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Many cancer-associated genes remain to be identified to clarify the underlying molecular mechanisms of cancer susceptibility
and progression. Better understanding is also required of how mutations in cancer genes affect their products in the context of
complex cellular networks. Here we have used a network modeling strategy to identify genes potentially associated with higher
risk of breast cancer. Starting with four known genes encoding tumor suppressors of breast cancer, we combined gene expression
profiling with functional genomic and proteomic (or ‘omic’) data from various species to generate a network containing 118
genes linked by 866 potential functional associations. This network shows higher connectivity than expected by chance,
suggesting that its components function in biologically related pathways. One of the components of the network is HMMR,
encoding a centrosome subunit, for which we demonstrate previously unknown functional associations with the breast cancer–
associated gene BRCA1. Two case-control studies of incident breast cancer indicate that the HMMR locus is associated with
higher risk of breast cancer in humans. Our network modeling strategy should be useful for the discovery of additional cancer-
associated genes.

Combinations of mutated and/or aberrantly expressed tumor sup-

pressor genes and oncogenes, or ‘cancer genes’, are thought to be

responsible for most steps of cancer progression. Although funda-

mental principles have emerged from the study of known cancer genes

and their products, many questions remain unanswered. Notably,

most cancer genes remain to be identified1. In addition, it is becoming

increasingly clear that most genes and their products interact in

complex cellular networks, the properties of which might be altered

in cancer cells as compared with their unaffected counterparts2.

Achieving a deeper understanding of cancer molecular mechanisms
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may therefore require global strategies aimed at modeling the

functional interrelationships between genes and/or proteins (genes/

proteins) as complex interdependent networks3.

Here we propose a complementary approach to systematic

resequencing efforts4–6 for identifying cancer genes and/or proteins.

This approach is based on global network modeling of functional

associations between potential cancer genes and their products.

RESULTS
A network modeling strategy
Macromolecular networks can be modeled on the basis of both global

correlations observed among transcriptional profiling compendia,

protein-protein interaction or ‘interactome’ networks, and genome-

wide phenotypic profiling data sets7, and comparisons of ‘interolog’

data sets from different organisms8. We combined these two strategies

to generate models of macromolecular networks that are possibly

perturbed in human cancer, starting from four known breast cancer–

associated genes and their products—BRCA1 and BRCA2 (both

identified by high-penetrance mutations)9–11 and ATM and CHEK2

(both identified by low-penetrance mutations)12,13—referred to here-

after as the ‘reference genes/proteins’ (Fig. 1). The strategy first

integrates coexpression profiles in human tissues and then integrates

functional associations derived from various functional genomic and

proteomic, or ‘omic’, data sets obtained in both humans and model

organisms. This integrated network modeling strategy provides a

ranking system to classify potential network components from low

to high likelihood; the components are then functionally and geneti-

cally tested.

Coexpression profiling
To initiate our search for genes that are likely to be functionally

associated with the reference genes/proteins, we used a data set

containing transcript abundance measurements for 9,214 human

genes in 101 samples originating from 43 healthy human tissues or

organs and three cell lines14. We determined Pearson correlation

coefficient (PCC) values between each of the four reference genes

and all of the genes tested on the array. To determine the likelihood of

predicting functional associations by this coexpression approach, we

curated published data from the scientific literature (until 1 October

2004) on protein interactions involving any of the four reference

human proteins. The resulting ‘literature interaction’ (LIT-Int) net-

work contains 103 proteins and 129 functional associations (Fig. 2a

and Supplementary Table 1 online). We

determined that a PCC value of 4 0.4 cap-

tures 36% of the LIT-Int functional associa-

tions (Fig. 2b). Beyond this threshold, the

LIT-Int pairs are enriched between two- and

tenfold (depending on the control set used) in

coexpressed pairs as compared with 10,000

gene pairs generated randomly from the same

expression data set.

To identify potential functional associations

involving all four reference genes, we focused

on those transcripts found in the ‘expression

intersection’ (XPRSS-Int) of the four coex-

pression sets. The XPRSS-Int contains 164

genes, of which 15 are also present in the

LIT-Int data set (Fig. 2c and Supplementary

Table 2 online). To evaluate the significance of

the XPRSS-Int set, we generated 200 ran-

domly chosen sets of four genes, calculated

their transcriptional PCCs with each gene in

the array and measured their coexpression

intersection by using PCC4 0.4 as the cutoff.

This simulation showed that 88% (176/200)

of the randomly generated sets do not overlap

in coexpression at any level and that, at most,

their intersection contains 20 genes (Fig. 2d).

These results indicate that the identification of

164 genes in the XPRSS-Int set could not be

expected by chance (empirical P o 0.005).

We demonstrated that XPRSS-Int genes are

functionally related to the four reference genes

by examining three types of shared character-

istics. First, the XPRSS-Int set showed an

enrichment of Gene Ontology (GO) terms

also present in the annotations for the refer-

ence genes (Supplementary Table 3 online).

