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ABSTRACT

Motivation: The goal of neighborhood analysis is to find a set of

genes (the neighborhood) that is similar to an initial ‘seed’ set of

genes. Neighborhood analysis methods for network data are important

in systems biology. If individual network connections are susceptible to

noise, it can be advantageous to define neighborhoods on the basis of

a robust interconnectedness measure, e.g. the topological overlap

measure. Since the use of multiple nodes in the seed set may lead

to more informative neighborhoods, it can be advantageous to define

multi-node similarity measures.

Results: The pairwise topological overlap measure is generalized to

multiple network nodes and subsequently used in a recursive neigh-

borhood construction method. A local permutation scheme is used to

determine theneighborhoodsize.Using fournetworkapplicationsanda

simulated example, we provide empirical evidence that the resulting

neighborhoods are biologically meaningful, e.g. we use neighborhood

analysis to identify brain cancer related genes.

Availability:AnexecutableWindowsprogramand tutorial formulti-node

topologicaloverlapmeasure(MTOM)basedanalysiscanbedownloaded

from the webpage (http://www.genetics.ucla.edu/labs/horvath/MTOM/).

Contact: shorvath@mednet.ucla.edu

Supplementary information: Supplementary material is available at

Bioinformatics online.

1 INTRODUCTION

The main focus of this paper is a fundamental screening task: how to

define the neighborhood of an initial set of nodes (genes) in a

network. Intuitively speaking, a neighborhood is composed of

nodes that are highly connected to a given set of genes. Thus

neighborhood analysis facilitates a guilt-by-association screening

strategy for finding genes that interact with a given set of biologi-

cally interesting genes. To define a neighborhood of an initial gene

set, one can make use of a similarity measure. For example, when

dealing with gene expression microarray data, it is natural to use

the correlation coefficient to measure pairwise gene co-expression

similarity (Eisen et al., 1998; Golub et al., 1999).

Here, we consider the setting of an undirected network that can be

represented by a symmetric adjacency matrix A ¼[aij]. In an

unweighted network, aij ¼ 1 if nodes i and j are connected and

0 otherwise. In a weighted network, aij 2 [0,1] encodes the pairwise

connection strength.

A simple approach for defining a neighborhood of node i is to

choose the nodes with highest adjacencies aij. In an unweighted

network, this amounts to choosing the directly connected neighbors

of node i.
Erroneous links (adjacencies) can have a strong impact on

network topological inference (Line et al., 2004; Lin and Zhao,

2005). Since spurious or weak connections in the adjacency matrix

may lead to ‘noisy’ neighborhoods, it can be advantageous to use

node (dis-)similarity measures that are based on common inter-

acting partners or on topological metrics (Ravasz et al., 2002;

Brun et al., 2003; Zhao et al., 2006; Chen et al., 2006; Chua

et al., 2006). A comparison of different measures can be found

in Chua et al. (2006) and Goldberg and Roth (2003).

A limitation of many network similarity measures is that they

measure pairwise similarity. Although pairwise similarities are

useful for clustering procedures and many gene annotation proce-

dures, we will argue that it can be advantageous for neighborhood

analysis to introduce multi-node similarity measures.

We outline a procedure for generalizing pairwise network simi-

larity or dissimilarity measures that are based on shared neighbors.

The resulting multi-point measures keep track of the numbers of

shared neighbors among multiple network nodes. We apply our

approach to the topological overlap measure (TOM) (Ravasz

et al., 2002).

1.1 Topological overlap measure

The topological overlap of two nodes reflects their similarity in

terms of the commonality of the nodes they connect to. In an

unweighted network, the number of shared neighbors of nodes i
and j is given by

P
u6¼i‚ j aiuaju. The topological overlap T¼ [tij] is a

normalized version of this quantity. Specifically, the following

definition of the pairwise TOM can be found in the Supplementary

material of Ravasz et al. (2002):

tij ¼

P
u6¼i‚ j

aiuajuþaij

min
�P

u 6¼i
aiu � aij‚

P
u6¼j

aju � aij

�
þ1

if i 6¼ j

1 if i ¼ j:

8<
: ð1Þ
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The inclusion of the term aij in the numerator makes tij explicitly

depend on the existence of a direct link between the two nodes

in question. An advantage of the quantity 1 in the denominator is

that it prevents the denominator from becoming 0 when

min f
P

u 6¼i aiu � aij‚
P

u6¼j aju � aijg ¼ 0.

In the following, we use 0 � aij � 1 to prove that 0 � tij � 1.

Since
P

u 6¼i‚ j aiuaju �
P

u6¼i aiu � aij and
P

u 6¼i‚ j aiuaju �P
u 6¼j aju � aij, which implies

P
u6¼i‚ j aiuaju �

minf
P

u6¼i aiu � aij‚
P

u 6¼j aju � aijg. Along with aij � 1, we

find that the numerator of tij is smaller than the denominator.

