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Abstract

No-take marine reserves (NTRs), i.e. areas with total fishing restrictions, have been estab-

lished worldwide aiming to promote biodiversity and ecosystem conservation. Brazil has

3.3% of its exclusive economic zone protected by 73 different NTRs, however, most of them

currently lack scientific knowledge and understanding of their ecological role, particularly

regarding rocky reefs in subtropical regions. In this context, this study aimed to contrast a

network of NTRs with comparable fished sites across a coastal biogeographic gradient to

investigate the effect of fishing and habitat variability on the abundance and body size of

rocky reef fish. We used Baited Remote Underwater stereo-Video (stereo-BRUVs) and

Diver Operated stereo-Video (stereo-DOVs) systems to simultaneously sample reef fish

and habitat. Model selection and results identified habitat and biogeographic variables, such

as distance from shore, as important predictor variables, explaining several aspects of the

fish assemblage. The effect of protection was important in determining the abundance and

body size of targeted species, in particular for epinephelids and carangids. Conversely, spe-

cies richness was correlated with habitat complexity but not with protection status. This is

the first study using these survey methods in the Southwestern Atlantic, demonstrating how

a network of NTRs can provide benchmarks for biodiversity conservation and fisheries

management.

Introduction

No-take marine reserves (NTRs) have been established worldwide as an important manage-

ment strategy, mostly aiming to protect marine biodiversity from the effects of fishing and
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other human disturbances [1,2]. It is well documented that these NTRs can provide refuge to

marine life, increasing local abundance, species richness, body size and the reproductive

capacity of fish [3–6]. Networks of NTRs can be used to investigate effects of fishing across bio-

geographic gradients, with the aim of estimating benchmarks for conservation and fisheries

management. Increased biomass of target species has been recorded inside NTRs, contrasting

with open areas where the removal of large carnivores can result in higher abundance of prey

species, leading to a trophic reorganization. [7–9].

Extensive research has documented that fish assemblage structure varies with physical,

chemical and biological factors across biogeographic and habitat gradients [10–12]. In particu-

lar, distance from the coast and topographic complexity have shown increase of species rich-

ness, abundance and biomass of reef fish [13–19]. It is therefore important for any

investigation of the effects of fishing to control for covariates across NTRs and open areas.

Brazil has 8500 km of coastline and a territorial sea that, together with the Exclusive Eco-

nomic Zone, encompasses 4 million km2. Of this area, 26.4% is currently protected by 177

marine protected areas (MPAs), of which 73 are NTRs, representing 3.3% of the country’s

marine waters [20]. However, the majority of this protection is in large and remote offshore

areas, with only 0.3% of these NTRs occurring in small to medium-sized protected areas (1-

100km2) in coastal waters [20]. The effectiveness of these remote NTRs in terms of achieving

conservation objectives has been questioned due to the difficulties of enforcement and moni-

toring of offshore waters [21,22]. Despite the relatively small sizes of these coastal networks of

NTRs, they have potentially high ecological and social value given the greater human impacts

occurring in these coastal waters [13,23,24].

Coastal habitats along the northern coast of Brazil (north of 19˚S) are dominated by coral

reefs, whereas southern regions (between 19–28˚S) are typified by rocky reefs. In general, the

Brazilian province shelters a high number of endemic species and biomass of marine organ-

isms [25–28]. In the transition zone between tropical and subtropical-temperate environments

(20˚S to 23˚S), the mosaic of habitat types results in one of the highest species diversity of ben-

thic [29] and reef fish species recorded in Brazil [25,28,30]. These transitional reefs are biologi-

cally rich and complex environments, where it is vitally important to establish, enforce and

understand the benefits of NTRs. However, the few studies available about the effects of Brazil-

ian NTRs on fish assemblage are concentrated in the northern [31] and southern region

[32,33] of the country’s coastline, or in offshore islands [34,35], with a lack of studies in the

transition zones between tropical and subtropical realms of coastal NTR networks.

Historically, NTRs and reef ecosystems in the Southwestern Atlantic have been assessed

using underwater visual census (UVC) (e.g. [31,32,34,35]). Despite the benefits of UVCs, such

as being a rapid and effective tool in providing precise data especially about conspicuous and

sedentary fish species [36–38], biases involving interobserver variability, underrepresentation

of large and mobile species targeted by fisheries, as well as inaccuracy of abundance and size

estimates can occur [39–41]. In order to mitigate some of these issues and complement fish

assemblage assessments, the use of video-based methods to collect data has been increasingly

adopted; aided by rapid advancements in video technology and accessibility to cheaper and

higher quality equipment [41,42]. Importantly, methods using such technologies create a per-

manent record allowing fish identification to be confirmed by experts and revisited when

necessary.

Baited Remote Underwater stereo-Video (stereo-BRUV) and Diver Operated stereo-Video

(stereo-DOV) are being widely employed to assess diverse aspects of fish assemblages [36,43–

46]. Stereo-video techniques provide accurate body size and range measurements of individu-

als from the three-dimensional calibration of imagery [47]. Stereo-BRUV have been found to

sample a wide range of species without precluding estimates of herbivorous species [48] and
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can be applied across a wide variety of habitats and depths [44]. Also, as a remote sensing tech-

nique, it detects large and mobile animals which usually avoid divers and active fishing gears

[36,43], but has a range of acknowledged biases and limitations related to the presence of the

bait and potential underrepresentation of small-bodied fish species (see Langlois et al. [49] and

Goetze et al. [36]). Conversely, the presence of a diver may impact the abundance of fish

recorded using stereo-DOVs [36,50], suggesting that the combination of methods is more

effective to sample fish assemblages [36,51].

