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Abstract 
 

The increased frequency of wildfires in the Western United States has raised public 

awareness of the impact of wildfire smoke on air quality and human health. Exposure to wildfire 

smoke has been linked to an increased risk of cancer and cardiorespiratory morbidity. Evidence-

driven interventions can alleviate the adverse health impact of wildfire smoke. Public health 

guidance during wildfires is based on regional air quality data with limited spatiotemporal 

resolution. Recently, low-cost air quality sensors have been used in air quality studies, given their 

ability to capture high-resolution spatiotemporal data. We demonstrate the use of a network of 

low-cost particulate matter (PM) sensors to gather indoor, outdoor, and personal PM2.5 exposure 

data from seven locations in the urban Seattle area, along with a personal exposure monitor worn 

by a resident living in one of these locations during the 2020 Washington wildfire event. The data 

were used to determine PM concentration indoor/outdoor (I/O) ratios, PM reduction, and personal 

exposure levels. The result shows that locations equipped with high-efficiency particulate air 

(HEPA) filters and HVAC filtration systems had significantly lower I/O ratios (median I/O = 0.43) 

than those without air filtration (median I/O = 0.82). The median PM2.5 reduction for the locations 

with HEPA is 58 % compared to 20% for the locations without HEPA. The outdoor PM sensors 

showed a high correlation to the nearby regional air quality monitoring stations (R2 = 0.93). The 

personal monitor showed high variance in PM measurements as the user moved through different 

microenvironments and could not be fully characterized by the network of indoor or outdoor 

monitors. The findings imply evidence-based interventions can be developed for reducing 

pollution exposure based on the combination of indoor, outdoor sensors. Personal exposure 

monitoring in individuals' breathing zones provided the highest fidelity data capturing temporal 

spikes in PM exposure.   
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1. Introduction 
Climate-change-related wildfires have become more frequent and intense in the Western 

United States. Summer wildfire seasons are 40 to 80 days longer on average than they were 30 

years ago [1]. Evidence suggests that California and other Western states will likely see ever-

worsening fires for the coming century due to climate change and land management practices [2-

5]. The intensified wildfires will release more smoke into the atmosphere [6], traveling significant 

distances [7]. Fine particulate matter (PM2.5), a major pollutant found in smoke from wildfires, can 

travel deep into the respiratory tract [8]. The combustion-generated aerosols consist of elemental 

carbon and organic carbon fraction, which may be more toxic than other PM2.5 sources and may 

have long-lasting impacts on health [9-12]. Complex flow structures associated with large-scale 

flames and low flame temperature in biomass burning lead to low carbonization of organic carbon, 

thus -- high levels of potentially carcinogenic polycyclic aromatic compounds [13-16]. Exposure 

to PM2.5, particularly combustion-generated aerosols, has been linked to adverse respiratory and 

cardiovascular health effects, including ischemic heart disease, stroke, cardiovascular mortality, 

and exacerbations of asthma and chronic obstructive pulmonary disease [17-21]. More recently 

the wildfire PM exposures have been linked to higher severity and mortality of SARS-CoV-2 [22-

25]. 

A series of large wildfires impacted air quality in western regions of the United States in 

2020. The episode measured in this study (2020 Washington Labor Day fires) began on September 

7, 2020, and were 90% contained by September 22. The fires burned over 41,000 acres of the 

forest [26]. Due to the SARS-CoV-2 pandemic shelter-in-place order by Washington state since 

early 2020, people probably spent a significant amount of time indoor during the 2020 wildfire 

season. The public health advice for protection from wildfire smoke exposure is to stay indoors, 

preferably in a "clean room" with filtered air, closed windows and doors, and minimize physical 
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exertion. However, studies have shown that PM2.5 could penetrate indoors even with all the 

windows and doors closed [27, 28]. With limited access to portable air cleaners during wildfires 

and increasing awareness of the health impact from wildfire smoke exposure, monitoring indoor 

PM2.5 is critical to estimate household members' wildfire smoke exposure. Failure to assess the 

exposure to wildfire smoke could lead to misclassification of exposure in future epidemiology 

studies and have important public health implications for targeting smoke reduction interventions. 