2 APPROACH

2.1 Multi-node topological overlap measure

Here, we generalize the topological overlap matrix to multiple

nodes and show how to use it in neighborhood analysis. Our

multi-node TOM (MTOM) is motivated by the observation that

formula (1) can be expressed as

tij ¼
jNði‚ jÞ j þ aij

minf jNði‚ � jÞ j ‚ jNð � i‚ jÞ j g þ
�

2

2

� ‚ ð2Þ

where N(i, j) denotes the set of direct neighbors shared by i and j,
N(i,�j) denotes the set of the neighbors of i excluding j and j · j
denotes the number of elements (cardinality) in its argument. Alge-

braically, we find

j ðNði‚ jÞÞ j ¼
X
u6¼i‚ j

aiuaju

jNði‚ � jÞ j ¼
X
u6¼i

aiu � aij: ð3Þ

The binomial coefficient

�
2

2

�
¼ 1 in the denominator of (2) is an

upper bound of aij.
In light of formula (2), it is natural to define the MTOM for three

different nodes i, j, k as follows:

tijk ¼
jðNði‚ j‚ kÞ j þ aijþ aik þ ajk

minfjNði‚ j‚ � kÞ j ‚ jNði‚ � j‚ kÞ j ‚ jNð � i‚ j‚ kÞ jgþ
�

3

2

� ‚

ð4Þ

where

j ðNði‚ j‚ kÞÞ j ¼
X

u6¼i‚ j‚ k

aiuajuaku

jNði‚ j‚ � kÞ j ¼
X
u6¼i‚ j

aiuaju � aikajk: ð5Þ

Here, N(i, j, �k) can be regarded as the set of the neighbors shared

by i and j excluding k. The binomial coefficient ð 3
2 Þ ¼ 3 in the

denominator of (4) is an upper bound of aij + aik + ajk and equals

the number of connections that can be formed between i, j and

k. Analogous to the proof for two nodes, one can prove that 0 �
tijk � 1. It is straightforward to extend the definition of the TOM

to four or more nodes.

Generalizing MTOM to weighted networks. The algebraic formulas

for MTOM do not require that the adjacencies aij take on binary

values, i.e. they encode an unweighted network. Even for a

weighted network with 0 � aij � 1, MTOM takes on values in

the unit interval. Therefore, we use the algebraic formulation of the

topological overlap matrix to define MTOM for weighted networks.

Two simple examples illustrating the MTOM computation for four

nodes are presented in Figure 1.

2.2 MTOM-based neighborhoods

We consider two basic approaches for defining a neighborhood

based on the concept of multi-node topological overlap. The default

approach is to build the neighborhood recursively. The non-

recursive alternative is computationally faster but produces less

interconnected neighborhoods.

The MTOM-based neighborhood analysis requires as input an

initial seed neighborhood composed of S0 node(s) (S0 � 1) and the

requested final size of the neighborhood St ¼ S0 + S� S0, where S is

the total number of nodes that will add to the initial neighborhood.

(1) Recursive approach

(a) For each node outside of the current neighborhood, com-

pute the MTOM value of the combined set of this node and

the node(s) in the current neighborhood.

(b) Add the node associated with the highest MTOM value to

the current neighborhood to reach the updated neighbor-

hood.

(c) Repeat Steps (a) and (b)S times until the final neighborhood

size St is reached.

(2) Non-recursive approach
(a) For each node outside of the initial neighborhood, compute

the MTOM value of the combined set of this node and the

node(s) in the initial neighborhood.

A B

C D

A B

C D

E

Fig. 1. Computing the four node TOMs for nodes A,B,C,D in two simple

networks 1) tA‚ B‚ C‚ D ¼ 0þ4
0þ6

¼ 0:667 and 2) tA‚ B‚ C‚ D ¼ 1þ4
1þ6

¼ 0:714.
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(b) Choose the S nodes associated with the highest MTOM

values and combine with the initial neighborhood as the

final neighborhood.

Since the recursive approach leads to neighborhoods with higher

MTOM values, it is preferable over the computationally faster, non-

recursive approach.