In order to expand knowledge about the ichthyofauna of the Southwestern Atlantic, we

applied novel non-destructive methods that complement the traditionally used visual sampling

techniques, offering potentially more robust estimates of targeted species among protected

and fished areas. The improvement of non-lethal and non-destructive techniques to assess fish

assemblage is crucial, especially for sensitive habitats inside protected areas such as reef envi-

ronments, which shelter a significant amount of endangered and endemic species [32]. Thus,

this study is the first assessing fish assemblages using stereo-BRUVs and stereo-DOVs in the

Southwestern Atlantic, and aims to contribute to the conservation and fisheries management

in the region. Based on this, we aim to investigate the response of the fish assemblage to envi-

ronmental and habitat variables, as well as the effect of protection among NTRs. We hypothe-

size that: (1) abundance and body size of targeted fish groups will be greater inside NTRs;

whereas (2) non-target fish abundance and species richness will be explained better by habitat

and biogeographic variables.

Material andmethods

This study was conducted in accordance with all Brazilian government legislation. This

includes Federal Government authorization to observe and assess images within the Tupinam-

bás Ecological Station under the permits #48259–1, and also authorization from the São Paulo

State government (Fundação Florestal), by the Comissão Técnico Cientı́fica—COTEC, to

develop the research project.

Study site

The Ecological Station (ESEC) of Tupinambás is a no-take marine reserve (NTR) (correspond-

ing to IUCN Category Ia) located on the northern coast of São Paulo State, Brazil, Southwest-

ern Atlantic. The ESEC was established in 1987 [52] and is divided into two sectors. Sector I is

in the archipelago of Alcatrazes (24.101˚ S; 45.692˚ W), which is located approximately 43 km

from of São Sebastião, São Paulo. This sector has six protected localities, each of them with

1km of buffer area. Two sets of two of these sites are close enough to overlap, creating four pri-

mary areas of protection (Fig 1). Sector II protects Palmas Island (23.547˚ S; 45.029˚ W)

including two nearby reefs (Palmas Reef and Forno Reef) and Cabras Island (23.517˚ S;

45.041˚ W), located 5.7 km and 3.6 km respectively from the coast of Ubatuba, São Paulo.

The open-fishing areas used to test the effects of protection on fish assemblage included

Búzios (23.804˚ S; 45.139˚ W), Mar Virado (23.567˚ S; 45.156˚ W) and Tamanduá (23.597˚ S;

45.289˚ W) islands. These islands are part of a multiple use MPA established in 2008 (Environ-

mental Protection Area—corresponding to IUCN category V). They are located 34 km, 2 km,

and 0.5 km respectively from the mainland. Small scale fishing, such as angling, spearfishing,

longlines, fixed traps and gillnetting, is permitted around Mar Virado and Tamanduá islands,

but no industrial fishing that uses pair trawling, driftnet vessels above 20 gross tonnage (GT)

or trawling vessels up to 10 GT is allowed. However, only pair trawlers are excluded from fish-

ing in Búzios Island.
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Sampling

Samples were collected using stereo-DOVs and stereo-BRUVs. Both equipment types are com-

prised of a metal base bar with two underwater SeaGIS housing (www.seagis.com.au), each

with a digital video camera inside. Housings are positioned approximately 700 mm apart, each

inwardly converged at 8 degrees. Stereo-BRUVs were deployed from a boat connected by a

rope with a surface float, and left on the seafloor for 90 minutes to record fishes and habitat

characteristics. The camera base bar was enclosed within a stainless steel frame, and a bait cage

with 800 g of mashed sardine (Sardinella brasiliensis) was positioned at the end of a bait arm

approximately 1.5 m away from the cameras. Oily bait provide greater sampling efficiency

[53,54] due to the odor plume dispersion. Stereo-DOVs used the same camera base bar setup,

Fig 1. Map of the study area on the southeastern Brazilian coast with the no-take marine reserve Tupinambás Ecological Station in red. The control
islands, where fishing activity is permitted (Tamanduá, Mar Virado and Búzios), are also displayed (A, B). No-take areas in detail in the islands of Cabras and
Palmas (A) and in Alcatrazes Archipelago (C) with the sample sites represented by the black spots.

https://doi.org/10.1371/journal.pone.0204970.g001
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with the addition of a handle, allowing divers to swim along a transect. These standard survey

methods have been developed and used by many authors worldwide [43,44,55].

Stereo-BRUV and stereo-DOV sampling was undertaken bimonthly at each island for a

year (2016—March, May, July, October, November; and 2017—January). Each expedition was

approximately 4–6 days long, covering all six islands. Due to the small size of islands and to

maintain independence among samples (minimum distance between replicates was at least

250 m [48]), only two stereo-BRUV samples were collected on the leeward side of the islands,

totaling 12 stereo-BRUVs at each island after six expeditions. Each stereo-BRUV was deployed

at the interface of the rocky reef with the sandy bottom. Water depth ranged from 2–17 m

depending on the location of the rock-sand interface at each island and the average water

depth sampled was 8.3±3.6 m.

