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Network motifs in the transcriptional regulation
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Little is known about the design principles1–10 of transcrip-

tional regulation networks that control gene expression in

cells. Recent advances in data collection and analysis2,11,12,

however, are generating unprecedented amounts of informa-

tion about gene regulation networks. To understand these

complex wiring diagrams1–10,13, we sought to break down such

networks into basic building blocks2. We generalize the notion

of motifs, widely used for sequence analysis, to the level of

networks. We define ‘network motifs’ as patterns of intercon-

nections that recur in many different parts of a network at fre-

quencies much higher than those found in randomized

networks. We applied new algorithms for systematically

detecting network motifs to one of the best-characterized reg-

ulation networks, that of direct transcriptional interactions in

Escherichia coli3,6. We find that much of the network is com-

posed of repeated appearances of three highly significant

motifs. Each network motif has a specific function in determin-

ing gene expression, such as generating temporal expression

programs and governing the responses to fluctuating external

signals. The motif structure also allows an easily interpretable

view of the entire known transcriptional network of the organ-

ism. This approach may help define the basic computational

elements of other biological networks.

We compiled a data set of direct transcriptional interactions
between transcription factors and the operons they regulate (an
operon is a group of contiguous genes that are transcribed into a
single mRNA molecule). This database contains 577 interac-
tions and 424 operons (involving 116 transcription factors); it
was formed on the basis of on an existing database (Regu-
lonDB)3,14. We enhanced RegulonDB by an extensive literature
search, adding 35 new transcription factors, including alterna-
tive σ-factors (subunits of RNA polymerase that confer recogni-
tion of specific promoter sequences). The data set consists of
established interactions in which a transcription factor directly
binds a regulatory site.

The transcriptional network can be represented as a directed
graph, in which each node represents an operon and edges repre-
sent direct transcriptional interactions. Each edge is directed
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Fig. 1 Network motifs found in the E. coli transcriptional regulation network.

Symbols representing the motifs are also shown. a, Feedforward loop: a tran-

scription factor X regulates a second transcription factor Y, and both jointly

regulate one or more operons Z1...Zn. b, Example of a feedforward loop (L-ara-

binose utilization). c, SIM motif: a single transcription factor, X, regulates a set

of operons Z1...Zn. X is usually autoregulatory. All regulations are of the same

sign. No other transcription factor regulates the operons. d, Example of a SIM

system (arginine biosynthesis). e, DOR motif: a set of operons Z1...Zm are each

regulated by a combination of a set of input transcription factors, X1...Xn.

DORs are defined by an algorithm that detects dense regions of connections,

with a high ratio of connections to transcription factors. f, Example of a DOR

(stationary phase response).
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from an operon that encodes a transcription factor to an operon
that is regulated by that transcription factor. We scanned the net-
work with algorithms aimed at detecting recurring patterns (see
Methods). We evaluated the statistical significance of the net-
work motifs by comparison with randomized networks having
the same characteristics as the real E. coli network. The probabil-
ity that a randomized network had an equal or greater number of
each of the motifs than the E. coli network was determined by
enumerating the motifs found in 1,000 randomized networks.

The first motif, termed ‘feedforward loop’, is defined by a tran-
scription factor X that regulates a second transcription factor Y,
such that both X and Y jointly regulate an operon Z (Fig. 1a). We
term X the ‘general transcription factor’, Y the ‘specific transcrip-
tion factor’, and Z the ‘effector operon(s)’. For example, this
motif occurs in the L-arabinose utilization system (Fig. 1b)15.
Here, Crp is the general transcription factor and AraC the spe-
cific transcription factor. This motif characterizes 40 effector
operons in 22 different systems in the network database, with 10
different general transcription factors.