2.3 Local permutations for choosing the

neighborhood size S

An obvious challenge is to choose the number S ¼ St � S0 of nodes

to be added to the initial neighborhood. Although prior knowledge

of the pathway size may guide this choice, this information is not

always available. We propose a permutation test based guideline to

assist with the choice of S. The permutation test compares MTOM

values based on the original adjacency matrix with their correspond-

ing values in permuted versions of the adjacency matrix. We find

that global (whole network) permutations often lead to a network

without any module structure and to unrealistically large estimates

of the neighborhood size (thousands of nodes). Therefore, we pro-

pose to permute only those rows of the adjacency matrix that cor-

respond to nodes in the initial seed neighborhood. Next, the

corresponding columns are permuted so that the resulting permuted

adjacency matrix remains symmetric. After performing multiple

permutations, one can estimate the 95th percentile of the permuted

MTOM values. Figure 2 shows the original MTOM value as a

function of S the 95th percentile of the MTOM values calculated

on the basis of locally permuted versions of the adjacency matrix. In

our applications, we find that there is a value Sc such that if more

than Sc nodes are added to the initial neighborhood recursively

MTOM value curve dips below the 95th percentile of the permuted

MTOM value curves. Since for neighborhood sizes smaller than

St0
, where St0

¼ S0 + Sc, the neighborhood is more interconnected

than 95% of the locally permuted neighborhoods, we chose a neigh-

borhood size close to St0
in our applications. The proposed local

permutation test for choosing a neighborhood size is meant as a

heuristic. In practice, the user should explore the robustness of the

estimate with respect to picking other percentiles, e.g. the 90th

percentile. Of course, prior biological knowledge regarding the

neighborhood size should take precedence over the rough estimate

provided by the local permutation test. As an alternative, we suggest

that hierarchical clustering analysis involving the pairwise TOM

dissimilarity may also provide some estimate on how large a cluster

may surround the initial set. Neighborhood analysis, similar to gene

screening strategies, leads to results that require careful validation

involving independent datasets and biological validation methods.

3 APPLICATIONS

In the following sections, we apply our methods to gene co-

expression networks and simple protein–protein interaction (PPI)

networks.

3.1 Predicting brain cancer genes in a co-expression

network

The proposed neighborhood analysis can be used for both

unweighted and weighted gene co-expression networks. Here, we

apply the method to find brain cancer related genes based on different

initial seed neighborhoods. The data consisted of 55 brain cancer

patients and their survival times. The gene expression profiles of

each patient were measured using Affymetrix HG-U133A microar-

rays as detailed in Horvath et al. (2006). The details of the gene co-

expression network construction are presented in Zhang and Horvath

(2005). Briefly, the network adjacency matrix was defined by raising

the Pearson correlation matrix between the gene expression profiles

to the sixth power, i.e. aij ¼ j cor(xi, xj) j 6, where xi and xj are the

expression profiles of gene i and j, respectively. Our findings

remain largely unchanged with regard to different choices of the
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Fig. 2. Using a local permutation test to choose the neighborhood size, i.e. the

number of nodes S to be added to the initial neighborhood. (a) Yeast cell-cycle

example; (b) Drosophila protein–protein interaction network. The solid line

shows the MTOM values (y-axis) of the observed network as a function of

different neighborhood sizes (x-axis). The dashed line shows the 95th per-

centile of the MTOM values based on locally permuted adjacency matrices.

A local permutation only permutates those rows (and columns) of the adja-

cency matrix that correspond to node of the initial neighborhood. As heuristic,

we suggest to choose a value for S close to where the solid line (observed

values) crosses the dashed line (95th percentile of permuted values).
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powerb¼ 6. Further, an unweighted network construction approach

leads to similar results (see our online Supplementary material).

To illustrate the value of taking a multi-node perspective, we

applied the MTOM approach to an initial seed neighborhood com-

posed of five well-known cancer-related genes: TOP2A, Rac1,

TPX2, EZH2 and KIF14. Table 1 shows the results from the recur-

sive MTOM analysis. Out of 20 probes in the MTOM neighbor-

hood, we find that 15 are cancer related, which provides empirical

evidence that the MTOM approach leads to biologically meaningful

results.

In the following sections, we provide a limited comparison to the

simple (naive) approach of defining a neighborhood of node t based

on ranking the remaining network nodes by their adjacencies with

node t. For weighted gene co-expression networks constructed with

the power function, this naive approach is equivalent to choosing

genes based on the absolute values of their correlations with a given

gene expression profile.

It is worth emphasizing that when dealing with microarray data,

one can also determine the neighborhood of a quantitative micro-

array sample trait, e.g. cancer survival time. To accomplish this

mathematically, one considers the sample trait as an additional,

idealized gene expression profile when constructing the co-

expression network. For our weighted network example, the adja-

cency between the sample trait T and the i-th gene expression profile

is given by aTi ¼ j cor(T, xi) j b. In Table 2, we report the results of

using MTOM to find a neighborhood with 20 gene neighbors around

the sample trait ‘brain cancer survival time’. We find that the

MTOM-based neighborhoods are enriched with cancer- and neuron-

related genes. Out of the 20 probe sets, 11 are related to neuron cells

and 10 are related to cancer. Since the brain cancer microarray data

were based on neuronal tissue samples, finding neuron- or cancer-

related genes provides indirect (but only tentative) evidence that the

resulting neighborhoods are biologically meaningful. Note that

several of the probe sets in Table 2 correspond to the same

genes, but the correlation between gene expression profiles and

survival time varies greatly across the different probe sets of a gene.