Stereo-DOV transects were 25 m long and 5 m wide, and swum at the interface of the rocky

shore with the sandy bottom, as well as at the shallow zone above the reef. Due to the small size

of the islands, sampling was restricted to three transects at the rock-sand interface and three in

the shallow zone on each island at each expedition, totaling 36 transects per island at the end

of six expeditions. Stereo-DOV transects were surveyed twice. During the first survey, the

observer filmed conspicuous species in the water column; during the second survey, the

observer focused on the substrate to detect cryptic species (families Blenniidae, Gobiidae, Lab-

risomidae and Chaenopsidae). The sampling unit therefore included the number and size of

both conspicuous and cryptic fish species per transect. This protocol is comparable to that

used for underwater visual census in the region to ensure that the species that are more likely

to avoid divers are recorded first, whilst small cryptic species are also sampled [14,18,56]. In

stereo-DOV samplings, the interface zone presented an average depth of 8.9±3.8 m and the

shallow zone 4.2±1.9 m.

Video analysis

Fish assemblage. Stereo-video systems were calibrated using the CAL software and video

analysis was carried out in the EventMeasure software (www.seagis.com.au). The description

of the design and calibration of stereo-videos can be found in Harvey and Shortis [47,57]. Fish

were identified to the finest taxonomic level possible, counted and measured if they were

within 7m of the stereo-BRUVs and 5m for stereo-DOVs.

The relative abundance of each species filmed on stereo-BRUVs was recorded as MaxN,

defined as the maximum number of individuals of the same species recorded in a single frame

from the left camera. This is a conservative approach in order to avoid counting and measur-

ing the same individual more than once. The fork length of individual fish contributing to a

species’ MaxN was measured when the fish was straight and no more than 45 degrees perpen-

dicular to the cameras. In the stereo-DOV, all fish filmed on the left camera were counted and

measured using the same rules. These data are stored on GlobalArchive [58] (globalarchive.

org), under the project "Effectiveness of Marine Protected Areas, Brazil", and also available in

the supporting information files.

Biomass was calculated for all species using measured fish lengths and length-weight rela-

tionship referenced in the FishBase database [59]. If equations for fork length of a species were

not available, length-length conversions were used if available. Biomass of species without

length-weight information was calculated using equations from a similar species from the

same family.

Fish species were classified by broad functional groups based on diet, using information

available in the literature [60,61] and FishBase [59]. Groups included: carnivores, piscivores,

planktivores, roving herbivores, territorial herbivores, omnivores, sessile invertebrate feeders,
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mobile invertebrate feeders. Piscivores were pooled with carnivores because there was not

enough individuals for statistical analysis. Species were categorized in target and non-target

for fisheries in the region according to the literature [18,62–64]. Four families (Epinephelidae,

Kyphosidae, Scaridae and Carangidae) identified as abundant or frequent and also targeted by

fisheries were selected for analysis.

Habitat characteristics. Habitat classification and complexity (mean relief) were analysed

using a single high definition image of each stereo-BRUV deployment and three single frames

of each stereo-DOV transect separated by approximately 8 m. This method is shown to be

effective to determine reefs structural complexity [65–67]. Images were analyzed in Transect-

Measure software (www.seagis.com.au) using a standardised broad habitat classification

scheme based on CATAMI [68] to classify benthic composition and based onWilson et al.

[69] to classify relief characteristics (Table 1). Each image was divided into a 5 x 4 grid and the

dominant habitat type of each square was recorded. The proportion of the total number of

grid squares that fell on each category was used to estimate percent cover by sample. For ste-

reo-BRUVs, this estimate was based on a single frame per deployment; and for stereo-DOVs it

was based on the average of the three replicates per transect. An additional category, ‘reef’, was

formed at the end of the image analysis by pooling macroalgae, stony coral, rock and

zoanthids, and is based on the similar broad structure these environments present.

Environmental variables. Environmental variables were recorded at each sampling event.

Temperature and salinity were measured using a Castaway CTD (Conductivity, Temperature

and Depth) and an average temperature and salinity value was calculated from values recorded

at the BRUV or dive depth, and 1 m above and below this. Visibility was estimated using a Sec-

chi disk.

Data analysis

The influence of habitat characteristics and environmental variables on fish assemblage rich-

ness, abundance and biomass was investigated using Generalized Additive Mixed Models

(GAMM) [70,71] and a full-subsets multiple regression approach based on the function

described by Fisher et al. [72]. GAMMs use smoothing splines to estimate non-parametric

additive functions, allowing for overdispersion and correlation in the data [70], which may

arise in studies like this.

Models were fitted to untransformed overall abundance, richness and biomass data, as well

as to abundance by functional group and by families. Models for biomass by functional group

Table 1. Habitat classification based on broad CATAMI Classification scheme [68] and onWilson et al. [69], used in Baited Remote Underwater stereo-Videos and
Diver Operated stereo-Videos images.

