs are homogeneous, but sometimes this assumption is 

violated, which leads to the need for handling categorical data in 

DEA models. Non-homogenous data can be present in situations 

when all DMUs are not on a level playing field and some DMUs 

have an inherent advantage over others. This could be the case 
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with comparing efficiency of schools with special education 

programs with those that do not have special education programs. 

Categorical DEA models handle this situation by stratifying the 

DMUs into homogenous subgroups that are ranked such that 

disadvantageous DMUs are only ever compared against 

themselves and lesser-advantaged DMUs (Banker and Morey, 

1986b). 

3. Incorporating Judgment – DEA methodology was designed to allow 

for free selection of weights assigned to the various input and 

output dimensions. However, this free selection can also be a 

weakness of DEA in certain situations, such as when there is 

a priori knowledge of a preference structure among the inputs and 

outputs. Nevertheless, this restriction of weights can also be 

advantageous to discriminate among the efficient DMUs. Many 

approaches have been successful in overcome these shortcomings 

including; imposing upper and lower bounds on individual weights 

(Dyson and Thanassoulis, 1988; Roll et al., 1991), placing upper 

and lower bounds on ratios of weights (Thompson et al., 1986), 

modifying weight inequalities in the constraint set (Wong and 

Beasly, 1990); defining closed cones for the weights (Charnes et al., 

1989), and using a penalty function to promote a symmetric 

selection of weights (Dimitrov and Sutton, 2010). 
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4. Super Efficiency – Normally most DEA studies result in many 

efficient DMUs. However, in practice only a single DMU is desired 

to be the best performing DMU. This is made possible with the use 

of Super Efficiency models in DEA. The model evaluates the 

amount that each efficient DMU distorts the frontier, by removing it 

from the frontier and then calculating the distance from the DMU to 

the frontier without the efficient DMU included. For efficient DMUs 

this produces an efficiency score greater than 1 and allows for an 

ordinal ranking without multiple ties for the top position (Anderson 

and Peterson, 1993). 
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CHAPTER 3 

ANALYSIS OF DELAYS IN AIRPORT OPERATIONS 

 
3. ANALYSIS OF DELAYS IN AIRPORT OPERATIONS USING DEA 

3.1. Introduction 

This study investigates airport operations in the United States and evaluates 

their performance using Data Envelopment Analysis (DEA) (Sutton and Baek, 

2009). In many sectors, financial indicators are frequently used as an effective 

indicator for performance measurement, however oftentimes these financial 

indicators typically fail to directly measure the operational efficiency. The 

importance of lean operations has intensified with an increased focus on the 

elimination of waste as a direct contribution to increased profit. Under the 

slowdown of economic growth and increased competition, the efficiency of 

operations should be regarded as a critical factor necessary for survival in the 

current economy. Therefore, the performance of airports is examined with a 

focus on operational efficiency.  

Since the landmark publication by Charnes et al. (1978), DEA is now 

considered a major performance evaluation tool (Cooper et al., 2007). The 

principal unit for investigation in DEA is the decision making unit (DMU). DEA 

measures the relative efficiency of a set of DMUs using mathematical 

programming and computes efficiency scores, benchmarking partners, and areas 

for improvement for each DMU. For the DEA models employed in this study, a
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 DMU is considered efficient when it has an efficiency score of 1. An inefficient 

DMU has an efficiency score different than 1 and the degree of inefficiency is 

calculated by the distance of the DMU’s efficiency score from the desired value 

of 1. These inefficient DMUs are given suggestions for benchmarking partners in 

order to enhance performance; these suggestions are composed of efficient 

DMUs, called reference units. Thus, the result of using DEA to analyze airport 

operations can be summarized as follows; first compare the performance of 

airports using their efficiency scores and then make specific recommendations 

for areas of improvement based upon the benchmarking partners. Thus, DEA is 

expected to be the appropriate tool for accurately analyzing airport operations.  

Today, most airline companies use hub and spoke networks, which are 

networks that have few nodes with a high node degree and many nodes with 

degree one (Figure 6, www.united.com, 2009). The use of these types of 

networks helps airlines to maximize utilization. Most major United States airline 

companies’ hub airports offer transfer flights, which are flights where the hub 

airport is neither the origin nor the destination of the enplaned passengers. Non-

hub airports are not required to offer transfer flights, and thus a hub airport is 

much more likely to be crowded by flights and passengers. The efficient 

operation of hub airports receives higher priority in the aviation industry, leading 

to a possible neglect of non-hub airports in terms of efficiency. Sarkis (2000) 

attempted to prove that a hub airport is more efficient than non-hub airport, but 

failed to show sufficient evidence for the existence of significant differences in the 

efficiency scores. A radial-based efficiency measurement was used (Sarkis, 

http://www.united.com/
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2000), which assumes proportional change among inputs or outputs. In contrast 

to this approach, we use a non-radial based efficiency measure that allows for 

non-proportional rates of substitution, as is the case in the aviation industry. Also, 

the efficiency scores are decomposed into several components, pure technical 

efficiency, scale efficiency, and mix efficiency to perform an in-depth analysis that 

determines the factors that lead to the efficiency differences. While Sarkis (2000) 

defined hub airports as airports assigned as such by airline companies, we apply 

the definition of the Federal Aviation Authority (FAA), which classifies hub 

airports into three categories (large, medium, small hub airports) according to the 

percentage of total national passengers enplaned. The FAA classification of hub 

airports is a more robust definition that encompasses the definition of Sarkis 

(2000). In general, most airports that are defined as hubs by individual airline 

companies are actually considered large hubs by the FAA classification. This 

paper compares efficiencies among hub and non-hub airports to determine 

differences in the classifications.  
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Figure 6: Airline Hub and Spoke Network 

 

Previous researchers in this field have indicated that the change in efficiency 

scores over time needs to be addressed. Gillen and Lall (1997) measured the 

efficiency of airport operations over five years and made a comparison of the 

efficiency scores per year. These studies are used as a basis for additional 

research by Alder and Golany (2001), Sarkis (2000), Bazargan and Vasigh 

(2003), Fernandes and Pacheco (2002), Sickles et al. (2002) and Pels et al. 

(2003). The effect of the incidents of September 11th on the airline industry is well 

documented and several airlines and airports are still experiencing lingering 

effects even years later. An industry expert, Gordon Bethune (2005), argues the 
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need for smart government investment in airports to ‘fix’ the airline industry. This 

impending investment opportunity makes it necessary for decision makers to 

identify individual airports that are in a position to make a positive impact on the 

airline industry as a whole. Thus, a measurement tool to identify efficient 

operations is needed to identify and understand trends in airport efficiency. We 

examine changes in efficiency using a Malmquist Index, which divides the cause 

of efficiency change into two categories; the change in efficiency due to the 

performance of the specific DMU and the change in efficiency due to the overall 

technical change. Moreover, we analyze the scale efficiency changes using the 

definition of Ray & Delsi (1997), and work to clarify the factors of efficiency 

change that are caused by the efforts of the airport itself versus any overall 

technical improvement in the aviation industry.  

Airports are the initial point of contact for customers and a primary point for 

receiving service from the aviation industry. The importance of customer 

satisfaction should not be ignored; however, it is difficult to find research that 

evaluates airport performance from the customer’s perspective. Yet it is widely 

recognized that speed of service is the most critical evaluation factor of the 

aviation industry by customers (Bethune, 2005). Thus all parts of the aviation 

industry, from airlines and airports to the Transportation Security Administration 

(TSA) should make earnest efforts to increase the timeliness of their operations. 

In particular, the airports themselves have an especially critical role since they 

control many of the operations related to the on-time performance of flights. 

According to the Bureau of Transportation Statistics, in 2006 more than half of 
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the causes of flight delays resulted from airport operations themselves. It is 

necessary to note that from a customer’s perspective on-time departures should 

be regarded as the major performance indicator in airport operations; and that 

improving the efficiency of airport operations could eventually result in an 

increase of on-time departures as well as increased overall customer satisfaction 

(Abdelghany et al., 2004). Thus, a DEA model is utilized that focuses on the on-

time performance of airports, and employs that as a key factor to evaluate the 

efficiency of airport operations, which will directly enhance customer satisfaction. 

The remainder of this chapter is organized as follows; § 3.2 provides a review 

of previous research regarding the analysis of airport operations using DEA. § 3.3 

describes the approach and development of the DEA model. An analysis and 

collection of a four-year dataset of major United States airports is highlighted in 

§ 3.4. Next, managerial and policy implications are discussed in § 3.5 and finally 

provide conclusions and propose possible directions for future research in § 3.6. 

One recent development in airport policy is the Congressional bill to regulate the 

maximum length of tarmac delays. While this bill definitely has a significant 

impact on airport operations, consideration of such extreme delays is outside the 

scope of the current study and is relegated to future work. 

 

3.2. Airport Performance 

3.2.1. Operation Process 

Airport operations can be separated into two areas (Gillen and Lall, 1997); 

terminal services and movement operations. The terminal service controls 
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passenger movement, while movement operations relates to flight procedures 

such as take-offs and landings. However, a large portion of terminal services is 

run by the individual airline companies, since they have the responsibility to 

provide safe and comfortable transportation services for their own passengers. 

We can reason that the role of the airport remains to manage the physical 

structures, such as the gates and convenience facilities, while individual airlines 

and other agencies control the flow of passengers. In this study, these two 

operations can be considered as a single process. Although the FAA does not 

include transfer flights in their definition of hub airports, we assume that the hub 

airport can provide transfer flights while non-hub airports generally do not. Figure 

7 shows this definition of the airport service operation process.  

Figure 7: Map of Airport Service Process 

 

Arrival of Carrier Departure of Carrier

ExitExit

Transfer

New PassengerNew Passenger

ExitExit New PassengerNew Passenger

Non-Hub Airport

Hub Airport
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On-time departure is regarded as a core function of an airport that obtains 

customer satisfaction that is consistent with Abdelghany et al. (2004) who 

mention that customer satisfaction is the “key factor” in both maintaining current 

and bringing in new customers. While delayed arrival and extreme weather 

conditions can cause fluctuations in on-time performance, those components are 

considered uncontrollable environmental factors. Thus, the primary objective of 

airport operations in this study is to increase the on-time departure rate. 

 

3.2.2. Previous Research 

Table 3 shows typical input / output structures of selected previous research.  

 
Table 3: Summary of Previous Airport Research 

DMU Time Data Period
Input 
Output 

Research 

DEA Model 
21 of the top 30 airports in the United 
States 

1989-1993 

Terminal : # of runways, # of gates, terminal area, # of 
employees, # of baggage collection belts, and # of public 
parking spots. 
Movements: airport area, $ of runways, runway area, and 
# of employees. 
Terminal: # of passenger and pounds of cargo.  
Movements: air carrier movements, commuter 
movements. 

Gillen & Lall 
(1997) 

Terminal : BCC-DEA Movement : CCR-DEA 
44 of the top 80 U.S. airports 1990-1994 
Operating cost, # of employees, # of gates, and # of 
runways. 
Operating revenues, # of aircraft movements, general 
aviation, total passengers, total freight 

Sarkis (2000) 

CCR-DEA and BCC-DEA 
Bazargan & 
Vasigh (2003) 

15 small, medium and large U.S. hub 
airports.  

1996-2000 
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Operating expenses, non-operating expenses, #of 
runways, and # of gates. 
# of passengers, # of air carrier operations, # of other 
operations, aeronautical revenue, non-aeronautical 
revenue, and percentage of on time operations.  
CCR-DEA 
33 European airports 1995-1997 
ATM: Airports surface area, # of aircraft parking position, 
# of remote aircraft parking position, # of runway 
APM: # of check-in desks, # of baggage claim units, 
terminal size, and # of aircraft parking position.  

Pels et al. (2001) 

CCR-DEA, SFA 
 

From Table 3, most previous research uses fixed assets as input, and 

financial indicators as output. Therefore, productivity measured can be 

interpreted as the utilization rate of fixed assets over the revenue of the airport. 

 

3.2.3. Hub vs. Non-hub Airports 

The FAA distinguishes hub and non-hub airports by the number of 

passengers enplaned. The greater the number of enplaned passengers, the 

more flights operated, and therefore, it is reasonable that some flights at larger 

airports are used as transfer flights. Thus, these airports are usually also 

considered as hubs by major airline carriers. As shown in Figure 7, a unique 

function that a hub airport provides is transfer flights. Therefore, one can assume 

that the role of providing transfer flights is implicitly embedded into the FAA 

definition of a hub airport. While Sarkis (2000) implements the definition of hub 

airport directly from airline companies, his definition can and should be expanded 

by adding the three categories used by the FAA. We also hypothesize that the 

difference between large, medium, and small hub airports is the number of 
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transfer flights offered. Consequently, most hub airports assigned by major airline 

companies belong to the large hub classification in the FAA definition. As the 

aviation industry grows and expands, it can be expected that the demand for 

these types of hub airports will also increase. Thus, it would be reasonable to 

surmise that current medium or small hub airports would be good candidates for 

airlines to investigate for expansion as potential hub airports, as commonly seen 

in many European budget airlines. Adler & Berechman (2001) indicate that an 

efficiently operated airport strongly influences the airlines’ choice of hub locations.  

A multi-dimensional comparison of efficiency among airports is conducted 

comparing both radial and non-radial based efficiency measures and verification 

of significant differences among classification of airports. Next, a comparison of 

decomposed efficiency scores is made, and the factors that lead to efficiency 

differences are identified. Finally, efficiency changes among airports are 

examined using the Malmquist Index.  

 While comparisons between the size and scale of hub and non-hub airports 

cannot be made, it could be easily expected that the returns-to-scale (RTS) of 

large hub airports is different from small hub or non-hub airports. Thus, the 

identification of RTS presented by Seiford and Zhu (1999) is used to compare 

RTS among airports.  
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3.3. Model 

3.3.1. Overview 

Our approach utilizes a three-stage DEA model to evaluate airport operation; 

the structure is shown in Figure 8. In the first stage, the radial and non-radial 

efficiency of airports is measured. As mentioned in the previous section, the 

number of on-time departing flights is one of the focal outputs. However, it is 

important to note that the number of on-time departing flights cannot exceed the 

number of scheduled departure flights. Therefore, a bounded DEA model that 

applies the additional constraints of restricting the maximum number of departure 

flights is necessary. In the second stage, the source of efficiency change is 

identified using the Malmquist Index. A bounded DEA model is applied to 

measure catch-up and frontier shift effect. In the third stage, the differences in 

efficiency among airports are compared, and finally, the managerial implications 

for the airports are analyzed. 
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1st stage

• Efficiency Mearuem ent .

• Efficiency Decomposit ion.

• Return to Scale Analysis.

1st stage

• Efficiency Mearuem ent .

• Efficiency Decomposit ion.

• Return to Scale Analysis.

2nd stage

• Efficiency & Scale Change

Analysis

2nd stage

• Efficiency & Scale Change

Analysis

3 rd stage

• Pair-wise com parison 

of Efficiency score and 

Efficiency change am ong 

Categories.

3 rd stage

• Pair-wise com parison 

of Efficiency score and 

Efficiency change am ong 

Categories.
 

Figure 8: Structure of Airport Research Approach 
 

3.3.2. First Stage – Efficiency Decomposition 

As shown in Table 3, we reviewed the type of DEA model and input / output 

structures from previous research. The radial-based DEA models employed in 

these previous studies assume that all of the inputs or outputs can be 

proportionally changed, in contrast to non-radial based DEA models.  

CCR, BCC, and SBM efficiency scores are measured in the first stage and 

the efficiency scores are decomposed into pure technical, scale and mix 

efficiency. Before evaluating the DMUs, we apply additional constraints to the 

standard DEA model. Since customer satisfaction is taken into account in this 

study, on-time departures are not overlooked. We use an output-oriented 
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approach, using on-time departure as a factor, whereas the amount of correction 

should not exceed the number of scheduled flights. Therefore, we add bounded 

constraints to the DEA models.  

If we assume that there are n (k = 1,…,n) DMUs that convert r (i = 1,…,r) 

inputs into t (j = 1,…,t) outputs, we therefore suggest an output-oriented 

bounded variable model to assess the precise operation of airports. Model 10 

through Model 12 show the set of equations used to represent the Bounded CCR, 

Bounded BCC, and Bounded SBM models, respectively. In the following models, 

the variable λ is a [nx1] array, s- is a [rx1] array, and s+ is a [tx1] array. X is a 

[rxn] matrix of inputs, Y is a [txn] matrix of outputs, 
−
ox  is a [rx1] array, and 

−
oy  & 

uo are both [tx1] arrays. And θ is a scalar representing the efficiency of the DMU 

under evaluation. 
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In Model 10, we measure the efficiency of a DMU under constant returns-to-

scale. We obtain an efficiency score with variable returns-to-scale by applying 

the convexity condition Σλ = 1 to form Model 11. The first efficiency score is 

defined as BND-CCR, and the latter as BND-BCC. While both BND-CCR and 

BND-BCC are radial based efficiency scores, we evaluate a non-radial based 

efficiency score from the Slacks-Based Measurement (SBM) by Tone (2001). 

The bounded constraint is applied to SBM and denote its efficiency score as 

BND-SBM as seen in Model 12. 

BND-CCR is decomposed into scale, mix, and pure technical efficiencies 

using Equation 14 through Equation 16. The Scale & Mixed efficiency equations 

presented below are the reciprocal of the input-orientated counterparts that are 

presented in Cooper et al (2007). 
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CCRBND

BCCBND
EfficiencyScale

_

_
=  

Equation 14 

 

SBMBND

CCRBND
EfficiencyMixed

_

_
=  

Equation 15 
 

EfficiencyMixedEfficiencyScaleSBMBNDEffTechnicalPure ××= _.

 Equation 16 
 

3.3.3. 2nd Stage – Malmquist Indices/Efficiency Change 

While the annual changes in efficiency can be compared using the results 

from the first stage, the factor that causes these differences of efficiency cannot 

be identified. Tone (2004) discusses the various types of Malmquist indices, 

which measure the relative efficiency of DMUs from each different production 

possibility set. The Malmquist indices can be measured by two methods; 

inclusive and exclusive scheme. The inclusive scheme of the Malmquist Index 

can be measured by applying a bounded constraint.  

The Malmquist Index is measured in both CRS and VRS environments. Tone 

(2004) indicated that several studies have been made to examine the effect of 

scale change to efficiency change. In this case, Ray and Delsi’s (1997) 

methodology is selected to measure scale change effect, since it does not 

require the use of additional “fictitious DMUs” and ultimately requires fewer 

computations than Balk’s (2001) method.  

A pairwise comparison of decomposed efficiency score by year is presented, 

which provides a basic understanding of efficiency change. However, simple 
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pairwise comparisons cannot clarify the change that results from the DMU’s own 

effort versus the general increase of all DMUs in the production possibility set. 

Thus, further pairwise comparisons of Malmquist Index analysis are conducted in 

the second stage. Using these comparisons, we determine which hub 

classifications show an increase in efficiency scores between 2002 and 2005.  

 

3.4. Case Example 

3.4.1. Overview 

The radial and non-radial efficiency of airports in United States is measured, 

and these efficiencies are decomposed into pure technical, scale and mix 

efficiency. Comparisons can then be made among hub and non-hub airport 

based on classifications set by the FAA. The efficiency of the airports is further 

examined using the Malmquist Index.  

 

3.4.2. Data 

In this section, we analyze four years (2002-2005) of data from 67 airports in 

United States; this data was collected from the FAA, and the input / output 

structure is shown in Table 4. 

 

Input Output 
# of runways, # of gates, 
# of scheduled arrivals 

Amount of Operational Revenue, Amount of 
Non-Operational Revenue, and % of on-time 
departures  

Table 4: Input/ Output Structure of Airport Study 
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In Table 4, operational revenue is defined as the revenue that comes from the 

payment by airline companies for using landing/take-off facilities while non-

operational revenue includes all other revenues. Revenue from parking lots, 

restaurants, and the other convenience facilities are included in the non-

operational revenue.  

As discussed previously in § 3.2, the on-time arrival of flights is used as an 

input. Using the bounded models in Model 10 through Model 12, airport 

operations are analyzed. The classifications set by the FAA are used to define 

hub and non-hub airports.  

 

3.4.3. Result 

3.4.3.1. 1st Stage 

Four years of data is evaluated from 67 airports. Since the yearly change in 

the efficiency score is not compared, we therefore regard all four years of data 

set as a single production possibility set. The number of efficient DMUs is 

classified by the type of hub, which is summarized in Table 5. 
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  Number of efficient DMUs 
Category 

Total CCR BCC SBM SE ME PTE 
Non-Hub 20 1 10 1 8 1 1 

%   5.00% 50.00% 5.00% 40.00% 5.00% 5.00% 
Small Hub 64 4 4 4 55 4 4 

%   6.25% 6.25% 6.25% 85.94% 6.25% 6.25% 
Medium 

Hub 
100 5 8 5 84 5 5 

%   5.00% 8.00% 5.00% 84.00% 5.00% 5.00% 
Large Hub 84 6 17 6 26 6 6 

%   7.14% 20.24% 7.14% 30.95% 7.14% 7.14% 
Total 268 16 39 16 173 16 16 

Table 5: Summary of 1st Stage Efficient Airports 
 

Table 5 demonstrates that most of the DMUs in small or medium hub airports 

show scale efficiency. It can be assumed that the size and scale of large hubs is 

so large that the scale efficiency cannot be increased. This argument is verified 

by examining the returns-to-scale of each type of airport. Table 6 shows the 

summary of the distribution of returns-to-scale.  

 
Eff DMUs - RTS All DMUs - RTS  

Category 

 
Total Inc Const Dec Inc Const Dec 

Non-Hub 20 9 1 0 12 8 0 
%   90.00% 10.00% 0.00% 60.00% 40.00% 0.00% 
Small 
Hub 

64 0 4 0 6 55 3 

%   0.00% 100.00% 0.00% 9.38% 85.94% 4.69% 
Medium 
Hub 

100 0 5 3 1 84 15 

%   0.00% 62.50% 37.50% 1.00% 84.00% 15.00% 
Large 
Hub 

84 0 6 11 0 26 58 

%   0.00% 35.29% 64.71% 0.00% 30.95% 69.05% 
Total 268 9 16 14 19 173 76 

Table 6: Summary of RTS of Airports 
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Nearly all efficient non-hub airports are increasing returns-to-scale while more 

than half of efficient large hub airports are decreasing returns-to-scale, shown in 

Table 6. It is natural that the small airports have more growth potential than a 

large airport, since larger airports are closer to their operational capacity.  

 

3.4.3.2. 2nd Stage 

In the second stage, a Malmquist Index analysis is conducted, as depicted in 

Table  B.1. When the Malmquist Index is greater than 1, the DMU has a 

substantial increase in its productivity. From Table  B.1, the small hub shows 

consistent productivity growth within the past four years. The significant 

difference among categories is verified in the next stage.  