In contrast, a standard, naive approach, which simply selects a

neighborhood on the basis of the absolute values of the correlations

between gene expression profile and survival time, leads to a neigh-

borhood with fewer cancer- and neuron-related genes. Out of the

20 most highly correlated probe sets in Table 3, only 4 are related to

neuron cells and only 6 are related to cancer. Comparing Tables 2

and 3 provides indirect empirical evidence that the MTOM neigh-

borhood analysis leads to biologically more meaningful results than

the standard approach in this application.

3.2 Neighborhood analysis for predicting cell cycle

proteins in yeast

Here, we use an MTOM neighborhood analysis to predict cell

cycle related proteins. Numerous protein annotation methods

have been presented in the literature, e.g. recent papers include

Deng et al. (2006) and Carroll and Pavlovic (2006). Our limited

analysis is meant to illustrate the value of taking a multi-node

perspective. A comprehensive comparison to other methods is

beyond the scope of this article. The protein identifiers of the

open reading frames (ORF) were obtained from the Saccharomyces
Genome Database (SGD) and the yeast protein–protein interactions

(PPI) were retrieved from the Munich Information Center for Pro-

tein Sequences (MIPS) (Guldener et al., 2006). We restricted the

Table 2. Neighborhood of survival time based on the recursive MTOM

approach

Probe name Gene name Neuron Cancer Correlation

208464_at GRIA4 Yes Unknown 0.62

221623_at BCAN Yes Unknown 0.406

91920_at BCAN Yes Unknown 0.226

219107_at BCAN Yes Unknown 0.212

216476_at LOC115131 Unknown Unknown 0.142

222301_at CROC4 Yes Unknown 0.093

212655_at BDG29 Unknown Unknown 0.297

213768_s_at ASCL1 Yes Yes 0.233

209988_s_at ASCL1 Yes Yes 0.191

209987_s_at ASCL1 Yes Yes 0.129

212265_at QKI Yes Unknown 0.163

218902_at NOTCH1 Yes Yes �0.023

202981_x_at SIAH1 Unknown Yes 0.085

221776_s_at BRD7 Unknown Yes 0.068

212615_at FLJ12178 Unknown Unknown 0.123

212616_at FLJ12178 Unknown Unknown 0.126

213891_s_at TCF4 Unknown Yes 0.091

201310_s_at C5orf13 Yes Yes 0.072

214239_x_at RNF110 Unknown Yes 0.076

213551_x_at RNF110 Unknown Yes 0.075

The columns report whether a probe set is known to be neuron related or cancer related

according to a PubMed search. The last column reports the correlation between gene

expression profiles and survival times (TTS). Note that MTOM implicates known cancer

genes even if their correlation is relatively low.

Table 1. MTOM neighborhood analysis of an initial neighborhood

composed of five well-known cancer genes: TOP2A, Rac1, TPX2, EZH2

and KIF14

Probe name Gene name Neuron Cancer

209642_at BUB1 Unknown Yes

218355_at KIF4A Unknown Unknown

222077_s_at RACGAP1 Unknown Yes

219918_s_at ASPM Yes Yes

207828_s_at CENPF Unknown Yes

202580_x_at FOXM1 Unknown Yes

202870_s_at CDC20 Unknown Yes

202095_s_at BIRC5 Unknown Yes

221591_s_at FLJ10156 Unknown Unknown

218009_s_at PRC1 Unknown Yes

204641_at NEK2 Unknown Yes

209172_s_at CENPF Unknown Yes

209464_at AURKB Unknown Yes

212020_s_at MKI67 Unknown Yes

204962_s_at CENPA Unknown Yes

212023_s_at MKI67 Unknown Yes

204444_at KIF11 Unknown Unknown

212949_at BRRN1 Unknown Unknown

204026_s_at ZWINT Unknown Unknown

203213_at CDC2 Unknown Yes

The columns report whether a probe set is known to be neuron related or cancer related

according to a PubMed search.
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analysis to the largest connected component composed of 3858

proteins with 7196 pairwise interactions. To compare different

neighborhood analysis approaches, we studied the neighborhoods

of subsets of 101 cell cycle related proteins found in the Kyoto

Encyclopedia of Genes and Genomes (KEGG). A local permutation

test suggested S ¼ 10. Within each neighborhood, we determined

the number C of cell cycle related proteins. We found that C is

significantly correlated with the network connectivity k of the initial

protein (Spearman correlation r¼ 0.36, P-value � 0.001) across the

101 cell cycle genes. We focused the neighborhood analysis on

subsets of the 50 most highly connected ‘hub’ cell cycle related pro-

teins.Theseproteinshadaconnectivity�4, i.e.eachinitialproteinhad

at least four known interactions. Our results were largely unchanged

with regard to using more highly connected genes in the initial neigh-

borhood set. However, using less connected proteins (k < 3) leads to

neighborhoods that contain very few cell cycle related proteins.