The opportunity exists to improve personal exposure assessment and design individualized 

intervention strategies that would significantly reduce the adverse impact of PM pollution on 

human health, including the severity and mortality of Covid-19 cases [29, 30]. 

Recent advancements in low-cost particulate matter (PM) sensors led to their extensive use 

in various applications, such as air quality (AQ) monitoring in indoor [31-34] and outdoor [35-39] 

environments, including large-scale deployments [40-43]. Optical PM sensors rely on elastic light 

scattering providing size-resolved PM concentrations in the 0.3 – 10.0 μm range. The low-cost 

sensor measurements may suffer from sensor-to-sensor variability due to a lack of quality control 

and differences between individual components.[44, 45] The scattering light intensity depends on 

particle size, morphology, complex index of refraction (CRI), and sensor geometry. [46] CRI 

sensitivity can be addressed by optimizing the design to measure scattered light at multiple angles 

simultaneously or by employing dual-wavelength techniques. [47, 48] However, these solutions 

are complex and involve expensive components that are not suitable for compact, low-cost devices. 

[31] 

Environmental conditions were reported to affect sensor output, e.g., a non-linear response 

has been reported with increasing RH. [49-53] High humidity (RH > 75%) creates challenges for 

particle instruments; e.g., significant variations were observed between different commercially 
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available instruments, such as Nova PM sensor [49] and personal DataRAM. [51] In addition, the 

RH measurement approach could also affect the sensor output [49, 50], e.g., the RH measurement 

based on reference monitoring site rather than inside the sensor enclosure may be different due to 

the microenvironment and transient effects. The selection of reference instruments with different 

measuring principles may also influence the calibration of low-cost sensors. For example, the 

calibration of the Plantower PM sensor in Jayaratne et al., 2018 was based on the tapered element 

oscillating microbalance (TEOM), while Zusman et al., 2020 calibrated the same sensor against 

the beta attenuation monitor (BAM) and federal reference method (FRM) measurements [50, 54]. 

The integrated mass measurements cannot account for temporal particle size and concentration 

variation during the calibration experiment. The instruments that directly measure aerosol size and 

concentration, such as aerodynamic particle sizer (APS), can be a better fit for sensor 

calibration.[44, 55] 

As low-cost sensors find applications in pollution monitoring, various studies have 

evaluated the performance of low-cost PM sensors in laboratory and field settings.[44, 54, 56-61] 

These reports show that low-cost sensors yield usable data when calibrated against research-grade 

reference instruments.[42, 62, 63] The low-cost sensor networks have the potential to provide high 

spatial and temporal resolution, identifying pollution sources and hotspots, which in turn can lead 

to the development of intervention strategies for exposure assessment and intervention strategies 

for susceptible individuals. Time-resolved exposure data from wearable monitors can be used to 

assess individual exposure in near real-time [64].  

This study utilized a network of indoor, outdoor, and wearable low-cost air quality sensors 

to evaluate 1) the effectiveness of intervention strategies used in different households in terms of 

PM2.5 I/O ratios and PM2.5 reduction during the 2020 Washington wildfire in seven locations, 
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including residential and office buildings; 2) estimation of personal exposure by (i) wearable 

sensor and (ii) a combination of indoor and outdoor monitors, where the fraction of personal 

exposure from different microenvironments is determined based on the Global Positioning System 

(GPS) and time-resolved PM sensor data. 