Ray and Delsi (1997) suggest a methodology to identify the influence of scale 

change on efficiency change. The scale changes measured between years by 

categories is shown in Table  B.2. This table clearly shows that that more than 

half of the small and medium hubs have a value of scale change that is greater 

than 1, which means that the scale change has increased over time. Thus, as 

found in the first stage in the returns-to-scale analysis, the small and medium hub 

airports have more potential for growth than large hub airports.  

 

3.4.3.3. 3rd Stage 

The objective of the 3rd stage is to identify significant differences among 

airport categories. First, the radial and non-radial based efficiency scores are 
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compared. Table  B.3 shows the average efficiency scores of each airport 

category. A Wilcoxon Rank Sum test is conducted to identify differences in 

efficiency scores, as seen in Table  B.4. 

These tables show that there are significant differences between hub and 

non-hub airports by using a non-radial based efficiency measurement based on 

our modified definition of a hub airport.  

 

3.5. Discussion 

3.5.1. Efficiency Decomposition 

The results of the efficiency decomposition show that there is sufficient 

evidence of scale efficiency existing in small & medium hubs, but not in non-hubs 

& large hubs, as shown in Table 5 above. Scale efficiency is a measure of how 

much the efficiency score is changed when the convexity constraint Σλ = 1 is 

included in Model 10 to yield the aforementioned BND_BCC (Model 11). When 

the scale efficiency score is less than 1 it is an indication that the airport under 

consideration benefits from the convexification of the frontier in the BND_BCC 

model. This leads to the significant differences that can be seen in the efficiency 

scores of the hub classifications. Table 7 (below) shows the p-values for the 

Wilcoxon Rank Sum test of the hub classifications indicating significant 

differences at most reasonable significance levels, between all pairwise 

comparisons except the large and small hubs groups and the small and medium 

hubs groups.  
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P-Values     

Small hub - Non-hub Medium hub - Non-hub Large hub - Non-hub 

0.001871433 0.001871433 0.434756172 

Medium hub - Small hub Large hub - Small hub Large hub - Medium hub 
0.743949515 0.000000029 0.000000034 

   
 Mean Ordering  

Small Hubs 0.994975682 
Medium Hubs 0.990172579 
Large Hubs 0.932842824 
Non-Hubs 0.919588891 

Table 7: Mean Ordering & P-values for scale efficiency scores 
 

This leads to the conclusion that large hubs are not able to perform at the 

level that would be expected of airports of that magnitude. A consequence of this 

is that hubs can be built too big to ever be able to achieve efficiency. On the 

other hand, the non-hubs also do not perform well in scale efficiency indicating 

that an increase in scale is necessary.  

Likewise the pairing of efficiency groupings among the small and medium 

hubs groupings and large and non-hubs groupings continues when the pure 

technical efficiency is considered as evidenced in Table 8 below, which shows 

the p-values for the Wilcoxon Rank Sum test. 

 

 

Table 8: Mean Ordering & P-values for pure technical efficiency scores 

P-Values     

Small hub - Non-hub Medium hub - Non-hub Large hub - Non-hub 

0.001713018 0.001018829 0.247144603 

Medium hub - Small hub Large hub - Small hub Large hub - Medium hub 

0.103234128 0.01192007 0.000021790 
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 Mean Ordering  

Non-Hubs 1.323905326 
Large Hubs 1.302367053 
Small Hubs 1.215115948 

Medium Hubs 1.208184623 
 

The grouping of the pure technical efficiency scores is a little surprising 

because it matches exactly with the results from the scale efficiency, but shows 

that the small and medium hub groups are once again able to out perform the 

large and non-hub groups. 

However, the results from the mixed efficiency score are quite different. In this 

case, the larger hubs show a clear ability to outperform the smaller hubs as 

evidenced in the mean ordering and p-values in Table 9. 

 

P-Values     

Small hub - Non-hub Medium hub - Non-hub Large hub - Non-hub 

0.708905309 0.011129014 0.000253595 

Medium hub - Small hub Large hub - Small hub Large hub - Medium hub 

0.100369489 0.000680662 0.017663311 

   

 Mean Ordering  

Large Hubs 0.766908528 
Medium Hubs 0.701813669 
Small Hubs 0.666422603 
Non-Hubs 0.56864473 

Table 9: Mean Ordering & P-values for mixed efficiency scores 
 

The mixed efficiency score, as indicated in Equation 15, is an indication of the 

amount of inefficiency that is unaccounted for by the use of a radial model. A 

radial model ignores slack when calculating the efficiency score. Thus, lower 
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mixed efficiency scores imply that there is a larger amount of slack that is not 

included in the efficiency score given by the BND_CCR model. These results 

indicate that this phenomenon is more prevalent as hub size decreases.  

 

3.5.2. Returns-to-Scale 

The results of the returns-to-scale (RTS) of the dataset indicate that there is a 

clear ordering among the hub classifications. As expected an increased hub size 

is more likely to experience decreasing RTS. Conversely, the smaller hub is 

more likely to experience increasing RTS. This demonstrates that non-hubs and 

small hubs dominate the increasing RTS portion of the technology, while the 

medium and large hubs are concentrated on the constant and decreasing RTS 

parts of the technology; this trend can be observed in Table 6. 

This finding is important since it points to a key managerial implication about 

potential return-on-investment and capital expenditures. Traditionally, a large 

focus is placed on improvements in the high volume large hubs. However, our 

results suggest that this strategy should not be employed when optimizing for 

efficiency. The non-hubs clearly show that they dominate the increasing RTS 

portion of the frontier and would yield higher return-on-investment and should be 

given more consideration for capital investment and improvement programs. 
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3.5.3. Hub Comparison 

The research question, to consider the differences in efficiency of the hub 

classifications, is explored in this section. The efficiencies of the hubs were 

tested in three models to identify varying degrees of inefficiency. The first model 

considered, the BND_CCR model, is given in Model 10. This model shows no 

significant differences between any of the pairwise comparisons of the groups. 

The lone exception to this observation is the comparison of the small hub and 

medium hub that yields a p-value of 0.021, which is significant for many 

significance levels. An examination of the mean ordering reveals that the medium 

and large hubs have the best efficiency scores, which follows the prior results on 

returns-to-scale, which indicate that this group of hubs are more likely to 

comprise the constant returns-to-scale part of the frontier. The fact that there are 

no significant differences amongst the efficiency scores leads to the conclusion 

that the BND_CCR model does not have the ability to properly discriminate 

between the hub classifications. The resulting p-values from all three tests are 

shown in Table  B.4. 

For a more comprehensive result, the BND_BCC model is run. The major 

difference in this experiment is the inclusion of the convexity constraint Σλ = 1 to 

Model 10, thus allowing for efficiency of hubs that display increasing or 

decreasing returns-to-scale. This modification resulted in significant differences 

in all pairwise comparisons with the comparisons between the non-hub and large 

hub groups and the non-hub and medium hub groups being the lone exceptions. 

This result, in addition to the mean ordering of the efficiency scores, is shown in 
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Table  B.5, and demonstrates that the efficiency score of the small hubs is clearly 

the lowest among all the classes and that the non-hubs benefit the most from the 

convexification of the frontier. Whereas in the BND_CCR model the non-hubs are 

ranked last in mean ordering, they are now ranked first and are statistically 

significantly better than the small hub group. 

The final analysis uses a Bounded Slack-based Measurement (BND_SBM) 

model that measures efficiency based on the amount of increase in outputs 

needed reach the frontier. This quantity is measured by output slack 
+
js , which is 

then normalized by the original data elements joy  and summed in the objective 

function. These changes yield the model given in Model 12. The inclusion of 

slack into the efficiency score is used to give a more accurate representation of 

the “total inefficiency” in a particular hub. Once again, we use the Wilcoxon Rank 

Sum test to identify significant differences among all pairwise combinations 

except for two comparisons, the comparison between the non-hub and small hub 

groups as well as the medium hub and large hub groups. The mean ordering 

(Table  B.5) shows that the non-hub group suffers the most from the inclusion of 

slack into the efficiency measure and is ranked last among all the classifications. 

Conversely, the small hubs benefit the most by going from last among the 

classifications to first. Yet, the p-values indicate that there is no significant 

difference between the non-hub and small hub classifications, thus resulting in a 

pairing of two groups by statistical significant difference, the non-hub and small 

hub in addition to the medium and large hubs. 
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3.5.4. Malmquist Indices/ Efficiency Change 

In the years following the events of September 11th, the airline industry has 

faced major changes. In order to understand more about the affects of these 

changes between 2002 and 2005 the Malmquist Index was used. The Malmquist 

Index is decomposed into two components, the Frontier Shift (FS) and the Catch-

up Effect (CU), each of which shows different aspects of the changes in 

efficiency. The FS gives an indication of how the overall industry has changed 

over time, while the CU shows the change in efficiency of the hub. 

The time periods for the comparison of the Malmquist Index is completed on 

two different groupings. The first grouping compares the difference in 

performance in the year 2002 and the year 2005. This gives insight into how the 

airline industry has changed in total over the entire four-year time period. The 

second grouping is a year-by-year comparison examining the pairwise 

comparisons of 2002-2003, 2003-2004, and 2004-2005. This comparison helps 

to decide exactly where in the time window the change occurs during the 

selected time period. The summary of these results are listed in Table  B.6, Table 

 B.7, and Table  B.8 in Appendix B. 

The result of the first comparison (2002 to 2005) shows no significant 

differences among the efficiency scores of the hub classifications except in the 

CU between the large and small hubs. The small hubs are statistically better than 

the large hubs from the years 2002 to 2005. This shows that the small hubs have 

done a better job at recovering in airport efficiency during this time period. 
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When the years are paired in the second grouping to determine exactly when 

the efficiency change occurs, the pair 2003 to 2004 show results that indicate a 

significant change. The Wilcoxon Rank Sum test shows a statistically significant 

difference in the Malmquist Index, CU, and FS between the years 2003 and 2004. 

The small hubs are statistically different from both the medium & large hubs, thus 

giving further proof that the small hubs did a better job in recovering from the 

September 11th effect. 

 

3.6. Concluding Remarks 

The performance of major airports in the United States was analyzed using 

DEA. First, we found that significant differences among hub and non-hub airports 

do exist by using a non-radial based DEA approach that decomposes the 

efficiency scores into scale efficiency, technical efficiency, and mixed efficiency. 

Second, the change in the efficiency of airports between the years of 2002 and 

2005 was examined and we were able to show a significant improvement in both 

the efficient operations of the individual airports but also an increase in the 

efficiency of the entire industry. It is important to emphasize that we include on-

time operation in our model, which is a key factor in both customer satisfaction 

and efficient operations. 
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CHAPTER 4 

REVERSE QUANTITIES IN DEA 

 
4. REVERSE QUANTITIES IN DEA 

4.1. Situations of Undesirable Outputs in DEA 

The previous sections have presented various DEA models and the 

modifications that have been developed to handle a variety of applications. An 

implicit assumption in each of these DEA models is that inputs are minimized and 

outputs are maximized, however this is not always the case in realistic situations. 

The production process of transforming inputs to outputs sometimes produces 

undesirable outputs, such as processes that generate scrap, waste, or pollutants. 

When DMUs are trying to improve performance, these undesirable outputs 

should be reduced instead of increased as when they are treated as desirable 

outputs in classic DEA models. Let us consider two DMUs, Company A and 

Company B. Each company has exactly the same number of employees (input), 

but Company A is able to process 5,000 widgets (output) while Company B is 

only able to produce 1,000 widgets. It is clear that Company A is producing more 

efficiently than Company B without violating the assumption of maximizing 

outputs. This original comparison is rather straightforward; however, instead of 

simply considering only the number of widgets each company produces, suppose 

we are now also interested in the number of defective units that each company
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produces. Company A is able to process 5,000 widgets (good output) while 

generating 2,500 defective units (undesirable output) and Company B produces 

1,000 widgets while generating 100 defective units. Based on the inclusion of 

defective units into this scenario it is more difficult to tell which company is 

operating more efficiently. This situation is a classic example of ‘undesirable 

outputs’ (often referred to as reverse quantities) which can be produced by the 

DMUs. 

The example of producing defective parts in a factory and many others (i.e. 

pollution, waste, etc.) is a case of non-separable outputs, which implies that there 

is a correlation between the amounts of good and bad outputs that are produced 

and furthermore, an increase in good outputs will have a corresponding increase 

in bad outputs and vice versa. This concept is known in DEA as weak 

disposability of outputs. Given a set of good outputs (represented in a matrix as 

Y
G
) and a set of bad outputs (represented in a matrix as YB

) produced by a set 

of inputs (represented in a matrix as X), the outputs are said to be weakly 

disposable if they satisfy Definition 7. This definition assumes that proportional 

reductions in good and bad outputs are globally possible. However, for very small 

values of α it may be impossible to reduce the bad outputs further since a 

minimum threshold may be required to produce any good outputs. 

 

Definition 7 (Weak Disposability of Outputs): A set of outputs (YG
, Y

B
) is 

called weakly disposable if a proportional reduction of good and bad outputs is 
globally possible. The weak production possibility set is represent below by PW 

P
W = {(x,y

G
,y

B
) | λT

X ≤ x, αλT
Y

G
 ≥ y

G
, αλT

Y
B
 = y

B
, λ ≥ 0, 0 ≤ α ≤ 1 } 

 



 

69 

While many applications may fall into the case of non-separable outputs, 

there are other situations where outputs are completely separable, which means 

that the rate of increase for the outputs is independent. The total separation of 

outputs could occur when the outputs are independent performance measures, 

such as with sports statistics, supply chain performance measures, etc. These 

cases often refer to undesirable outputs as reverse quantities, since there is 

nothing inherently undesirable about the output. Thus, reverse quantities means 

that a smaller value for an output is desirable or conversely a larger quantity of 

an input is preferable. 

An example of separable outputs is the evaluation of a simple game like 

baseball, where the object is to score the most runs. In baseball, there is an 

offensive and defensive component to the evaluation of either the team or the 

players. The outputs would be the offensive production measured by the number 

of runs scored (RSC) by the team and the defensive production would be the 

number of runs surrendered (RSU). Thus, the reverse output in this case would 

be RSU, because a defense that is doing well will have a low value for this output. 

Yet the output RSU is not directly correlated to RSC and the two outputs are 

considered separable. 

The case of separable outputs assumes that one output, in this particular 

case the reverse output, can be reduced towards zero without affecting any other 

outputs. This is known as known as strong disposability of outputs in DEA. Given 

a set of good outputs (YG
) and a set of bad outputs (YB

), the outputs are said to 

be strongly disposable if they satisfy Definition 8. 
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Definition 8: (Strong Disposability of Outputs): A set of outputs (YG
, Y

B
) is 

called strongly disposable if a reduction of bad outputs has no affect on good 
outputs. The strong production possibility set is represent below by PS 

P
S = {(x,y

G
,y

B
) | λT

X ≤ x, λT
Y

G
 ≥ y

G
, λT

Y
B
 ≤ y

B
, λ ≥ 0 } 

 

The third case exists when you have both separable and non-separable 

outputs. In this case, some outputs will be weakly disposable while others will be 

strongly disposable. An example of this case is an electricity generating plant. 

There is a clear desirable output of power generated, but there are multiple 

pollutants, or undesirable outputs, that are also generated, (sulfur dioxide (SO2), 

carbon dioxide (CO2), nitrogen dioxide (NO2), etc.). A governmental agency may 

want to regulate the emission of such pollutants. On one hand, some of the 

pollutants, such as CO2 emissions, cannot be reduced without a proportional 

reduction in power generation. Thus, CO2 emissions are considered a non-

separable output, which follows weak disposability as defined in Definition 7. On 

the other hand, other pollutants, such as SO2 emissions, can be reduced with the 

introduction of new technology or the use of low sulfur coal. These options for 

reducing SO2 emissions do not involve the loss of significant amounts of power 

generation and may cost additional money, but they still can be considered 

separable and thus follows strong disposability as mentioned in Definition 8. 

Thus, we have a case of a production process that produces both separable and 

non-separable outputs. Definition 9 can be used to handle such situations where 

strong and weak disposability of outputs exist. As previously stated, let YG 
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represent the set of good outputs and now YBS represent the set of bad 

separable outputs and YBN represent the set of bad non-separable outputs. 

 

Definition 9: (Strong and Weak Disposability of Outputs): A set of outputs 
(Y

G
, Y

BN
, Y

BS
) is called strongly and weakly disposable if a reduction of bad 

outputs (YBS
) has no affect on good outputs and a proportional reduction of bad 

outputs (YBN
) and good outputs is globally possible. 

 
P

WS = 

{(x,y
G
,y

B
) | λT

X ≤ x, αλT
Y

G
 ≥ y

G
, αλT

Y
BN

=y
BN

, λT
Y

BS
 ≤ y

BS
, λ ≥ 0, 0 ≤α≤ 1 }  

 

It is clear that the fundamental assumption of DEA, that outputs should be 

maximized and inputs should be minimized, can be violated in several instances. 

The situations above show these instances of undesirable outputs, whether 

separable or non-separable, where standard DEA models will not be appropriate 

for measuring efficiency. 

 
4.2. Types of Solution Invariance 

There are a set of desirable properties that researchers have tried to achieve 

when analyzing problems with undesirable outputs (Ali and Seiford, 1990; Pastor, 

1996; Lovell and Pastor, 1995). These properties are related to the nature of the 

solutions that are generated with various transformations to handle undesirable 

outputs, based on the findings of Ali and Seiford (1990), about how solutions 

change in the BCC model when the data is transformed. Ali and Seiford conclude 

that a DMU is efficient in the BCC model if and only if it is efficient with translated 

data and likewise a DMU is inefficient in the BCC model if and only if it is 

inefficient with translated data (Ali and Seiford, 1990). This property can be 
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generalized to other models and is given the name "classification invariance." 

This property states that the same DMUs are declared efficient or inefficient 

before and after any transformations. Classification invariance ensures that the 

efficient frontier remains unchanged after any transformation. "Order invariance" 

refers to the ordinal rankings of the inefficient DMUs. When a transformation is 

order invariant the ordinal rankings of the inefficient DMUs is preserved before 

and after any transformation. Lastly, "solution invariance" occurs when two 

mathematical programs yield the exact same results, this is also considered the 

highest level of invariance for all transformations. Examples of each type of 

invariance are given in Table 10. The DEA efficiency score is given before and 

after transformation for each type of invariance. The scores after transformation 

are indicated by the DMUs labeled as A', …, E'. 

 

Classification 
Invariance 

Order 
Invariance 

Solution 
Invariance 

Original 
DEA Score 

Transformed
DEA Score 

Original 
DEA Score

Transformed
DEA Score 

Original 
DEA Score 

Transformed
DEA Score 

A = 0.84 A' = 0.76 B = 1.00 B' = 1.00 A = 0.84 A' = 0.84 
B = 1.00 B' = 1.00 C = 1.00 C' = 1.00 B = 1.00 B' = 1.00 
C = 1.00 C' = 1.00 E = 0.92 E' = 0.90 C = 1.00 C' = 1.00 
D = 0.78 D' = 0.89 A = 0.84 A' = 0.74 D = 0.78 D' = 0.78 
E = 0.92 E' = 0.85 D = 0.78 D' = 0.69 E = 0.92 E' = 0.92 

Table 10: DEA Transformation Invariance Example 
 

The example given in Table 10 shows a hierarchical ordering of the types of 

invariance that leads to the following theorems: 
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Theorem 5: If a transformation procedure is Solution Invariant, than it is also 
Order Invariant and Classification Invariant. 

 

Theorem 6: If a transformation procedure is Order Invariant, than it is also 
Classification Invariant. 

 

These two theorems allow transformation procedures to be stratified based 

on the type of invariance that they are able to achieve. A complete discussion of 

types of invariance in DEA models and the proofs of Theorem 5 and Theorem 6 

can be found in Pastor (1996). 

 

4.3. Previous Approaches 

There are many approaches to handle undesirable outputs in DEA as 

discussed in the scientific literature. These approaches can be classified into 

three general categories: technology transformation, data transformation, and 

formulation transformation. Each approach to handling undesirable outputs has 

been used extensively in both theory and practice. Yet each approach has its 

strengths and weaknesses, which are highlighted below. For state of the art DEA 

models that address undesirable outputs refer to Ali and Seiford (1990), Seiford 

and Zhu (2002), Färe et al (1989, 2000), Färe and Grosskopf (1995, 2003, 2004), 

Korhonen and Luptacik (2004), Rheinhard et al. (1999, 2000), Scheel (2001), 

Gomes and Lins (2008), Lovell et al. (1995), Golany and Roll (1989), Sexton and 

Lewis (2003), Thanassoulis (1995), Hailu and Veeman (2001), Dyckhoff and 

Allen (2001), Lewis and Sexton(2004), Yaisawarng and Klein (1994), and Zofio 

and Prieto (2001). 



 

74 

4.3.1. Technology Transformation 

The technology transformation approach considers reverse outputs as inputs 

(Koopmans, 1951; Berg et al., 1992, Rheinhard et al., 1999), which effectively 

changes the feasible region for the DEA model in the same way as a reciprocal 

additive transformation f(U) = -U (Scheel, 2001). Although technology 

transformation has largely been done with reverse outputs, it is possible to 

change reverse inputs into outputs or to simultaneously change reverse outputs 

into inputs and reverse inputs into outputs WOLOG. Using a technology 

transformation allows you to leave inputs and outputs undefined, knowing only 

which data should be minimized or maximized. The data that should be 

minimized becomes the inputs and the data that should be maximized becomes 

the output. Thus, technology transformation makes the implicit assumption that 

the inputs and outputs are separable. Technology transformation allows for all 

assumptions on RTS (Gomes and Lins, 2008). This transformation can often 

contrast the nature of the production process of the DMU in converting inputs into 

outputs. 

4.3.2. Data Transformation 

The second class of transformation is data transformations. The class of 

transformations actually changes the inputs and/or outputs by using a 

transformation function ( )•f . This transformation function can take on many 

different forms and some of these functional forms are detailed below. In contrast 

to the technology transformation discussed in Section  4.3.1, this class of 
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transformations do not change outputs to inputs or vice versa, thus the feasible 

region is only rescaled instead of altered as in the prior approach. 

4.3.2.1. Percentage Reciprocal 

The percentage reciprocal transformation takes on the functional form 

( ) B
jk

B
jk yyf −= 100 , where 

B
jky  is undesirable output j expressed as a 

percentage for DMU k. This can be a very powerful transformation procedure 

since it is solution invariant, however recall that this transformation only works for 

data that is expressed as a percentage. When outputs are expressed as 

percentages, they can be projected to values greater than one in output-

orientated models with non-decreasing RTS. A common solution to this problem 

is to add a bounding constraint on the maximum value of all outputs that are 

expressed as percentages. 