As can be seen from Figure 3, the neighborhoods of cell cycle

genes tend to be enriched with other cell cycle genes as well. A

major advantage of the MTOM screening approach is the ability to

input multiple initial nodes as seed set. Figure 3 shows that an initial

seed neighborhood composed of two cell cycle related hub proteins

leads to far better results than using a single protein as input. But as

Figure 4 indicates, this is only true for protein pairs that have high

topological overlap. Note that pairs of proteins resulting in neigh-

borhoods with high percentages of cell cycle related proteins are

composed of proteins with high TOM.

3.3 Neighborhood analysis for predicting essential

yeast proteins

Networks are a natural framework for understanding PPI, see e.g.

Jeong et al. (2001), Yook et al. (2004) and Deng et al. (2006).

Table 3. Correlation based neighborhood of the survival time (TTS)

Probe name Gene name Neuron Cancer Correlation

208464_at GRIA4 Yes Unknown 0.62

204529_s_at TOX Unknown Unknown 0.601

206170_at ADRB2 Unknown Unknown 0.539

216247_at RPS20 Unknown Unknown 0.537

214028_x_at TDRD3 Unknown Unknown 0.526

213447_at IPW Unknown Unknown 0.522

207113_s_at TNF Yes Yes 0.514

218036_x_at CGI-07 Unknown Unknown 0.504

209160_at AKR1C3 Unknown Yes 0.5

206107_at RGS11 Unknown Unknown 0.496

209782_s_at DBP Unknown Unknown 0.495

211653_x_at AKR1C1 Unknown Yes 0.494

213778_x_at ZFP276 Unknown Unknown 0.49

215119_at MYR8 Yes Unknown 0.486

202753_at p44S10 Unknown Yes �0.481

209292_at ID4 Unknown Yes 0.481

204530_s_at TOX Unknown Unknown 0.481

221974_at SNRPN Unknown Unknown 0.481

219188_s_at LRP16 Unknown Yes 0.48

205630_at CRH Yes Unknown 0.478

The columns report whether a probe set is known to be neuron related or cancer related

according to a PubMed search. The last column lists the correlation between the genes

and TTS.
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Fig. 3. Comparing the percentage of cell cycle proteins R (y-axis) in

neighborhoods constructed in different ways for the Yeast Protein–Protein

Physical Interaction Network (MIPS Data). The recursive approach involving

an initial neighborhood of two cell cycle related ‘hub’ proteins performs

better than approaches based on an initial set composed of a single protein.

In this application, the recursive and the non-recursive MTOM neighborhood

analysis involving a single initial protein do not lead to better results than the

naive approach of building a neighborhood on the basis of direct connections

(adjacency ¼ 1) with the initial protein. We also report the P-values of the

Kruskal–Wallis rank sum test, which is a non-parametric multi-group

comparison test.

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p–value < 2.2e–16

Percentage of Cell Cycle Related Genes among 10 Closest Neighors

T
O

M
 b

et
w

ee
n 

In
tia

l G
en

es

Fig. 4. Boxplots for visualizing the distribution of the topological overlap

(y-axis) of initial protein pairs that lead to neighborhoods with a high percen-

tage of cell cycle genes (x-axis). A boxplot consists of the most extreme values

(the whiskers) in the dataset (maximum and minimum values), the lower and

upper quartiles (lower and upper boundary of the box) and the median value

(horizontal line inside the notch). A notch is drawn on each side of the box. If

the notches of two plots do not overlap, the two medians differ significantly.
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Knock-out experiments in lower organisms (e.g. yeast, fly and

worm) have shown that essential proteins tend to be highly con-

nected ‘hub’ proteins in PPI networks (Jeong et al., 2001, 2003;

Hahn and kern, 2005). Here we use MTOM-based neighborhood

analysis to predict essential proteins in a yeast PPI network

(BioGrid data) (Breitkreutz et al., 2003). The largest connected

component contained 3332 proteins that include 877 essential pro-

teins. We find that proteins that are in the neighborhood of essential,

highly connected hub proteins have an increased chance of being

essential as well. Specifically, we picked essential seed genes from

among the 200 most highly connected essential proteins. Based on

our local permutation test, we chose S ¼ 30 for MTOM analysis.

The percentage of essential proteins in the neighborhoods cons-

tructed by different methods are reported in Figure 5. Apart from

seed sets composed of a single gene, we also considered seeds

involving two and three essential hub proteins with high topological

overlap. Note that as the initial neighborhood size increases, so does

the biological signal in the resulting neighborhoods. In this applica-

tion, neighborhoods built on the basis of multiple interconnected

initial proteins lead to better results than standard methods that can

only input a single protein.

3.4 Neighborhood analysis for predicting essential

proteins in Drosophila

Here, we apply MTOM based neighborhood analysis to predict

essential proteins in a Drosophila (fly) PPI network (BioGrid

Data) (Breitkreutz et al., 2003). The largest connected component

contained 2294 proteins that include 282 known essential proteins.

Since essential genes tend to be highly connected, we chose subsets

of the 100 most highly connected essential proteins as initial seeds.