Criteria Description

Relief 0—Flat substrate, sandy, rubble with few features. ~0 substrate slope

1—Some relief features amongst mostly flat substrate/sand/rubble.<45 degree substrate slope

2—Mostly relief features amongst some flat substrate or rubble. ~45 substrate slope

3—Good relief structure with some overhangs. >45 substrate slope

4—High structural complexity, fissures and caves. Vertical wall. ~90 substrate slope

5—Exceptional structural complexity, numerous large holes and caves. Vertical wall. ~90 substrate slope

Unknown

Field of view Facing up Limited

Facing down Open

Broad/Benthos Ascidians Consolidated Open water Stony corals Unknown

Bryozoa Macroalgae Sponges Unconsolidated Zoanthids

https://doi.org/10.1371/journal.pone.0204970.t001
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and by family were also determined, however, as the same trends were found, we decided to

report results on abundance only. A prior selection of the predictor variables was made based

on their coverage and on the high collinearity between them (Pearson correlation coefficient

r> 0.8). As a result, Reef, Rock and Mean relief remained as continuous variables for the anal-

ysis. Null variables of the randommodel included Month, Method, Depth and Visibility, and

fixed factors included Distance to shore (two levels: inshore and offshore) and Protection (two

levels: no-take and open). Continuous predictor variables were square root transformed to

reduce dispersion of data.

Model selection for each response variable was based on the second-order variant of

Akaike’s Information Criterion suited for small samples (AICC) [73] and on AICc weights

(ωAICc). The best model was the most parsimonious one (with the fewest variables) within

two AICc units of the lowest AICc value (ΔAICc<2) [74]. Because the effect of protection sta-

tus, and any interactions, were relevant to the primary hypothesis of this study, models that

were within two AICc units of the model with the lowest AICc and included protection status,

were therefore preferentially investigated (‘hypothesis model’). Selected models had their

shape and effective degrees of freedom (EDF) examined to ensure they did not overfit the data.

The distributions of fish lengths for key families were compared inside and outside NTRs

using Mann-Whitney U test, considering a significant difference as p-values below 0.05. All

analyses were performed using R Language for Statistical Computing [75], with the packages

gamm4 [76], mgcv [77], MuMIn [78], doParallel [79] and dplyr [80].

Results

A total of 23,505 individuals were observed belonging to 126 species of 44 families (detailed list

in S1 Table, data in S2 Table). Large schools (>100) of sardines (Clupeidae), mullets (Mugil

spp.), young scads (Decapterus spp.), young vermilion snapper (Rhomboplites aurorubens) and

young grunts (Haemulidae) were excluded from statistical analysis in order to reduce disper-

sion of data and highlight effects. Not considering these schools, the most abundant and fre-

quent families were grunts (Haemulidae), damselfishes (Pomacentridae), jacks (Carangidae)

and snappers (Lutjanidae). The most abundant species were tomtate grunt (Haemulon auroli-

neatum) (28.1%), sergeant major (Abudefduf saxatilis) (10.1%), Brazilian damsel (Stegastes fus-

cus) (4.7%), gobies (Coryphopterus spp.) (2.3%) and squirrelfish (Holocentrus adscensionis)

(1.3%). And the most frequent species were tomtate grunt (64.2%), Brazilian damsel (54.2%),

sergeant major (49.6%), porkfish (Anisotremus virginicus) (38.9%) and dusky grouper (Mycter-

operca marginatus) (35.1%).

Tomtate grunt was listed as a highly common and abundant species in inshore and offshore

areas, and in both no-take and fished areas (Table 2). Brazilian damsel and sergeant major were

also highly recorded as abundant and frequent, except for the abundance in offshore no-take

areas, which was mainly represented by schools of grunts, scads and vermilion snappers (Table 2).

Nineteen species recorded are endemic to the Brazilian Province [28,81–83] and fourteen

species are considered threatened (vulnerable/endangered) or near threatened, by the Interna-

tional Union for Conservation of Nature (IUCN) Red List [84] and the Brazilian legislation

[85] (detailed list in S1 Table).

The most parsimonious model for total richness included distance to shore and mean relief,

whereas for both total abundance and biomass the selected models included protection status

and distance to shore (Table 3, Figs 2 and 3). The model for overall abundance was selected

based on the primary hypothesis of interest, and was within 2AIC of the top model, but it is

interesting to note that mean relief was highly important (Fig 2) and present in the most parsi-

monious model.
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Higher richness of target and non-target species and greater abundance of non-target spe-

cies were best predicted by increased distance to shore and mean relief, whilst the most parsi-

monious models for the abundance of target species indicated they were likely to increase with

protection and distance to shore (Fig 4). Concerning abundance by functional groups, the

most parsimonious models for carnivores/piscivores, planktivores and territorial herbivores

all included a positive relationship with protection and mean relief. However, as the variance

explained by the model for planktivores was very low (R2
<10) (Table 2), it was not represented

graphically in Figs 2 and 5. Contrary to the trend found for the other functional groups, the

abundance of sessile invertebrate feeders was found to be negatively correlated with protection

status and mean relief. For mobile invertebrate feeders, the abundance is likely to increase

with protection and distance to shore. The number of herbivores and omnivores was higher in

areas further from shore and also on structurally complex reefs (Fig 5). All data used to fit the

models is available on S3 Table.