4.3.2.2. Multiplicative Inverse 

The multiplicative inverse transformation is frequently used for undesirable 

outputs and takes on the functional form ( )
B
jk

B
jk

y
yf 1= , where 

B
jky  is a non-

zero undesirable output j for DMU k (Golany and Roll, 1989; Lovell et al., 1995). 

This transformation is a non-linear transformation, thus it is only classification 

invariant. Yet it is still extremely useful in situations where outputs are expressed 

as ratios, because the intuitive meaning of the output is retained after the 

transformation. 
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4.3.2.3. Values Transformation 

The values transformation translates data with a linear transformation of 

( ) j
B
jk

B
jk Myyf +−=  where Mj is a positive scalar that is usually equal to 

( ) ε+= B
jk

B
jj yyM ,...,max 1  with a selection of ε such that the final output value for 

each DMU is positive (Ali and Seiford, 1990; Seiford and Zhu, 2002). This 

transformation is classification invariant and is used with many applications of 

non-separable outputs. This procedure is not valid for the CCR model, which is a 

major shortcoming, since the CCR model is not translation invariant (Färe and 

Grosskopf, 2004).  

4.3.3. Formulation Transformation 

Formulation transformation, the third class of transformations, handles 

undesirable outputs by focusing on altering the objective function and/or the 

constraint set in the linear programs that generate the DEA efficiency score. This 

method allows for the greatest flexibility in handling undesirable outputs, yet this 

same flexibility can make the modified models very difficult to solve. Given the 

proper structure, formulation transformation is a very promising transformation. 

Additionally, due to the nature of formulation transformations they are rarely able 

to remain classification invariant. 

4.3.3.1. Färe et al. Non-linear model 

The first widely accepted model to handle undesirable outputs with a 

formulation transformation is presented by Färe et al (1989). This model 
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proposes that bad outputs are non-separable and are thus weakly disposable. In 

contrast, good outputs are considered to be separable and strongly disposable. 

The bad outputs in this model are allowed to decrease at an exponential rate 

when it is determined that a DMU is operating inefficiently. On the other hand, 

good outputs are expanded at a linear rate when a DMU is declared inefficient. 

The need to allow for the exponential contraction of bad outputs creates a set of 

non-linear constraints in this model. Given h good outputs and t - h bad outputs, 

the Färe et al. non-linear model is given in Model 13. This model is applied to a 

sample of US paper mills with a good output of paper produced and several bad 

outputs related to the pollutants that are created in the production process 

(Färe et al, 1989). These pollutants are considered non-separable and follow the 

model's assumption of weak disposability of bad outputs.  
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Model 13: Färe et al. non-linear model for undesirable outputs 

 

Model 13 can be difficult to solve with the presence of the non-linear equality 

constraints. Fortunately the constraint, ∑
=

⋅
Γ

=
n

k

jok
B
jk yy

1

1λ  , can be 

approximated by ∑
=

⋅Γ−=
n

k

jojok
B
jk yyy

1

2λ , which is linear and would make 

Model 13 a linear programming problem. This approximation works well when 

Γ = 1, but since Model 13 is an output orientation model the DEA efficiency 

score is unbounded and Γ could vary far away from 1.  
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4.3.3.2. Lewis and Sexton Non-Linear model 

Lewis and Sexton (2004) take a similar approach to Färe et al. (1989) but 

distinguish their model by introducing two scalar quantities θ  and E. The first 

scalar is used to capture any inefficiency in the good outputs and the later scalar 

is used for capturing the inefficiency in the bad outputs. The two scalar quantities 

are tied together in the constraint set by the quadratic constraint 1=Ε⋅θ . The 

complete formulation of the Lewis and Sexton non-linear model is given in Model 

14. 
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Model 14: Lewis and Sexton non-linear model for undesirable outputs 



 

80 

 

Model 14 has been applied to the teams of Major League Baseball (MLB) to 

determine the efficiency of each team and to compare the efficiency score to the 

values transformation procedure given in § 4.3.2.3 (Lewis and Sexton, 2004). 

Model 14 is able to show classification invariance, while at the same time is 

better at identifying inefficiencies. Although this application was able to show 

positive results, the presence of the quadratic constraint 1=Ε⋅θ  makes this 

approach very difficult to use to generate tractable results in practice. 

 

4.3.3.3. Tone and Tsutsui Slacks-Based Model (SBM) 

The previous formulation transformations in § 4.3.3.1 and § 4.3.3.2 both 

include non-linear constraints that can make them difficult to solve for all problem 

instances. This section presents a model from Tone and Tsutsui (2006) that 

takes into account separable and non-separable outputs and inputs 

simultaneously in one mathematical programming model. This allows for weak 

and strong disposability of outputs to be considered. The underlying model is the 

SBM model given in Model 8. The non-separable variables are related by using a 

positive scalar α. This scalar controls the radial expansion for the non-separable 

variable. The other terms for the Tone and Tsutsui SBM model are defined below. 

The complete model is given in Model 15. Note that the objective function is 

fractional thus making the Model 15 a fractional programming program. However, 

it can easily be transformed to a linear programming problem using the 

aforementioned Charnes-Cooper transformation as in Model 9 (Charnes and 
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Cooper, 1962). While Model 15 presents a hybrid model that is able to handle 

both separable and non-separable inputs and outputs, the treatment of bad 

outputs in the constraint set is equivalent to using the bad outputs as good inputs. 

This technology transformation may be undesirable or counterintuitive for the 

natural production process as mentioned in § 4.3.1. 

 

Data: 

 
P
ikx  the amount of separable input i, consumed by DMU k 

 
NP
ikx  the amount of non-separable input i, consumed by DMU k 

 
PG
jky  the amount of separable good output j, produced by DMU k 

 
NPG
jky  the amount of non-separable good output j, 

  produced by DMU k 

 
NPB
jky  the amount of non-separable bad output j, 

  produced by DMU k 
 
Parameters: 

 f an index representing the number of separable inputs 

 
 h1

 an index representing the number of separable good outputs 

 
 h2

 an index representing the number of separable and 

  non-separable good outputs 
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Model 15: Tone and Tsutsui SBM model for undesirable outputs 

 

4.4. Range-based Directional Distance Function Approach 

The methods developed in previous research and described above have 

shown promise in handling undesirable outputs / inputs, but none present a fully 

comprehensive model that is able to handle all cases of undesirable outputs / 
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inputs in one method. The remainder of this section will present a range-based 

directional distance function model that can be used as a fully comprehensive 

model for all situations of undesirable inputs / outputs. 

Directional distance functions are often used in the field of economics for the 

purposes of efficiency measurement and frontier estimation. The generic 

directional distance model as proposed by Chambers (1996) and Chambers et al. 

(1998) is given in Model 16. 
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Model 16: Generic Directional Distance Model 
 

Model 16 is the most basic form of the non-orientated directional distance 

function. Orientated versions of the model can be developed by setting the 

appropriate gx or gy equal to zero. This directional distance function is promising 

since it allows for a particular direction of improvement to be specified. In 

standard DEA models, the direction of improvement is defined by the radial 
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contraction towards the origin or the radial expansion from the origin. However, in 

situations with undesirable outputs, this may not be an improvement direction for 

a DMU, because the undesirable outputs may actually increase. Thus, a range-

based modification is added to the model that was presented in Model 16. 

The range-based approach was presented by Cooper et al. (1999), where the 

range for an input / output is defined as the maximum observed value minus the 

minimum observed value across all DMUs. This definition of range tends to be 

biased by the worst case performance given by the maximum input and minimum 

output, because the worst case is included in the definition of the range. A more 

optimistic range based approach is given by Bogetoft and Hougaard (1999) and 

is used in an application of branch banking by Silva Portela et al (2004). This 

approach defines a range Rio and Rjo for each input and output relative to the 

minimum and maximum observed value, respectively, across all DMUs; this 

range provides the array of possible improvements for the DMU under evaluation. 

The formal characterization of this range definition is given in Equation 17. 

 

{ }

{ } tjyyR
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Equation 17: Definition of Range-based constants 
 

In order for the range-based approach to work in concert with the directional 

distance function, the "ideal DMU" is defined. This allows for a ray from each 

DMU to be projected towards the ideal DMU. This means when a DMU is 

declared inefficient it needs to improve along the path towards the ideal DMU 
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until it contacts the boundary of the efficient frontier. The formal definition of the 

ideal DMU is given below in Equation 18. 

 

{ } { } ⎟
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⎞

⎜
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⎛ =∀=∀= tjyrixI jk

k
ki

k
,...,1max,,...,1min  

Equation 18:  The Range-based Ideal DMU 
 

The range-based constants and the ideal DMU give the foundation for the 

range-based directional distance function DEA model, referred to as the 

RDD-DEA model. This RDD-DEA model can easily be extended to the case of 

undesirable outputs by partitioning the output set into good and bad outputs. The 

resulting changes in the range-based constants and the ideal DMU is given in 

Equation 19. 

 

Data: 

 
G
jky  the amount of good output j, consumed by DMU k 

 
B
jky  the amount of bad output j, consumed by DMU k 

 ioR  the range for input i, for the DMU under evaluation 

 
G
joR  the range of good output j, for the DMU under evaluation 

 
B
joR  the range of bad output j, for the DMU under evaluation 

 
Parameters: 

 q an index representing the number of good outputs 

 
Variables: 
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 oβ  the radial efficiency metric 
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Equation 19: Range-based constants and ideal DMU for RDD-DEA with undesirable outputs 

 

The rationale behind the RDD-DEA model for handling undesirable (bad) 

outputs can be explained in Figure 9 and Figure 10. Here we assume a dataset 

with one input and two outputs and a model that has variable RTS and an output 

orientation. Output 1 is the bad output and output 2 is the good output. The two-

dimensional figure uses output 1 / input for the x-axis and output 2 / input for the 

y-axis to allow for the graphical interpretation. The ideal DMU is shown as "I" and 

the DMU under evaluation is labeled "A." The DMU A is projected towards 

DMU I until is comes to the point "A* ", which represents the projected efficient 

point DMU A
*. The degree of inefficiency is given by IAIP , which is 1/2 = 0.5. 

This is interrupted as the relative distance between DMU A and the projected 

efficient point DMU A
*. 

The efficiency measure in the RDD-DEA model is similar to the efficiency 

measure of a traditional radial-based DEA model. The difference is the reference 
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point used to measure efficiency. The RDD-DEA model uses the ideal DMU as 

the reference point whereas the BCC model, which uses the origin as a 

reference point for efficiency measurement. The RDD-DEA and BCC model are 

seen as equivalents if you rotate the origin in the RDD-DEA model to DMU I for 

as seen in Figure 10. 

 

 
Figure 9: RDD-DEA Projections 

 

 
Figure 10: RDD-DEA Projections with transformed axis 
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4.4.1. RDD-DEA with non-separable outputs 

Given this intuition for the RDD-DEA model, we can begin to tackle the 

challenges from previous modeling approaches in order to develop a fully 

comprehensive model that is able to handle undesirable outputs. This 

comprehensive model has three key considerations; (1) whether outputs are 

separable or non-separable, (2) if all sources of inefficiency are captured in the 

objective function value, and (3) the inclusion of undesirable inputs. As discussed 

in § 2.1, outputs that are non-separable have proportional increases of good 

outputs and decreasing amounts of bad outputs. In contrast, separable outputs 

imply that good outputs can increase without requiring a decrease in bad 

outputs. The general directional distance function only accounts for pure 

technical efficiency and thus is not able to identify weakly efficient DMUs. If any 

additional sources of inefficiency need to be identified, there are modifications 

necessary to the directional distance model in order to properly capture these 

inefficiency sources. The comprehensive model will overcome the weakness in 

many of the prior models that only focus on undesirable outputs. Recent 

applications have clearly demonstrated a need to model undesirable inputs in 

conjunction with undesirable outputs. 

The model presented here is based upon Model 16 and assumes an output 

orientation with non-separable outputs. The notation from the previous section 

continues as defined before. The objective function (βo) measures the amount of 

improvement necessary for DMUo to reach the targeted value and thus is an 

inefficiency score. The RDD-DEA efficiency score is given by 1-βo and is 
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monotonically decreasing in beta. A value of zero for βo indicates that DMUo is 

efficient. Efficiency scores are bounded on the half-open interval of (0, 1]. Yet the 

objective function does not account for the slacks in the constraints and 

efficiency in Model 17 is a measure of pure technical efficiency. Thus this model 

could determine DMUs efficiency that are weakly efficient, at least one non-zero 

slack value. 

 

Definition 10 (RDD-DEA Efficiency): A DMUo is considered efficient in Model 
17 if and only if βo

*
 = 0. 
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Model 17: RDD-DEA Model for Non-separable Outputs 
 

It is important to note that Model 17 does not use ioR  because an output 

orientation is assumed and the intensity variable and range parameter are both 

absent in the input constraints. The first constraint set, expressed as (1) in Model 
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17, represents the input constraints. This set of constraints is unchanged from 

traditional radial DEA models. The second set of constraints (2) are for the good 

outputs that are non-separable from bad outputs which are given by constraint 

(3), and tied together by the intensity variable βo, The opposite signs shown on 

the right-hand sides of constraints (2) and (3) indicate the difference in 

improvement direction between the good and bad outputs. It is also important to 

note that the set of constraints in (3) uses a less than or equal to constraint to 

indicate that smaller values of bad outputs are viewed as superior. Constraint (4) 

and constraint (5) are the standard convexity and non-negativity constraints 

respectively. 

 

Theorem 7: Model 17 is translation invariant. 
 

Proof: Let Jo be a constant added to every input and output. 

Constant set (1) becomes )()(

1

oio

n

k

koik JxJx +≤+∑
=

λ  and reduces to 

)(

11

oio

n

k

ko

n

k

kik JxJx +≤+ ∑∑
==

λλ  since 1

1

=∑
=

n

k

kλ  the constraint reduces to 

io

n

k

kik xx ≤∑
=1

λ  which is the original constraint in Model 17 

Constant set (2) becomes G
jooo

G
jo

n

k

ko
G
jk RJyJy ⋅++≥+∑

=

βλ )()(

1

. Note that 

the range constraint remains unchanged by adding scalar constraints, so 

the expression reduces to G
jooo

G
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n

k
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which is the original constraint (2) in Model 17. Constraint set (3) follows 

similarly. 

 

 
Theorem 8: Model 17 is units invariant. 
 

Proof: Let Ko and Ho be a constants multiplied by a given input and 

output, respectively. Constant set (1) becomes oio

n

k

okik KxKx ⋅≤∑
=1

λ  and 

the constant Ko can be divided from every term in (1) thus the constraints 

are equivalent. Similarly, constraint set (2) becomes 

o
G
jooo

G
jo

n

k

ok
G
jk

HRHyHy ⋅⋅+⋅≥∑
=

βλ
1

 once again the constant Ho divides 

out of every term and the constraints are equivalent. Constraint set (3) 

follows directly from (2) and thus Model 17 is units invariant. 

 

Model 17 is a model that can be used for in many cases where the weak 

disposability of outputs is the most salient issue. This is the case with energy 

production (Hu and Wang, 2006; Zhou and Ang, 2008), and paper production 

(Färe et al., 1989; Chung et al., 1997; Hailu and Veeman, 2001) where there is a 

clear undesirable output of pollutants that is tied to the generation of the good 

output of energy or paper. For all the strengths of Model 17, the ability to capture 

all sources of inefficiency is a key weakness. Also the RBB-DEA model tends to 

project DMUs to the frontier in areas of largest potential improvement. This can 

create targets that are difficult to obtain. An alternative approach would be to 

direct inefficient DMUs along a shortest path projection which would require a 

smaller amount of change in inputs and outputs. Thus, the next section develops 

a model for shortest path projections in the RBB-DEA model. 
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4.4.2. Shortest Path Projections 

DEA models are used to not only identify efficient DMUs, but they are also 

used to identify the degree of inefficiency in inefficient DMUs. The degree of 

inefficiency is determined by the distance between the DMU's current 

performance levels and the input / output levels for the target location, which is 

where the DMU would be projected to if it were operating efficiently. These 

targets are determined differently in many DEA models; however many of the 

DEA models yield targets that are "farthest" from the current DMU. In radial 

models, the targets are determined in a second stage by maximizing the slacks 

in the L1-distance norm (See Model 4). In non-radial models, the slacks are 

maximized in the objective function (See Model 7). However, intuitively the 

distance to the frontier should be minimized to obtain targets that are easily 

achieved by the inefficient DMUs. The input and output levels for the targets are 

therefore the closest efficient point to the inefficient DMU. This is a much desired 

property in practice as firms are often looking to use efficient DMUs that are 

similar in input / output profile as benchmarks. The area of shortest path 

projections has received a lot of attention in the recent DEA literature.  

The different approaches to finding the shortest path projections differ in both 

distance and efficiency measures, but they all attempt to find the closest targets 

to inefficient DMUs. Coelli (1998) proposes an alternative to the second stage 

model (Model 4) that minimizes the slacks through a multiple stage approach that 

solves a sequence of radial models. Gonzalez and Álcarez (2001) find the 
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shortest path in input-oriented models by minimizing the sum of inputs reductions 

for all inputs that are required to reach the frontier. The Gonzalez and Álcarez 

approach maximizes the Russell measure; this measure was first demonstrated 

by Färe and Lovell (1978). Some authors implement the closest targets by 

minimizing a distance function. In this class, Frei and Harker (1999) are able to 

find shortest path projections by minimizing the L2 distance norm. Similarly, 

Tavares and Antunes (2001) propose a model that minimizes the L∞ or 

Tchebycheff distance of each DMU to reach the efficient frontier. An approach 

that modifies the range based directional distance function in Model 17 is 

discussed in this section. 

In contrast to the RDD-DEA model, which projects inefficient DMUs to the 

frontier based upon the area where the greatest improvement is needed, the 

model presented in this section uses an alternative direction of improvement that 

identifies targets that capitalize on the strengths of the DMU, without focusing on 

any one distance norm. This makes the targets more attractive for inefficient 

DMUs and is generally easier to achieve. The INVRDD-DEA model uses inverse 

ranges and is presented in Model 18. Let the value { }G
jq

G
j

G
j

G
j yyyY ,...,,max 21=  

and { }B
jt

B
qj

B
qj

B
j yyyY ,...,,min )2()1( ++=  and any ranges (

G
joR  or 

B
joR ) that are 

equal to zero will be given zero coefficients to avoid creating undefined 

constraints. 
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Model 18: INVRDD-DEA Model for Non-separable Outputs 
 

The parameters 
G
jY  and 

B
jY  are constants that define the maximum value of 

good output j and the minimum value of bad output j, respectively. These 

constants are used with the inverse range in order to make Model 18 units 

invariant. This leads to Theorem 9 below. 

 

Theorem 9: Model 18 is units invariant 
Proof: Let Lo be a constant that is multiplied by every input and output. 

Constant set (1) becomes oio

n

k

okik LxLx ⋅≤∑
=1

λ  and the constant L0 can 

be divided from every term in (1). Thus, the constraints are equivalent. 

Similarly, constraint set (2) becomes 
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 . The constant L0 cancels out in 
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every term and equivalence to the constraint set (2) is proven. Constraint 

set (3) follows directly from (2) and thus Model 18 is units invariant. 

 

The INVRDD-DEA model yields an efficiency score for a DMU that is defined 

as 1 – β, and measures the distance from an observed point to a target point 

with reference to the ideal DMU. This ideal DMU is defined differently for each 

DMU. To further illustrate this point, consider the new range values given by 

G
io

G
j

G
jo RYR =′  and

B
jo

B
j

B
jo RYR =′ . The ideal DMU is given by 

( )G
jo

G
jo

B
jo

B
jo RyRyI ′+′′−′=′ ,  where 

B
j

B
jo

B
jo Yyy =′  and

G
j

G
jo

G
jo Yyy =′ . Thus this 

improvement direction towards I' is uniquely defined for each DMU. 

Let us once again consider DMU A in Figure 9 that has coordinates (3, 3) 

and is projected towards I in the RDD-DEA model. In the INVRDD-DEA model, 

the ideal DMU would be given by I' = (0.1, 3.1) and is shown in Figure 11. The 

target efficient point for the INVRDD-DEA model is given by A'* = (1.55, 3.041) 

versus the target efficient point for the RDD-DEA model, which is given by A* = 

(2, 4). In the INVRDD-DEA model, DMU A is required to reduce a little less than 

half of its bad output, while only making a small increase in the good output. This 

may be a preferable target as it can be easier to achieve than significant 

decreases in bad output and significant increases in good output simultaneously. 

Yet, this idea violates weak disposability and should only be used in cases with 

separable outputs. Future extensions of the INVRDD-DEA model for cases of 

weak disposability are a prime area for future research. 
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Figure 11: INVRDD-DEA Projections 

 

 

4.4.3. Three RDD-DEA models for total efficiency 

For the requirements given in § 4.4.1, a fully comprehensive model will be 

able to handle undesirable inputs and outputs whether they are separable or 

non-separable and incorporate all sources on inefficiency in the efficiency score. 

In order to build off the base directional distance function model, the fully 

comprehensive model will be presented in a series of three models in the 

following sections that successively expand upon one another. 

 

4.4.3.1. RDD-DEA with non-separable outputs 

The model presented in this section is meant to overcome the inability to 

measure total inefficiency, which is the major shortcoming of Model 17. Pure 
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technical efficiency and mixed efficiency are accounted for in this model, which 

allows for weakly efficient DMUs to be identified and a total efficiency measure to 

be developed. This model is presented in Model 19. 
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Model 19: Total Efficiency RDD-DEA Model for Non-separable Outputs 
 

There are several similarities between Model 17 and Model 19 in the 

constraint sets. The key difference is the presence of the slack variables, 
−
is , 

+
js , and 

−
js , that are treated as implicit variables in the prior model. However, in 

this model, the slack variable plays a critical role in identifying sources of mixed 
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inefficiency. This produces an objective function that is radically different from 

previous RDD-DEA models. This objective function is an adaptation of the non-

orientated efficiency measure in Tone and Tsutsui (2006) and satisfies the 

property of being bounded between 0 and 1. This is because the numerator, 

which accounts for input inefficiency, and the denominator, which accounts for 

output inefficiency, are both bounded on the half open interval (0, 1]. Thus, the 

quotient of the two is also bounded on the same interval. If an output-orientated 

efficiency measure is desired the numerator could be changed to a value of one 

and the bounds on the efficiency score would still hold. Due to the presence of all 

of the slack variables from constraints (1) through (3) in the objective function, all 

sources of inefficiency are accounted for. This leads to a new classification of 

efficiency, which is given in Definition 11. 

 

Definition 11 (Efficiency in RDD-DEA with Non-separable outputs): A DMU 
is considered efficient in Model 19 if and only if γ1

* = 1, βo
*
 = 0, 

risi ,...,10 =∀=−
, qjs j ,...,10 =∀=+

, and tqjs j ,...,10 +=∀=−
.
 