Second, evolutionary conservation of coex-

pression patterns was observed between

orthologs of XPRSS-Int and reference genes,

corresponding to 52 XPRSS-Int genes
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Figure 1 Outline for the generation of a BCN model.
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(Supplementary Fig. 1 online). Third, using an expression data set for

the analysis of breast tumor cell lines treated with various agonists

or antagonists of mammary cell growth and differentiation15, we

observed significant coexpression among 33 XPRSS-Int genes

(Supplementary Table 2).

Expression changes in breast tumors
To evaluate further the functional significance of the XPRSS-Int set,

we reasoned that many XPRSS-Int genes might show expression

changes in breast tumors arising from mutations in one of the

reference genes. We compared the expression of each XPRSS-Int

gene in breast tumors from individuals with BRCA1 germline muta-

tions (BRCA1mut) with that in ‘sporadic’ breast tumors16 (typically

germline wild type (BRCA1wt)). Of the 132 XPRSS-Int single-probe

genes (see Methods), 50 were upregulated and 9 were downregulated,

as compared with an average of 18 upregulated and 22 downregulated

genes in randomly generated sets (P o 0.01; Fig. 3, top right, and

Supplementary Table 4 online).

A total of 66 XPRSS-Int genes showing expression changes in

BRCA1mut tumors are shown as nodes in a coexpression network in

which the length of the links, or ‘edges’, is inversely proportional to the

expression correlation (PCC value) for each reference gene (Fig. 3,
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left). We observed that the XPRSS-Int genes that were upregulated in

BRCA1mut breast tumors showed expression profiles more similar to

that of BRCA1 in healthy tissues than did those that did not show

expression level changes between BRCA1mut and sporadic tumors

(two-tailed Student’s t-test, P ¼ 0.039). This observation suggests that

XPRSS-Int genes that show expression changes in BRCA1mut breast

tumors are more likely to be functionally related to BRCA1.

A BRCA-centered network model
We investigated functional associations between each of the 164

XPRSS-Int genes/proteins and the reference genes/proteins. We sys-

tematically integrated functional associations found in largely

non-overlapping omic data sets by using interologous functional

relationships from four species (see Methods). The resulting BRCA-

centered network (BCN) model consists of 118 genes/proteins (114

XPRSS-Int genes/proteins plus the four reference genes/proteins) and

866 potential functional associations (321 direct ‘one-hop’, and 545

indirect ‘two-hop’ associations), represented as nodes and edges,

respectively (Fig. 4a and Supplementary Table 5 online).

Interactome network models that are currently available for model

organisms show relatively high clustering coefficients and particularly

high connectivity between the members of protein complexes

or ‘molecular machines’ involved in specific biological processes17.

Evaluation of BCN connectivity with 1,000 randomly generated net-

works of sets of 164 genes from the same expression data set used for

the identification of the XPRSS-Int showed that there are significantly

more connected nodes and more edges in the BCN (P o 0.001;

Fig. 4b and Supplementary Fig. 2 online). This finding indicates that

BCN components may function in biologically related pathways. Of all

the potential functional BCN associations, those that are only in the

literature-curated set constitute a limited and clustered portion. In

addition, each omic approach generates its own characteristic

functional clusters (Fig. 4c), further illustrating the need for data

integration to generate higher quality network models.

To rank XPRSS-Int genes/proteins according to their possible

functional association with the four reference genes/proteins, we

combined the five criteria described above (enrichment in GO

terms, conserved coexpression across species, coexpression in breast

tumor–derived cell lines, changes in expression in BRCA1mut breast

tumors, and omic functional association in human or model organ-

isms) in a matrix format, in which the number of matched criteria is

indicated for each of the XPRSS-Int genes/proteins (Fig. 4d). We

color-coded each of the five criteria to indicate the strength of

coexpression with BRCA1. The percentages of LIT-Int genes within

each group in the ranking correlate with the number of criteria (66,

38, 21, 0, 4 and 0% for matching all five to matching none of the

criteria, respectively), which suggests that the likelihood that newly

defined BCN components are functionally associated with any of the

reference genes/proteins increases with the number of criteria matched.
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Figure 4 Generation of the BCN and ranking of XPRSS-Int genes/proteins. (a) Left, 13 omic data sets were integrated into the XPRSS-Int data set to

generate the BCN. Edges represent direct ‘one-hop’ (unbroken lines) or indirect ‘two-hop’ (corresponding to two XPRSS-Int genes/proteins connected

through a non–XPRSS-Int gene/protein; broken lines) functional associations. Right, example of a network that was randomly generated with the algorithm

in b. Y2H, yeast two-hybrid. (b) Number of nodes (genes/proteins) and edges (functional associations) included in the main giant component of networks

randomly generated through 1,000 iterations (curves) and in the BCN (vertical lanes). To avoid the biases of an a priori selection of references and

subjective data compilation, the four human reference genes/proteins and all edges connecting them in the BCN, in addition to the C. elegans phenotypic

profiling data, were excluded from this analysis. (c) Three left panels, GO terms annotations reveal functional clusters contained in distinct omic data sets

used to generate the BCN. Right panel, functional associations of the C. elegans tac-1 gene and TAC-1 protein with connections to BCN genes/proteins.