Targeted families Carangidae and Epinephelidae increased with protection and presence of

reef, whilst kyphosids were found in greater abundance in areas with more reef and greater

distance from shore. Scarid abundance showed a negative correlation with protection and a

positive correlation with distance to shore (Fig 6). In terms of body size of these families, the

largest individuals were found inside the NTRs, with significant differences (Carangidae:

U = 38283, p-value<0.001; Scaridae: U = 4462.0, p-value<0.001; Kyphosidae: U = 6450.5, p-

value<0.001; Epinephelidae: U = 9341.5, p-value = 0.013) (Fig 6C, 6F and 6I).

Discussion

This study is the first to generate fisheries independent data using non-destructive stereo-

video methods in the Southwestern Atlantic. Besides, the approach adopted here made it possi-

ble to distinguish the effect of fishing from habitat variables on different components of the

fish assemblage, demonstrating how NTRs can be used as benchmarks to contribute to

resource management and marine conservation.

The role of no-take marine reserves

Broadly, total abundance and biomass were greater inside no-take areas, a pattern also regis-

tered in previous studies [7,86,87]. The assessment of biomass in the marine environment is

important and can reveal the health status of an environment especially because it can be used

to represent the energy flux, as well as the potential of the ecosystem to provide goods and

Table 2. Top five most abundant and frequent species (% of samples a species was observed) in no-take and open to fisheries areas in inshore and offshore regions.

No-take Open

Abundance (n) Frequency (%) Abundance (n) Frequency (%)

Inshore Haemulon aurolineatum 873 Haemulon aurolineatum 73 Haemulon spp. 651 Abudefduf saxatilis 48

Abudefduf saxatilis 604 Mycteroperca marginatus 62 Abudefduf saxatilis 415 Stegastes fuscus 46

Decapterus spp. 500 Stegastes fuscus 53 Stegastes fuscus 335 Mycteroperca acutirostris 35

Coryphopterus spp. 289 Anisotremus virginicus 50 Haemulon aurolineatum 168 Haemulon aurolineatum 26

Stegastes fuscus 265 Abudefduf saxatilis 43 Caranx latus 96 Anisotremus virginicus 22

Offshore Haemulon aurolineatum 4336 Haemulon aurolineatum 90 Haemulon aurolineatum 1231 Haemulon aurolineatum 50

Decapterus punctatus 2304 Pomacanthus paru 75 Abudefduf saxatilis 939 Abudefduf saxatilis 56

Rhomboplites aurorubens 1807 Holocentrus adscensionis 71 Haemulon spp. 500 Halichoeres poeyi 33

Haemulon spp. 630 Kyphosus spp. 63 Stegastes fuscus 285 Stegastes fuscus 53

Decapterus spp. 504 Stegastes fuscus 60 Mugil spp. 264 Chaetodon striatus 32

https://doi.org/10.1371/journal.pone.0204970.t002
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services [88,89]. Based on this, the results indicate that the NTR in question is protecting natu-

ral processes and resources, which are being effectively converted into biomass. Conversely,

the opposite was found in areas open to fishing, presenting a decreased ecosystem functioning

driven by the selective removal of large individuals [90,91]. Higher overall abundance and bio-

mass within NTRs indicates the significant removal of fish by fisheries in the open access areas

in the region.

Distance from the coast was an important factor, explaining the higher richness, abundance

and biomass recorded in islands further from the coast. This factor has been demonstrated to

influence fish assemblages structure in several coral and rocky reefs around the world [92–95]

and also in the Brazilian Province [13,15,25,60]. The first hypothesis we raise to explain the

higher richness and abundance in offshore islands may be related to the total area of rocky

reefs. In the region, offshore reefs are typically deeper and form a larger continuous extensions

when compared to inshore reefs that are often interspersed with sandy beaches, probably lead-

ing a smaller surface area available for reef fishes. Surface area of reef has been directly

Table 3. Top generalised additive mixed models (GAMMs) to predict different aspects of fish assemblage.

Dependent variables Best models ΔAICc ΔBIC ωAICc ωBIC R2 EDF

Overall

Richness Distance to shore + Mean relief.by.Distance to shore 0.00 0.00 1.00 0.89 0.57 18.75

Abundance Mean relief + Distance to shore 0.49 0.00 0.32 0.68 0.30 8.53

Protection + Distance to shore 0.00 1.57 0.41 0.31 0.34 8.76

Distance to shore + Mean relief.by.Distance to shore 0.89 7.52 0.26 0.02 0.30 10.33

Biomass Protection + Distance to shore 0.00 0.00 1.00 1.00 0.27 16.50

Importance to fisheries

Non-target species richness Distance to shore + Mean relief.by.Distance to shore 0.00 0.00 1.00 1.00 0.47 14.53

Non-target species abundance Distance to shore + Mean relief.by.Distance to shore 0.00 4.83 0.90 0.08 0.39 8.54

Target species richness Mean relief + Distance to shore 0.00 0.00 0.61 0.89 0.56 18.42

Target species abundance Protection + Distance to shore 0.00 0.00 1.00 1.00 0.25 13.55

Abundance by functional group

Carnivores/Piscivores Protection + Mean relief.by.Protection 0.00 6.50 0.86 0.02 0.30 17.28

Mobile invertebrate feeders Protection + Distance to shore 0.00 0.00 1.00 1.00 0.23 10.21

