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Background. .e traditional Chinese medicines Astragalus and Angelica are often combined to treat male infertility, but the specific
therapeutic mechanism is not clear. .erefore, this study applies a network pharmacology approach to investigate the possible
mechanism of action of the drug pair Astragalus-Angelica (PAA) in the treatment of male infertility. Methods. Relevant targets for
PAA treatment of male infertility are obtained through databases. Protein-protein interactions (PPIs) are constructed through
STRING database and screen core targets, and an enrichment analysis is conducted through the Metascape platform. Finally,
molecular docking experiments were carried out to evaluate the affinity between the target protein and the ligand of PAA.Results..e
active ingredients of 112 PAA, 980 corresponding targets, and 374 effective targets of PAA for the treatment of male infertility were
obtained, which are related to PI3K-Akt signaling pathway, HIF-1 signaling pathway, AGE-RAGE signaling pathway, IL-17 signaling
pathway, and thyroid hormone signaling pathway. Conclusion. In this study, using a network pharmacology method, we pre-
liminarily analyzed the effective components and action targets of the PAA. We also explored the possible mechanism of action of
PAA in treating male infertility. .ey also lay a foundation for expanding the clinical application of PAA and provide new ideas and
directions for further research on the mechanisms of action of the PAA and its components for male infertility treatment.

1. Background

Male sterility, a common disease in andrology, is defined as
male factor infertility in which a couple have attempted to
conceive for more than one year without success. Ap-
proximately 15% of couples do not achieve pregnancy
within one year and seek medical treatment for infertility.
One in eight couples encounters problems when
attempting to conceive a first child, and one in six en-
counters problems when attempting to conceive a subse-
quent child. .ree percent of women who are currently
trying to conceive remain involuntarily childless, while 6%
of parous women are not able to have as many children as

they would wish [1]. In 50% of involuntarily childless
couples, a male infertility-associated factor is found, usu-
ally together with abnormal semen parameters [2]. .e
etiology of male infertility is complex. At present, the clear
etiologies include urogenital diseases, varicoceles, endo-
crine disorders, gene abnormalities, and other systemic
diseases. In addition, the European Association of Urology
Guidelines (2020 Edition) states that approximately 30% of
infertility cases are idiopathic male infertility [3]. .e
existing treatment measures include estrogen receptor
modulators, sperm health-promoting agents, antibiotics,
and other symptomatic treatments, but the efficacies are
still unclear [4, 5].
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.e treatment of male infertility with traditional Chinese
medicine (TCM) has a long history and is now gaining
popularity in western countries [6, 7]. .e goal of treatment
is the balance between reproductive energy (QI), blood, and
visceral Yin and Yang. Usually, traditional Chinese medicine
is not used alone to treat diseases, but often in the form of
multiple drugs cooperating with each other. Astragalus and
Angelica are often used as a drug combination in the
treatment of male infertility. Astragalus is the dried root of
Astragalus membranaceus (Fisch.) Bge. or Astragalus
membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao.
[8]. .e efficacy is tonifying qi and strengthening the spleen.
Angelica is the root of Angelica sinensis (Oliv.) [9]. .e
efficacy is tonifying the blood and activating blood circu-
lation. .e combination of the two can treat male sterility
with deficiency of qi and blood [10, 11]. However, it is not
clear what mechanism PAA is involved in the treatment of
male infertility.

Network pharmacology is a new discipline that has been
used in recent years to study the pharmacological mecha-
nisms of traditional Chinese medicines..rough integration
of current traditional Chinese medicine pharmacology
methods, high-throughput bioinformatics, and high-end
data analysis software programs, comprehensive analyses of
the mechanisms of action of traditional Chinese medicines
can be carried out [12]. It can predict the pharmacological
mechanism of TCM “multicomponent, multitarget, and
multipathway,” and provide better data and theoretical
support for subsequent pharmacological experiments. .e
current study is comprised of three steps, including data
collection, data processing, and network construction, en-
richment analysis and mechanism prediction, and the
flowchart of the technical strategy in this study is shown in
Figure 1.