2. Methods 

2.1 PM Monitor 

The monitor used in this study consists of a PM sensor, a temperature/humidity/pressure 

sensor, a GPS module (ublox SAM-M8Q), and a display. The PM sensor (Plantower PMS A003, 

Beijing Plantower Co., Ltd, China; referred to as PMS hereafter) is an optical scattering-based 

sensor with a photodiode positioned normal to the excitation beam. The scattering light intensity 

is converted to a voltage signal to estimate PM number concentration and mass concentration using 

a proprietary calibration algorithm. The PMS provides estimated particle counts in six size bins 

with the optical diameter in 0.3-10 μm (#/0.1L) range and mass concentration (μg/m3) for PM1, 

PM2.5, and PM10. The mass concentrations can be set to "standard" and "atmospheric", altering the 

assumed particle density. The "standard" condition is designed to be used in industrial settings, 

whereas the "atmospheric" condition best measures particles in the ambient environment. When 

collecting the data, the "ATM" setting for PM2.5 concentration was used; the sampling interval was 

set to be 10 seconds. In the analysis, our own calibration was developed. This was motivated by a 

recent report showing that including PM-specific terms (such as PM CRI and density) in the 

calibration algorithm improves the correlation between the data from Plantower PMS A003 sensor 

with reference particle counter for both number density and mass concentration. In contrast, the 

RH term did not improve calibration in the range of RH=17-80%. [62] Thus, the specific 

calibration for this wildfire event was developed and used in the analysis.  The same device was 
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also used as the wearable persona monitor. GPS data were used to coordinate the personal data to 

a specific location and attribute the PM exposures to the user's microenvironment. 

  
(a) (b) 

Figure 1. a) Exploded view of the monitor enclosure; b) The wearable monitor. 

 

2.2 Sampling Sites 

The monitors were deployed in seven urban Seattle locations (see Figure A1). Each 

location had one outdoor sensor and at least one indoor sensor. The L2 location had two indoor 

sensors. One user from the sampling site L2 wore an additional personal monitor for the duration 

of the study. The study covered the wildfire episode between September 10 and September 21, 

2020. The sampling sites included two University of Washington (UW) buildings and five 

residences in Seattle. Data from the nearby Puget Sound Clean Air Agency (PSCAA) regional 

stations were used for the sensor calibration. Before the study, information about the sites such as 

housing type, size, HVAC, primary indoor PM sources, and locations of the sensors were collected 

(see Table 1). Three sites (L1-L3) had portable air purifiers or built-in high-efficiency air filtration 

in HVAC systems. Location 2 (L2) had two indoor monitors in separate rooms. Both UW buildings 

(L6 and L7) were largely unoccupied due to the shelter-in-place order and were not equipped with 

HEPA filtration units at the time. The residents at the sampling sites were not given specific 

instructions on whether to keep the windows and doors open or closed but were asked about this 
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after the sampling was completed. The research staff performed the sampling at the UW buildings, 

and the windows were kept closed during sampling. 

Table 1. General characteristics of the sampling sites. 
Location 

ID 

Building 

Type 

Size 

(sq.ft) 
HVAC HEPA 

Window 

Opening a  
Indoor PM Sources a 

L1 1-story SFH 1600 N Y Sometimes Occasional cooking 

L2-a 
1-story SFH 1500 N Y No Occasional cooking 

L2-b 

L3 2-story SFH 3500 Yb  N No Occasional cooking 

L4 2-story SFH 3000 N N Always Frequent cooking 

L5 Apartment 800 N N Sometimes Occasional cooking 

L6 Office 135 Y N No N/A 

L7 Office 144 Y N No N/A 
a Self-reported information 
b Electrostatic precipitator built in the HVAC 

Definition of abbreviation: SFH = single-family home; Y = Yes; N= No; sq.ft = square feet 

 

2.3 Data Analysis 

The low-cost sensor data were corrected against the average of PM2.5 from the two nearby 

PSCAA regional monitors. The correction model was generated using a data subset from the 

outdoor sensor outside a UW building (L7) during the wildfire event. L7 was largely unoccupied 

during the wildfire with minimum local activities that may influence PM2.5 measurement compared 

to the other sampling sites. L7 is located at least 200 meters from any major traffic arterials. Sensor 

to sensor difference was within 10%, as shown in our previous aerosol chamber experiments [65]. 