(d) Five criteria were integrated to estimate the overall functional significance of XPRSS-Int genes/proteins relative to breast cancer reference genes/proteins.

XPRSS-Int genes are clustered according to the number of criteria they match (from 5 to 0) and then ordered within clusters according to their average

PCC value for BRCA1 (PCC-BRCA1). LIT-Int genes are shown in purple. Genes shown in red encode proteins that are also present in the HMMR-centered

interactome (Fig. 5a).
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the LIT-Int data set (1 October 2004) support the hypothesis that the

BCN points to numerous functional associations with known breast

cancer genes/proteins. Since we generated LIT-Int, 20 proteins have

been newly described to have a functional relationship with at least one

of the reference genes/proteins, and 4 of these proteins (20%; detailed

in Supplementary Table 2) are present in the XPRSS-Int (B10-fold

increase relative to chance); this percentage is similar to that deter-

mined above for LIT-Int proteins in the XPRSS-Int data set.

To investigate predictions based on the BCN model, we looked for

new potential connections between different biological processes. The

highest-ranking connection involves a TACC family member18,

HMMR, which encodes the hyaluronan-mediated motility receptor19

(HMMR, also known as RHAMM). HMMR has the highest PCC

coexpression value relative to BRCA1 (0.90; Fig. 3). In itself, the high

PCC of HMMR with BRCA1 might be a substantial indicator of a

functional association between the two genes or gene products;

however, it is the integration of other types of relationships that

points to HMMR beyond the possible false-positive discovery rate

obtained by profiling similarity analysis. The HMMR gene product

connects BRCA1 and RPPB4 (also known as RBAP48, pRb and

BRCA1-interacting protein) by binary physical interactions in the

BCN (Fig. 4c, right), and it matches four of the five functional

significance criteria (Fig. 4d). A protein-protein physical interaction

identified by yeast two-hybrid screening predicts an association

between the TAC-1 and BRD-1 Caenorhabditis elegans proteins,

orthologs of TACCs and BARD1, respectively (refs. 20,21). Clues to

the function of TACCs also come from the phenotypic profiling of

C. elegans genes17, which identifies a phenocluster of genes (Fig. 4c,

right) whose inactivation is linked to microtubule-instability pheno-

types, particularly centrosome dysfunction22–24. Observations in

human cells also indicate that HMMR may have a potential role in

centrosomal functions18,25. Considered together, these observations

suggest that HMMR plays a role in centrosome function in conjunc-

tion with BRCA1.

New BRCA functional associations
Generation of an HMMR-centered interactome map through yeast

two-hybrid screens identified a network of 31 proteins and inter-

actions between them (Fig. 5a). Several of these interactions were

validated through coaffinity purification of exogenously expressed

fusion proteins and coimmunoprecipitation of endogenous proteins

(Supplementary Figs. 3–5 online). Notably, among interactors of

HMMR, CSPG6 cohesin and MAD1L1 mitotic spindle-assembly

checkpoint protein are also present in the BCN, further illustrating

how the BCN is a source of testable associations with breast reference

genes/proteins, and the endogenous CSPG6 and BRCA1 proteins form

a complex in 293 cells (Fig. 5b). In addition to the direct association

between MAD1L1 and HMMR, we also identified MAD1L1-BRCA1

endogenous protein complexes (Fig. 5b). The identification of several

interactors of HMMR as members of BRCA1 protein complexes

suggests that HMMR is a genuine component of a BRCA1 functional

module involved in centrosomal function.

Consistent with the indirect evidence described above, HMMR and

BRCA1 were found to associate in endogenous protein complexes in

Figure 5 HMMR-centered interactome model. (a) Genes/proteins are connected by functional associations, each

represented by a differently colored edge as summarized in the inset. Only functional associations between

human genes/proteins are shown. Protein function assignment is based on the literature or on the known

function of constituent protein domains. Protein names in red are BCN components first identified by the

XPRSS-Int, and those in blue correspond to BCN bridging genes/proteins. co-IP, coimmunoprecipitation;

co-AP, coaffinity purification. (b) Top, endogenous coimmunoprecipitation of CSPG6 and BRCA1, and SMC1L1

and BRCA1 in 293 cells. Molecular masses are indicated on the left. The antibodies used for each

coimmunoprecipitation experiment are given in parentheses. IB, immunoblot; Wce, whole-cell extract; IgG,

normal purified immunoglobulin negative controls (G, goat; M, mouse; R, rabbit). Bottom, endogenous coimmunoprecipitation of MAD1L1 and BRCA1 or

BRCA2, and HMMR and BRCA1 or BRCA2 in U2OS cells. (c) Endogenous coimmunoprecipitation of HMMR and BRCA1 in non-synchronized HeLa S3 cells.

(d) Cell cycle synchronization and coimmunoprecipitation assays in HeLa S3 cells.