 

Model 19 is both translation invariant and units invariant as shown in following 

the proofs of Theorem 7 and Theorem 8. The non-linear objective function of 

Model 19 creates a non-linear programming problem, but can easily be 

transformed to a linear program using the aforementioned Charnes-Cooper 

transformation (Charnes and Cooper, 1962). Here, γ1 is a more comprehensive 

definition of efficiency as it includes all the sources of inefficiency and can be 

used in all the scenarios that are mentioned for Model 17, which leads to the 
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proposition that 
*1* γβ ≥ . This will be verified empirically with a numerical 

example in §  4.4.4. 

 

4.4.3.2. RDD-DEA with non-separable and separable outputs 

Up until this point, we have assumed that all outputs must be non-separable, 

however this is not always the case. A production process often generates 

outputs that are weakly and strongly disposable simultaneously. This is the case 

described in § 4.1 with sulfur dioxide (SO2) and carbon dioxide (CO2) emissions. 

While there are multiple ways to reduce the level of SO2 emissions without the 

loss of significant amounts of power generated, however this is not the case with 

CO2 emissions. This presents the need for a model that can handle both non-

separable and separable outputs; this new, more capable model is presented in 

Model 20. 

This model is based on Model 19 with the addition of the following notation: 

Data Superscripts: 

 NSG represents the data that comes from a non-separable 

  good output 
 SG represents the data that comes from a separable  

  good output 
 NSB represents the data that comes from a non-separable 

  bad output 
 SB represents the data that comes from a separable bad output 

 
Parameters: 

 q1 an index representing the number of non-separable  

  good outputs 
 q2 an index representing the number of all good outputs 
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 q3 an index representing the number of all good outputs plus 

  the number of non-separable bad outputs 
 

This notation allows us to see that the constraints (1), (2), (4), (6), and (7) are 

directly from Model 19. The new constraints (3) and (5) are to account for good 

and bad separable outputs, respectively. The absence of the βo in both of these 

sets of constraints symbolizes the lack of a tie to other outputs and their ability to 

contract or expand independent of other outputs. 



 

101 

( ) ( )

k

tqjysy

qqjRysy

qqjysy

qjRysy

rixsx

ts

qqq
y

s

y

s

y

s

y

s

t

x

s

r

k

n

k

k

SB

jo

SB

j

n

k

k

SB

jo

NSB

joo

NSB

jo

NSB

j

n

k

k

NSB

jo

SG

jo

SG

j

n

k

k

SG

jo

NSG

joo

NSG

jo

NSG

j

n

k

k

NSG

jo

ioi

n

k

kik

o

t

qj

SB

jo

SB

j
q

qj

NSB

jo

NSB

j
q

qj

SG

jo

SG

j
q

j
NSG

jo

NSG

j

r

i io

i

∀≥

=

+=∀=+

+=∀⋅+=+

+=∀=−

=∀⋅+=−

=∀=+

⎟⎟⎠

⎞
⎜⎜⎝

⎛
⋅−+++++∗+

∗−
=

∑

∑

∑

∑

∑

∑

∑∑∑∑

∑

=

+

=

+

=

+

=

+

=

−

=

+=

+

+=

+

+=

+

=

+

=

−

0)7(

1)6(

,...,1)5(

,...,1)4(

,...,1)3(

,...,1)2(

,...,1)1(

..

1
1

1
1

min

1

3

1

32

1

21

1

1

1

1

231

1

3

111

12

32

2

1

1

λ

λ

λ

βλ

λ

βλ

λ

β

γ

 
Model 20: Total Efficiency RDD-DEA Model for (Non-)Separable Outputs 

 

The objective function value (γ2) includes the multiple sources of output 

inefficiency in the denominator and the input inefficiency in the numerator. The 

inefficiency in the non-separable outputs is captured by the βo term. The 
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inefficiency in separable outputs is reflected as the normalized sum of the slack 

variable for the separable outputs and the good non-separable outputs. This 

leads to a new classification of an efficient DMU provided in Definition 12. 

 

Definition 12 (Efficiency in RDD-DEA with (Non-) separable outputs): A DMU 
is considered efficient in Model 20 if, and only if γ2

* = 1, βo
*
 = 0, 

risi ,...,10 =∀=−
, 

1,...,10 qjs NSG
j =∀=+

, 
21 ,...,10 qqjs SG

j +=∀=+
, 

32 ,...,10 qqjs NSB
j +=∀=+

 , and tqjs SB
j ,...,10 3 +=∀=+

. 

 

Similar to previous models, Model 20 is also translation invariant and units 

invariant that follows the proofs of Theorem 7 and Theorem 8. The non-linear 

program can use the Charnes-Cooper transformation to change Model 20 into a 

linear program (Charnes and Cooper, 1962). The objective function value (γ1) is 

bounded on the open interval (0, 1] and serves as the basis for the fully 

comprehensive model in the following section that allows for an expanded 

definition of inefficiency in both inputs and outputs. 

 

4.4.3.3. Fully Comprehensive RDD-DEA model 

Model 21 presents a fully comprehensive RDD-DEA model that accounts for 

non-separable and separable inputs / outputs, and accounts for all sources of 

inefficiency. The entire notation is based upon the previous models with the 

addition of the following notation that is used to provide the proper indices for the 

set of inputs, and to disaggregate the radial input and output inefficiency. 
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Parameters: 

 p
1 an index representing the number of non-separable  

  good inputs 
 p

2 an index representing the number of all good inputs 

 p
3 an index representing the number of all good inputs plus 

  the number of non-separable bad inputs 
 
Variables: 

 
x
oβ  the radial efficiency metric for input inefficiency 

 
y

oβ  the radial efficiency metric for output inefficiency 
 

The objective function contains a pair of new terms 
x
oβ  and 

y
oβ  that represent 

the decoupling of the input and output radial inefficiency. This allows the non-

separable inputs to be radially contracted / expanded together and visa versa for 

the outputs, which is a reflection of how non-separable inputs/ outputs typically 

occur in practice. However, in cases when the inputs and outputs are non-

separable among one another, the substitution of oβ  in constraints (1), (3), (5), 

and (7) and the objective function will produce the desired result. 

Constraints (1) – (4) represent the inefficiency in the input dimensions and are 

reflected by constraints (5) – (8), which present the inefficiency in the output 

dimensions. The objective function is a composite of the inefficiencies identified 

in each constraint (1) – (8). Thus, the efficiency score can be decomposed into 

its composite parts (See Table 11). This allows Model 21 to be used as a generic 

model in all cases with undesirable outputs, by adding inputs / outputs to the 

various classifications described in Table 11. 
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Table 11: Efficiency Decomposition of Comprehensive RDD-DEA Model 
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Model 21: Full RDD-DEA Model 
 

The formulation of Model 21 is good for decoupling the multiple sources of 

inefficiency, however it can be difficult to solve with the current non-linear 
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objective function. Thus, the Charnes-Cooper transformation is used to transform 

Model 21 into a linear program (Charnes and Cooper, 1962). The linear variant of 

the model is presented as Model  C.1 and is coded in A Modeling Language for 

Mathematical Programming (AMPL) and run in CPLEX 11 to give the empirical 

results of § 4.4.4. The AMPL code appears in  C.2 in Appendix C with Model  C.1. 

The objective function of Model 21 is monotonically decreasing with respects 

to all slack variables 
x
oβ , and 

y
oβ . An optimal solution to Model 21 is (

*3γ , *λ , 

*x
oβ , 

*y
oβ , 

−NSG
is*

, 
−SG

is*
, 

−NSB
is*

, 
−SB

is*
, 

+NSG
js*

, 
+SG

js*
, 

+NSB
js*

, 
+SB

js*
) 

and the objective function is then bounded on the half-open interval ( ]1,0*3 ∈γ . 

An efficient DMU in Model 21 must achieve efficiency of the forms given in Table 

11 by satisfying Definition 13. 

 

Definition 13 (Fully Comprehensive RDD-DEA Efficiency): A DMU is fully 

efficient in Model 21 if and only if 1*3 =γ , 0* =x
oβ , 0* =y

oβ , and all slack 
variables equal zero. 

 

Model 21 is developed under the assumption of variable RTS, however RTS 

options are available by manipulating the convexity constraint (9). For constant 

RTS the convexity constraint can be eliminated from the model. For decreasing 

RTS a lower bound of zero and an upper bound of one is placed on the ∑λ . 

And conversely increasing RTS is achieved by replacing constraint (9) with 

∞≤≤∑λ1 . This allows for a full range of RTS assumptions with Model 21 

and the efficiency status given by Definition 13 still holds true. 
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In the following section, the fully comprehensive RDD-DEA model developed 

in this section will be used to analysis the air quality of 64 countries. 

  

4.4.4. Greenhouse Gas Emission Example 

Greenhouse gases are gases in the atmosphere that help planet earth 

maintain its' temperature and energy balance. Over the last 50 years, human 

activity has altered the chemical composition of the atmosphere by building up an 

excess of greenhouse gases mainly as a result of the industrial revolution. In 

modern times, fossil fuels are burned to power vehicles, heat homes and to 

power factories. As a result, many greenhouse gases have nearly doubled since 

the beginning of the industrial revolution. 

The United Nations Framework Convention on Climate Change gave the 

charge in December 1997 to reduce the emission of greenhouse gases by at 

least 5% of the then current levels. This standard does not account for 

differences in the characteristics of many countries and ignores the domestic and 

industrial needs of a country. This is a clearly inequitable situation and a new 

system is needed. Here we propose the RDD-DEA model as a method to identify 

countries that are operating efficiently and areas for potential improvement for 

countries that are not efficiently managing greenhouse gas emissions. 

This study analyzes 64 countries and their ability to “transform” 3 inputs into 

5 outputs. The input variables are population, energy consumption, and labor 

force. The outputs are gross domestic product (GDP), energy produced, carbon 

dioxide (CO2) emissions, methane emissions (CH4), and nitrous oxide (N2O) 
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emissions. This dataset is an adaptation of the dataset used in Gomes and Lins 

(2008)2. Table 12 gives the details of the good and bad inputs / outputs and the 

classification of separable and non-separable inputs / outputs using the same 

abbreviation convention used in § 4.4.3.2. The complete dataset can be found in 

Appendix D. 

 

Input Output 
SG Labor Force NSG Energy Produced 

NSB Population SG GDP 
NSG Energy Consumption NSB CO2 Emissions 
  NSB CH4 Emissions 
  SB N2O Emissions 

Table 12: Input/ Output Structure of Greenhouse Gas Study 
 

This dataset is run in Model 21 as a non-oriented model so that all sources of 

inefficiency can be identified and used in the calculation of the efficiency. We 

also assume variable RTS to accommodate with wide range of countries used in 

this study. The efficiency score is also decomposed into the individual sources of 

inefficiency based on the definitions given in Table 11. The results of Model 21 

are also compared for the same variable set using Model 17. The population 

variable, which is a non-separable bad input, will be modeled as a non-separable 

good output, because Model 17 is unable to handle bad inputs. Note that not all 

input classifications of Model 21 are used, namely there are no separable bad 

inputs. This will not affect the use of Model 21 because it is decomposable. The 

constraints for the separable bad inputs will not be used and p3 = r. 

                                            
2 The dataset of Gomes and Lins is limited by data availability and thus the variables of labor force, energy 

produced, CH4 emissions, and N2O are added to the dataset to supplement the dataset. The values of these 

variables are estimated numbers and not actual observations. 
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The complete results of this study are presented in Appendix D. They show 

31 of 64 countries are efficient in not creating greenhouse gases. There are 

some countries that have especially low efficiency scores as would be expect, 

among them are China (0.024), The Russian Federation (0.155), and Malaysia 

(0.056). The efficiency decomposition is able to show for these countries and 

other inefficient countries, the source of inefficiency. This allows for the focus of 

attention to be paid to particular areas of improvement. The RDD-DEA model 

consistently has higher efficiency scores for the inefficient DMUs than the Full 

RDD-DEA model. This is due to the slack that is included in the inefficiency in the 

Full RDD-DEA model but is absent in RDD-DEA. 

This empirical example of greenhouse gas emissions shows several key 

properties about the Full RDD-DEA model. First, the model is able to identify 

efficient DMUs with separable and non-separable inputs / outputs. Secondly, the 

Full RDD-DEA model can decompose inefficiencies into multiple categories of 

inefficiency allowing decision-makers to better target areas of improvement. And 

lastly, the RDD-DEA model is reducible when not all sources of inefficiency exist 

in the dataset. These properties make the Full RDD-DEA a good candidate for 

network migration and performance evaluation, which is presented in the next 

chapter. 
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CHAPTER 5 

NETWORK MIGRATION 

5. NETWORK MIGRATION 
5.1. Introduction 

A network is defined as a set of nodes connected by a set of edges. This 

definition can apply to many real world systems.  

5.2. Evolution of Network Science 

Networks have long been studied in the field of mathematical graph theory 

beginning with Euler's well known 1735 solution to the Königsberg bridge 

problem. This problem involves finding a way to take a tour through the fours 

islands of Königsberg using each of the seven bridges that connect the islands 

only once. Euler was able to prove that there is no solution to this problem and 

this began the field of graph theory (Euler, 1735). After which, the 20th century 

has seen the field of graph theory become a large and active field of research. 

Social scientists have also had a long standing interest in networks to 

understand the importance of human behavior. Sociologists have sought to draw 

conclusions about the influence of individuals on one another in society. This is 

often used to create networks of people who have similar beliefs and values, 

which are used to identify central actors and influential members. This type of 

analysis is very useful in understanding the dynamics of relatively small networks. 
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However, when networks grow in size individual players in the network become 

less important. Instead, the dynamics of the larger components of the network 

play a more critical role in analysis. This leads to questions like: How do you 

identify the largest connected component? Or how many nodes can be removed 

before the network is disconnected? 

Recent developments in the field of network science have been termed social 

network analysis, because of numerous applications in the social sciences. 

Researchers are interested in how humans interact to influence social trends 

(Wasserman and Faust, 1994), make friendships online (Scott, 2000), and 

develop business relationships between companies (Mizruchi, 1982), among 

other topics. All of these developments may be a consequence of the famous 

small-world experiments by Milgrim (Milgrim, 1967; Travers and Milgrim, 1969). 

The experiment was an investigation into the path lengths in acquaintance 

networks, which involved sending out a set of letters asking each participate to 

pass the letter along to someone that they knew on a first name basis in an 

attempt to reach a predetermined targeted individual. Though these experiments 

had no formal network structure, they were able to tell us a lot about networks. 

Approximately a quarter of the letters actually reached their targets. On average, 

they were passed through only six people. This gave birth to the term "six 

degrees of separation" and served as the inspiration for several researchers 

decades later; including Garfield (1979), Guare (1990), and Watts (2004). 

The problem with traditional types of social network analysis is inaccuracy of 

human responses and small sample size (Newman, 2003). The methods of data 
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collection in Milgram’s experiment involved direct contact with participants 

through interviews or questionnaires. This proved costly and labor-intensive 

when attempting to gather an adequate sample size. The survey also suffers 

from human bias, as one person's definition of an associate may be different 

from another.3 Researchers have moved to studying a special type of affiliation 

networks called "collaboration networks,” which generally have more reliable data 

sources. Collaboration networks can be thought of as networks where individuals 

are linked together because of their membership in a common group. This can 

be the case with movie actors who have starred in the same movies (Watts and 

Strogatz, 1998), authors who have co-authored a publication (Barabási et al., 

2002; Melin and Persson, 1996; Newman, 2001a; Newman, 2001b) or two people 

who have served on the same board of directors (Davis and Greve, 1997). An 

additional layer of reliability can be added to the data when personal connections 

are represented by communication records that can be tracked electronically, as 

is the case with phone records, instant message communications, or email 

exchanges. Electronic records allow a researcher to know all of the connections 

with near complete certainty. This leads to a new case of networks known as 

"information networks" or "knowledge networks." 

Two classic examples of information networks are the World Wide Web and 

the Internet. The World Wide Web represents the largest known network 

topology (Albert and Barabási, 2002). The World Wide Web is a set of hyperlinks 

between webpages, whereas the Internet refers to the physical connections of 

computers and servers that are connected via fiber optic cable or copper wire. 
                                            
3 Marsden (1990) provides a review of issues with data collection in social network analysis. 
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The World Wide Web is a directed network given the above definition and this 

leads to two degree distributions for each node. The probability that a node has k 

outgoing edges is Pout(k) and likewise a node has k incoming edges is Pin(k). 

Albert et al. (1999) established that the World Wide Web has a power law 

distribution of Pout(k)~k-γout
 and Pin(k)~k-γin

 with γout = 2.45 and γin = 2.1.This was 

later verified by Broder et al. (2000) where they obtain coefficients of γout = 2.38 

and γin = 2.1. A slightly different approach was taken by Adamic and Huberman 

(2000) where the World Wide Web is depicted by nodes that represent domain 

names. In this representation, two nodes are connected when any webpage 

within a domain is connected to a webpage in another domain. The power law 

distribution is once again observed for the incoming edges with γin = 1.94. 

The Internet has been studied by Faloutsos et al. (1999) using the routers as 

nodes and the physical connections between them as edges. The topology of the 

Internet was captured at several different points in the years 1997 and 1998. 

Each time the power law distribution was observed with γ = [2.15, 2.2]. This was 

the result of 3888 routers. More recently, Govindan and Tangmunarunkit (2000) 

mapped an Internet topology that totaled approximately 150,000 routers 

connected by nearly 200,000 edges. In this case the power law distribution was 

also observed with γ = 2.3. 

Biological networks are another set of networks that have been widely studied. 

One such network is the genetic regulatory network. This network is an 

expression of a gene by the proteins that work as activators or inhibitors. The 
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statistical properties of these networks have been studied by several authors 

(Farkas et al., 2003; Guelzim et al., 2002) Neural networks are also a popular 

class of biological networks. Neural networks have been modeled successfully in 

a small number of cases because of the complexity of real neural networks. 

White et al. (1986) modeled a case with 282 neurons analyzing the neural 

network of the nematode. Sporns (2002) and Sporns et al. (2000) have made 

attempts at modeling larger organisms like the brain. Ecologists have studied 

biological networks of the food web. In this food network, each species 

represents a node and arcs are connected from species A if it preys on species B. 

Statistical models of food networks have been completed with extensive datasets 

in recent years (Dunne et al., 2002; Montoya and Solé, 2002; Huxham et al., 

1996). 

The last set of networks described is technological networks, which are 

defined by Newman (2003) as "man-made networks designed typically for 

distribution of some commodity or resource, such as electricity or information." 

The electrical grid is a technological network of high- voltage lines that send 

electricity through a particular region. A detailed example of statistical analysis of 

the Northeastern United States power grid follows in § 5.4. Other electric grid 

examples are found in Amaral et al. (2000) and Watts and Strogatz (1998). Other 

technological networks include airline networks, road networks, communication 

networks, and distribution networks. 
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5.3. Operations Research View of Networks 

The field of operations research (OR) is heavily dominated by researchers 

that view networks from an optimization perspective looking to maximize flow 

given a set of constraints. While this has led to many beautifully elegant 

algorithms and heuristic procedures (the Hungarian method, Primal Network 

Simplex, and Dinic's Method, to name a few) these contributions rarely handle 

design trade-offs of networks of the size common in the field of network science. 

Alderson (2008) states: 

The engineering approach to complex systems follows a different 
paradigm from network science. In engineering, any notion of 
system function must be well defined (perhaps specified a priori), 
and forward engineering is the process by which one explores the 
relationship between system structure and function to design the 
components and interactions that ensure desired behavior. 
However, for many real systems the notion of function is not really 
understood, is often subject to interpretation, and is rarely defined 
in any formal sense. This ambiguity makes the direct application of 
forward engineering (e.g. via optimization) to the study of network 
science somewhat awkward because a well-posed mathematical 
formulation is typically not available from the outset. 
 

The author states that the field of network science more naturally fits within 

reverse engineering, which is the process of understanding a system structure 

through analysis of observed function. The approach of reverse engineering is 

prominent in the development of complex systems, but is only recently becoming 

more common in optimization literature. The emergence of reverse engineering 

in optimization literature is due to the work of Ahuja and Orlin (2001) in inverse 

optimization. The following sections will detail the techniques of inverse 

optimization and highly optimized tolerance (HOT) networks as two procedures 

that take a reverse engineering approach to network science. Other procedures 
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by Mathias and Gopal (2001) and Gastner and Newman (2006) demonstrate 

optimization techniques for real-world networks but are not covered in the 

following section, as they are orthogonal to concepts of reverse engineering. 

 

5.3.1. Inverse Optimization 

The principles of inverse optimization come from the original workings of 

geophysics research, where model parameters that are used to predict 

observable data are not always known with certainty. Tarantola (1987) defines a 

solution to the forward problem as a prediction of the values of observed 

parameters, given estimates of the model parameters. Thus, solving the inverse 

problem is to infer the model parameters given the observed parameters. Ahuja 

and Orlin (2001) translate this to optimization problems, calling the forward 

problem finding the optimal decision variables given the model parameters, the 

cost coefficients. And the inverse problem the inferring of cost coefficients or 

model parameters, given the value of the observed parameters, the decision 

variables. They go on to describe inverse optimization in terms of a linear 

programming problem. 

Let X be a set of feasible solutions to the linear program 

(P) = { }X |min ∈xcx , where c is the cost vector. A particular feasible solution 

to P is given by X, which is not necessarily optimal. The inverse optimization 

problem is to change the cost vector from c to a cost vector d, such that d is the 

optimal cost vector for X and p
cd −  is minimized for some distance norm Lp. 
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Ahuja and Orlin (2001) are able to show results for the L1 and the L∞ norms (e.g. 

if P is solved in polynomial time than the inverse problem also is solved in 

polynomial time) and show results for the shortest path, assignment, and 

minimum cut problems. This result has led to inverse optimization in integer 

programming (Schaefer, 2009), mixed integer linear programs (Wang, 2009) and 

combinatorial optimization (Heuberger, 2004). Yet rarely are the problems in 

network science as clean as the well structured optimization models mentioned 

above. 

5.3.2. Highly Optimized Tolerance Networks 

A more robust structure for optimizing network structure is found in the work 

of Carlson and Doyle (1999). The authors introduce a mechanism for generating 

power law distributions called highly optimized tolerance (HOT) networks. These 

networks show the ability to balance the trade-offs between yield, resource costs, 

and risk tolerance. The authors argue that the frequency of the power law 

phenomena in natural and man-made networks is due to the inherent nature of 

systems to improve performance while adhering to constraints of scarce 

resources, a volatile environment, or physical limitations. They state that most 

complex networks are highly optimized to perform to objectives via highly 

structured, non-generic system configurations that arise from iterative design 

through evolution in natural systems or engineering in man-made systems. Thus 

HOT networks result in robust instances of high performance, well structured 

internal configurations and hypersensitivity to design flaws and unanticipated 

changes. 
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An application of HOT to generate a network is performed by Fabrikant et al. 