Informed by our previous PMS sensor calibration study, a linear model or a quadratic were tested 

to fit using the outdoor sensor data from L7: 

 
 𝑹𝒆𝒇 = 𝜷𝟎 + 𝜷𝟏  ∙  𝑷𝑴𝑺 (1) 

 

 𝑹𝒆𝒇 = 𝜷𝟎 + 𝜷𝟏  ∙  𝑷𝑴𝑺 +  𝜷𝟐  ∙  𝑷𝑴𝑺𝟐 (2) 

 

where 𝛽0 , 𝛽1,  and 𝛽2  are the regression coefficients, 𝑅𝑒𝑓  is the hourly reference PM2.5 

concentrations from the nearby PSCAA monitoring stations, and 𝑃𝑀𝑆 and 𝑃𝑀𝑆2 are the linear 

and quadratic coefficients of the raw PM2.5 data from the sensor, respectively. The fits with zero 
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intercept ( 𝛽0 = 0 ) and non-zero intercept ( 𝛽0 ≠ 0 ) were tested. The Bayesian Information 

Criterion (BIC) was used to select the optimal calibration model.  

The time-resolved PM concentration I/O ratio was calculated to assess the smoke 

infiltration. We conducted the Wilcoxon signed-rank tests (for paired comparison) to compare the 

I/O ratio during the wildfire to the I/O ratio post the wildfire. To assess the reduction in PM levels, 

we compared indoor and outdoor time-resolved PM concentrations. We calculated PM2.5 reduction 

for each site and the personal exposure as: 

 PM2.5 Reduction =
𝑶−𝑰

𝑶
%  (3) 

 

where 𝑂  is the average outdoor PM2.5 concentration (µg/m3) during the wildfire and 𝐼  is the 

average indoor or personal PM2.5 concentration (µg/m3).  

To understand the contribution of each microenvironment to personal exposure, we 

attributed the user's daily PM2.5 exposures in each location using GPS data with a 2.5m horizontal 

accuracy from the wearable monitor. The personal exposure attribution was done using Python 

3.7.1. The raw PM2.5 data were first aggregated into 10-min averages to reduce the data size 

without losing significant spatial resolution. The geocoordinates, recorded in conjunction with the 

PM2.5 concentration, were grouped into three categories where the user spent most of the time: 

home, office, and other. We defined the buffer zones encircling the residence and the office 

locations with a 10-meter clearance to minimize misclassification error caused by the GPS drift. 

The home and office geolocation data were visually confirmed on a map for each occurrence when 

the user with the wearable monitor was at the location. Records collected outside these two buffer 

zones were classified as "other locations". Then the PM2.5 exposures attributed to each 

microenvironment for each day was calculated as:  
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 𝑨𝑪𝒌𝒋
=  

𝑪𝒌𝒋
 × 𝑭𝒌𝒋

∑ 𝑭𝒌𝒋
𝒏
𝒌=𝟏

  (4) 

 

where 𝐴𝐶𝑘𝑗
 represents the attributable exposures of microenvironment 𝑘  to the total personal 

exposure on day 𝑗; 𝐶𝑘𝑗
 is the hourly average PM2.5 concentrations (µg/m3) of microenvironment 𝑘 

on day 𝑗 ; and 𝐹𝑘𝑗
 is the fraction of time spent in microenvironment 𝑘 on day 𝑗. 

 

3. Results and Discussion 

3.1 PMS Sensor Correction  

The data from L7 outdoor sensor shows a good agreement with the regional monitors with 

the pre-calibration R2 = 0.92. The linear model shows the lower root-mean-square-error (RMSE) 

and BIC, with the overall RMSE improved from 18.47 μg/m3 to 14.35 μg/m3 against the regional 

monitors with the post-calibration R2 = 0.94 (see Figure A2). The quadratic model did not result 

in a significant improvement; thus, the data from all the other sensors were corrected with the 

linear model.  Note that while the PM2.5 correction agreed with reference monitors using the linear 

model, the particle number density data from PMS were not evaluated for wildfire smoke. The 

particle size-dependent data from low-cost optical sensors are significantly influenced by the 

particle index of refraction, particle morphology, particle loading, sensor geometry, and 

environmental conditions [44, 46, 57, 66-68]. 