NATURE GENETICS VOLUME 39 [ NUMBER 11 [ NOVEMBER 2007 1343

ART I C LES
©

2
0
0
7
 N

a
tu

re
 P

u
b

li
s
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/w

w
w

.n
a
tu

re
.c

o
m

/n
a
tu

re
g

e
n

e
ti

c
s



several cell lines (293, HeLa (Fig. 5c) and U2OS cell lines) tested.

Reciprocal coimmunoprecipitation experiments were hampered by

unspecific binding of HMMR to secondary antibodies. Because the

HMMR-MAD1L1 protein interaction was detectable most strongly

during M phase, and because the HMMR-BRCA1 protein complex

association seemed to be greater during the G2/M and M phases, we

examined whether a MAD1L1-BRCA1 association also occurs in

M phase. MAD1L1 and BRCA1 were found together in endogenous

protein complexes as cells entered mitosis (Fig. 5d). Consistent with

the participation of BRCA1 and BRCA2 in the regulation of mitotic

progression26,27, we found that BRCA2 was also present in HMMR

and MAD1L1 mitotic complexes (Fig. 5b,c). Notably, HMMR was

previously identified among other proliferation-associated genes to be

tightly coexpressed with BRCA2 in breast carcinomas28. We did not

observe such cell cycle–dependent protein associations for CSPG6,

which suggests that the HMMR-BRCA1 and CSPG6-BRCA1 com-

plexes have different cellular outcomes. In summary, by experimen-

tally testing BCN predictions, we identified three previously unknown

protein associations with breast cancer tumor suppressors, thereby

deriving a centrosomal interactome model that has several other

candidates, some of which are also found in the BCN (KNTC2 (also

known as HEC1), MAD2L1 and SEC31L1).

Because ubiquitination has an important role in the regulation

of centrosome duplication29, both BRCA1 and HMMR have been

localized to centrosomes and mitotic spindle poles18,26, and HMMR-

BRCA1 protein complexes are most prominent during G2/M, we

examined the possibility that HMMR might be a substrate of

the BRCA1-BARD1 E3 ubiquitin ligase activity30. HMMR was

found to be efficiently polyubiquitinated by the BRCA1-BARD1

heterodimer in vitro (Fig. 6a, left). In vivo ubiquitination of HMMR

was then observed after co-transfection of glutathione S-transferase

(GST)-conjugated HMMR and hemagglutinin (HA)-conjugated

ubiquitin into 293 cells (Fig. 6a, right). These observations suggest

that HMMR has a role in centrosomal function mediated by

BRCA1-BARD1 polyubiquitination.

HMMR-BRCA1 and centrosome dysfunction
To understand better the functional association between HMMR and

BRCA1 in vivo, we examined phenotypes mediated by short interfer-

ing RNA (siRNA). In agreement with changes observed in HMMR

expression in BRCA1mut tumors relative to sporadic breast tumors,

depletion of BRCA1 resulted in an upregulation of HMMR and its

product in immortalized human mammary epithelial cells (HME/

TERT cells; Supplementary Fig. 6 online). Centrosome hypertrophy

and amplification were observed in cells depleted of either BRCA1 or

HMMR (Fig. 6b and Supplementary Figs. 7 and 8 online). These

effects on centrosome numbers are similar to those previously

observed on functional inhibition or depletion of BRCA1 (ref. 31).

The breast tumor–derived cell line Hs578T and the HME/TERT cells

showed higher levels of centrosome amplification on depletion of

HMMR or BRCA1 than either the HeLa or U2OS cell lines. Notably, a

genetic interaction between HMMR and BRCA1 was observed in

HME/TERT and Hs578T cells. In these cells, simultaneous depletion

of HMMR and BRCA1 suppressed the centrosome abnormality

phenotypes observed on depletion of either single transcript (Fig. 6c).

To investigate further the relationship between HMMR, BRCA1

and centrosome dysfunction, we examined the role of aurora-A

kinase (AURKA, ranked third in the XPRSS-Int) because, first, its

C. elegans ortholog is required for centrosomal localization of TAC-1

(refs. 22–24); second, it associates with BRCA1 in the regulation of the

G2/M transition32; and third, when overexpressed in the mammary

epithelium, it induces centrosome amplification and genetic instability

before tumorigenesis33. Consistent with an association in mitosis,

endogenous AURKA-HMMR protein complexes were identified in

greater amounts in nocodazole-arrested cells (Fig. 6d). Immunofluor-

escence analysis of HMMR in BRCA1mut cells showed mislocalization

relative to g-tubulin (TUBG1); this mislocalization coincided with

that of AURKA, as revealed by multiple foci, some showing detectable

HMMR and others not (Fig. 6e and Supplementary Fig. 9 online).