Sessile invertebrate feeders Protection 1.43 0.00 0.15 0.40 0.13 7.31

Protection + Reef.by.Protection 0.17 4.73 0.28 0.04 0.16 9.16

Protection + Mean relief.by.Protection 0.00 12.54 0.31 0.00 0.11 10.92

Omnivores Mean relief + Distance to shore 0.00 0.00 0.90 0.96 0.31 13.38

Planktivores Protection + Mean relief.by.Protection 0.00 3.54 0.92 0.14 0.03 8.81

Roving herbivores Mean relief + Distance to shore 0.00 0.00 0.44 0.48 0.17 6.95

Distance to shore + Mean relief.by.Distance to shore 0.47 17.10 0.35 0.00 0.18 9.22

Territorial herbivores Protection + Mean relief.by.Protection 0.00 0.00 0.89 0.93 0.40 14.66

Abundance by family

Epinephelidae Protection + Reef.by.Protection 0.00 0.00 1.00 1.00 0.27 19.49

Kyphosidae Distance to shore + Reef.by.Distance to shore 0.00 0.00 0.53 0.42 0.15 17.92

Distance to shore + Rock.by.Distance to shore 0.30 0.58 0.46 0.31 0.16 17.94

Scaridae Protection + Distance to shore 0.00 0.00 1.00 1.00 0.10 15.14

Carangidae Protection + Reef.by.Protection 0.00 0.00 1.00 1.00 0.22 20.22

ΔAICc = Difference between lowest reported corrected Akaike Information Criterion; ΔBIC = Bayesian Information Criterion; ωAICc = AICc weights; ωBIC = BIC

weights; R2 = variance explained; EDF = effective degrees of freedom. Model selection was based on the most parsimonious model within two units of the lowest AICc

which has the fewest variables.

https://doi.org/10.1371/journal.pone.0204970.t003
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attributed to fish assemblage structure in some studies. For example, Francini-Filho and

Moura [31] found a more pronounced increase of overall biomass over time in areas adjacent

to coral reefs that reach deeper water. Furthermore, Roberts and Ormond [96] registered

higher species richness with depth, and Gibran and Moura [60] also detected this tendency for

rocky reefs in the same region of the present study. These findings might be due to higher

availability of resources and a possible lower competition in offshore islands, especially for

space [97].

The second hypothesis to explain the higher values of ecological metrics is related to the

proximity of anthropogenic activities. The close proximity of human populations to a fish

assemblage causes negative effects and is demonstrated worldwide [5,90,98–100]. Areas close

to the mainland are easier to access and tend to have more fishing activities. Nearshore waters

(<50 m water depth) of the São Paulo state coast, are highly explored by both artisanal and

Fig 2. Variable importance scores from full-subset generalised additive mixed models analysis, with>10%
variance explained shown. X = Predictor variables within the most parsimonious model for each response variable
(see Table 1).

https://doi.org/10.1371/journal.pone.0204970.g002
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industrial fishing fleets, with artisanal, low mobility fleets most dominant in water depth<20

m [23]. Coastal regions with high population densities, such as São Paulo, are more exposed to

human activities causing disturbances and changes in coastal dynamics, especially concerning

the high input of nutrients and pollution through air deposition, river discharges, urban and

industrial wastewater effluents, groundwater and surface runoff [24]. These potentially harm-

ful components cause environmental stress and may damage coastal biota directly or indirectly

[101]. In addition, areas near the coast also face greater exposure to major developments, such

as harbors and marinas, which can also significantly change the coastal landscape, causing deg-

radation of habitats and consequently affecting fish assemblage. Further studies in the region

are needed to test these hypotheses in order to determine whether or how much of this pattern

is explained by biogeography or anthropogenic activities.

Target and non-target species

Higher abundance of target species was observed within NTRs, but protection status did not

correlate with any differences in the abundance of non-target species. Indeed, studies have

shown increased abundance of highly targeted fishes inside no-take NTRs, with lower influ-

ence on non-target [5,7,35,102,103], reinforcing evidence of the direct effects of fishing.

Fig 3. Plots of the most parsimonious models, with>10% variance explained shown. (A,B) species richness, (C,D)
total abundance and (E,F) total biomass. The dotted line represents 95% confidence interval.

https://doi.org/10.1371/journal.pone.0204970.g003
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Abundance of target species also increased with greater distance from the shore, which can be

related to the increased fisheries activity close to the shore as described above [23].

Conversely, species richness and richness of target and non-target fish, was not related to

protection status, being mostly explained by relief. Higher species diversity in more complex

environments has been described in the literature [5,14,19], and is likely related to increased

availability of food, decreased competition, and lower probability of predator-prey encounters

[97,104,105]. Structurally complex environments have higher availability and diversity of

niches, accommodating a higher number of species in a small area.

Fish functional groups

Although functional groups responded differently to fishing pressure, we found evidence that

protection status affected the trophic structure of the fish assemblage, since carnivores/pisci-

vores, mobile invertebrate feeders, and territorial herbivores were more abundant within the

NTR, whilst sessile invertebrate feeders were less abundant. However, protection was not rele-

vant for omnivores and roving herbivores. The abundance of the carnivores/piscivores func-

tional group, which is comprised of species targeted by fisheries in the region [18,62–64], was

higher within NTRs. Even though relief was important, it was relevant only when combined

with protection. These results suggests that the NTR is facilitating the recovery of high trophic

level organisms, which are usually the first group depleted by fisheries [91,106,107].