(2002). The authors generate a replication of the Internet using incremental 

growth to heuristically optimize principles in executing trade-offs. They propose 

balancing the local cost of adding a node with the overall distance to all the other 

nodes in the network. Formally speaking, the process considers a new node i to 

add to the network by connecting it to an existing node j which minimized the 

following function ( ) jhjidist +⋅ ,α , where dist(i, j) is the Euclidean distance 

between node i and node j and hj is the centrality measure which represents the 

average number of hops to other nodes in the network. The authors demonstrate 

that by changing the value of α a wide spectrum of network topologies can be 

generated. Alderson (2008) notes that although this heuristic is able to generate 

a range of distributions through optimization, it is not intended to model real world 

networks. The shortcomings of inverse optimization and HOT networks point to a 

need for optimization techniques that are both robust and can be applied to real 

life networks. In the following sections, DEA is presented as a plausible method 

to overcome these challenges. 

 

5.4. Northeastern US Electrical Grid Example 

The electricity transmission network of the Northeastern United States spans 

from Maine to Virginia, as far west as Indiana, to most parts of Kentucky and on 

into Michigan. This network is interesting to analyze, since it personally affected 

all residents of Ann Arbor, Michigan during the blackout in August of 2003, the 
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largest blackout in US history (North American Electric Reliability Corporation, 

2004). This network experienced widespread failure as a result of a very small 

local problem with a few sagging power lines in Ohio (North American Electric 

Reliability Corporation, 2004). This problem then quickly cascaded to other parts 

of the network, across state lines, leaving millions of people without electricity 

(See Figure 12, U.S. Department of Transportation, 2004). The U.S. power grid 

is widely seen as aging, vulnerable and in need of repairs, the necessary repairs 

are estimated to cost billions of dollars, to be considered ‘adequate’ 

(O’Driscoll et al., 2003). The necessary system upgrades will require the 

integration of new technology and the construction of thousands of miles of 

transmission lines. These upgrades will also help protect against emerging 

threats to the U.S. power grid, such as hackers or potential terrorists, which could 

cause widespread blackouts originating from remote locations that could be very 

difficult to trace (Blum, 2005). 
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Figure 12: August 2003 Blackout US Affected Region (Gray) 
 

These types of networks are typically studied using models that simulate the 

network’s response to multiple parameters that affect flow of electricity. An 

alternative means to study these networks is by analyzing the topological 

structure of the transmission network and the properties the network exhibits 

when small perturbations are made to the topological structure. These 

perturbations could be representative of a failure in an element of the power grid 

or future expansion to the existing network. Previous research addressing this 

phenomenon has looked at characteristics of artificially generated topologies. 

Albert et al. (2004) concluded that electric transmission stations that serve as 

hubs are the source of  greatest vulnerability of the power grid which indicates 

that the electric transmission network could experience catastrophic cascading 

failures under a targeted attack. It has been demonstrated that such networks 

are subject to cascading failures leading to possible disruptions of up to 40 

percent of the network solely with the removal of a single node (Kinney et al., 

2005). A major shortcoming of previous research is the dependence on a single 

performance measure or multiple performance measures (that are assumed to 

be independent) to characterize the stability of the network. 

A fundamental problem with this approach is that the entire representation of 

the network can rarely be summed up with a single measure. Additionally trade-

offs generally exist amongst the different performance measures. For example, a 

reliable network can be built by adding redundant edges to ensure that the 

network is resilient to attacks. The desirability of this type of solution must be 
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balanced against the economic feasibility of implementing this solution. It is of 

interest to strike a balance using the multiple performance measures in order to 

properly characterize a network. One way to achieve balance is through the use 

of DEA to calculate a single efficiency score for each network topology that is a 

linear combination of these multiple performance measures. A listing of the 

performance measures that will be used in this study is provided in Table 13 

along with their definitions. 

 

Performance 
Measure 

Definition4 

Degree Centralization 
The variation in the degrees of vertices divided by the 
maximum degree variation that is possible in a 
network of the same size 

Betweenness 
Centralization 

The variation in the betweenness centrality of vertices 
divided by the maximum variation in betweenness 
centrality scores possible in a network of the same 
size 

Average Clustering 
Coefficient 

The fraction of pairs of neighbors of the vertex that 
are themselves connected averaged across all 
vertices 

Average Shortest Path 
The average distance of the shortest paths between 
every pair of nodes in the network  

Diameter 
The length of the longest shortest path between any 
two vertices in the network 

Table 13: Performance Measures in Network Science 
 

The network for this analysis is a subset of the Northeastern United States 

power grid provided by Réka Albert, Associate Professor of Physics at 

Pennsylvania State University. The data contains 4,941 nodes and is connected 

by 6,594 edges. The nodes represent three different types of substations that are 

present in electric transmission networks. The first are generating substations 

                                            
4 The definitions provided above are adopted from De Nooy et al., 2005 
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that serve as sources of power within the network. The second type is a 

transmission substation that transfers power along high voltage transmission 

lines. The last type are distribution substations which serve as centers for smaller 

local distribution grids, so that they appear as leaf nodes in the transmission 

network. The data that was acquired for the purposes of this project does not 

indicate the type of substation of each node, thus all nodes are included in the 

study without prejudice. The edges of the network represent the transmission 

lines that connect each of the different substations. They are undirected and 

assumed to have unlimited capacity. This simplifying assumption is necessary 

because information on current loads or maximum capacity of the transmission 

lines was not available. 

A typical inspection of any network data begins with the distribution of node 

degree. This provides insight into the types of properties that can be expected 

when exploring a network. The initial investigation of the node degree distribution 

of this electric transmission network yields the following graph, as shown in 

Figure 13. There appears to be an exponential tail in the distribution, which is 

clearly a bad fit for a power law distribution. Based on the cumulative distribution 

plot seen in Figure 14, there is additional evidence that confirms the existence of 

an exponential distribution. When the data is fit for a power law relationship the 

exponent turns is -3.0523, which is outside of the range of exponents 

( -1 < α < -3) that is expected for power law relationships. Increasing the xmin 

value to 2, yields an even worse fit with a power law exponent equal to -3.5795, 

although more of the data is along the best fit line. 
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Figure 13: Log-log plot of node degree distribution 

 

 
Figure 14: Log-log plot of cumulative distribution 

 

The notion of reverse quantities (as discussed in §4) is important as four of 

five network performance measures must be modeled as undesirable outputs, 

because more desirable values are smaller values which is contrary to normal 

DEA outputs. These performance measures include degree centralization, 

betweenness centralization, average shortest path, and diameter. In the context 

of the electric transmission grid each of these measures are better when they 

have smaller values. The two centralization measures are both surrogates for 

variation in node degree. When there is a high variation in node, degree there is 

also a strong chance that there are a significant number of edges in the network 

that are connected to hubs. This can be a problem when trying to construct a 
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robust network. As mentioned previously, these hubs are easy targets for 

hackers since entire networks can be disabled, leading to the destruction of large 

sections of the network very quickly. It is intuitive why the average shortest path 

and diameter of the graph would be minimized. A complete listing of inputs and 

outputs to the DEA model is presented in Table 14. It is possible to include other 

inputs and outputs such as flow or capacity. However, they are excluded due to 

limited data availability, which does not detract from the studies ability to show 

DEA as a viable methodology to evaluate network topologies. The outputs 

marked with a (U) are modeled as undesirable outputs and undergo the 

aforementioned data transformation in § 4.3.2.2 the Multiplicative Inverse 

Transformation. 

  

Number of Nodes 
Number of Edges Inputs 

Isolates 
Degree Centralization (U) 
Betweenness Centralization (U) 
Average Clustering Coefficient 
Average Shortest Path (U) 

Outputs 

Diameter (U) 
Table 14: Inputs/ Outputs of Electrical Grid Dataset 

 

The next step is to design systematic perturbations of the existing power grid 

network in order to obtain a rich set of possible alternative configurations for the 

network. Although there are endless ways this could be achieved, a random 

reassignment of edges was used. Beginning with the original network, a specified 

percentage (5%, 10%, 15%, 20%, and 30%) of the edges was randomly selected 

for reassignment to new destination nodes. The selection of the new destination 
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node was assigned randomly. Although the edges were selected at random, it is 

recognized that nodes with lower node degree are more likely to be rewired 

because they represent a majority of the network. This presents a problem since 

it constructs the possibility of creating a significant number of isolates, or 

disconnected nodes within the network. Thus, the number of isolates is recorded 

for each perturbation of the network. This number is later used in the DEA 

analysis to penalize topologies that have a large number of isolates. Another 

problem that occurred with the perturbation procedure is that it occasionally 

duplicated the edges that already exist or it created self-loops (an edge that has 

the same origin and destination node) in the perturbed networks. Since the 

occurrence of both of these phenomenon was rare, all multiple and loop edges 

where simply deleted from the network. The shortcomings of using this 

procedure to generate alternative network are overcome by using other 

optimization procedures that are summarized in § 5.6. However, optimization 

procedures are not used for the purposes of this study, because there is no need 

for alternative topologies to be optimal. Ultimately, ten new networks were 

generated from the original network at each level of percentage rewired creating 

a total of 50 new networks.5  

The first DEA analysis (Study A) is a complete run of all 50 networks including 

all variables as described in Table 14. This process revealed that 36 of the 50 

network topologies were evaluated as efficient and given efficiency scores of 1 

(See Appendix E). This is not highly useful since all insights into characteristics 

                                            
5 Due to limitation in the DEA software used for this pilot study only 50 networks were evaluated. Thus 

one of the networks that contained 5 percent of rewired edges was eliminated from comparison to allow for 

the original network to be considered with the other networks. 
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about the data are ignored. Thus, we are not able to properly discriminate 

between the different topologies. The first noteworthy characteristic of the data is 

low amount of variability in some of the performance measures. The degree 

centralization, in particular, has a standard deviation of 0.000222, which is only 

0.022% of the mean, which indicates that this variable is not changing much 

between the different network topologies. Similarly, the number of edges only 

has a standard deviation of 1.038460, which is 0.016% of the mean. These two 

variables are thus eliminated from the analysis and a second DEA model is run 

with the remaining variables. 

The second DEA model (Study B) shows a moderate amount of improvement 

with 27 of the 50 network topologies declared efficient (See Appendix E). 

However, there still something unsettling about the results. Of the 27 efficient 

network topologies, fifteen appear in networks that were perturbed by ten percent 

or less, which equates to 75% of the topologies being evaluated. Whereas in 

networks that were perturbed by more than ten percent, only 40% are actually 

declared efficient. The networks with rewiring of greater than ten percent of their 

edges are given penalties for having a large number isolates in the network. This 

is a function of the network generation strategy rather than a product of the 

network topology. Based upon this perplexity, the next iteration of the DEA model 

will serve to eliminate the use of isolates as an input. Thus, all of the nodes will 

be compared using equal footing, because they all have a common input of 

4,741 nodes. Thus, the next DEA model (Study C) is simply a study of the 

difference of the various outputs. 
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The results of Study C yield very insightful results. It provides network 

topologies that are efficient at all levels of network rewiring. A complete profile of 

efficient network topologies is included below in Table 15. 

 

Table 15: Summary of Efficient Units of Study 3 in Electrical Grid Study 

Percentage of rewiring 
Number of Efficient

Network Topologies 
Number of Inefficient

Network Topologies 

Original 1 - 
5% 4 5 

10% 7 3 
15% 3 7 
20% 2 8 
30% 4 6 
Total 21 29 

 

This is useful since it shows networks that are similar to the original topology 

and distinctly different from the original topology can still be efficient with respect 

to performance measures used in the study. Although these results are closer to 

the expected, there is still room for further improvements. A strong correlation 

exists between the average shortest path and the diameter of the graph. These 

two variables are strongly correlated to the betweenness centralization; all 

correlations are over 0.75. Thus the final DEA model (Study D) examines a 

combination of the two outputs (betweenness centralization and average 

clustering coefficient), normalized by the single common input (the number of 

nodes). 

The results of Study D reveal only six efficient topologies (pared down from 

the 50 that we started with). Once again, most of the efficient DMUs occur at 

levels of ten percent rewiring or less. The lone exception is the topology labeled 
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30%-3. However, this is not an aberration since this particular topology serves as 

the benchmark for more than 70 percent of the inefficient topologies. That simply 

means that when trying to obtain efficiency, many of the currently inefficient 

topologies need to change to look more like 30%-3 in order to be more efficient. 

It is worth noting that the original topology of the power grid is efficient in 

comparison to the other topologies in all of the studies, which is due to the high 

clustering coefficient that exists when compared with the other networks. This 

allows for the original topology to rate superior to the others in most of the 

evaluations, since clustering is always lowered in random perturbations made in 

the network. 

While DEA has been successfully used to evaluate network topologies of 

electric transmission systems, there are some concerns about the results. There 

is a low variation in the efficiency scores for each of the studies, which indicates 

that none of the network topologies are performing particularly poorly. This is 

related to low variation within network performance measures mentioned 

previously. It appears that a better approach is needed to generate perturbations 

in the network. Even at 30 percent rewiring of the arcs, the network still closely 

resembles the original network. The following sections will address these issues 

using a different problem framework. 

 

5.5. Re-engineering of Networks 

The term re-engineering of networks refers to the process of using 

optimization techniques to implement changes in existing complex networks. The 
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changes in the network usually involve significant modifications in network 

topology. As a consequence, the overall network performance is often perturbed. 

This implies that the network topology has an effect on the resulting network 

performance, which is often the case in many real-world networks. Thus, the 

resulting network topology is a critical component to optimize for maximum 

network performance. 

The order in which alterations to the network are performed is also a critical 

factor in network performance. A network by its very nature has the potential to 

have cascading effects from changes that occur to certain parts of the network. 

This makes it critically important to mitigate unintended effects that can occur 

when specific portions of a network are modified. As a result, selecting the proper 

part of a network to perturb and the sequence of the perturbations has a great 

effect on the sustainability of the network during the migration. In summary, the 

re-engineering of networks seeks to optimize topological changes to a network to 

maximize network performance of the resulting network topology and all 

intermediate network topologies, while maintaining network integrity during 

migration. 

The process of re-engineering a network differs from the optimization 

methods present in § 5.3 because the focus of re-engineering networks involves 

optimizing changes in networks versus optimizing construction of new networks 

as in HOT networks. While the principles of HOT can be applied to existing 

networks, there is no indication of the sequence in which changes should be 
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made. Additionally, it is not clear how HOT would explicitly account for all factors 

of network performance that a decision maker may have an interest in observing. 

In contrast to inverse optimization, re-engineering of networks occurs on 

networks that do not always fit well into the restriction of linear programs. Re-

engineering of networks also places a limit on the number of network properties 

that can be included in decision making. Inverse optimization techniques often 

restrict a decision maker to an objective function (i.e. minimize cost, maximize 

flow, shortest path, etc.) which seeks to optimize relative to a single performance 

metric of interest. Often there are several performance measures of interest and 

it is essential to recognize the trade-offs among the metrics. In short, there are 

several advantages to re-engineering of networks that do not exist in current 

methodologies, principally the ability to optimize perturbations to existing 

networks based on several performance metrics. 

One classic real-world case that could benefit from the principles of re-

engineering of networks is the transition in information technology (IT) systems 

that many corporations are making to Enterprise Resource Planning (ERP) 

systems. The increased globalization of the marketplace has created pressures 

for organizations to operate more efficient IT solutions that bridge many different 

business units and data collection systems. ERP systems are branded to be 

systems that increase control, improve communication and coordination and 

create the picture about the corporate functions on the aggregate level. ERP 

systems usually achieve these objectives by supporting several key functional 
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areas; human resources, operations, logistics, finance, and sales and marketing 

(Davenport, 1998). 

The purpose of a well designed ERP system is to allow business to be 

conducted in a more integrated manner that eliminates redundant data entry and 

other inefficiencies that exist in disaggregated systems (Robinson, 2002). The 

increased efficiency gains are usually realized through the use of standard 

controls and redesigning of business practices and processes. There is an 

implicit business model that ERP systems use that is not always congruent with a 

company’s business model (Light et al., 2001). This makes the implementation 

phase of the ERP conversion very important to the ultimate success or failure of 

the entire venture.  

The implementation of ERP software packages is expected to have some 

measure of disruption to an organization (Soh et al., 2000). Accompanying the 

known disruption is an inherit risk to the business that problems will arise that 

could cause critical information to be lost or delayed and vital business 

processes to be interrupted. To mitigate the inherit risks many companies opt to 

phase in an ERP system piece by piece instead of going for the “big bang” 

overnight approach. This usually turns out to be a wise decision given the well-

known perils of the big bang approach (e.g. the Heshey Food Corp detailed in 

§ 5.5.1.1). However phasing in an ERP system has an entire set of challenges 

that are centered around: (1) which modules will be included and (2) the order 

that modules are implemented. Many researchers have given principles and 

strategic decision paradigms for ERP implementation, but few give rigorous 
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quantitative methods for ERP implementations (Mabert et al., 2003; Hong and 

Kim, 2001; and Sumner, 2000). However, Hallikainen et al. (2009) recognize the 

underlying interconnected network of organizational and technical ties that make 

the implementation sequence a critical decision. Because of the innate network 

structure that is being redesigned in an ERP implementation, this example is the 

prototypical case for re-engineering of networks. There is a well defined complex 

network that is being changed through some optimal sequence of network 

topology changes, while attempting to minimize disruption and maintain 

functionality throughout the implementation. This serves as the foundation for the 

example that motivates the methodology presented later in this chapter. However, 

before the methodology is presented, the following section will give some of the 

challenges that exist in ERP implementation and two case examples of poor 

implementations. 

5.5.1. Challenges of ERP Implementations 

While there are many cases of successful ERP implementations, there has 

been a plethora of failures. Factors that influence the ultimate success of an ERP 

project can range from unrealistic and uncooperative customers to lack of 

resources and weak managerial support (Brown and Jones, 1998). Barker and 

Frolck (2003) note that, “although each individual ERP package has its downfall 

or customization problems, the bulk of ERP problems stem from an 

implementation that is not handled properly.” This would suggest that while 

training, communication, and other factors are important, the procedure used in 

implementation is the key to success. 
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Light et al. (2001) see the biggest challenge to the implementation of an ERP 

system to be the integration of ERP with legacy systems that a potential ERP 

client would prefer to keep. However, most ERP systems have standard 

packages that can be very difficult to modify. This creates an interesting problem 

for many businesses as they are forced to decide if they should re-engineer their 

process to be in line with the implicit processes of the ERP system or attempt to 

fit their legacy systems into the ERP architecture. One company that faced this 

decision was Reebok. They worked with SAP to overcome this problem but still 

did not have a solution with a single vendor for all modules (Orenstein, 1998 and 

Stedman, 1999). Light et al. (2001) note that Reebok’s insistence on using 

multiple vendors may be because of the wide spread perception that no one ERP 

system is the best at all modules. They state:  

IT and business managers also argue that ERP suites tend only to 
have one best in class application. Peoplesoft is linked with a good 
human resources module and Oracle with financials, for example. 
Furthermore organizations may be left waiting for the next upgrade 
from their ERP software vendor when they require further 
functionality. Customer relationship management and e-commerce 
concepts have been a key concern in recent years, for instance, 
and ERP vendors are just getting to grips with the ideas. 
 

The fact that some experts recognize that the best ERP system is not from a 

single vendor but from multiple vendors leads companies to implement their own 

custom solutions with the best of breed IT strategy. This strategy infers that 

taking the best of the individual parts will make the best sum, which is not always 

true because making the individual components compatible with one another is 

non-trivial. Yet there are cases where best in breed produces a superior overall 

system (Zygmont, 1999). 
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Below are two cases of companies that faced major challenges with ERP 

implementations with a wide range of problems internally and externally. 

 

5.5.1.1. Case 1: Hershey Foods Corporation 

In 1999, Hershey Food Corporation of Hershey, PA experienced the 

unthinkable as they scrambled to fix a problem with their ERP system, which left 

thousands of its customers without chocolate products to stock their shelves. The 

problem originated with the company attempting to do an update of information 

systems for Y2K preparedness. Up until the late 1990s, the food and beverage 

industry as a whole had a very low ratio of information technology spending to 

total revenue, according to Fred Parker, Senior Vice President of Schreiber 

Foods Inc. in Green Bay, Wisconsin (Turban et al., 2002). The state of the art in 

IT solutions was bar-code scanning which was introduced around 1980. However, 

as the turn of the century approached many food and beverage companies saw a 

great opportunity to update many of its legacy systems while implementing 

solutions for the Y2K problem. 

Hershey got ahead of the curve of updating IT systems by starting to 

modernize their hardware and software as early as 1996. The proposed project 

included changes to standardize hardware, moving from a mainframe-based 

network to a client-server environment, and replacing over 5,000 desktop 

computers. All of these changes were seen to be necessary to keep Hershey 

competitive and increased the company's ability to share data with customers 

more rapidly and efficiently. Hershey decided that this would be the perfect time 
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to move an ERP system using the software of SAP AP of Walldorf, Germany 

integrated with software from other vendors. 

The project termed Enterprise 21 had an aggressive deadline to be 

completed in April 1999 to match a period of traditional low sales. However the 

project was unable to make the aggressive deadline and ended late in mid-July. 

This happened to be a major problem for Hershey because July represents the 

time that Halloween orders would begin to flow through the system. Adding to 

this complication, the information systems staff decided to convert all of the new 

systems using the direct cutover strategy of having the entire system go live at 

once. 

Problems arose almost immediately as customers found their shelves empty 

as Halloween approached. The shortage meant more than simply loss of sales, 

but highly contested shelf space was lost to competitors like Mars and others. 

One vice president of business development at a regional distributor commented, 

"If you don't have my toothpaste, I'm walking out of the store, but for a chocolate 

bar I'll pick another one. Customers are not likely to walk out of a store because 

there are no Hershey's bars" (Laudon and Laudon, 2001). This indicated that 

there could be a risk to long-range sales because of this IT system failure. 

By September Hershey finally admitted that there was a problem and 

something had gone wrong with the new ERP system. Questions arose and a 

taskforce was sent out to investigate possible sources of the problem. It was 

obvious that the problem was not chocolate candy production. At the time of the 

changeover Hershey had a safety stock of eight-days of supply in its warehouses, 
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in anticipation of minor problems with the new system. Yet within three weeks of 

converting to the ERP system shipments were more than two weeks late. The 

exact source of the problem was never identified, but some analysts point directly 

to the direct cutover method of implementing the ERP system as the source of 

the problem. Jim Shepard of AMR Research Inc. states, "These systems tie 

together in very intricate ways," thus implying that Hershey may have been in 

over their heads attempting to use a direct cutover method. Though the source of 

the problem was never pinpointed, the signs of a problem definitely existed in the 

financial statements with declines of $100 million in sales and a drop in profit of 

19% (Stedman, 2000).  