A feedforward loop motif is ‘coherent’ if the direct effect of the
general transcription factor on the effector operons has the same
sign (negative or positive) as its net indirect effect through the
specific transcription factor. For example, if X and Y both posi-
tively regulate Z, and X positively regulates Y, the feedforward
loop is coherent. If, on the other hand, X represses Y, then the
motif is incoherent. We find that most (85%) of the feedforward
loop motifs are coherent (Table 1). Feedforward loops are styl-
ized structures that occur much more frequently in the E. coli
network than in randomized networks (Table 1, P < 0.001).

The second motif, termed single-input module (SIM), is
defined by a set of operons that are controlled by a single tran-
scription factor (Fig. 1c). All of the operons are under control of
the same sign (all positive or all negative) and have no additional
transcriptional regulation. The transcription factors controlling
SIM motifs are usually autoregulatory (70%, mostly autorepres-
sion), in contrast to only 50% of the transcription factors in the
complete data set. An example is the arginine biosynthesis path-
way, where the transcription factor ArgR uniquely controls five
operons that encode arginine biosynthesis genes (Fig. 1d). Other
amino-acid biosynthesis systems also correspond to this motif.
The SIM motif appears in 24 systems in the database (including
only systems with three or more operons). Large SIMs occur
infrequently in randomized networks (Table 1, P < 0.01),
because there is a low probability that a large number of operons
controlled by a single transcription factor will have no other
transcriptional inputs.

The third motif, termed ‘dense overlapping regulons’ (DOR),
is a layer of overlapping interactions between operons and a
group of input transcription factors (Fig. 1e) that is much more
dense than corresponding structures in randomized networks.
We find that the sets of genes regulated by different transcription

factors in E. coli are much more overlapping than expected at
random. This can be quantified by the frequency of pairs of genes
regulated by the same two transcription factors (Table 1). This
does not result, however, in a homogenous mesh of dense inter-
connections; instead, the network contains several loosely con-
nected, internally dense regions of combinatorial interactions
(DORs). As these regions are somewhat overlapping, different
criteria can yield slightly different groupings.

We used a clustering approach to define DORs. This algorithm
detects locally dense regions in the network with a high ratio of
connections to transcription factors (see Methods). This defines
six DORs. The operons in each DOR share common biological
functions. Typically, every output operon is controlled by a dif-
ferent combination of input transcription factors. In rare cases,
termed ‘multi-input modules’, several operons in a DOR are reg-
ulated by precisely the same combination of transcription factors
with identical regulation signs. An example of a DOR is the set of
operons regulated by RpoS upon entry into stationary phase
(Fig. 1f)16. Different combinations of additional transcription
factors, including transcription factors that respond to various
stresses and nutrient limitations, control each of these operons.
To fully understand the computation performed by each DOR
requires a knowledge of the regulatory logic that controls how
multiple inputs are integrated at each promoter17. A number of
DORs as large and dense as in the real E. coli network occurs very
rarely in randomized networks (P∼ 0.001). We note that different
clustering rules can give rise to slightly different separations of
operons into DORs. The significant finding is that these dense
regions of overlapping interactions exist and that they seem to
partition the operons into biologically meaningful combinatorial
regulation clusters.

The fact that the network motifs appear at frequencies much
higher than expected at random suggests that they may have spe-
cific functions in the information processing performed by the
network. One clue to their possible function is provided by com-
mon themes of the systems in which they appear. Additional
insight may be gained by mathematical analysis of their dynam-
ics. The feedforward loop motif often occurs where an external
signal causes a rapid response of many systems (such repression
of sugar utilization systems in response to glucose, shift to anaer-
obic metabolism). The abundance of coherent feedforward
loops, as opposed to incoherent ones, suggests a functional
design (Table 1).