Our local permutation test suggested S ¼ 30. Figure 6 reports the

percentages of essential proteins in neighborhoods constructed

using alternative methods. In this application, the recursive

MTOM neighborhood analysis involving a single initial seed pro-

tein leads to a better result than both the naive and the non-recursive

MTOM approaches. Further, Figure 6 demonstrates the value of

choosing multiple nodes as seeds for neighborhood analysis.

4 SIMULATION

To evaluate our method, we simulated a network model motivated

by our yeast and cancer co-expression network applications.

Although this simple model was motivated by our unpublished

research on the structure of co-expression networks, it is beyond

the scope of this article to discuss the relationship of this simple

model to actual weighted gene co-expression networks. Here, we

use the model to argue that MTOM can lead to more meaningful

results than standard neighborhood analysis methods.

Specifically, we simulated a gene expression dataset {xij} com-

posed of 2000 genes (1 � i � 2000) and 60 microarray samples

(1 � j � 60). The network was simulated to be composed of six

modules with sizes n1 ¼ 400, n2 ¼ 400, n3 ¼ 400, n4 ¼ 300, n5 ¼ 300

and n6 ¼ 200. Within the k-th module, the i-th gene had the fol-

lowing expression value in the j-th microarray sample.

x
ðkÞ
ij ¼ m

ðkÞ
j ·

�
i

nk

�1=4

þ e
ðkÞ
ij ‚

where the stochastic noise e
ðkÞ
ij was simulated to follow a normal

distribution with mean 0 and variance 6. The vector m
ðkÞ
j is given

below and turned out to be highly correlated (r > 0.95) with the first
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Fig. 6. Comparing the percentages of essential proteins R (y-axis) in neigh-

borhoods constructed in theDrosophila PPI network. The recursive approach

involving an initial neighborhood of a single essential protein performs better

than the non-recursive and naive approaches. As the initial neighborhood size

increases, so does the biological signal in the resulting neighborhoods.
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Fig. 5. Comparing the percentage of essential proteins R (y-axis) in neigh-

borhoods constructed in different ways for the yeast PPI network (BioGrid

Data). The neighborhoods initialized by sets of two or three hub proteins

contain more essential proteins than those constructed from a single protein.

We also report the P-values of the Kruskal–Wallis rank sum test, which is a

standard non-parametric multi-group comparison test.
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principal component of the corresponding module expression matrix

(also known as module eigengene or metagene).

m
ð1Þ
j ¼ 1:5 · I30<j�45 þ 1 · I45<j�60‚

m
ð2Þ
j ¼ 1 · I0<j�15 þ 1 · I15<j�30‚

m
ð3Þ
j ¼ 1 · I0<j�15 þ 1 · I15<j�30 þ 1 · I30<j�45‚

m
ð4Þ
j ¼ 1 · I0<j�15 þ 1 · I30<j�45‚

m
ð5Þ
j ¼ 1:5 · I0<j�15 þ 1:5 · I30<j�45 þ 0:5 · I45<j�60‚

m
ð6Þ
j ¼ 0‚

where the indicator function I30< j � 45 equals 1 if the condition is

satisfied and 0 otherwise. To quantify co-expression, we correlated

the simulated gene expressions with each other, which resulted in a

2000 · 2000 dimensional correlation matrix. To arrive at a simu-

lated weighted gene co-expression network (adjacency matrix), we

raised the entries of the correlation matrix to the power of b¼ 6, i.e.

aij ¼ j cor(xi, xj) j 6, where xi and xj are the expression profiles of

gene i and j, respectively.

The goal of our neighborhood analysis was to determine mem-

bership in the first module that contained n1 ¼ 400 genes. We

considered initial neighborhoods composed of 1 or 2 genes out

of the 50 most highly connected module genes. We considered

S ¼ 30. For each neighborhood, the percentage of module 1

genes represents the simulated biological signal. Figure 7 shows

the results from averaging the signal over 50 MTOM analyses

corresponding to a single initial hub gene and 500 MTOM analyses

corresponding to pairs of genes with high topological overlap.

5 COMPARING MTOM TO THE AVERAGE
PAIRWISE TOM

One can easily define a multi-node similarity measure by the aver-

age of the pairwise similarities between the nodes. Since the average

pairwise similarity measure is computationally much simpler, it is

important to argue that a MTOM performs better than the average

pairwise TOMs. To facilitate such a comparison, we study here the

performance of the averaged TOM neighborhood construction

method which non-recursively add nodes based on average pair-

wise TOM.

To compare our proposed recursive MTOM method and with the

averaged TOM neighborhood construction method, we carried out

three comparisons.

The first comparison involves comparing the simulated or biolo-

gical signal in the resulting neighborhoods for the different appli-

cations. Using simulated and biological applications, we find that

the MTOM method outperforms the averaged TOM method. In

Figure 8, we report three representative comparisons.

The second comparison involves comparing the MTOM values of

the neighborhoods constructed with the different methods. As is to

be expected, MTOM based neighborhoods have significantly higher

MTOM values than neighborhoods constructed with the averaged

TOM method (Fig. 9).