3.2 Time-resolved PM Concentrations 

Figure 2 shows 1-hour averages of PM2.5 concentrations measured by the sensor network 

and the regional monitors during the wildfire. The data are divided into indoor and outdoor 

categories. The indoor data are further divided into HEPA (L1-L3) and Non-HEPA (L4-L7) 

subsets. The shaded areas represent one standard deviation (1σ) of the measurements. The data 

from the outdoor monitors closely match the reference monitors. The correlation between the 
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average outdoor PM concentration from the sensor network and the average of the reference 

monitors is 0.97. 

The locations with active air filtration had a significantly lower PM concentration, while 

locations without HEPA filters had only slightly lower PM levels. Occasional spikes in PM 

concentration, above the already high baseline, were observed due to cooking activities. Note that 

even with the active PM control strategies implemented in several households, the average indoor 

PM2.5 is still much higher than the typical (non-wildfire season) outdoor PM2.5 levels (< 10 μg/m3) 

in this region [69, 70]. 

 

 
Figure 2. Corrected average indoor and outdoor PM2.5 concentrations across the seven sampling 

sites compared to the reference monitors during the wildfire. The purple and orange lines 

illustrate the average indoor PM2.5 concentrations at the sampling sites with and without HEPA 

filtration, respectively. The shading around each line shows the one standard deviation (1σ) of 

the measurement.  

 

3.3 Detailed PM Concentrations and Analysis 

We present a case-by-case analysis to provide insight into the effectiveness of aerosol 

mitigation strategies and the significance of the quantity and placement of sensors within the 

residences. Figure 3 shows the 1-hour average indoor, and outdoor data for all sites with the 

averaged PM2.5 from the two reference monitors in green color for comparison. 
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 Overall, the outdoor sensors are in close agreement with PSCAA data. In some cases, the 

outdoor sensors reported spikes in PM concentration likely due to the local activities near 

monitoring sites, which the PSCAA monitors could not detect (see Figure 3). These differences 

can be explained by (i) spikes in the local PM concentration or (ii) mismatch in sensor sampling 

rate as the network sensors sampling interval was set to ~ 10 seconds, while the reference monitors' 

reporting interval was 1 hour. Though both scenarios are possible, the PM levels difference 

between the locations suggests that some differences in outdoor PM2.5 concentration were driven 

by local events that the regional monitors could not capture.  

Only a moderate reduction in PM levels (16-29%) was observed when low-grade PM filers 

were used at L5, L6, and L7. Table 2 lists the mean and maximum of PM2.5 for each sampling site. 

PM2.5 reduction levels were calculated for each sampling location to indicate the effectiveness of 

mitigation strategies for households.  
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Figure 3. Time-series plots of indoor and outdoor PM2.5 concentrations compared to the 

reference monitors for each sampling site during the wildfire. The blue and red lines represent 

the indoor and outdoor PM2.5 measured by the sensors, and the green line represents the 

averaged PM2.5 concentrations from the two nearby regional monitoring sites. 
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Location L1 had the indoor monitor placed in a relatively small room (home-office ~150 

ft2) with a high-volume HEPA filter for the entire wildfire episode. This relatively small "clean 

room" environment strategy resulted in the study's lowest median I/O ~ 0.2 (see Table A1). 

However, data for other locations (e.g., bedrooms, living room) within the residence are not 

available, which is problematic for assessing personal exposure. The I/O comparison is shown in 

Figure 4.  

The residents of the L2 residence had the two monitors in separate rooms: L2a was placed 

in a larger living room (~350 ft2) and L2b - in the adjacent home office (120 ft2). Two portable 

HEPA filtration units were used: one in the living room, and the other was moved from the office 

to the bedroom at nighttime. The data from the living room has relatively low variance; however, 

the larger room was not cleaned as effectively as the smaller home office or bedroom, I/O ratio 

stayed relatively constant ~0.5. When the filtration unit was positioned in the office, the I/O ratios 

dropped to ~ 0.4. When the filter was moved from the home office to the bedroom, the PM level 

in the office increased to the level of the adjacent living room. The bedroom was not monitored by 

a fixed sensor; however, the resident's wearable sensor recorded a significant PM reduction in the 

bedroom during the night with the I/O ratio close to 0.1 (see Figure 5). 