Mathematical analysis suggests that the coherent feedforward
loop can act as a circuit that rejects transient activation signals
from the general transcription factor and responds only to per-
sistent signals, while allowing a rapid system shutdown. This can
occur when X and Y act in an ‘AND-gate’−like manner to control
operon Z (Fig. 2a), as is the case in the araBAD operon in the ara-
binose feedforward loop (Fig. 1b)15. When X is activated, the sig-
nal is transmitted to the output Z by two pathways, a direct one

Table 1 • Statistics of occurrence of various structures in the real and randomized networks

Appearances in real Appearances in
network randomized network

Structure (mean ± s.d.) P value

Coherent feedforward loop 34 4.4 ± 3 P < 0.001

Incoherent feedforward loop 6 2.5 ± 2 P ∼ 0.03

Operons controlled by 
SIM (>13 operons) 68 28 ± 7 P < 0.01

Pairs of operons regulated by 
same two transcription factors 203 57 ± 14 P < 0.001

Nodes that participate in cycles* 0 0.18 ± 0.6 P ∼ 0.8

*Cycles include all loops greater than size 1 (autoregulation). P value for cycles is the probability of networks with no loops.
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from X and a delayed one through Y. If the activation of X is tran-
sient, Y cannot reach the level needed to significantly activate Z,
and the input signal is not transduced through the circuit. Only
when X signals for a long enough time so that Y levels can build
up will Z be activated (Fig. 2a). Once X is deactivated, Z shuts
down rapidly. This kind of behavior can be useful for making
decisions based on fluctuating external signals.

The SIM motif is found in systems of genes that function sto-
chiometrically to form a protein assembly (such as flagella) or a
metabolic pathway (such as amino-acid biosynthesis). In these
cases, it is useful that the activities of the operons are determined
by a single transcription factor, so that their proportions at
steady state can be fixed. In addition, mathematical analysis sug-
gests that SIMs can show a detailed temporal program of expres-
sion resulting from differences in the activation thresholds of the
different genes (Fig. 2b). Built into this design is a pattern in
which the first gene activated is the last one to be deactivated.
Such temporal ordering can be useful in processes that require
several stages to complete. This type of mechanism may explain
the experimentally observed temporal program in the expression
of flagella biosynthesis genes18.

The motifs allow a representation of the E. coli transcriptional
network (Fig. 3) in a compact, modular form (for an image of the
full network, see Web Fig. A online). By using symbols to represent
the different motifs (Fig. 1), the network is broken down to its
basic building blocks. A single layer of DORs connects most of the
transcription factors to their effector operons. Feedforward loops
and SIMs often occur at the outputs of these DORs. The DORs are
interconnected by the global transcription factors, which typically
control many genes in one DOR and few genes in several DORs.
An important step in visualizing the network was to allow each
global transcription factor to appear multiple times, whenever it is
an input to a structure. This reduces the complexity of the inter-
connections while preserving all the information. There are few

long cascades3, usually involving σ-factors, such as cas-
cades of depth 5 in the flagella and nitrogen systems. Over
70% of the operons are connected to the DORs; the rest of
the operons are in small disjoint systems. Most disjoint
systems have only 1 to 3 operons. The remaining disjoint
systems have up to 25 operons and show many SIMs and
feedforward loops. A notable feature of the overall organi-
zation is the large degree of overlap within DORs between
the short cascades that control most operons. The layer of
DORs may therefore represent the core of the computa-
tion carried out by the transcriptional network.

Cycles such as feedback loops are an important feature
of regulatory networks. Transcriptional feedback loops
occur in various organisms, such as the genetic switch in
λ-phage5. In the E. coli data set, there are no examples of
feedback loops of direct transcriptional interactions,
except for auto-regulatory loops3. However, the absence

of feedback loops is not statistically significant, as over 80% of
the randomized networks also have no feedback loops (Table 1).
The many regulatory feedbacks loops in the organism are carried
out at the post-transcriptional level.

