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Network modelling in metabolic systems biology and biotechnology:                        w

Understanding the      languages of cells
Let me start by saying what I am not going to do, and that is to seek to define systems biol-

ogy! However, it is widely recognized that the chief differences between Systems Biology and 

traditional molecular biology are (i) the concentration of systems biology (and systems biolo-

gists) not on the molecules involved, but on the dynamics of their interactions, and (ii) that 

systems biology should involve a judicious interplay between modelling, theory, experiment 

and technology development 1. As the modelling element is really the key, it is this aspect that 

I stress here. 

literature data7, and an important feature being the 

use of principled descriptors for metabolites5 and 

their disambiguation8 from the many synonyms 

prevailing. A second qualitative stage adds known 

effectors, while the third and fourth stages add the 

known kinetic rate equations and the values of their 

parameters. Armed with such information, prefer-

ably encoded properly in a suitable manner, e.g. 

in the Systems Biology Markup Language (SBML; 

http://sbml.org/)9, it is then possible to provide a 

stochastic or ordinary differential equation model 

of the entire metabolic network of interest. Running 

such a model (using software such as COPASI; www.

copasi.org/10,11) provides the time evolution of the 

variables of the system that may be compared with 

experimental data on the variables. One can then 

seek to adjust the parameters of the network so that 

they more nearly reproduce the variables12. Methods 

in which one starts with the variables and seeks to in-

fer the topology and other parameters of the system 

that generated them are known as inverse methods 

or system identification methods, and are consider-

ably more demanding computationally (e.g. 13–15). It 

is also usually the case that such systems are under- 

determined, i.e. that many combinations of param-

eters can give rise to very similar values of the varia-

bles. This is in part due to the fact that natural evolu-

tion selected for robustness (especially in topology3), 

which has the advantage (from the experimenter’s 

point of view) that one can then concentrate on those 

comparatively few (combinations of ) parameters that 

have the greatest effect16.

The purposes and bene�ts of modelling

I have set these out systematically elsewhere17, 

and they include (i) testing whether the model can 

be made to reflect known experimental facts, (ii) 

Although much of what I shall say also applies to sig-

nalling pathways, for reasons of focus I shall mainly 

concentrate on metabolic networks. These also have 

two especially useful properties over signalling 

networks, namely that they are subject to specific 

stoichiometric and thermodynamic constraints that 

offer considerable advantages in modelling them.

Parameters and variables

It is at once useful to distinguish the parameters 

and variables of a system (or model thereof)2. The 

parameters of a dynamical system are those prop-

erties of a system that are either inherent to the 

system of interest or whose values are controlled 

by an experimenter. In metabolic networks, these 

include the initial concentrations of enzymes and 

metabolites, and enzyme kinetic properties such as 

K
m

, k
cat

 and K
i
. The variables, by contrast, are those 

things that change during the time evolution of the 

system, typically concentrations of metabolites and 

metabolic fluxes. It is important to recognize that the 

parameters control the variables and not vice versa, 

although it is probably more common to measure 

the variables than the parameters. Especial virtue 

attaches to seeking to do both simultaneously (i.e. 

comparing modelled metabolic networks with their 

metabolomic properties3,4).

Metabolic network modelling

It is usual to recognize that the successful mod-

elling of metabolic networks involves a four-stage 

process1,5. The first two stages are qualitative, with 

the first involving listing all the reactions that are 

known to occur in the system or organism of inter-

est; nowadays these reaction lists are mainly derived 

from genomic annotations6, with curation based on 
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three enzymes, as may in fact quite commonly be the 

case (e.g. 25), in silico analyses allow one to identify 

them fairly easily (i.e. the computational require-

ments are very modest, and, because the algorithms 

can be parallelized efficiently12, actually scale close 

to linearly with the available processors). It is then a 

simple piece of molecular biology to make the neces-

sary constructs. This fundamental relationship be-

tween a small number of important parameters and 

a very large number of combinations of those param-

eters means that the modelling strategy is necessarily 

highly efficient (and really the only sensible way to 

do industrial biotechnology in the modern era). 