The L3 site had an electrostatic precipitator installed in the HVAC system. The HVAC 

system was controlled by a thermostat, which explains the periodic pattern of the PM 

concentration. The PM concentration (measured in the bedroom) dipped during the daytime when 

the forced air HVAC system was ON and went up during the nighttime when the HVAC was OFF.  

     L4 indoor monitor was placed in the kitchen where it detected the spikes from cooking 

activities in addition to the high background level from wildfire smoke intrusion. L4 residents kept 

their kitchen windows open during the wildfires, which explains the highest background indoor 
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PM level among all the sampling sites. L4 outdoor sensor stopped working three days after the 

deployment because it was accidentally unplugged from the AC outlet. I/O ratio for L4 was 

calculated using the data collected before September 13. The sampling site L4 without air filtration 

and closed windows had only a 13% indoor-outdoor difference. 

The L5 residence did not have a central HVAC system. A portable AC unit (AeonAir 

Model #RPAC08EE) with a low-grade PM filter was used by the residents during the wildfire. 

The window in residence was closed for the entire duration of sampling (self-reported). L5 monitor 

was placed in the apartment's kitchen/living room area (200 ft2). PM concentration was lower than 

the outdoor level during the wildfire but higher than other residences with air filtration units. L6 

and L7 are two UW buildings with HVAC systems but low-grade filtration units. The data is 

similar to the L5 residential site. The buildings were largely unoccupied during the wildfire due to 

COVID lockdown, and the windows were closed. The indoor PM2.5 at L6 and L7 are lower than 

outdoor. The I/O ratios were similar to L5 (~0.7-0.8). Only a moderate difference in PM levels 

(16-29%) was observed when low-grade PM filers were used at L5, L6, and L7. 

Interestingly, sites L3 and L7 with central filtration units show similar trends. PM 

concentration dipped rapidly when the HVAC was turned ON (controlled by a thermostat). As the 

central HVAC unit was OFF, the PM concentration climbed up due to infiltration of smoke. 

Though the analysis of HVAC performance is beyond the scope of this manuscript, these data can 

be used to design and optimize HVAC performance, such as the use of economizers, sensor-based 

controls, filter upgrades, etc. 

 

Table 2. Summary of the indoor and outdoor PM2.5 levels (µg/m3) and I/O ratios for each sampling 

site.   

Location ID 
Indoor Outdoor   I/O ratios 

PM2.5 Reduction (%)a 
Mean Max Mean Max  Min Median Mean Max 

L1 20.9 42.2 102.0 174.2  0.1 0.21 0.23 0.74 79.6% 
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L2-a 58.7 147.4 114.5 206.3  0.18 0.52 0.54 1.41 48.7% 

L2-b 42.4 100.1 114.5 206.3  0.04 0.40 0.41 1.09 63.0% 

L3 48.9 124.7 104.5 185.3  0.10 0.46 0.54 5.23 53.2% 

L4 104.3 396.2 123.8 215.7  0.73 0.86 0.88 1.44 15.7% 

L5 79.7 154.9 112.2 205.5  0.51 0.69 0.73 1.93 29.0% 

L6 90.9 150.9 110.1 208.6  0.57 0.84 0.86 3.62 17.5% 

L7 82.5 170.7 105.5 196.7  0.44 0.80 0.80 1.71 21.8% 
a Comparison between indoor and outdoor PM2.5 levels during the wildfire calculated with equation 3. 