No mislocalization of HMMR or AURKA on depletion of BRCA1 by

siRNA was observed in the cell lines studied, a finding that could be

due to partial BRCA1 depletion or, alternatively, to the fact that

HMMR mislocalization results from an indirect effect mediated by

overexpression of AURKA. As shown above, AURKA and HMMR

expression is upregulated in BRCA1mut breast tumors relative to

sporadic breast tumors (Fig. 3) and AURKA and HMMR seem to

be overexpressed and mislocalized in BRCA1mut cell lines (Supple-

mentary Fig. 9). Overexpression of AURKA in HME/TERT

(BRCA1wt) cells was sufficient to cause the overexpression and mis-

localization of HMMR (Fig. 6e). These observations, together with the

genetic interaction identified between HMMR and BRCA1, suggest

that overexpression of HMMR and/or its biochemical modification

resulting in centrosome amplification, which have been previously

associated in myeloma25, are early somatic molecular events that

contribute to breast tumorigenesis.

HMMR and breast cancer risk
The genotyping of three HMMR haplotype-tagging SNPs (htSNPs) in

923 individually matched case-control pairs from a population-based

study of incident breast cancer in northern Israel identified statistically

significant associations for each htSNP (Supplementary Table 6

online). All three individual htSNPs were associated with risk of

breast cancer and were consistent with an additive model showing

increasing risk with each additional risk-tagging allele. For example,

each copy of the A allele of rs10515860 was associated with a 32%

increase in risk (odds ratio (OR) ¼ 1.32, 95% confidence interval

(CI) 1.09–1.60; P ¼ 0.004). Each copy of the A-C-A haplotype

(rs7712023-rs299290-rs10515860) estimated by the expectation max-

imization method increased a woman’s risk by 33% (unadjusted

OR ¼ 1.33 for an additive model, 95% CI 1.08–1.63; P ¼ 0.007).

The single intronic htSNP rs10515860 essentially captured all of the

variation associated with risk, which suggests that the A allele of

rs10515860 is likely to be in linkage disequilibrium with a variant that

confers risk of breast cancer.

Further study of this allele showed that the risk of breast cancer

associated with the HMMR locus was not accounted for by the

presence of BRCA1 or BRCA2mutations (data not shown). Consistent

with models of inherited susceptibility to breast cancer34, rs10515860

A allele carriers of age 40 years and over were 1.22 times as likely to

develop breast cancer than were controls (OR ¼ 1.22, 95% CI

1.02–1.46; P ¼ 0.026), whereas carriers younger than 40 years were

2.7 times as likely to develop breast cancer (OR ¼ 2.73, 95% CI 1.25–

5.97; P ¼ 0.012). Risk was not restricted to Ashkenazi Jews and was

similar in magnitude and frequency for Sephardi Jews and

Christian and Muslim Arabs, in addition to Bedouin, Druze and

Cherkazi populations.

We investigated this association in an independent Ashkenazi

Jewish cohort, ascertained at Memorial Hospital in New York,

comprising 247 individuals with breast cancer and a family history

of three or more cases of breast cancer but no identified BRCA1 or

BRCA2 mutation and 298 women with no personal or family history

of breast cancer35. Genotyping SNPs across the complete 5q34 region
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identified associations with P values lower than 10�3 for the rs1458338

and rs12658549 SNPs located proximally to the HMMR locus (Sup-

plementary Table 7 online). Association with these SNPs was also

identified in the Ashkenazi subgroup of the Israeli case-control study

(rs1458338: OR ¼ 2.87, 95% CI 1.06–7.79; rs12658549: OR ¼ 2.73,

95% CI 1.09–6.85; P ¼ 0.030 and 0.032, respectively), which

suggested that these SNPs are in linkage disequilibrium with genetic

variation 5¢ upstream of the HMMR coding region in a

‘gene desert’ region spanning B1 Mb proximally. The G-C-A-T-G

haplotype was also significantly associated with risk of breast

cancer (Supplementary Table 8 online), which suggests that there

may be two discrete risk variants that can be ascertained on

different haplotypes.

To confirm the association between genetic variation in HMMR

and early-onset breast cancer, we genotyped rs10515860 in a third

independent sample of 997 cases and 464 controls (212 controls with

age data available) derived from the New York Cancer Project35. We

found a significant association of a 12-month-earlier age of onset in

homozygous cases as compared with controls in this cohort

(OR ¼ 1.56, 95% CI 1.02–1.95; P ¼ 0.009), consistent with the
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Figure 6 BRCA1-BARD1–mediated polyubiquitination, HMMR-BRCA1 and HMMR-AURKA interactions and centrosome dysfunction. (a) Left, HMMR

in vitro polyubiquitination analysis. Right, detection of polyubiquitinated HMMR by co-transfection of GST-HMMR and HA-ubiquitin into 293 cells.