5.5.1.2. Case 2: "A Large Soft Drink Bottler" 

In the bottling industry, coming out on top is usually tied to a company's ability 

to have the latest and greatest in bottling equipment. A piece of machinery that 

increase fill speeds or increases accuracy of the filling process is highly valued. 

Yet the information technology systems that support the business' vital 

information architecture are often out dated and marginalized (Barker and Frolick, 

2003). One particular bottling company that subscribed to this philosophy had 

experienced rapid growth over the last couple of decades and realized that 

critical upgrades were necessary to their IT systems. The larger the company got 

the more disjointed the IT system became as every launch of a plant or division 

came with a different stand-alone system that was rarely compatible with existing 

systems.  
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Senior management realized that in order to remain competitive in an ever-

evolving marketplace they would have to be able to increase the company's 

capability to share information at a rapid speed to make critical business 

decisions on the fly. The bottling company recognized a need for a system that 

could accomplish the following goals: (1) meet the needs of the individual 

departments; (2) be compatible companywide; and (3) facilitate the integration of 

communications that was desperately needed. After a great deal of research and 

discussion the team decided to implement an ERP system. The company 

decided to purchase a commercial ERP system and self install the system. The 

latter of these decisions eventually led to much stress and fall out in the company. 

The decision to do the implementation of the ERP system in-house fell in line 

with the bottling company's historical "do-it-yourself" philosophy, which had led to 

much of its early successes. However this undertaking meant an enormous 

workload on a young, inexperienced staff with little support from upper 

management. Many of the implementation team did not have expertise in IT 

systems and few of them had experience in the manufacturing environment. 

Many members of the team felt under appreciated and did not receive 

recognition for there efforts (Barker and Frolick, 2003). The team met with much 

resistance and uneasiness because of poor communication about training and 

important details that were of interest to the other employees of the organization. 

Employees were very fearful and anxious about their job security. Ultimately, 

many employees resigned voluntarily, while others were forced to leave as 
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internal pressures mounted and general discomfort with the implementation took 

over the process (Eshelman et al., 2001). 

 

5.5.2. Benefits of using DEA to Re-engineer Networks 

From the issues with ERP implementations documented in § 5.5.1 it is clear 

that the sequence in which networks change is a salient issue for many 

companies. Moreover, the process of ERP implementation lacks a clear set of 

quantitative methods that use optimization techniques to achieve the desired 

performance metrics. In the remainder of this section, Data Envelopment 

Analysis (DEA) is presented as a methodology to assist in cases of large-scale 

network topology changes, as seen in ERP implementation and other situations 

that occur with corporate mergers, acquisitions, and takeovers. DEA, as 

presented in § 2, is an effective methodology to perform re-engineering of 

networks as it balances trade-offs among multiple performance measures while 

having the ability to consider a large number of alternative network topologies 

simultaneously. 

 

5.5.3. Company Network Restructuring Model 

The example of an ERP implementation is one example of re-engineering of 

networks, however there are others that are prevalent in many companies. In the 

current economic climate, corporations around the world are looking to 

restructure to remain profitable and in some cases just to remain viable. The 
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restructuring of a company could imply many different changes. In some cases, it 

is simply a change in the organizational chart that shifts reporting roles. In other 

cases, a restructuring could mean the buy-out of a competitor. Yet in all of these 

cases and many in between there is a clear change in some network structure. 

When the organizational chart of a company is changed there is a possibility of 

management being overburdened with too many individuals reporting to the 

same person, thus leading to ineffective leadership and decreased productivity. 

When a company acquires another company, there is usually an entire team of 

people that attempt to mange the transition for both companies, and smooth out 

any rough spots. The straightforward task of tracking inventory or paying invoices 

can now become complex, because the incompatible systems cannot share 

information. In all cases mentioned above, managing change can be an arduous 

task. 

In general, a company has a set of network structures that are being forced to 

change because of some external pressure or decision. The company's initial 

network topology is assumed to be known before the change occurs. In some 

cases, the final network topology is also known, but this is not always the case. 

Figure 15 gives the methodical model that is used to analyze all possible types of 

network topology change that could occur. The terms "migration" and 

"integration" are used to describe the processes that are occurring to the initial 

network topology. The network is either being migrated to function differently or 

being integrated into another network. The essential difference between 

migration and integration is migration occurs on a single network while 
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integration involves the merging of two distinct networks. Conversely, the final 

network is achieved through the processes of "rewiring" or "generation." The 

rewiring of a network implies that the number of nodes within the network will 

remain relatively the same but the connections between the nodes will be 

changed significantly. When the final network topology is achieved through 

generation of the network the number of nodes and connections between them 

are both drastically changed. Thus, the difference between rewiring and 

generation is in the preservation of the number of nodes in the network topology.  
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Figure 15: Company Network Restructuring Model 
 

This methodical model yields four distinct possible ways to change network 

topology labeled A through D. Each case is detailed in the following sections. 

5.5.3.1. Case A 

Case A represents a company that is reorganizing internally, but will keep all 

functionalities and departments. The change that occurs to the network topology 

is a rewiring of edges. This would represent the case mentioned earlier in the 

chapter when a company is migrating to an ERP system. For this scenario the 

final network is usually known, thus the procedure to migrate from the current 

network to final network is optimized. 

 

5.5.3.2. Case B 

Case B represents a company undergoing a major restructuring to the 

internal architecture. This may occur when a company is making a significant 

strategic business decision to reorganize or when a company is restructuring due 

to economic pressures. This type of restructuring is typical to occur in personnel 

and reporting hierarchical networks. This could be the case of the wall street 
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banks that were forced to file for bankruptcy. (i.e., Lehman Brothers, Merrill 

Lynch, etc.) 

 

5.5.3.3. Case C 

Case C represents the case of a company acquiring another company (See 

Figure 16). Company 1(C1) buys Company 2(C2) and C1 is in a far superior 

state in comparison to C2. Thus, C1 will convert C2 into having the same 

network topology as C1, but will do so while integrating C2 into C1. The resulting 

final network will be one network in which C1 & C2 will operate with the same 

network that was formerly the network of C1. This occurred when Borders (C1) 

bought out Waldenbooks (C2) and integrated Waldenbooks inventory 

management system to the Borders system. 

 

 

Figure 16: Company Migration with Rewiring - Case C 
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5.5.3.4. Case D 

Case D is the case when two companies of relatively equal strength merge 

(See Figure 17). Company 1(C1) will merge with Company 2(C2), so they will be 

equal partners and take the best aspects of both C1 and C2 to form the new 

company. The companies may have totally different network topologies before 

the merger with the same core functions, but the post merger network topology 

will be radically different from the network of either C1 or C2. This is the case in 

the merger of Delta Airlines (C1) and Northwest Airlines (C2). 

 

 

Figure 17: Company Integration with Generation - Case D 
 

5.6. Analysis and Discussion 

The methodological framework, given in Figure 15, gives us an approach to 

generalize the analysis of any network change. The situation described as 
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network migration, Case A and Case B, starts with one network, and ends with 

one network that has a different topology. Network integration6, Case C and 

Case D, takes two separate networks and assimilates them into one network. 

The knowledge of the final network is a key characteristic of each case. 

Preferably the final network topology is given or known. This means that the 

desired final state for the network is known a priori. This extra piece of 

knowledge is leveraged to make efficient changes towards the final network 

topology. This also means that the process to get to the final network is the only 

part that needs to be optimized, instead of the final network topology itself. This 

will not always be the case and some situations will require an optimization of the 

final network topology. In scenarios when this is the case, the optimal desired 

final network topology should be decided before any network alterations are 

made to the initial network topology. There are several options for generating an 

optimized final network topology including genetic algorithms, Tabu search, and 

integer programming formulations (Li et al., 2008; Mejia and Agurrie, 2005; Do et 

al., 2000). Any of these approaches could be used to generate an optimal final 

network topology. The remainder of this section assumes that an optimal final 

network topology can be generated and is known and given before any changes 

to the initial network are made. This allows the remainder of this section to focus 

solely on the process used to get from the initial network topology to the final 

network topology.  

                                            
6The network integration framework can be generalized to n different networks, but in most situations the 

networks are considered in piecewise.  
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With the initial network and final network topologies known with certainty, we 

can now create a residual network (), which is the difference between the initial 

network and the final network topologies. The residual network is defined as 

follows: 

 

Definition 14 (Residual Network): The residual network is made of the following 
components: 
 

(a) all arcs that are in the initial network but are not in the final 

network (arcs that are removed from the network) 

(b) all arcs that are in the final network but are not in the initial 

network (arcs that are added to the network) 

(c) all nodes that are in the initial network but are not in the final 

network (nodes that are removed from the network) 

(d) all nodes that are in the final network but are not in the initial 

network (nodes that are added to the network) 

(e) all nodes that are connected to arcs that are in the final network 

but are not in the initial network or connected to arcs that are in 

the initial network but are not in the final network 

 

The construction of the residual network allows us to shrink the large-scale 

network to a size that is often much smaller than either the initial network or the 

final network. The residual network contains all of the changes that need to take 

place in the initial network to achieve the final network. 
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Theorem 10: If the initial network and final network are connected graphs, then 
the residual network () is also a connected graph. 
 

Proof: Suppose that an isolate (a node with no arcs incident upon it) 

exists in  then the node must be a node from 

(a) the final network and is not in the initial network 

This means that the node is present in the final network topology, 

which is connected and has at least one arc incident upon it. This 

arc does not exist in the initial network because the node does not 

exist in the initial network, thus is included in the residual network. 

So the node cannot be an isolate. 

(b) the initial network and is not in the final network 

This means that the node is present in the initial network topology, 

which is connected and has at least one arc incident upon it. Since 

the node does not appear in the final network, all arcs incident upon 

it are also not in the final network. Thus there is at least one arc 

that will appear in the residual network, so the node cannot be an 

isolate. 

(c) both networks that are used to connect new arcs or arcs that are 

being deleted  

This means that the node is connected to at least one arc and is 

not an isolate. 

Thus there are no nodes that are included in  that could be an isolate. 

 

Now that the residual network is established as the baseline network that 

changes occur, the next section presents an algorithm for operating on the 

residual network.  
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5.6.1. Network Migration Algorithm 

The general approach to this algorithm is to make changes in the residual 

network that will maintain efficiency of the initial network with regards to the 

performance metrics that are defined. The algorithm also attempts to transform 

the initial network by minimizing the amount of disruption to the core or center of 

the network. Starting with the residual network as defined above, the following 

steps are performed. 

 

Network Migration Algorithm 

This algorithm is completed in steps. Each pass through the set of steps is 

considered a stage. Data on the performance of the algorithm is recorded in each 

stage. 

Step 1) Initialize the algorithm to stage 1. 

Step 2) Add/ delete all the nodes that are on the periphery of the residual 

network in the initial network. All leaf nodes (with only one arc 

attached to the residual network) are considered to be on the 

periphery. Delete all leaf nodes from the residual network once they 

are added/ deleted from the initial network. If no leaf nodes are 

present in the residual network proceed to Step 3. 

This approach makes changes in the "low hanging fruit" first and allows for 

observations of how sensitive the network potentially is to perturbations in the 

network topology. By focusing on portions of the network that are not central 
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to the initial network topology, potentially harmful actions can easily be 

localized quickly. 

Step 3) Compute the performance metrics for the initial network when each 

node (and all the adjoining arcs) for the nodes in the residual 

network are added to (deleted from) the initial network individually. 

The desired performance metrics that a researcher may want to use to 

evaluate a network can vary greatly. At a minimum, the list of performance 

metrics should include: the number of arcs, cost of the network, amount of 

traffic allowed on the network (flow), a measure of cohesiveness, and a 

measure of centrality. The particular performance metrics that are used will 

vary based on the specific example. 

Step 4) Use the Full RDD-DEA model presented in § 4.4.3.3 to evaluate the 

relative efficiency of adding to or deleting from the initial network 

each node in the residual network. The initial network topology with 

all modifications up until this stage should also be included in the 

evaluation of the network topologies. 

The networks that result from adding each individual node will serve as the 

DMUs. The nodes of the residual network are being evaluated on their ability 

to positively impact the initial topology based on the calculated performance 

metrics. 

Step 5) Select the network topology (do not consider the initial network 

topology) that yields the highest efficiency score as given by the 

Full RDD-DEA model. Ties should be broken by the lowest value of 
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betweenness centrality for the nodes that make up the altered 

network topology. 

The initial network topology is not eligible to be selected because it would 

result in the algorithm cycling. However it is important to include the initial 

network topology in the evaluation of the other network topologies to 

understand if all network changes will result in a decrease in efficiency. The 

tiebreaker rule is consistent with the prior steps that give priority to nodes on 

the periphery. 

Step 6) The newly selected network topology is now used as the initial 

network. And the value of the efficiency score of this network is 

saved as the efficiency for this stage of the algorithm. 

Step 7) The node and all arcs that are incident upon the node are deleted 

from the residual network. If all nodes are deleted from the residual 

network continue to Step 8, otherwise continue to Step 2 as the 

next stage of the algorithm. 

Step 8) Take the average of the efficiency values for each stage to get the 

total efficiency for the network migration process. STOP 

 

When there are n nodes in the residual network, this algorithm will require at 

most n stages to complete. In most cases, the algorithm will require fewer than n 

stages because multiple nodes can be added to the initial network in step 2 of 

the algorithm.  
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In some instances it may be beneficial to only consider changes to a cohesive 

subgroup of the network when running this algorithm. This allows the added 

benefit of making changes to only a local part of the network before moving on to 

another part of the network, and has the added benefit of avoiding widespread 

failure. 

One limitation of this algorithm is that most stages of the algorithm will only 

add a small number of nodes to the initial network topology. There may be gains 

to parallel processing of several changes to the network in different areas. These 

gains are not realized from the use of this algorithm. The tiebreaker rule is based 

on changing nodes that remove nodes from the periphery. This may not be in line 

with the objectives of the modeler, thus, in such instances, a different tiebreaker 

rule may be more appropriate. 

 

5.7. Numeric Results 

The algorithm above is tested with an example from a real-world 

implementation of an ERP system. The company that provided this data is a 

Fortune 100 company that sought assistance in determining how to best 

implement their ERP system, SAP. The company has some experience with 

optimization and network analysis, but would not be considered experts. They 

had a loose idea of the magnitude of implementing SAP into their current IT 

system, but did not have the in-house analytical skills to carry out the 

implementation without assistance. We were introduced to the company through 
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a colleague and subsequently sold them on the idea of using DEA as a 

methodology to assist in the process. 

 

5.7.1. IT Network Example 

The data provided consists of the set of applications that are migrated to SAP 

and the functional modules to which each application belonged. In total, there are 

236 applications and eleven functional areas, which can be thought of as 

departments. A complete listing of the number of applications in each functional 

area is given in Table 16. These 236 applications will serve as the nodes for the 

IT network. The applications send information back and forth to one another. 

When Application A sends information to Application B, this is represented by a 

directed arc in the network from Application A to Application B. There are 2582 

arcs in the initial IT network topology. The final network topology of the ERP 

system is known before the migration process is begun, thus this example is a 

Case A example from the methodical model given in Figure 15. 

 

Table 16: Applications for Functional Areas 
Functional 

Area 

Number of 

Applications

Functional

Area 

Number of 

Applications 

A 19 G 1 

B 52 H 1 

C 3 J 44 

D 9 K 1 
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E 57 I 24 

F 25   

 

The data is represented by a From / To matrix that contains zeros and ones 

to indicate applications that send or receive data from one another. A one is 

placed in the row of Application A when it sends data to Application B. Similarly, 

a one is placed in the column of Application B when it receives data for 

Application A. Ultimately this matrix is transformed to an arc list to be used by 

Pajek software to generate all of the network performance measures. 

Pajek is a program used for the analysis and visualization of large-scale 

networks. Pajek is literally translated as spider from the Slovenian language. The 

software was developed in November 1996 and is distributed as freeware for 

noncommercial use. An example of a Pajek visualization is given in Figure 18 

courtesy of Baird and Ulanowicz (1989). This visualization shows the food 

network for the Chesapeake Bay Mesohaline network. This visualization shows a 

small part of Pajek's ability to change node size proportional to some 

characteristic of the node and provide labels to the various nodes. 
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Figure 18: Pajek Network visualization of Chesapeake food web 
 

The IT network for the aforementioned company is placed into Pajek and 

energized using the Kamada-Kawai command to produce the layout given in 

Figure 19. With such a large number of nodes and arcs, patterns can be hard to 

visualize, but the figure shows three distinct clusters of nodes that are highlighted 

with circles. These clusters of nodes represent the applications in functional 

areas B, E, and J. This observation is based on special characteristics of the IT 

network data, which has higher intra-functional connectivity than inter-

functionality connectivity. This occurs because applications within a functional 

group or department are more likely to communicate with one another than with 

applications outside of the functional group. 
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Figure 19: Initial IT Network drawn in Pajek 
 

When the initial IT network topology given in Figure 19 is compared with the 

final ERP network topology given in Figure 20 there are two visually recognizable 

pieces of information that can be gathered. The first is that there are a 

considerably smaller number of arcs in the final ERP network. This is because of 

the efforts of ERP systems to streamline communications, such that there are 

more central data points communicating with many applications versus large 

numbers of disjoint applications that keep unique data that is shared with a large 

number of applications. However, even with a smaller number of arcs the three 

largest departments are still easily identifiable in the network and are highlighted 

in Figure 20 with dashed circles. The second observation is that the number of 
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nodes remains relatively constant. In fact, in this case, no applications are being 

eliminated, so all applications are replaced or kept in the final ERP network. 

 

Figure 20: Final ERP Network drawn in Pajek 
 

For this example, the individual departments are used as the cohesive 

subgroups to generate residual networks. These subgroups serve as the 

groundwork for the network migration algorithm described in § 5.6.1 and localize 

changes to a department. The procedure for generating the residual networks, 

which are the foundation of the network migration algorithm, for the functional 

groups is detailed below in Figure 21 and Figure 22 for department B. 
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Figure 21: Step 1 of Residual Network Identification 
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Figure 22: Step 2 of Residual Network Identification 
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The procedure for creating the residual networks, which are referred to as 

clusters in Figure 21 and Figure 22, for the functional areas of the ERP system is 

as follows: 

(1) Identify the department cluster in the initial network (A) and the final 

network (B), then add these two clusters together such that the result 

has all the arcs from both clusters. This result is referred to as the 

union cluster (C). 

(2) From the union cluster (C) subtract out the intersection cluster (D), 

which is the cluster that contains all the arcs that appear in both (A) 

and (B). The result is the residual cluster (E), also referred to as the 

residual network. The residual cluster fits the formal definition given in 

Definition 14 of a residual network and thus can be used in the network 

migration algorithm. 

 

The performance metrics that are used in the ERP implementation are 

important to understand before the network migration algorithm is performed. 

These metrics are used to evaluate the quality of a particular network topology 

relative to another network. Performance metrics should be given very careful 

consideration because they shape the solution that the network migration 

algorithm yields. There are several procedures that allow for preprocessing of 

variables to understand the most meaningful variables to include; among them 

are principle component analysis, multivariate statistical analysis, and stepwise 

procedures (Cinca and Molinero, 2004; Jenkins and Anderson, 2003; Wagner 
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and Shimshak, 2007). It is also important to include variables that are determined 

to be significant by subject matter experts. This gives validity to results and 

allows them to be compared to results produced from other methodologies. The 

performance metrics in Table 17 are used for this analysis.  

Input/ 
Output 

Performance 
Metric 

Description 

Separable 
Good 
Input 

Number of 
Edges 

The number of edges is an indication of the 
resources that a network topology has 
available to achieve the output measures 

Separable 
Good 
Input 

Cost 
The cost is how much money it cost to 
implement an individual or set of applications 

Non-
separable 

Good Input 
Time 

The time to install an application or set of 
applications is captured with this variable 

Separable 
Bad 

Output 

Betweenness 
Centralization 

The betweenness centralization is a measure 
of centrality in a network and identifies the 
presence of central nodes in a network. A 
formal definition is given in Table 13. 

Separable 
Good 

Output 

Average 
Clustering 
Coefficient 

The average clustering coefficient is a 
measure of cohesiveness in a network and 
identifies the presence of cohesive subgroups 
in a network. A formal definition is given in 
Table 13. 

Non-
separable 

Good 
Output 

Flow 
The flow measures the expected number of 
transactions that will occur in a network 
topology. 

Table 17: Performance Metrics for ERP Implementation 
 

The performance metrics are used with the residual cluster (E) (in Figure 22) 

and the initial cluster (A) (in Figure 21) to perform Stage 1 of the network 

migration algorithm below. The initial cluster, final cluster and the residual cluster 

all have 52 nodes, so the number of nodes is preserved. Thus when the network 

migration algorithm is performed, nodes are not being added to or deleted from 

the initial topology, but rather arcs that are incident upon the nodes are added or 
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deleted. The steps of the network migration algorithm given below refer to nodes 

being added to the initial topology, which is used for brevity to mean the arcs 

incident upon the node. The steps of Stage 1 of the network migration algorithm 

are as follows: 

Step 1) Initialize the algorithm to Stage 1. 

Step 2) The residual network has no leaf nodes, so continue to Step 3. 

Step 3) The 52 nodes are added to the initial network one-by-one and the 

performance metrics, given in Table 17, are computed. The prior 

node is always removed before the next node is added to insure 

that the effect of the individual nodes is being captured. This 

procedure produces 53 sets of metrics (one for each node and one 

for the initial network topology) given in Table  F.1 of Appendix F. 

Step 4) The performance measures are used as inputs/ outputs for the Full 

RDD-DEA model (as displayed in Model 21) with constant returns-

to-scale. There are 53 DMUs for the 53 alternative network 

topologies. The model reveals that 21 network topologies are 

efficient and 32 inefficient topologies. See Table  F.2 of Appendix F 

for details of the efficiency scores. 

Step 5) The network topology that is generated when Node 38 is selected 

to be added to the initial cluster because it is tied for the highest 

efficiency score of 1 and has the lowest betweenness centrality. 
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Step 6) The new initial topology is generated with Node 38 added and all 

the arcs that are incident upon it. The efficiency score of this stage 

is 1. 

Step 7) Node 38 and all arcs incident upon it are deleted from the residual 

network for the next stage. Since the residual network still has 

nodes return to Step 2 

 

The network migration algorithm is repeated until the residual network has no 

more nodes remaining. The efficiency score of each stage is given in Table  F.3 

along with the running average total efficiency score, which results in a score of 

0.991048. In this case, the residual network is totally dissolved after Stage 38 of 

the algorithm, which is less than 52 the maximum number of stages.  