 

Figure 4 compares the hourly PM2.5 indoor/outdoor (I/O) ratios of different monitoring 

sites during the wildfire. The average I/O ratio across all seven sites was 0.62. The sites with HEPA 

filters (L1, L2-a, L2-b, and L3) and the sites without HEPA filters (L4- L7) had an average I/O 

ratio of 0.43 and 0.82, respectively, which are higher than the average I/O ratios found from 

another study conducted in the same region during the same wildfire episode (I/O=0.19 for the 

households with air cleaners; I/O=0.56 for the households without air cleaners) [71].  

 
Figure 4. Boxplot of hourly I/O ratios for each sampling site. 

 

3.4 Personal Exposure Measurement - A Case Study 

To assess personal exposure as a function of the microenvironment, we compared the 

personal data measured by the wearable monitor with the wearer's home-based monitor data. 

Figure 5 shows the 10-minute average of PM2.5 concentration measured by the user's personal and 
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home-based monitors for reference. The wearable sensor PM2.5 data showed a 68% PM2.5 

reduction, which is lower than the PM2.5 reduction estimated using the wearer's indoor monitors. 

The shaded areas mark the nighttime (10:00 pm - 6:00 am). The personal monitor recorded 

significantly lower PM2.5 concentration at night compared to the other two home-based monitors 

located in the living room and the home office, which can be explained by the colocation of the 

HEPA air cleaner and wearable monitor. The user is an aerosol researcher who monitored his 

exposure during the wildfire. The difference in the personal exposures, measured by the wearable 

and the home-based monitor, indicates that access to special hyperlocal resolution (Indoor - room 

level, Outdoor – 2.5 meters, Wearable sensor level – 2.5m with 10 m buffer) for PM concentration 

data  can enhance the efficacy of PM exposure interventions.  

 

 
Figure 5. Profile of 10-minute averaged PM2.5 concentrations by 

the personal monitor (green line) and the bedroom monitors (the 

blue and purple line) during the wildfire.  

 

We also apportioned the user's exposure based on the GPS data. Figure 6a shows the 10-

minute average of PM2.5 concentration measured by the personal sensor color-coded based on the 

microenvironment. The user spent most of his time at home and with 15% time in the office and 

9% in other locations. Exposure outside the home and the office was categorized into other 

locations. The wearable monitor recorded higher PM2.5 levels in the user's workplace and other 
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locations than at the residence. The work location did not have an efficient filtration system based 

on the geolocation and PM concentration data. Figure 6b shows the weighted daily average 

personal exposure in different microenvironments. The personal exposure contribution from the 

office and other locations was 36% of the total smoke exposure during the wildfire, while the time 

spent in these environments was 24% (see Figure A3). The attribution of personal exposure to 

microenvironments can help personal activities during wildfire seasons.  

 

   
a b 

Figure 6. a) Time series plots of the personal PM2.5 exposure color-coded based on the microenvironment 

the user was in; b) Weighted daily average personal exposure in different microenvironments. 

 

 

4. Conclusions 
This study demonstrates the application of a low-cost sensor network for air quality 

monitoring during the 2020 Washington wildfire event. The outdoor PM2.5 data from the sensor 

network had an excellent agreement with the nearby PSCAA regional monitors. The spatial 

variance for PM2.5 in the urban area was low during the wildfire event. Our results showed that 

during the 2020 Washington wildfire, the outdoor PM2.5 level was as high as >200 μg/m3 in the 

Seattle area. Using portable HEPA air cleaner was associated with lower indoor PM2.5 levels 

during the wildfire episode, with the PM2.5 reduction of 50 - 77 % among the sampling sites. 

However, the observed levels were still higher than the typical Seattle outdoor PM levels (< 10 

μg/m3). The I/O ratio was driven by the smoke infiltration and the quality of air filtration. The 
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personal monitoring results highlighted the influence of microenvironments on an individual's 

exposure to PM2.5. Although this study had a relatively small sample size, it demonstrated that 

personal action, such as staying indoors and using HEPA air cleaner, can reduce personal exposure 

to wildfire smoke. The personal exposure analysis suggests knowledge about PM levels can lead 

to a reduction in exposure. More extensive studies and a collection of time-activity information 

are warranted to investigate the source of PM2.5 exposure and the health impact of PM exposure.  
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