(b) Immunofluorescence microscopy results for g-tubulin (TUBG1) and GFP-centrin are shown in Hs578T cells transfected with different siRNAs. White

arrowheads indicate normal centrosomes; yellows arrowheads indicate centrosome amplification or hypertrophy. (c) Percentage of cells showing centrosome

amplification in HeLa, U2OS, HME/TERT and Hs578T cells. U, untreated cells; C-, negative control siRNA; H, HMMR siRNA; B, BRCA1 siRNA; H+B,

HMMR plus BRCA1 siRNAs. Immunofluorescence microscopy results and evaluation of siRNA-mediated depletion are provided in Supplementary Figures 7

and 8. (d) Endogenous coimmunoprecipitation of HMMR and AURKA in U2OS cells treated with DMSO or nocodazole. (e) Immunofluorescence microscopy

results for HMMR, TUBG1, AURKA, GFP-AURKA and DAPI counterstaining in HME/TERT (BRCA1wt) and HCC1937 (BRCA1mut) cells. Yellow arrowheads

indicate protein cellular mislocalization. A cell overexpressing GFP-AURKA shows more endogenously expressed HMMR than neighbor cells that do not

express GFP-AURKA, identified by DAPI staining. Normal colocalization of HMMR and AURKA in HME/TERT cells and analysis of additional BRCA1mut

cell lines are shown in Supplementary Figure 9. (f) Early age at diagnosis is associated with higher HMMR expression in primary breast tumors of

individuals without BRCA1 or BRCA2 mutations, as assessed with a published data set16 (P ¼ 0.02 and 0.07 for microarray probes NM_012484 and

NM_012485, respectively).
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findings in the case-control study from Israel. Combined analysis for

all 2,475 cases and 1,918 controls gave an OR of 1.23 (95% CI 1.05–

1.43; P ¼ 0.007) for each copy of the rs10515860 risk allele (Table 1).

Combined analysis by age cohort showed greater risk for breast cancer

for this htSNP in women younger than 40 years (OR ¼ 2.01, 95% CI

1.08–3.75) as compared with older women (OR ¼ 1.18, 95% CI 1.01–

1.40), although both associations were significant (Table 1).

Given the association that extended proximally to the HMMR

coding region in these three studies, we investigated differences in

germline expression by using HapMap genotypes and paired expres-

sion data. Consistent with the results outlined above for risk of breast

cancer, the rs10515860 SNP showed an association with HMMR

overexpression under an additive model (log2 units difference ¼ 0.35,

95% CI 0.18–0.53; P ¼ 0.0001) for European descendents. The

A-C-A haplotype showed an association with an increase in 0.32

log2 units in HMMR expression for European descendents and for all

HapMap individuals included in the data set GSE6534 (Table 2).

The same trend was observed for European descendents when an

independent expression data set (GSE5859; log2 units difference¼ 0.21,

95% CI �0.03 to 0.44; P ¼ 0.085) was used. These differences in

expression for genotypes and haplotypes agree with a model in which

HMMR overexpression is both an early molecular mechanism

promoting breast tumorigenesis and a risk factor for breast cancer.

The G-C-A-T-G haplotype that is also associated with risk of breast

cancer correlates with downregulation of HMMR (Table 2), reinfor-

cing the hypothesis that there is tight germline regulation of HMMR

expression and suggesting that any alteration in HMMR protein

quantities could promote tumorigenesis, as previously discussed for

TACC proteins36.

To examine further this model of HMMR expression changes and

risk of breast cancer, we investigated how HMMR expression in

primary breast tumors from individuals without BRCA1 or BRCA2

mutations is associated with age at diagnosis. Linear regression

analysis showed that higher HMMR expression is associated with

early age at diagnosis (Fig. 6f), in agreement with the idea that

overexpression of HMMR is a risk factor for breast tumorigenesis.

Table 2 Haplotypes association with HMMR germline expression level

HapMap, European ancestry (n ¼ 60)a

Haplotypes rs1458338 rs12658549 rs7712023 rs299290 rs10515860 Frequency Difference (95% CI) P value

1 A T T T G 0.525 — —

2 A T A T G 0.233 0.19 (�0.03/0.41) 0.090

3 A T A C G 0.133 0.04 (�0.21/0.30) 0.722

4 A T A C A 0.109 0.32 (0.02/0.62) 0.037

HapMap, all populations (n ¼ 210)b

1 A T T T G 0.277 — —

2 A T A T G 0.251 0.01 (�0.10/0.13) 0.822

3 A T A C G 0.206 �0.05 (�0.17/0.07) 0.399

4 G C A T G 0.067 �0.39 (�0.57/�0.21) 3 � 10�5

5 G C A C G 0.055 0.10 (�0.08/0.29) 0.271

6 A T A C A 0.053 0.32 (0.12/0.51) 2 � 10�3

7 G T A C G 0.039 �0.16 (�0.42/0.09) 0.217

8 A C A C G 0.018 0.06 (�0.22/0.33) 0.689

9 G T A T G 0.015 �0.29 (�1.05/0.47) 0.452

aGlobal haplotype association P ¼ 0.04. bGlobal haplotype association P ¼ 0.92. Rare estimated haplotypes (n ¼ 7, cumulative frequency ¼ 0.019) not shown.