We considered only transcription interactions specifically
manifested by transcription factors that bind regulatory sites3,14.
This transcriptional network can be thought of as the ‘slow’ part
of the cellular regulation network (time scale of minutes). An
additional layer of faster interactions, which include interactions
between proteins (often subsecond timescale), contributes to the
full regulatory behavior and will probably introduce additional
network motifs. Characterization of additional transcriptional
interactions may change the present motif assignment for spe-
cific systems. However, our conclusions regarding the high fre-
quencies of feedforward loops, SIMs and overlapping regulation
compared with randomized networks are insensitive to the addi-
tion or removal of interactions from the data set. These features
are still highly significant, even when 25% of the connections in
the E. coli network are removed or rearranged at random.

The concept of homology between genes based on sequence
motifs has been crucial for understanding the function of
uncharacterized genes. Likewise, the notion of similarity
between connectivity patterns in networks, based on network
motifs, may be helpful in gaining insight into the dynamic
behavior of newly identified gene circuits. The present analysis
may serve as a guideline for experimental study of the functions
of the motifs. It would be useful to determine whether the net-
work motifs found in E. coli can characterize the transcriptional
networks of other cell types. In higher eukaryotes, for example,
there will be many more regulators affecting each gene, and addi-
tional types of circuits may be found. The findings presented
here also raise the possibility that motifs can be defined in other
biological networks7, such as signal transduction, metabolic19

and neuron connectivity networks.

Fig. 2 Dynamic features of the coherent feedforward loop and SIM

motifs. a, Consider a coherent feedforward loop circuit with an ‘AND-

gate’–like control of the output operon Z. This circuit can reject rapid

variations in the activity of the input X, and respond only to persistent

activation profiles. This is because Y needs to integrate the input X

over time to pass the activation threshold for Z (thin line). A similar

rejection of rapid fluctuations can be achieved by a cascade, X→Y→Z;

however, the cascade has a slower shut-down than the feedforward

loop (thin red line in the Z dynamics panel). b, Dynamics of the SIM

motif. This motif can show a temporal program of expression accord-

ing to a hierarchy of activation thresholds of the genes. When the

activity of X, the master activator, rises and falls with time, the genes

with the lowest threshold are activated earliest and deactivated lat-

est. Time is in units of protein lifetimes, or of cell cycles in the case of

long-lived proteins.
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Fig. 3 Part of the network of direct transcriptional interactions in the E. coli data set, represented using network motifs. Nodes represent operons, and lines represent transcriptional regulation, directed so that the regulating tran-

scription factor is above the regulated operons. Network motifs are represented by their corresponding symbols (Fig. 1). The DORs are named according to the common function of their output operons. Each transcription factor

appears in only a single subgraph, except for transcription factors regulating more than ten operons (‘global transcription factors’), which can appear in several subgraphs. For an image of the entire network, see Web Fig. A online.
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Methods
Transcriptional interaction database. Data from RegulonDB (v. 3.2, XML
format) included 81 transcription factors, with 624 interactions between
transcription factors and sites. For this study, we unified interactions with
several promoters for the same operon, as well as interactions of a tran-
scription factor with several binding sites in the same promoter region.
Unified interactions of different signs (negative/positive) were registered as
‘dual’. We did not include interactions of unknown type or those based
solely on microarray data. This reduced the effective number of interac-
tions in RegulonDB to 390. We extended RegulonDB data by adding 35
new transcription factors, including alternative σ-factors, and 187 new
interactions that we collected through a literature search. In most cases, the
new interactions added were supported in the literature both by in vivo
genetic experiments and by in vitro DNA binding data. Most (58%) of the
interactions are positive, owing largely to the addition of the alternative σ-
factors as transcription factors. Of the 58 autoregulatory interactions (50%
of all transcription factors), a majority are autorepressors (70%). The dis-
tribution of the number of transcription factors controlling an operon is
compact (exponential), whereas the distribution of the number of operons
regulated by a transcription factor is long-tailed10 with an average of
approximately 5.