Fig 4. Plots of the most parsimonious models for target and non-target fish assemblage overall characteristics, with>10% variance explained shown.On-target
species (A,B) richness, (C,D) abundance, (E,F) biomass. And for target species (G,H) richness, (I,J) abundance, (K,L) biomass. The dotted line represents 95%
confidence interval.

https://doi.org/10.1371/journal.pone.0204970.g004
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Some mobile invertebrate feeder species are targeted by fisheries, but are not considered as

important to fisheries as carnivores because of their smaller body size, such as haemulids, lab-

rids and small carangids. Nevertheless, protection was still an important factor to predict

abundance of this group, suggesting some fishing pressure, albeit less than highly targeted car-

nivores/piscivores. This might be related to a depletion of top predators, leading to an explora-

tion of lower trophic levels, as already described worldwide [107], including Brazilian coast

[108,109]. The other factor strongly affecting abundance of this group is distance to shore,

which may be related to the larger rocky reef surface, offering more resources and, conse-

quently, less competition [97]. This is especially important for small and benthic mobile inver-

tebrate feeders of the families Blenniidae and Serranidae, which live closely associated with the

substrate [62]. Similar results were found for omnivores, in which higher abundance is more

likely to occur in high complex habitats in offshore islands, probably for the same reasons,

since this group encompasses blennies, pomacentrids, pomacanthids and species of the order

Tetraodontiformes. Although some species within this category are targeted by fisheries

(Mugilidae, Sparidae, Ephippidae), protection was not an important factor to determine abun-

dance. This is probably related to the plasticity of the omnivorous diet, which can enable

greater resistance to environmental changes (e.g. [110,111]).

As the abundance of sessile invertebrate feeders was very low in samples, the model was not

robust. However, lower abundance found within NTRs and in more complex reefs indicated

by the model may be related to the elusive behaviour of these species, which usually hide from

divers and may not be recorded. Since these species feed on benthic invertebrates generally

Fig 5. Plots of the most parsimonious model for abundance by functional group, with>10% variance explained shown. (A,B) Carnivores/piscivores, (C,D) Mobile
invertebrate feeders, (E) Sessile invertebrate feeders, (F,G) Omnivores, (H,I) Roving herbivores, (J,K) Territorial herbivores. The dotted line represents 95% confidence
interval.

https://doi.org/10.1371/journal.pone.0204970.g005
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associated with hard substrate, we would expect a higher abundance in more topographic

complex environments. For planktivores, models did not predict the abundance well, most

likely because species in this group show highly variable body sizes, occupying very different

niches. For example, fish from Echeneidae and Carangidae families are mobile and large-bod-

ied species, occupying the pelagic environment, whilst the species from Pomacentridae and

Pempheridae families are small-bodied species that live associated with burrows and crevices

on the rocky reef [62]. Therefore, it was not possible to determine a single robust model to

explain abundance of this functional group with the predictor variables used.

Abundance of roving herbivores was related to distance from shore and topographic com-

plexity, which is expected considering its diet, algae and detritus, are mostly found in reef envi-

ronments [112], which are more likely abundant in larger rocky reefs of offshore islands. This

is similar with the results for territorial herbivores, in which protection was only important

when combined with topographic complexity. This is also likely, since territorial herbivores,

such as damselfishes (Stegastes spp.), are found in complex regions of the reef protecting

Fig 6. Plots of the most parsimonious models for abundance, Kernel density plots and boxplots for fork length (mm) for important fishing target families. (A,
B,C) Carangidae, (D,E,F) Scaridae, (G,H,I) Kyphosidae and (J,K,L) Epinephelidae. The dotted line represents 95% confidence interval. � Significant difference. Fish
drawings were based on Carvalho-Filho [61].

https://doi.org/10.1371/journal.pone.0204970.g006
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colonies of the major components of their diet, primarily fast growing red and green filamen-

tous algae [113,114]. As habitat characteristics were more influential in herbivores abundance

than protection status, fisheries effects were not evident for these groups, even though some of

them are targeted in the region.

Targeted fish families

One of the consequences of large removal of individuals by fisheries activities is represented by

a rapid decrease in abundance and richness, especially of large bodied target species [91].

Indeed, the effects of fishing on the size of individuals is well described, in which target species

reach larger sizes within NTRs [35,99,102,115,116]. The present study corroborates these find-

ings, showing a significantly higher density of larger individuals of target species of the families

Epinephelidae, Kyphosidae, Carangidae and Scaridae within protected areas. This also repre-

sents an increase in reproduction capacity of these groups in protected areas as larger individu-

als usually present much higher fecundity [117]. This increases the probability of exporting

larvae from NTRs to adjacent areas [31,118] repopulating fished reefs and helping to restock

targeted species in fished areas.

Networks of moderate size (10–100 km2) NTRs have demonstrated to be more effective in

resource management and conservation when compared to smaller protected areas [119].

However, small (1–5 km2) and very small (<1 km2) areas have been widely implemented and

shown to have some advantages, specifically for small bodied and sedentary species with

smaller home ranges [120–123]. In particular, individuals of the Epinephelidae family pre-

sented a higher abundance with protection and also in complex environments within the very

small NTR in question. These species live associated with burrows within rocky reefs [124]

and are highly targeted by fisheries, indicating that they may be the group benefiting most

from protection, as seen in this study.