The third comparison involves comparing the average pairwise

TOM values of the neighborhoods constructed with the different

methods. According to this metric, we find that the recursive

MTOM method is significantly better than the averaged TOM

approach (Fig. 10). In summary, we find that the proposed

MTOM outperforms the average pairwise TOM in our applications

and simulated example.

6 CONCLUSION

If individual network connections are susceptible to noise, then it

can be advantageous to define neighborhoods on the basis of a

more robust measure based on shared neighbors, e.g. the TOM.

To illustrate the value of taking a multi-node perspective when

defining neighborhoods, we generalize the standard pairwise

TOM to measure the topological overlap of multiple nodes

(MTOM). MTOM is a natural extension of the standard pairwise

TOM to multiple nodes. But it should be straightforward to adapt

our approach to alternative overlap measures described in Brun

et al. (2003), Zhao et al. (2003), Chen et al. (2006) and Chua

et al. (2006). Since computation time was a concern in our analyses,

we presented a recursive and non-recursive approach for construct-

ing neighborhoods. But it may be worth while to explore the use of

alternative, more time consuming, construction methods. For exam-

ple, stepwise methods that allow for node deletion at each step may

lead to neighborhoods with higher MTOM values.

Further, we describe a local permutation scheme for determining

the size of a neighborhood.

Using four network applications and a simulated example, we

provide evidence that the MTOM approach yields biologically

meaningful results. For example, we use MTOM to identify

brain cancer related genes in a co-expression network and to iden-

tify essential genes in protein interaction networks. We provide

empirical evidence that a neighborhood surrounding an initial set

of two or more nodes can be far more informative than the

neighborhood of a single node.

Naive
Non–Recursive 
 1 Initial Gene

Recursive 
 1 Initial Gene

Recursive 
 2 Initial Genes

P
er

ce
nt

ag
e 

of
 M

od
ul

e 
G

en
es

0
10

20
30

Percentage of Module Genes , p–value= 6.6e–23

Fig. 7. Comparing the percentage of module 1 genes (y-axis) that are re-

trieved by different neighborhood construction methods for the simulated

network. The recursive approach involving an initial neighborhood of two

‘hub’ genes in the first module leads to the best neighborhoods. In this

application, the recursive and the non-recursive MTOM neighborhood ana-

lysis involving a single initial gene outperforms the naive approach of simply

using the 30 genes with highest adjacency with the initial gene. Further, an

initial neighborhood composed of two genes (with high topological overlap)

leads to better results than initial neighborhoods composed of a single gene.
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Fig. 8. Recursive MTOM neighborhoods contain a significantly better signal

(y-axis) than averaged TOM neighborhoods. Here we report three represen-

tative examples: (a) the simulated network; (b) essential genes in the yeast PPI

network; (c) essential genes in the Drosophila (fly) PPI network. We report

the Kruskal–Wallis P-values for comparing the median values. The median

value corresponds to the horizontal line inside the box. The corresponding

notch around the median line denotes the 95% confidence interval.
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Fig. 9. Recursive MTOM neighborhoods have higher MTOM values (y-axis)

than averaged TOM neighborhoods. Here we report three representative

examples: (a) the simulated network; (b) essential genes in the yeast PPI

network; (c) essential genes in the Drosophila (fly) PPI network.
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Our approach has several limitations. First and foremost, MTOM-

based neighborhood analysis will only be useful in applications that

satisfy the following assumption: the more neighbors are shared by
multiple nodes, the stronger is the biological relationship among
them. The second limitation of our approach is that we assume the

setting of an undirected network. Although these types of networks

are widely used in systems biology, we briefly mention that

directed, Bayesian or Boolean network models allow for a proba-

bilistic or even causal analysis of similar data, see e.g. Schaefer and

Strimmer (2005) and Carroll and Pavlovic (2006).

The TOM can serve as a filter that decreases the effect of spurious

or weak connections. Our applications and several publications

provide empirical evidence that the topological overlap matrix

leads to biologically meaningful results (Ravasz et al., 2002; Ye

and Godzik, 2004; Carlson et al., 2006; Gargalovic et al., 2006;

Ghazalpour et al., 2006; Horvath et al., 2006). But there will

undoubtedly be situations when alternative similarity measures

are preferable. We expect that the multi-node measures will also

be useful for module detection when coupled with a suitable

clustering procedure.

ACKNOWLEDGEMENTS

The authors would like to thank our collaborators Jun Dong, Dan

Geschwind, Peter Langfelder, Jake Lusis, Paul Mischel, Stan Nelson,

Mike Oldham, Anja Presson, Lin Wang and Wei Zhao. Funding to

pay the Open Access publication charges for this article was

provided by 1U19AI063603-01.

Conflict of Interest: none declared.

REFERENCES

Breitkreutz,B. et al. (2003) The GRID: the general repository for interaction datasets.

Genome Biol., 4, R23.