Having established which individual proteins 

:                        why, how and whither

Understanding the      languages of cells
analysing the model to understand which parts of 

the system contribute most to some desired proper-

ties of interest (especially here the use of so-called 

sensitivity analysis), (iii) hypothesis generation and 

testing, allowing one rapidly to analyse the effects of 

manipulating experimental conditions in the model 

without having to perform complex and costly ex-

periments (or to restrict the number that are per-

formed) – so-called ‘what if?’ experiments, and (iv) 

testing what changes in the model would improve 

the consistency of its behaviour with experimental 

observations. Overall, given the ability to annotate 

models in a principled manner, including with the 

necessary literature references5,18, metadata19 and 

integrated links20, it is at least arguable that it is 

the model itself that represents our knowledge of a 

biochemical system21. Certainly, the recognition that 

our knowledge is dispersed among multiple databas-

es means that there is advantage to be had in joining 

them up in a loosely coupled manner1, for which we 

have found the Taverna system (www.taverna.org.

uk/) to be of considerable utility22,23. What might we 

then do with this knowledge

Exploiting our knowledge of biochemical systems 

properties in biotechnology and medicine

It has long been recognized that the optimiza-

tion of biotechnological processes needs to be ap-

proached rationally24 (such approaches contrasting 

with the very sluggish programmes of random muta-

tion and selection that were traditional). The basic 

issue is that, in part because of the selection by evo-

lution for robustness (something that contrasts with 

human-made networks such as transport networks, 

incidentally), it is normally necessary to modify 

the activities of several different enzymes in order 

to increase productivity significantly. This involves 

a purely (and fundamental) combinatorial problem 

that is much less easily attacked (initially) by experi-

ment than by simulation. This follows because the 

number of combinations scales exponentially with 

the number of things one might wish to change, such 

that choosing combinations of one, two, three or 

four enzymes from a palette of 1000 involves 1000, 

499 500, 1.66×108 and 4.14×1010 possibilities respec-

tively. However, if one does need to change only (say) 

Figure 1. A metabolite-centric model of a metabolic network, here focusing on ADP as part of 

glycolysis. The yeast glycolytic network, encoded as SBML53, was visualized using the Arcadia 

software54. PEP, phosphoenolpyruvate; PYR, pyruvate; BPG, bisphosphoglycerate; P3G, 3-phos-

phoglycerate; F26bP, fructose 2,6-bisphosphate; F6P, fructose 6-phosphate; F16bP, fructose 

1,6-bisphosphate; GLCi, intracellular glucose; G5P, glucose 5-phosphate.
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I thank many colleagues for useful discussions.

might need improving, the same combinatorial issue 

pertains for their directed evolution. Thus the number 

of possible sequences of a protein of 300 amino acids 

is 20300 (~10390). The number of sequence variants for 

m substitutions in a given protein of n amino acids is 

19m·n!/[(n−m)!m!]. For a protein of 300 amino acids 

with changes in just one, two and three amino acids, 

this is 5700, ~16 million and ~30 billion respectively. 

However, evolutionary optimization methods26 can 

speed up such searches considerably, and I might 

also point to a recent synthetic biology approach27 

in which we evolved efficient nucleic acid aptamers 

from a very small number (4×104) of those (430≈1018) 

possible with 30mers. This said, the advance of 

technology meant that in a related project we could 

screen all DNA 10mers to understand the nature of 

the protein sequence-activity landscape28.

Biomedical applications remain an important 

focus of systems biology, and one of the goals of 

metabolic systems biology is the construction of a 

human metabolic network model29, with encourag-

ing progress already reported30,31. Note that some 

Figure 2. Metabolic network showing the links between enzymes and metabolites that inter-

act with the Arabidopsis TCA cycle KEGG classi�cation M00009. Enzymes and metabolites are 

the nodes (red), interactions are the lines. In total, 43 enzymes and 40 metabolites are shown. 

Created on Cytoscape using data from VirtualPlant 0.9. (Wiki)
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