Table 1 Association results for rs10515860 and risk of breast cancer

Israel and New York data

Israel New York Total data combined

Genotypes Controls Cases OR (95% CI) Controls Cases OR (95% CI) Controls Cases OR (95% CI) P valuea

G/G 1,211 1,173 1.00 375 794 1.00 1,586 1,967 1.00

G/A 230 288 1.29 (1.07–1.46) 85 189 1.06 (0.80–1.41) 315 477 1.23 (1.05–1.43)

A/A 12 17 1.46 (0.70–3.08) 5 14 1.28 (0.47–3.57) 17 31 1.41 (0.78–2.50) 0.007

Combined Israel and New York data by age cohort

Age r 40 Age 4 40

Genotypes Controls Cases OR (95% CI) P valuea Controls Cases OR (95% CI) P valuea

G/G 101 177 1.00 1,276 1,790 1.00

G/A 15 50 2.01 (1.08–3.75) 257 427 1.18 (1.01–1.40)

A/A 0 3 — 0.026 16 28 1.21 (0.65–2.24) 0.044

aP values for the additive model (trend test).
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We cannot exclude the possibility that linkage disequilibrium of

genetic variation independent of HMMR might potentially explain

the observed associations. However, the strength of the genetic

associations, coupled with the functional associations that we have

found, indicates that HMMR may be a previously unknown suscept-

ibility gene for breast cancer within diverse human populations.

DISCUSSION
We have shown that analysis of gene expression, combined with

integration of omic data sets from various species, can be used to

generate a network of hundreds of potential functional associations

with cancer genes/proteins. Many of the hypotheses provided by the

BCN have been tested and validated either here or in the literature.

Additional omic data sets can be integrated as they are produced to

generate a larger and more comprehensive BCN.

Among the newly defined associations predicted in the BCN, we

focused on those of HMMR on the basis of a combination of different

functional criteria. Network modeling also points to functional

associations for other genes/proteins with properties similar to those

of HMMR, such as CSPG6. HMMR and two of its interactors (CSPG6

and MAD1L1) associate in protein complexes with BRCA1 and

BRCA2. We established that HMMR is an in vitro substrate for

BRCA1-BARD1–mediated polyubiquitination and that BRCA1 and

HMMR genetically interact to control centrosome number in breast

tumor– and mammary epithelium–derived cell lines. In addition, we

identified an association in breast tumorigenesis between BRCA1 and

HMMR with AURKA, which is also in the BCN. Collectively, these

findings describe a role for HMMR together with BRCA1 and AURKA

in microtubule-based processes essential for proper chromosome

segregation. Observations made in Xenopus laevis have associated

the HMMR ortholog XRHAMM with the control of spindle-pole

assembly mediated by the BRCA1-BARD1 heterodimer37. This obser-

vation further supports the idea that the HMMR-centered interactome

network described here has a role in genomic stability and

breast tumorigenesis.

Genetic analysis supports HMMR as a newly defined breast cancer

susceptibility gene, thereby delineating a genetic link between risk of

breast cancer and centrosome dysfunction. Notably, centrosome

hypertrophy and amplification are often evident in early stage pro-

liferative breast lesions38,39, and loss of mouse Brca1 or Brca2 leads to

centrosome amplification and genomic instability40,41. Our results

suggest that HMMR can act as a breast cancer susceptibility gene

when expressed in relatively large amounts; such overexpression

probably leads to centrosome amplification and genomic instability,

similar to what has been proposed in studies of an Aurka transgenic

model33 and in work involving transient Mad2 overexpression42.

Our network modeling strategy is applicable to other types of

cancer; it will help to discover more cancer-associated genes and

to generate a ‘wiring diagram’ of functional interactions between

their products.

METHODS
Bioinformatic analyses. We obtained GO annotations from NetAffx (Affyme-

trix) and based enrichment calculations on the total number of distinct genes

and their annotations in the U95A platform; P values were then determined by

Fisher’s exact test. Only grade 3 (poorly differentiated) tumors were used to

study gene expression in BRCA1mut tumors relative to sporadic breast tumors;

P values for differential expression were then determined by two-tailed

Student’s t-test (P o 0.10). To avoid probe discrepancies and differences in

the number of data points, only single-probe genes were simulated and

compared with single-probe genes from the XPRSS-Int data set, corresponding

to 132 genes from a total of 164; P values were then calculated empirically by

using 100 random simulations. The BRCA1mut coexpression network was

generated with the Graphviz graph visualization package. Owing to constraints

of the visualization program, the relative network positions of the four

reference genes are not proportional to the PCCs between them. Transcrip-

tional PCCs of XPRSS-Int genes that were upregulated and unchanged in

BRCA1mut tumors were compared by a two-tailed Student’s t-test, taking into

account all U95A probes for each gene. Orthologs were defined by reciprocal

BLASTP best hit (P o 10�6) or from the literature.

For the BCN modeling, we integrated, first, gene expression profiling

similarity above a given threshold, as determined by the PCC, from a

compendium of Saccharomyces cerevisiae43 and C. elegans44 microarray profiles

(6,174 and 18,451 genes, respectively); second, phenotypic similarity for 661

early embryogenesis C. elegans genes above a specific threshold17; third, genetic

interactions for 1,347 S. cerevisiae genes43; and fourth, protein physical

interactions (binary interactions, complex co-memberships and biochemical

interactions (protein modification)) for 3,458 S. cerevisiae43, 4,588 C. elegans

(WI6 data set21), 7,198 Drosophila melanogaster45,46 and 10,305 Homo

sapiens proteins47. To rank XPRSS-Int genes/proteins, PCC average values

for BRCA1 were used and BCN links corresponding to LIT-Int interactions

were not considered. Gene and protein names used throughout the text are

detailed in Supplementary Table 9 online.