The results of this example demonstrate that the network migration algorithm 

can be used effectively to determine the sequence in which applications should 

be added in an ERP implementation. In general, the ERP implementation 

example shows the potential of the network migration algorithm in the re-

engineering of networks. 
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CHAPTER 6 

CONCLUSIONS and CONTRIBUTIONS 

6. CONCLUSIONS and CONTRIBUTIONS 
6.1. Summarize Contributions 

The fundamental question that inspired this dissertation research was: How 

does an organization effectively and efficiently transition its network structures 

using multiple performance measures? The technique to answer this question 

was to develop a Data Envelopment Analysis model to capture all sources of 

inefficiency and then apply this model to a dataset for an IT network using an 

algorithmic procedure. The results validated the approach. The dissertation also 

shows an application of DEA to airport efficiency, measuring the differences of 

airport efficiency based on airport size and FAA classification. This approach 

demonstrates results of theoretical and empirical research. 

The first part of the dissertation shows the historical development of the 

principal methodology used in this dissertation, Data Envelopment Analysis. The 

primal and dual models are shown from the original fractional programming 

problem. The selections of returns-to-scale and model orientation are then 

explored. The relationship between input and output orientation is explained with 

the constraints that improve the returns-to-scale in DEA models. A small 

numerical example of branch banking is given to demonstrate the principles of
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 orientation selection and returns-to-scale. The additive models and slack-

based models are presented as examples of non-orientated models along with 

the appropriate notation. The Malmquist Index and Window Analysis are two 

DEA models that allow for the analysis of time series data. This chapter 

concludes with additional extensions of DEA, including non-discretionary 

variables, categorical variables, weight restrictions, and the super efficiency 

models. 

The next section of the dissertation is a detailed study of US airport 

inefficiency. This study is included to show the ability of DEA as a methodology 

to solve real-world problems. The central research question of the study is: Is 

there a difference in the efficiency of hub and non-hub airports? In order to 

answer this question bounded DEA models are developed for the CCR, BCC, 

and SBM models. The efficiency is decomposed into scale efficiency, mixed 

efficiency, and pure technical efficiency. The results indicate that a large 

percentage of the small and medium hub airports display scale efficiency, which 

is supported by returns-to-scale analysis. The 2nd stage of the model identifies 

changes in efficiency between the years 2002 and 2005 using the Malmquist 

Index. This index is able to decompose inefficiency into that which is due to 

changes in individual airports (catch-up effect) and inefficiency due to changes in 

all airports (frontier shift). This analysis shows that small airports were best able 

to recover from the decrease in airport efficiency due to the events of 

September 11th. Also a comparison of efficiency scores using non-parametric 

tests show the recovery of the entire industry occurs in 2004. The 3rd stage of the 
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analysis focuses on statistically significant differences among the different hub 

classifications. The Wilcoxon Rank Sum test is able to show that there are 

differences between hub and non-hub airports. 

The fourth section of the dissertation develops a theoretical model to address 

the presence of reverse quantities in Data Envelopment Analysis. The topic of 

strong and weak disposability of outputs is explored. The quality of formulations 

is evaluated with the definitions of classification, order, and solution invariance. 

Prior approaches to handle cases of reserve quantities are then categorized and 

critiqued exhibiting shortcomings and opportunities for improvement. The Range-

based Directional Distance function is proposed as a method to overcome the 

weaknesses of prior approaches and short path projections are shown with the 

INVRDD-DEA model. Three additional RDD-DEA models are given to build up to 

the Fully Comprehensive RDD-DEA model that takes into account all sources of 

inefficiency. The model is then is used to illustrate all sources of inefficiency in a 

greenhouse gas example. 

The final section of the dissertation starts with an exploration into the 

revolution of the field of network science. The operations research approach to 

network science is presented through an exploration into inverse optimization 

and HOT networks. An electrical grid example of network topologies is employed 

to demonstrate the need for additional techniques in operations research to 

handle changes to network topologies. The concept of re-engineering of 

networks is described and defined as the ability to optimize perturbations to 

existing networks based on several performance metrics. The practical need for 
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re-engineering of networks is motivated by examples of ERP implementations 

with two case studies of poor ERP implementations. The concept is then 

generalized to a methodological model for typical types of changes that exist in 

cooperate networks. The critical factors for building an algorithm for modifying 

network topologies are identified and used to design a procedure for making 

changes in networks. Finally an example of an ERP implementation is given to 

show the benefits of using DEA to make changes to existing network topologies. 

Using a theoretical and empirical approach, this body of research is able to 

show the usefulness of Data Envelopment Analysis as a method to solve a wide 

range of problems with network structures. The theoretical base of DEA is 

extended with the addition of the Range-based directional distance DEA models. 

These models prove to be particularly useful in cases where the data contains 

reverse quantities. The empirical research on ERP implementations shows the 

need for quantitative methods and presents DEA as a viable methodology. This 

provides an analytical tool for a process that has been done principally by expert 

opinion. 

 

6.2. Potential Applications/ Extensions 

Possible extensions exist to the work presented in this dissertation. The 

airport study can be extended to include multiple additional factors that affect on-

time performance of airports (security delays, inclement weather, etc.). These 

factors have previously been identified as a critical factor that affects various 

types of inefficiencies in airport operations. Additionally, multiple perspectives of 
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airport efficiency should be studied to understand the fundamentals that allow an 

airport to be attractive for an airline and neighboring or partnering businesses. 

And finally, to understand the cascading effect of delays in airports a network-

based approach will be needed to identify the origin sources of delays and 

methods to prevent catastrophic propagation throughout airline networks. 

A natural extension to the INV RDD-DEA model is to include the case of weak 

disposability of outputs. This would allow for modeling processes that have 

outputs tied together, i.e., situations where bad outputs cannot be reduced 

without also sacrificing good outputs. The Full RDD-DEA model is shown to have 

desirable properties when used in the greenhouse gas example. Yet, this is only 

a limited use of the abilities of the model, to fully understand the power of the Full 

RDD-DEA model to identify all sources of inefficiency, the Full RDD-DEA model 

should be tested against some of the other models presented on a common 

empirical example. 

The algorithm presented in § 5.6 demonstrates how the implementation of an 

ERP system can be optimized. This same procedure also extends to other types 

of networks and could be used for supply chain networks. Within a supply chain 

network there are several layers that often appear in a hierarchical structure. 

Each tier of the network represents a layer to the network where suppliers 

usually flow products downward to lower tier suppliers (See Figure 23). These 

networks are under increased pressure to be more responsive to customer's 

demands (Sabath, 1998), which means that lowering variability and increasing 

stability within the network are very important issues. Yet the profitability metrics 
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often drive many of the network design considerations. This contrast drives a 

need to have carefully designed supply chain networks that have multiple 

performance metrics that evaluate the quality of the network. 

 

 

Figure 23: Supply chain hierarchical network 
 

These opportunities and others that arise in network migration present a 

fertile area of future research opportunities and the chance to make substantial 

contributions in several industry sectors. 
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A) Appendix A: DEA Results of Branch Bank Example 
 
 
 

DMU 
Name Efficiency Score 

A 1.328 
B 1.644 
C 2.185 
D 2.546 
E 1.000 
F 3.327 
G 3.381 
H 1.000 

Table  A.1: DEA Efficiency Scores of Branch Banks 

 
 
 
 
 

Table  A.2: DEA Projections for Branch Banks 

 
 
 

Bank 
(I) Num 

of 
Tellers 

(O) Total 
Revenue 

(O) Total 
Bank 

Deposits 

Total 
Revenue/ 

Teller 

Total Bank 
Deposits/ 

Teller 

A 16 9.632 299.200 0.602 18.700 
B 20 9.336 493.078 0.467 24.654 
C 33 17.805 707.839 0.540 21.450 
D 40 18.109 1010.909 0.453 25.273 
E 10 6.020 187.000 0.602 18.700 
F 65 31.374 1557.031 0.483 23.954 
G 72 43.344 1346.400 0.602 18.700 
H 11 4.980 278.000 0.453 25.273 
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B) Appendix B: DEA Airport Study Results 
 

2002-2003 2003-2004 2004-2005 2002-2005 
Category 

Total MI<1 MI=1 MI>1 MI<1 MI=1 MI>1 MI<1 MI=1 MI>1 MI<1 MI=1 MI>1 
Non-Hub 5 4 0 1 2 0 3 2 0 3 3 0 2 

%   80.0% 0.0% 20.0% 40.0% 0.0% 60.0% 40.0% 0.0% 60.0% 60.0% 0.0% 40.0%
Small-Hub 16 8 0 8 6 0 10 6 1 9 9 0 7 

%   50.0% 0.0% 50.0% 37.5% 0.0% 62.5% 37.5% 6.3% 56.3% 56.3% 0.0% 43.8%
Medium-Hub 25 15 2 8 20 1 4 7 1 17 19 2 4 

%   60.0% 8.0% 32.0% 80.0% 4.0% 16.0% 28.0% 4.0% 68.0% 76.0% 8.0% 16.0%
Large-Hub 21 11 2 8 14 2 5 5 3 13 10 3 8 

%   52.4% 9.5% 38.1% 66.7% 9.5% 23.8% 23.8% 14.3% 61.9% 47.6% 14.3% 38.1%
Total 67 38 4 25 42 3 22 20 5 42 41 5 21 

Table  B.1: Results of Malmquist Index for Airports 

 
 
 

2002-2003 2003-2004 2004-2005 2002-2005 
Category 

Total SC<1 SC=1 SC>1 SC<1 SC=1 SC>1 SC<1 SC=1 SC>1 SC<1 SC=1 SC>1 
Non-Hub 5 3 0 2 2 0 3 2 0 3 3 0 2 

%   60.0% 0.0% 40.0% 40.0% 0.0% 60.0% 40.0% 0.0% 60.0% 60.0% 0.0% 40.0%
Small-Hub 16 3 0 13 10 0 6 5 1 10 6 0 10 

%   18.8% 0.0% 81.3% 62.5% 0.0% 37.5% 31.3% 6.3% 62.5% 37.5% 0.0% 62.5%
Medium-Hub 25 11 2 12 10 1 14 7 1 17 13 2 10 

%   44.0% 8.0% 48.0% 40.0% 4.0% 56.0% 28.0% 4.0% 68.0% 52.0% 8.0% 40.0%
Large-Hub 21 10 2 9 12 2 7 10 3 8 11 3 7 

%   47.6% 9.5% 42.9% 57.1% 9.5% 33.3% 47.6% 14.3% 38.1% 52.4% 14.3% 33.3%
Total 67 27 4 36 34 3 30 24 5 38 33 5 29 

Table  B.2: Results of Scale Change for Airports 
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CCR-O 
  N Mean Std. Deviation Minimum Maximum 
Non-Hub 20 1.2077125 0.094631968 1 1.38045 
Small Hub 64 1.208442656 0.086125797 1 1.39315 
Medium Hub 100 1.1947335 0.073759978 1 1.31631 
Large Hub 84 1.203890595 0.100551306 1 1.44949 
BCC-O 
 N Mean Std. Deviation Minimum Maximum 
Non-Hub 20 1.110912 0.139096426 1 1.38045 
Small Hub 64 1.202168594 0.085273089 1 1.39315 
Large Hub 84 1.120096667 0.100893635 1 1.39528 
Medium Hub 100 1.1828435 0.080797992 1 1.31631 
SBM-O 
  N Mean Std. Deviation Minimum Maximum 
Non-Hub 20 2.615318 1.461675778 1 6.68024 
Small Hub 64 1.940573281 0.549504666 1 3.62323 
Medium Hub 100 1.9456933 1.472455461 1 15.4108 
Large Hub 84 2.196298929 4.252421597 1 39.7429 

Table  B.3: Descriptive Statistics of Airport Efficiency Scores 
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CCR-O 

 LargeHub-
Medium-Hub 

LargeHub-
SmallHub 

LargeHub-
NonHub 

MediumHub-
SmallHub 

MediumHub-
NonHub 

SmallHub-
NonHub 

P-value 0.2302636 0.3457125 0.5015913 0.0210471 0.085923 0.3134630 
BCC-O 

 LargeHub-
Medium-Hub 

LargeHub-
SmallHub 

LargeHub-
NonHub 

MediumHub-
SmallHub 

MediumHub-
NonHub 

SmallHub-
NonHub 

P-value 0.0005786 0.0000146 0.5540338 0.0247346 0.2471446 0.033340 
SBM-O 

 LargeHub-
Medium-Hub 

LargeHub-
SmallHub 

LargeHub-
NonHub 

MediumHub-
SmallHub 

MediumHub-
NonHub 

SmallHub-
NonHub 

P-value 0.0781348 0.0017897 0.0002535 0.0478696 0.0057339 0.5015913 
Table  B.4: Results of Wilcoxon Test for Airport Efficiency Scores 

 
 
 

BND_CCR BND_BCC BND_SBM 

Hub Class. 
Avg. Eff. 

Score 
Hub Class. 

Avg. Eff. 
Score 

Hub Class. 
Avg. Eff. 

Score 

Medium Hubs 1.1947335 Non-Hubs 1.110912 Small Hubs 1.940573281 

Large Hubs 1.203890595 Large Hubs 1.120096667 Medium Hubs 1.9456933 

Non-Hubs 1.2077125 Medium Hubs 1.1828435 Large Hubs 2.196298929 

Small Hubs 1.208442656 Small Hubs 1.202168594 Non-Hubs 2.615318 

Table  B.5: Mean Ordering of efficiency scores by hub classification 
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Years Hub Classification N Mean Std. Deviation Minimum Maximum 
2002-2003 Non-Hub 5 0.9639185 0.060189043 0.861181316 1 

2002-2003 Small Hub 16 0.993426853 0.126145201 0.777977081 1.173402775

2002-2003 Medium Hub 25 0.970004175 0.154656514 0.434482814 1.25570794 

2002-2003 Large Hub 21 1.020816758 0.124563801 0.776770029 1.437294603

2003-2004 Non-Hub 5 1.06168663 0.18968826 0.827581367 1.334275084

2003-2004 Small Hub 16 1.287114414 0.432836824 0.719128562 2.31092293 

2003-2004 Medium Hub 25 0.840233125 0.197184762 0.526152276 1.337599388

2003-2004 Large Hub 21 0.883965775 0.256990897 0.483048823 1.58837241 

2004-2005 Non-Hub 5 0.962970569 0.100046094 0.784928389 1.024689585

2004-2005 Small Hub 16 1.043358076 0.283141904 0.602373784 1.700235543

2004-2005 Medium Hub 25 1.087355703 0.255839775 0.68501139 1.945427085

2004-2005 Large Hub 21 1.117985576 0.341326826 0.755464789 2.48777783 

2002-2005 Non-Hub 5 0.804293927 0.244412589 0.416203935 1 

2002-2005 Small Hub 16 1.160114879 0.607700701 0.548503413 2.834532865

2002-2005 Medium Hub 25 0.812751181 0.247374347 0.380809482 1.216179797

2002-2005 Large Hub 21 0.960047145 0.353824999 0.436523538 1.769155644

Table  B.6: Malmquist Indices of Yearly Hub Classifications 
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Years Hub Classification N Mean Std. Deviation Minimum Maximum 
2002-2003 Non-Hub 5 1.078019903 0.140399729 0.832031405 1.18199759 

2002-2003 Small Hub 16 0.971722197 0.124340938 0.746935071 1.174530657

2002-2003 Medium Hub 25 1.079837811 0.281951027 0.882183978 2.348704068

2002-2003 Large Hub 21 1.009265997 0.093883217 0.849671394 1.295900488

2003-2004 Non-Hub 5 0.872344247 0.490124667 0.262321045 1.483086012

2003-2004 Small Hub 16 0.863027871 0.273237849 0.451372956 1.388342809

2003-2004 Medium Hub 25 1.235138851 0.275163145 0.741034038 1.975822103

2003-2004 Large Hub 21 1.217645982 0.358026704 0.642630525 2.071339574

2004-2005 Non-Hub 5 1.115661572 0.38497174 0.782216881 1.7741937 

2004-2005 Small Hub 16 0.99696638 0.241411257 0.587642493 1.529533147

2004-2005 Medium Hub 25 0.936459526 0.169989453 0.508143067 1.325127288

2004-2005 Large Hub 21 0.948117714 0.180011747 0.396364583 1.328877369

2002-2005 Non-Hub 5 1.221489654 1.067183707 0.257492078 2.941563407

2002-2005 Small Hub 16 0.943020178 0.320966614 0.360913282 1.474626343

2002-2005 Medium Hub 25 1.222726179 0.427285964 0.693839513 2.774228402

2002-2005 Large Hub 21 1.174413432 0.478081393 0.637364465 2.832262576

Table  B.7: Frontier Shift of Yearly Hub Classifications 
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Years Hub Classification N Mean Std. Deviation Minimum Maximum 
2002-2003 Non-Hub 5 1.259197857 0.250359575 1 1.553808581

2002-2003 Small Hub 16 1.421385012 0.22209366 1 1.998638843

2002-2003 Medium Hub 25 1.267860744 0.293354105 0.536133 1.747278997

2002-2003 Large Hub 21 1.252897344 0.220044912 1 1.850457721

2003-2004 Non-Hub 5 1.347804061 1.016820139 0.528332 3.024370747

2003-2004 Small Hub 16 1.154261872 0.380414508 0.665318993 1.954740449

2003-2004 Medium Hub 25 0.821189031 0.194430472 0.441028 1.23114497 

2003-2004 Large Hub 21 0.859939609 0.246318804 0.403730337 1.375605371

2004-2005 Non-Hub 5 1.249471589 0.457350217 0.638769558 1.892749256

2004-2005 Small Hub 16 1.145436752 0.303897797 0.664327 1.590452197

2004-2005 Medium Hub 25 1.176580319 0.286484046 0.666620263 1.987858162

2004-2005 Large Hub 21 1.067940705 0.300693622 0.753082099 2.221212209

2002-2005 Non-Hub 5 2.355967112 2.189645632 0.378867 5.875716837

2002-2005 Small Hub 16 1.83270456 0.689239595 0.71945 3.21596146 

2002-2005 Medium Hub 25 1.196225481 0.388373202 0.421106 1.747488454

2002-2005 Large Hub 21 1.095021436 0.280247448 0.503549272 1.789158845

Table  B.8: Catch-up Effect of Yearly Hub Classifications 
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C) Appendix C: Fully Comprehensive Linear RDD-DEA Model 
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 Model  C.1: Formulation of fully comprehensive linear RDD-DEA Model 
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set Inputs; 

set GOutputs; 

set BOutputs; 

set DMUs; 

 

param X {Inputs,DMUs}; 

param YG {GOutputs,DMUs}; 

param YB {BOutputs,DMUs}; 

param RX {Inputs,DMUs}; 

param RYG {GOutputs,DMUs}; 

param RYB {BOutputs,DMUs}; 

param EDMU = 1; 

 

var Beta 

var Lamda {DMUs} >= 0; 

 

minimize Efficiency_Score: Beta ; 

 

subject to Input_constraint {i in Inputs}:  

 sum {k in DMUs} X[i,k]*Lamba[k] <= X[i,EDMU] - Beta*RX[i,EDMU]; 

 

subject to GOutput_constraint {j in GOutputs}:  

 sum {k in DMUs} YG[j,k]*Lamba[k] >= YG[j,EDMU] + 

Beta*RYG[j,EDMU]; 

 

subject to BOutput_constraint {l in BOutputs}:  

 sum {k in DMUs} YB[l,k]*Lamba[k] = YG[l,EDMU] - Beta*RYB[l,EDMU]; 

 

 C.2: AMPL code for fully comprehensive RDD-DEA model 
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D) Appendix D: Greenhouse Gas Numerical Example 
 

 SG Input NSB Input NSG Input  
NSG 

Output 
NSB 

Output 
NSB 

Output SB Output 
SG 

Output 

Countries 
Labor 
Force Population

Energy 
Consumption  

Energy 
Produced 

CO2 
Emissions

CH4 
Emissions

N2O 
Emissions GDP 

Argentina 5.253 37.520 2664.873  1903.106 34.848 27.329 23.048 280.049 
Australia 25.748 99.029 4974.206  3598.268 99.029 42.922 30.988 453.257 
Austria 2.343 8.080 1419.206  1699.357 18.191 13.316 15.844 268.651 
Belgium 1.949 10.260 2773.546  2227.757 39.359 29.590 23.428 321.571 
Bolivia 1.779 8.470 161.634  114.218 2.617 1.060 0.990 8.039 
Brazil 34.478 172.390 8782.125  11157.025 95.771 46.336 52.653 771.454 
Bulgaria 1.889 7.870 927.933  1298.731 15.477 11.224 7.045 12.592 
Canada 7.148 31.080 12513.070  9732.231 156.189 80.696 51.583 718.128 
Chile 2.156 15.400 1060.295  1368.400 14.754 7.884 7.900 81.926 
China 449.750 1285.000 39665.259  49295.793 831.736 485.352 489.692 1113.586
Costa Rica 1.045 3.870 154.076  213.100 1.385 0.694 0.574 15.104 
Croatia 1.165 4.660 429.164  481.930 5.687 3.779 4.418 23.352 

Czech 
Republic 1.132 10.290 1530.555  1116.979 29.006 17.873 19.541 57.085 
Denmark 0.640 5.330 895.227  1110.030 16.242 11.241 8.796 207.444 
Egypt 7.468 67.890 2132.604  1580.520 34.290 14.866 9.857 80.800 
El Salvador 1.408 6.400 114.658  116.551 1.525 0.765 0.741 11.242 
Estonia 0.179 1.380 95.669  111.279 1.939 0.907 0.670 4.814 
Finland 0.675 5.190 1326.014  1512.094 14.405 11.244 11.181 173.566 
France 20.125 59.190 10521.357  8784.306 108.126 61.786 58.207 1812.350
Germany 22.237 82.360 14351.562  10427.207 223.240 125.956 150.549 2701.903
Greece 1.272 10.600 1393.198  1682.889 28.079 21.722 13.418 144.773 
Guatemala 3.270 11.680 158.699  101.643 2.516 2.008 1.650 18.194 
Honduras 2.237 6.580 86.470  100.132 1.267 0.767 0.653 4.680 
Indonesia 75.194 214.840 4629.777  5030.574 87.128 46.616 32.461 215.932 
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 SG Input NSB Input NSG Input  
NSG 