Brun,C. et al. (2003) Functional classification of proteins for the prediction of

cellular function from a protein–protein interaction network. Genome Biol.,

5, R6.

Carlson,M. et al. (2006) Gene connectivity, function, and sequence conservation:

predictions from modular yeast co-expression networks. BMC Genomics, 7, 40.

Carroll,S. and Pavlovic,V. (2006) Protein classification using probabilistic chain graphs

and the gene ontology structure. Bioinformatics, 22, 1871–1878.

Chen,J. et al. (2006) Increasing confidence of protein interactomes using network

topological metrics. Bioinformatics, 22, 1998–2004.

Chua,N.H. et al. (2006) Exploiting indirect neighbours and topological weight to

predict protein function from protein–protein interactions. Bioinformatics, 22,

1623–1630.

Deng,M. et al. (2006) Mapping gene ontology to proteins based on protein–protein

interaction data. Bioinformatics, 20, 895–902.

Eisen,M. et al. (1998) Cluster analysis and display of genome-wide expression patterns.

Proc. Natl Acad. Sci. USA, 95, 14863–14868.

Gargalovic,P. et al. (2006) Identification of inflammatory gene modules based on

variations of human endothelial cell responses to oxidized lipids. Proc. Natl

Acad. Sci. USA, 103, 12741–12746.

Ghazalpour,A. et al. (2006) Integrating genetics and network analysis to characterize

genes related to mouse weight. PLos Genet., 2, e130.

Goldberg,D. and Roth,F. (2003) Assessing experimentally derived interactions in a

small world. Proc. Natl Acad. Sci. USA, 100, 4372–4376.

Golub,T.R. et al. (1999) Molecular classification of cancer: class discovery and class

prediction by gene expression monitoring. Science, 286, 531–537.

Guldener,U. et al. (2006) Mpact: the mips protein interaction resource on yeast. Nucleic

Acids Res., 34, 436–441.

Hahn,M.W. and Kern,A.D. (2005) Comparative genomics of centrality and essen-

tiality in three eukaryotic protein–interaction networks. Mol. Biol. Evol., 22,

803–806.

Averaged TOM Multi–Node TOM

4e
–0

4
6e

–0
4

8e
–0

4
1e

–0
3

A
ve

ra
ge

 o
f P

ai
r–

W
is

e 
T

O
M

Average of Pair–Wise TOM , p–value= 5.8e–165(a)

Averaged TOM Multi–Node TOM

0.
2

0.
4

0.
6

0.
8

A
ve

ra
ge

 o
f P

ai
r–

W
is

e 
T

O
M

Average of Pair–Wise TOM , p–value= 3.8e–128(b)

(c)

Averaged TOM Multi–Node TOM

0.
0

0.
1

0.
2

0.
3

0.
4

A
ve

ra
ge

 o
f P

ai
r–

W
is

e 
T

O
M

Average of Pair–Wise TOM , p–value= 1.2e–152

Fig. 10. Recursive MTOM neighborhoods have higher average pairwise

TOM value (y-axis) than averaged TOM neighborhoods. Here we report three

representative examples: (a) the simulated network; (b) essential genes in the

yeast PPI network; (c) essential genes in the Drosophila (fly) PPI network.

A.Li and S.Horvath

230

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/2/222/205537 by guest on 21 August 2022



Horvath,S. et al. (2006) Analysis of oncogenic signaling networks in glioblastoma

identifies aspm as a novel molecular target. Proc. Natl Acad. Sci. USA, 103, 22–29.

Jeong,H. et al. (2001) Lethality and centrality in protein networks. Nature, 411, 41.

Jeong,H. et al. (2003) Prediction of protein essentiality based on genome data. Com-

PlexUs, 1, 19–28.

Lin,N. and Zhao,H. (2005) Are scale-free networks robust to measurement errors?

BMC Bioinformatics, 16, 119.

Lin,N. et al. (2004) Information assessment on predicting protein–protein interactions.

BMC Bioinformatics, 4, 154.

Ravasz,E. et al. (2002) Hierarchical organization of modularity in metabolic networks.

Science, 297, 1551–1555.

Schaefer,J. and Strimmer,K. (2005) An empirical Bayes approach to inferring large-

scale gene association networks. Bioinformatics, 21, 754–764.

Ye,Y. and Godzik,A. (2004) Comparative analysis of protein domain organization.

Genome Biol., 14, 343–353.

Yook,S.Y. et al. (2004) Functional and topological characterization of protein inter-

action networks. Proteomics, 4, 928–942.

Zhang,B. and Horvath,S. (2005) A general framework for weighted gene co-expression

network analysis. Stat. Appl. Genet. Mol. Biol., 4, 17.

Zhao,W. et al. (2006) Information theoretic method for recovering temporal

gene regulations from time series microarray data. Bioinformatics, 22,

2129–2135.

Network neighborhood analysis

231

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/2/222/205537 by guest on 21 August 2022