Algorithms for detecting network motifs. The transcriptional network
was represented as a connectivity matrix, M, such that Mij = 1 if operon j
encodes a transcription factor that transcriptionally regulates operon i,
and Mij = 0 otherwise. We scanned all n × n submatrices of M, generated by
choosing n nodes that lie in a connected graph, for n = 3 and n = 4. Subma-
trices were enumerated efficiently by recursively searching for nonzero ele-
ments (i,j) and then scanning row i and column j for nonzero elements.
The P value for the submatrices representing each type of connected sub-
graph was evaluated by comparing the number of times they appeared in
the real network to the number of times they appeared in the randomized
ensemble. For n = 3, the only significant motif is the feedforward loop. For
n = 4, only the overlapping regulation motif, where two operons are regu-
lated by the same two transcription factors (Table 1), was found to be sig-
nificant. To detect SIMs and multi-input modules, we searched for identi-
cal rows of M.

DOR detection. We used an algorithm for detecting dense regions of inter-

actions in the network. All operons regulated by two or more transcription

factors were considered. We defined a (nonmetric) distance measure

between operons k and j, based on the number of transcription factors regu-

lating both operons: d(k,j) = 1/(1+ (Σn fn Mk,n Mj,n)2), where fn = 1/2 for

global transcription factors (transcription factors that regulate more than

ten operons); otherwise, fn = 1. Using this distance measure, the operons

were clustered with a standard average-linkage algorithm20. DORs corre-

sponded to clusters with more than C = 10 connections, with a ratio of con-

nections to transcription factors greater than R = 2 and a splitting distance18

larger than the mean splitting distance. Finally, all additional operons (those

regulated by a single transcription factor), which are regulated by transcrip-

tion factors participating in a single DOR, were included in that DOR.

Generation of randomized networks. For a stringent comparison to ran-
domized networks, we generated networks with precisely the same number
of operons, interactions, transcription factors and number of incoming
and outgoing edges for each node as in the real E. coli network. The corre-
sponding randomized connectivity matrices, Mrand, have the same num-
ber of nonzero elements in each row and column as the corresponding row
and column of the real connectivity matrix M; that is: ΣiMrandij = ΣiMij,
ΣjMrandij = ΣjMij. We used a previously described algorithm13 to generate
the randomized networks. Briefly, the proper number of incoming and
outgoing edge ‘stubs’ is assigned to each node. Pairs of in/out edge stubs
are randomly chosen and joined, generating a directed graph. We
obtained identical results using a Markov-chain algorithm21, based on
starting with the real network and repeatedly swapping randomly chosen
pairs of connections (X→Y1, X2→Y2 is replaced by X1→Y2, X2→Y1)
until the network is well randomized. We verified that this yields net-

works with precisely the same F(p,q), or the number of nodes with p
incoming and q outgoing nodes, as the real network.

Mathematical model of network motif dynamics. We used Boolean kinet-
ics4. The SIM (Fig. 2b) was described by dZi/dt = F(X,Ti)–aZi, where Zi
and i = 1,2,3 are the protein concentrations; the activation thresholds are
T1 = 0.1, T2 = 0.5, T3 = 0.8; the cell-cycle time (or lifetime for rapidly
degradable proteins) is a = 1; and F(X,T) = 0 if X<T and 1 if X≥T. The feed-
forward loop (Fig. 2a) was described by dY/dt = F(X,Ty)–aY, dZ/dt =
F(X,Ty)F(Y,Tz)–aZ, with Ty =  Tz = 0.5, a = 1. The cascade in Fig. 2a corre-
sponds to dY/dt = F(X,Ty)–aY, dZ/dt = F(Y,Tz)–aZ. The dynamics are
qualitatively similar if other sigmoidal forms for F are used instead of
Boolean kinetics (such as F(X,T) = X/(T+X)).

Data availability. The data set is available at http://www.weizmann.ac.il/
mcb/UriAlon.

Note: Supplementary information is available on the Nature
Genetics website.
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