Output 
NSB 

Output 
NSB 

Output SB Output 
SG 

Output 

Countries 
Labor 
Force Population

Energy 
Consumption  

Energy 
Produced 

CO2 
Emissions

CH4 
Emissions

N2O 
Emissions GDP 

Ireland 0.922 3.840 609.289  681.143 11.148 7.730 4.825 112.914 
Israel 2.193 6.450 792.021  1024.656 16.321 11.322 8.125 107.301 
Italy 17.385 57.950 8110.681  8904.340 121.498 78.932 60.937 1225.567
Japan 16.554 127.340 21921.986  25875.030 315.831 241.135 227.450 5651.488
Kazakhstan 3.856 14.830 1734.572  1431.305 33.366 23.188 14.708 21.810 
Korea 15.149 47.340 8058.116  9813.658 120.800 82.906 79.042 639.239 
Latvia 0.378 2.360 205.871  265.413 2.654 1.899 1.566 6.026 
Lithuania 0.977 3.490 329.191  328.555 4.330 2.670 1.736 7.513 
Luxembourg 0.053 0.440 203.096  267.217 2.467 1.656 1.105 25.466 
Malaysia 3.072 23.630 2274.952  2625.332 36.151 27.426 17.781 112.213 
Maldives 0.053 0.280 6.766  8.539 0.133 0.056 0.036 0.543 
Malta 0.109 0.390 51.413  51.032 1.072 0.458 0.386 3.989 
Mexico 35.613 101.750 6003.999  5719.556 96.048 63.150 55.895 372.405 
Netherlands 4.331 16.040 4231.063  3507.861 67.519 41.307 27.080 502.581 
New Zealand 1.155 3.850 844.122  936.386 9.612 5.986 4.143 70.975 
Nicaragua 1.146 5.210 58.122  64.190 1.018 0.452 0.460 2.384 
Norway 1.308 4.510 1906.093  1952.928 11.448 5.478 6.013 172.911 
Panama 0.915 2.860 138.456  145.762 2.257 1.027 0.815 9.395 
Paraguay 1.918 5.640 110.929  152.295 0.958 0.664 0.703 9.593 
Peru 6.588 26.350 550.334  463.934 7.185 5.476 4.485 60.888 
Philippines 16.969 77.130 1254.272  1715.107 18.624 12.893 11.501 91.235 
Poland 6.955 38.640 3536.036  2366.546 78.608 59.839 60.549 165.274 
Portugal 2.104 10.020 1088.212  1403.963 16.250 8.586 7.799 131.884 
Romania 7.844 22.410 1637.662  1617.382 25.970 17.532 19.493 34.918 

Russian 
Federation 49.096 144.400 28197.166  36340.235 440.260 265.001 311.250 366.904 
Seychelles 0.011 0.080 8.450  5.196 0.165 0.091 0.069 0.620 
Slovakia 1.566 5.400 832.038  1012.608 10.825 5.290 3.730 23.806 
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 SG Input NSB Input NSG Input  
NSG 

Output 
NSB 

Output 
NSB 

Output SB Output 
SG 

Output 

Countries 
Labor 
Force Population

Energy 
Consumption  

Energy 
Produced 

CO2 
Emissions

CH4 
Emissions

N2O 
Emissions GDP 

Slovenia 0.219 1.990 305.558  355.547 4.060 2.240 2.127 23.864 
Spain 7.249 40.270 5699.314  7626.364 82.722 59.887 47.252 723.243 
Sweden 2.649 8.830 2221.195  1377.149 14.584 8.970 6.326 281.291 
Switzerland 2.024 7.230 1304.669  1766.030 12.266 9.174 7.839 340.276 
Thailand 10.066 62.910 2903.942  3970.913 48.494 23.634 15.870 174.973 
Turkmenistan 1.171 4.880 477.263  620.842 7.677 5.052 3.496 6.965 
Ukraine 7.367 49.110 6076.237  7862.873 96.575 48.096 41.729 36.431 
United 
Kingdom 10.122 59.540 9810.060  9243.763 154.326 88.816 85.529 1334.922
United States 39.756 283.974 97049.875  121078.403 1565.311 713.668 559.115 9039.464
Uruguay 0.571 3.360 157.357  184.678 1.690 1.091 0.963 20.794 
Uzbekstan 2.556 25.560 2075.012  2318.564 30.160 18.508 12.761 12.802 
Vietnam 8.710 79.180 760.127  577.360 12.561 8.812 6.578 30.994 
Zambia 3.515 10.650 89.457  60.000 0.558 0.365 0.403 4.082 

Table  D.1: Input / Output Data for Greenhouse Gas Numerical Example 
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Countries 

Full RDD-
DEA 

Efficiency 
SG Input
Efficiency

NSG 
Input 

Efficiency

NSB 
Input 

Efficiency

SG 
Output 

Efficiency 

NSG 
Output 

Efficiency 

SB 
Output 

Efficiency

NSB 
Output 

Efficiency 
RDD-DEA
Efficiency

Argentina 0.913 0.000 0.865 0.000 0.250 0.380 0.593 0.745 0.987 
Australia 0.393 0.000 0.313 0.000 0.441 0.000 0.000 0.000 0.638 
Austria 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Belgium 0.570 0.000 0.474 0.376 0.000 0.459 0.000 0.246 0.937 
Bolivia 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Brazil 0.024 0.153 0.160 0.155 0.156 0.168 0.000 0.165 0.037 
Bulgaria 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Canada 0.112 0.000 0.000 0.000 0.000 0.203 0.232 0.228 0.171 
Chile 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
China 0.024 0.160 0.159 0.156 0.160 0.164 0.000 0.160 0.038 
Costa Rica 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Croatia 0.380 0.000 0.362 0.283 0.000 0.218 0.000 0.236 0.587 
Czech Republic 0.232 0.000 0.182 0.000 0.000 0.262 0.194 0.000 0.367 
Denmark 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Egypt 0.380 0.000 0.216 0.376 0.433 0.000 0.325 0.302 0.590 
El Salvador 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Estonia 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Finland 0.222 0.299 0.163 0.324 0.165 0.225 0.000 0.194 0.351 
France 0.093 0.165 0.172 0.162 0.168 0.188 0.222 0.000 0.157 
Germany 0.741 0.326 0.357 0.360 0.292 0.678 0.207 0.000 1.169 
Greece 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Guatemala 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Honduras 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Indonesia 0.014 0.000 0.000 0.158 0.153 0.159 0.155 0.000 0.024 
Ireland 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Israel 0.607 0.168 0.509 0.592 0.487 0.000 0.160 0.177 0.950 
Italy 0.064 0.000 0.151 0.179 0.197 0.156 0.196 0.177 0.109 
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Countries 

Full RDD-
DEA 

Efficiency 
SG Input
Efficiency

NSG 
Input 

Efficiency

NSB 
Input 

Efficiency

SG 
Output 

Efficiency 

NSG 
Output 

Efficiency 

SB 
Output 

Efficiency

NSB 
Output 

Efficiency 
RDD-DEA
Efficiency

Japan 0.345 0.397 0.194 0.000 0.285 0.332 0.228 0.361 0.530 
Kazakhstan 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Korea 0.095 0.158 0.202 0.000 0.172 0.221 0.176 0.218 0.145 
Latvia 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Lithuania 0.384 0.445 0.405 0.417 0.000 0.226 0.448 0.000 0.609 
Luxembourg 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Malaysia 0.056 0.157 0.162 0.190 0.153 0.157 0.170 0.000 0.095 
Maldives 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Malta 0.373 0.354 0.228 0.357 0.000 0.412 0.204 0.251 0.612 
Mexico 0.007 0.154 0.155 0.150 0.154 0.151 0.151 0.000 0.012 
Netherlands 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
New Zealand 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Nicaragua 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Norway 0.680 0.598 0.355 0.000 0.000 0.000 0.153 0.536 0.890 
Panama 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Paraguay 0.709 0.562 0.663 0.000 0.443 0.476 0.000 0.333 0.942 
Peru 0.202 0.000 0.248 0.241 0.000 0.163 0.292 0.212 0.312 
Philippines 0.439 0.000 0.265 0.340 0.000 0.323 0.401 0.168 0.756 
Poland 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Portugal 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Romania 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Russian 
Federation 0.155 0.202 0.223 0.000 0.154 0.211 0.268 0.161 0.261 
Seychelles 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Slovakia 0.023 0.000 0.000 0.000 0.161 0.162 0.156 0.000 0.038 
Slovenia 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Spain 0.041 0.155 0.154 0.000 0.000 0.177 0.181 0.000 0.068 
Sweden 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Switzerland 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
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Countries 

Full RDD-
DEA 

Efficiency 
SG Input
Efficiency

NSG 
Input 

Efficiency

NSB 
Input 

Efficiency

SG 
Output 

Efficiency 

NSG 
Output 

Efficiency 

SB 
Output 

Efficiency

NSB 
Output 

Efficiency 
RDD-DEA
Efficiency

Thailand 0.449 0.000 0.493 0.160 0.000 0.225 0.172 0.000 0.724 
Turkmenistan 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Ukraine 0.042 0.000 0.176 0.153 0.174 0.166 0.151 0.178 0.064 
United Kingdom 0.400 0.338 0.000 0.159 0.357 0.435 0.157 0.000 0.692 
United States 0.130 0.252 0.194 0.242 0.169 0.240 0.183 0.000 0.224 
Uruguay 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Uzbekstan 0.073 0.206 0.173 0.178 0.197 0.207 0.000 0.000 0.114 
Vietnam 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
Zambia 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
          

 D.2: Efficiency Results for Greenhouse Gas Numerical Example 
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E) Appendix E: Data and Results of Electrical Grid Study 
 

Statistics on Input/Output Data        

  Nodes Edges Isolates 
Degree 

Centralization
Betweenness
Centralization

Avg Clustering 
Coefficient 

Avg Shortest 
Path Diameter 

Max 4941 6594 261 1.00162 1.26106 0.080104 11.47756 28 
Min 4941 6591 1 1 1 0.022713 1 1 
Average 4941 6593.04 142.92 1.000254 1.2425492 0.048014 9.960556 21.66 
SD 0 1.038460 69.980523 0.000222 0.036542 0.014503 1.628690 4.479330 
% of Mean   0.016% 48.965% 0.022% 2.941% 30.205% 16.351% 20.680% 
         
Correlation         

  Nodes Edges Isolates 
Degree 

Centralization
Betweenness
Centralization

Avg Clustering 
Coefficient 

Avg Shortest 
Path Diameter 

Nodes 1 0 0 0 0 0 0 0 
Edges 0 1 -0.55037 -0.04843 -0.19737 0.57135 -0.40212 -0.42704 
Isolates 0 -0.55037 1 0.03080 0.47264 -0.98403 0.79991 0.76893 
Degree 
Centralization 0 -0.04843 0.03080 1 0.03481 -0.00727 0.00372 -0.06018 
Betweenness 
Centralization 0 -0.19737 0.47264 0.03481 1 -0.49148 0.89096 0.76831 
Avg Clustering 
Coefficient 0 0.57135 -0.98403 -0.00727 -0.49148 1 -0.81245 -0.77480 
Avg Shortest Path 0 -0.40212 0.79991 0.00372 0.89096 -0.81245 1 0.89752 
Diameter 0 -0.42704 0.76893 -0.06018 0.76831 -0.77480 0.89752 1 

Table  E.1: Summary Statistics of Data from Study A of Electrical Grid 
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No. DMU Score Rank  No. DMU Score Rank 
1 Original 1 1  26 15%-6 1 1 
2 5%-1 1 1  27 15%-7 1 1 
3 5%-2 0.999571 50  28 15%-8 1 1 
4 5%-3 1 1  29 15%-9 1 1 
5 5%-4 1 1  30 15%-10 1 1 
6 5%-5 1 1  31 20%-1 1 1 
7 5%-6 1 1  32 20%-2 0.999887 42 
8 5%-7 1 1  33 20%-3 1 1 
9 5%-8 1 1  34 20%-4 1 1 
10 5%-9 1 1  35 20%-5 1 1 
11 10%-1 1 1  36 20%-6 1 1 
12 10%-2 1 1  37 20%-7 0.999781 47 
13 10%-3 1 1  38 20%-8 1 1 
14 10%-4 1 1  39 20%-9 0.999895 41 
15 10%-5 1 1  40 20%-10 1 1 
16 10%-6 1 1  41 30%-1 0.999872 43 
17 10%-7 1 1  42 30%-2 0.999735 49 
18 10%-8 1 1  43 30%-3 1 1 
19 10%-9 1 1  44 30%-4 1 1 
20 10%-10 0.999856 45  45 30%-5 1 1 
21 15%-1 0.99987 44  46 30%-6 1 1 
22 15%-2 1 1  47 30%-7 0.999791 46 
23 15%-3 1 1  48 30%-8 1 1 
24 15%-4 0.999749 48  49 30%-9 1 1 
25 15%-5 1 1  50 30%-10 1 1 

Table  E.2: DEA Efficiency Scores for Study A of Electrical Grid Network 



 

187 

 

No. DMU Score Rank  No. DMU Score Rank 
1 Original 1 1  26 15%-6 0.997983 37 
2 5%-1 0.997359 38  27 15%-7 1 1 
3 5%-2 0.990486 49  28 15%-8 0.998054 36 
4 5%-3 1 1  29 15%-9 1 1 
5 5%-4 1 1  30 15%-10 0.999368 30 
6 5%-5 1 1  31 20%-1 1 1 
7 5%-6 1 1  32 20%-2 0.999453 29 
8 5%-7 1 1  33 20%-3 0.998764 33 
9 5%-8 1 1  34 20%-4 0.996244 42 
10 5%-9 1 1  35 20%-5 1 1 
11 10%-1 1 1  36 20%-6 0.999204 32 
12 10%-2 1 1  37 20%-7 0.995274 45 
13 10%-3 0.997195 40  38 20%-8 1 1 
14 10%-4 1 1  39 20%-9 0.998374 35 
15 10%-5 0.997357 39  40 20%-10 1 1 
16 10%-6 1 1  41 30%-1 0.999661 28 
17 10%-7 1 1  42 30%-2 0.991762 48 
18 10%-8 1 1  43 30%-3 1 1 
19 10%-9 1 1  44 30%-4 0.999248 31 
20 10%-10 0.995958 43  45 30%-5 0.994018 47 
21 15%-1 0.995738 44  46 30%-6 1 1 
22 15%-2 1 1  47 30%-7 0.99858 34 
23 15%-3 1 1  48 30%-8 0.994918 46 
24 15%-4 0.990484 50  49 30%-9 1 1 
25 15%-5 0.997053 41  50 30%-10 1 1 

Table  E.3: DEA Efficiency Scores for Study B of Electrical Grid Network 
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No. DMU Score Rank  No. DMU Score Rank 
1 Original 1 1  26 15%-6 0.994885 40 
2 5%-1 0.997359 32  27 15%-7 1 1 
3 5%-2 0.971385 50  28 15%-8 0.997902 30 
4 5%-3 1 1  29 15%-9 1 1 
5 5%-4 0.993186 44  30 15%-10 0.999368 25 
6 5%-5 1 1  31 20%-1 0.999635 23 
7 5%-6 1 1  32 20%-2 0.999453 24 
8 5%-7 0.997948 29  33 20%-3 0.987455 48 
9 5%-8 1 1  34 20%-4 0.996226 36 
10 5%-9 0.984271 49  35 20%-5 1 1 
11 10%-1 1 1  36 20%-6 0.998329 27 
12 10%-2 1 1  37 20%-7 0.99433 42 
13 10%-3 0.996076 37  38 20%-8 1 1 
14 10%-4 1 1  39 20%-9 0.998307 28 
15 10%-5 0.992831 45  40 20%-10 0.99634 35 
16 10%-6 1 1  41 30%-1 0.999661 22 
17 10%-7 1 1  42 30%-2 0.991762 46 
18 10%-8 1 1  43 30%-3 1 1 
19 10%-9 1 1  44 30%-4 0.997338 33 
20 10%-10 0.995949 38  45 30%-5 0.994018 43 
21 15%-1 0.995674 39  46 30%-6 1 1 
22 15%-2 1 1  47 30%-7 0.99858 26 
23 15%-3 0.9975 31  48 30%-8 0.994868 41 
24 15%-4 0.988426 47  49 30%-9 1 1 
25 15%-5 0.997053 34  50 30%-10 1 1 

Table  E.4: DEA Efficiency Scores for Study C of Electrical Grid Network 
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No. DMU Score Rank  No. DMU Score Rank 
1 Original 1 1  26 15%-6 0.989223 44 
2 5%-1 0.996983 11  27 15%-7 0.995982 18 
3 5%-2 0.971385 50  28 15%-8 0.996493 13 
4 5%-3 0.998638 8  29 15%-9 0.994063 28 
5 5%-4 0.992177 38  30 15%-10 0.994873 25 
6 5%-5 1 1  31 20%-1 0.996173 16 
7 5%-6 1 1  32 20%-2 0.995649 20 
8 5%-7 0.997521 9  33 20%-3 0.984943 48 
9 5%-8 1 1  34 20%-4 0.993371 32 
10 5%-9 0.981544 49  35 20%-5 0.990977 42 
11 10%-1 0.991511 40  36 20%-6 0.994662 26 
12 10%-2 0.993718 31  37 20%-7 0.992899 34 
13 10%-3 0.992788 35  38 20%-8 0.993788 29 
14 10%-4 0.994949 24  39 20%-9 0.996271 15 
15 10%-5 0.988019 46  40 20%-10 0.992503 37 
16 10%-6 1 1  41 30%-1 0.996788 12 
17 10%-7 0.992531 36  42 30%-2 0.98946 43 
18 10%-8 0.997275 10  43 30%-3 1 1 
19 10%-9 0.995811 19  44 30%-4 0.996015 17 
20 10%-10 0.98899 45  45 30%-5 0.99141 41 
21 15%-1 0.991823 39  46 30%-6 0.996274 14 
22 15%-2 0.995386 21  47 30%-7 0.993157 33 
23 15%-3 0.995275 22  48 30%-8 0.994425 27 
24 15%-4 0.985958 47  49 30%-9 0.993783 30 
25 15%-5 0.995051 23  50 30%-10 0.999818 7 

Table  E.5: DEA Efficiency Scores for Study D of Electrical Grid Network 
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F) Appendix F: Performance Metrics for ERP Example 
 

 Inputs  Outputs 

Node 
No. 

# of 
Edges Cost Time  

Betweenness 
Centralization

Average 
Clustering 
Coefficient Flow 

1 2088 30 84  1.23657 0.065795 2.4 
2 2093 6 60  1.19737 0.066352 3 
3 2100 27 16  1.24056 0.065038 1.5 
4 2099 43 27  1.22805 0.066537 1.3 
5 2078 1296 115  1.23181 0.068491 2.4 
6 2085 32 57  1.23989 0.066182 2.7 
7 2080 28 140  1.23099 0.067824 1.9 
8 2095 38 109  1.23713 0.067307 1.3 
9 2073 26 8  1.21181 0.066619 2.7 

10 2077 47 53  1.24368 0.059225 3 
11 2073 36 18  1.25035 0.057613 2.3 
12 2080 11 98  1.25094 0.054242 1.1 
13 2080 42 136  1.25357 0.056837 1.5 
14 2078 17 20  1.2449 0.054794 2.1 
15 2081 19 83  1.25993 0.057229 1.7 
16 2091 33 100  1.24294 0.060188 2.2 
17 2081 18 152  1.25068 0.059672 1.2 
18 2089 49 68  1.24678 0.060506 2.9 
19 2075 7 16  1.24196 0.05843 1.7 
20 2079 10 84  1.24994 0.048469 1.7 
21 2088 40 66  1.2544 0.049423 2.1 
22 2098 29 67  1.25437 0.046505 1.2 
23 2080 24 42  1.24263 0.046017 2.9 
24 2081 9 56  1.25404 0.047779 2.3 
25 2084 354 118  1.2467 0.047373 1.5 
26 2082 17 125  1.25517 0.048979 3 
27 2077 35 121  1.25598 0.044577 2.5 
28 2081 1267 127  1.25285 0.046261 1.2 
29 2074 19 25  1.25372 0.050299 1.2 
30 2078 28 141  1.25568 0.041828 1.2 
31 2085 29 127  1.25504 0.041255 1.1 
32 2073 21 120  1.24171 0.036411 1.8 
33 2100 33 59  1.25222 0.039787 2.7 
34 2101 38 92  1.24915 0.041085 1.8 
35 2088 8 15  1.25384 0.040028 2.6 
36 2094 15 49  1.25172 0.03724 1.1 
37 2074 972 159  1.25274 0.039963 2 
38 2075 869 130  1.25583 0.041105 1.4 
39 2072 34 136  1.25107 0.041233 1.3 
40 2079 21 150  1.25701 0.022713 1.3 
41 2085 33 67  1.24774 0.027653 3 
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42 2080 42 114  1.26106 0.0272 2.6 
43 2076 37 19  1.25602 0.02748 2.8 
44 2074 35 39  1.25013 0.029565 1.3 
45 2079 1661 97  1.25628 0.029273 1.7 
46 2093 16 11  1.25243 0.023424 2.7 
47 2096 48 14  1.25403 0.026803 1.8 
48 2088 29 46  1.25322 0.026346 1.9 
49 2089 11 10  1.26083 0.025664 2.6 
50 2090 18 127  1.24294 0.060188 2.9 
51 2075 44 119  1.25068 0.059672 3 
52 2094 30 85  1.24678 0.060506 2.9 

Initial 2082 54 90  1.25417 0.040746 2.1 
Table  F.1: Performance Metrics for Step 3 of Network Migration Algorithm 

 
 

DMU 
No. Score  No. Score 
1 1  27 0.990637 
2 0.999453  28 0.999778 
3 0.996095  29 0.998475 
4 0.998479  30 0.998967 
5 0.997765  31 1 
6 0.998239  32 1.001434 
7 0.994552  33 1 
8 1  34 1 
9 0.997033  35 0.975174 
10 1  36 0.999635 
11 0.982846  37 0.991722 
12 0.996591  38 1 
13 0.994677  39 1 
14 0.999661  40 1 
15 1  41 0.995994 
16 1  42 1 
17 1  43 1 
18 1.001251  44 0.998433 
19 0.994814  45 1 
20 0.995743  46 1 
21 1  47 0.992803 
22 0.997614  48 0.99531 
23 0.994592  49 0.986891 
24 1  50 1 
25 1  51 0.99726 
26 0.988725  52 1 

   53 0.990637 
Table  F.2: Full RDD-DEA Score for Step 4 of Network Migration Algorithm 

 
 



 

192 

 

Stage 

Stage 
Efficiency 

Score 

Cummulative 
Efficiency 

Score 
1 1 1 
2 1 1 
3 1 1 
4 1 1 
5 1 1 
6 1 1 
7 1 1 
8 1 1 
9 1 1 
10 1 1 
11 1 1 
12 1 1 
13 1 1 
14 1 1 
15 0.99778 0.999852 
16 1 0.999861 
17 1 0.999869 
18 1 0.999877 
19 0.974583 0.998545 
20 1 0.998618 
21 1 0.998684 
22 0.991072 0.998338 
23 0.994988 0.998192 
24 1 0.998268 
25 1 0.998337 
26 1 0.998401 
27 0.962298 0.997064 
28 0.944102 0.995172 
29 0.988634 0.994947 
30 0.978268 0.994391 
31 1 0.994572 
32 1 0.994741 
33 0.984502 0.994431 
34 0.960744 0.99344 
35 1 0.993628 
36 0.95426 0.992534 
37 0.952598 0.991455 
38 0.975988 0.991048 

Table  F.3: Full RDD-DEA Score all stages of Network Migration Algorithm 
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