Protein and biochemical analyses. Yeast two-hybrid methods were carried out

as described48. We performed BRCA1-BARD1 heterodimer purification and

ubiquitination reactions as described31, using whole-cell extracts of IMR90

human fibroblasts. We used the following antibodies: polyclonal IHABP and

E-19 (Santa Cruz Biotechnologies) for HMMR; monoclonal SD118, MS110

and SG11 for BRCA1; monoclonal Ab-1 (Oncogene) for BRCA2; monoclonal

clone-53 (BD Transduction Laboratories) for NUP62; polyclonal anti-AIK (Cell

Signaling) and monoclonal anti-IAK1 (BD Transduction Laboratories) for

AURKA; and polyclonal 727 and 725 for CSPG6 and SMC1L1, respectively,

polyclonal Dap23 and polyclonal 81d for MAD1L1, anti-PCM1 and anti-CEP2

(see Acknowledgments).

Cell culture and immunofluorescence microscopy. The negative control

siRNA was Silencer Negative Control 1 siRNA (Ambion). The HMMR 1 and

2 siRNAs were Silencer Pre-Designed siRNAs (Ambion; 5¢-GGUGCUUAU

GAUGUUAAAATT-3¢ and 5¢-GGACCAGUAUCCUUUCAGATT-3¢, respec-

tively). The BRCA1-b siRNA has been published31. Centrosome immunofluor-

escence counts correspond to three independent experiments, each scoring 200

cells with 480% protein reduction of HMMR and/or BRCA1.

Association studies. Individuals with breast cancer and control subjects were

recruited through an institutional review board–approved study of breast

cancer in northern Israel and through protocols at the Memorial Sloan-

Kettering Cancer Center in New York. The case-control study in northern

Israel is a population-based study of incident breast cancer identified through

rapid case ascertainment between January 2000 and July 2006. Controls were

identified by randomly selecting women from a comprehensive list of insurees

with Israel’s largest health provider, which covers B70% of women at risk in

northern Israel. For each case, an individually matched control without breast

cancer was identified by randomly sampling all female insurees meeting the

matching criteria of age (within 1 year), ancestry (Jewish versus non-Jewish)

and geographical clinic area. All breast cancers were pathologically confirmed,

and each participant signed written, informed consent. Cases and controls were

classified by religion and ancestry on the basis of self-report.

Genotyping. Genomic DNA derived from blood lymphocytes was used for all

genotyping. All case and control samples were genotyped for BRCA1 and

BRCA2 Jewish-derived founder mutations by using a TaqMan platform

(Applied Biosystems). Genotyping for SNPs in HMMR was performed with

Pyrosequencing (Biotage). Haplotype-tagging SNPs were selected for the

northern Israel study using Haploview49 to determine linkage disequilibrium

blocks by analyzing Centre d’ Etude du Polymorphisme Humain (CEPH) SNP

genotype data downloaded from the HapMap website. To be included in the

analysis, SNPs had to meet the following criteria: the Hardy-Weinberg w
2

goodness-of-fit test yielded a P value 4 0.05; at least 75% of subjects were

genotyped for the SNP; and the minor allele frequency of the SNP was at least
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0.001. For the SNPs that met these criteria, Haploview was run in aggressive

tagging mode using two- and three-marker haplotypes. No difference in results

was seen when the pairwise tagging mode was used. For a SNP to be selected, all

alleles to be captured were correlated at a value of r2 4 0.8 with the marker in

that set. Three SNPs were identified as htSNPs, which tagged variation within

three estimated haplotype blocks in HMMR: rs7712023, rs299290 and

rs10515860. We performed duplicate genotyping for all samples in the

population-based study for rs10515860 with 100% concordance. Duplicate

genotyping for rs299290 was done for 1,789 samples, and 1,737 (97.1%) were

in agreement. Duplicate genotyping was not performed in the validation study

in New York.

Statistical analysis. Conditional and unconditional logistic regressions were

used to analyze data from the case-control study, as appropriate for a matched

study. No important differences between matched and unmatched analyses

were noted; therefore, the results are presented for the unmatched analysis to

optimize the sample size for tests of interaction and for ease of presentation.

Haplotypes were estimated with the EM algorithm, as implemented in the R

packages haplo.stats and SNPStats50. Association study between HapMap

genotypes and haplotypes, and HMMR germline expression levels from two

independent data sets (normalized values of Gene Expression Omnibus records

GSE5859 and GSE6536) were performed with the haplo.stats package by fitting

linear equations and P values obtained based on the F-test.

Additional methods. Detailed experimental methods are described in the

Supplementary Methods online.

Note: Supplementary information is available on the Nature Genetics website.
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