The abundance of kyphosids was not related to protection and was more abundant in

regions offshore with the greater presence of reef. As this species is considered herbivorous,

grazing predominately on macroalgae (Sargassum spp.) associated with rocks [125], we expect

to record higher numbers at locations with greater food availability, including offshore areas

with more rocky reef. However, larger individuals could be targeted by fishers, resulting in

their higher abundance recorded within NTRs. This indicates that the NTRs allow the growth

of individuals, and therefore provide greater reproductive capacity for the species.

For the Carangidae family, an effect of protection in abundance was evident, suggesting a

high removal, especially of large individuals, in areas open to fisheries. Besides, regardless of

being a mobile species, they are frequently found associated with hard structures [45] and even

following other species [126], and probably for this reason, individuals of this family have

shown to benefit from NTRs in reefs [5,127].

Fish of the Scaridae family showed a higher abundance in fished areas, likely due to the

absence of top predators (carnivores/piscivores), since species of this family have been regis-

tered to be preyed upon by epinephelids, carangids and muraenids [128]. Even though they

were more abundant in fished areas, fish size was smaller, representing a fishing pressure in

larger sizes, as also described by Floeter et al. [35]. Also, the abundance of these roving herbi-

vores was higher with distance from the coast, what could be related to the availability of food

and lower competition in larger and continuous reefs offshore.

Conclusions

Brazil shelters the second richest reefs in the Atlantic Ocean [28], and also stands out for the

proportion of endemic and endangered species concentrated in small areas [27,28,129].
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Therefore, it is crucial to generate information about the role NTRs can play in protecting fish

assemblages of this region. In addition, a better understanding of patterns in the effects of fish-

ing on a fish assemblage provides robust metrics for conservation and fisheries management,

whilst also providing information on focal species and biological variables most relevant to

monitor the effectiveness of NTRs to protect fish assemblages.

The present study presents evidence that very small NTRs (<1km2) can protect fish assem-

blages from the direct effects of fishing, increasing abundance and biomass, especially of tar-

geted species, therefore contributing to the management of fisheries resources at a local and

regional scale. Some functional groups showed a higher benefit from protection, such as carni-

vores/piscivores and mobile invertebrate feeders, while others decreased in abundance, such as

the Scaridae family. Another outstanding difference is concerning body size, mostly for target

species, in which NTRs allow target species to reach larger sizes. The Epinephelidae family

showed greater evidence to benefit from these very small NTRs, especially due to its high

importance to fisheries and its small home range. However, we recommend that networks of

larger NTRs (>10Km2) should be established in the region, which would provide a more

robust framework for investigating and managing the effects of fishing and informing conser-

vation and fisheries management more broadly.

As a concluding remark, our findings show strong influence of protection, distance from

the shore and mean relief on fish assemblage characteristics, in which protected areas further

from the human influence and with a higher topographic complexity tend to have greater

abundance and biomass of fish. Our results highlight the crucial role these areas play in the

conservation and recovery of highly valuable commercial stocks to the fishing activity of the

region, displaying the importance of keeping and implementing more NTRs in the region. The

use of stereo-videos in this study has shown to be effective and feasible in this region, provid-

ing valuable and robust information to aid conservation and fisheries management in Brazil.
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16. Garcı́a-Charton JA, Pérez-Ruzafa Á, Sánchez-Jerez P, Bayle-Sempere JT, Reñones O, Moreno D.
Multi-scale spatial heterogeneity, habitat structure, and the effect of marine reserves onWestern Med-
iterranean rocky reef fish assemblages. Mar Biol. Springer-Verlag; 2004; 144: 161–182.

17. Parsons DF, Suthers IM, Cruz DO, Smith JA. Effects of habitat on fish abundance and species compo-
sition on temperate rocky reefs. Mar Ecol Prog Ser. 2016; 561: 155–171.

18. Floeter SR, KrohlingW, Gasparini JL, Ferreira CEL, Zalmon IR. Reef fish community structure on
coastal islands of the southeastern Brazil: the influence of exposure and benthic cover. Environ Biol
Fishes. 2007; 78: 147–160.

19. Pinheiro HT, Martins AS, Joyeux J-C. The importance of small-scale environment factors to commu-
nity structure patterns of tropical rocky reef fish. J Mar Biol Assoc U K. Cambridge University Press;
2013; 93: 1175–1185.

20. ICMBio. Cadastro Nacional de Unidades de Conservação. In: Instituto Chico Mendes de Proteção à
Natureza [Internet]. 1 Jun 2018 [cited 12 Nov 2018]. Available: http://www.mma.gov.br/areas-
protegidas/cadastro-nacional-de-ucs/dados-consolidados.html

21. Giglio VJ, Pinheiro HT, Bender MG, Bonaldo RM, Costa-Lotufo LV, Ferreira CEL, et al. Large and
remote marine protected areas in the South Atlantic Ocean are flawed and raise concerns: Comments
on Soares and Lucas (2018). Mar Policy. 2018; 96: 13–17.

22. Magris RA, Pressey RL. Marine protected areas: Just for show? Science. 2018; 360: 723–724.
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