2. Materials and Methods

2.1. Identification of Active Components and Potential Targets
of the Traditional Chinese Medicines. .e Traditional Chi-
nese Medicine Systems Pharmacology Database and Anal-
ysis Platform (TCMSP) [13] is a relatively classic database of
traditional Chinese medicine ingredients with more than
500 traditional Chinese medicines and more than 30,000
compounds providing pharmacokinetic information cor-
responding to the compounds. It has become one of the
databases most frequently used by scholars in network
pharmacology research. .e Bioinformatics Analysis Tool
for Molecular Mechanism of Traditional Chinese Medicine
(BATMAN-TCM) [14] was the first online bioinformatics
analysis tool designed specifically for studying the intrinsic
molecular mechanisms of traditional Chinese medicines.
Relevant active components of PAA were searched in the
TCMSP and BATMAN-TCM databases with the following
screening criteria, which were set in combination with the
criteria of commonly used network pharmacology compo-
nent screening methods and relevant literature records: an
oral bioavailability (OB)≥ 30% and drug likeness (DL)≥
0.18. Compounds that did not meet these screening criteria
were excluded. And according to the literature, active

ingredients that are not eligible for screening and that have
been experimentally proved to be effective are also incor-
porated into the alternative ingredients; thus, the obtained
active ingredients and therapeutic targets of Astragalus and
Angelica were typed into the UniProt database for each
target https://www.uniprot.org/ to obtain the standard
number of targets, and the final results were counted into an
Excel sheet.

2.2. Identification of Disease Targets. Online Mendelian
Inheritance in Man (OMIM) (https://omim.org/) is a da-
tabase of human genes and genetic phenotypes which
focuses on molecular relationships between gene variation
and dominant expression and contains information on
more than 15,000 genes. GeneCards [15] (https://www.
genecards.org/) contains a wealth of biomedical data on
genes and their products, including genomic, proteomic,
and gene function-related information. DisGeNET [16] is a
multifunctional platform that can be used for the study of
the molecular basis of human diseases and their compli-
cations, validation of disease candidate genes, and evalu-
ation of the performance of text mining methods. .e
Genetic Association Database (GAD) [17] is a standardized
tool for viewing the ever-growing data on human poly-
morphisms from case-control studies. Users can search for
genes, diseases, polymorphisms, chromosome locations,
and references to obtain relevant information. We input
“male infertility” into the OMIM database, the GeneCards
database, GAD (https://geneticassociationdb.nih.gov/),
and DisGeNET (http://www.disgenet.org) to search for the
targets related to male infertility and record them in an
Excel sheet.

2.3. Identification of 'erapeutic Targets and Construction of
Protein-Protein Interactions (PPIs). .e effective compo-
nents, targets, and disease targets of the PAAwere deduplicated
and imported into a Venn diagram program (http://
bioinformatics.psb.ugent.be/web-tools/Venn/). Finally, the
targets at the intersection were considered the effective targets
of PAA in the treatment of male infertility..e Search Tool for
the Retrieval of Interacting Genes/Proteins (STRING) can be
used to judge the confidence of PPIs through different
evidence scoring systems so that we will know which
proteins play a major role in the treatment of diseases. .e
targets obtained after intersection analysis were input into
the STRING to construct a PPI network, and the results
were imported into Cytoscape software (version 3.7.2) [18].
According to the network analysis tool and the Molecular
Complex Detection (MCODE) [19] plug-in, topology
analysis was carried out to obtain the comprehensive data
for each node. According to the betweenness centrality
(BC), closeness centrality (CC), degree, andMCODE Score,
the core targets of PAA in the treatment of male infertility
were identified, and a PPI network was drawn.

2.4. Network Construction. .e disease-drug-active
ingredient-target network of PAA in the treatment of male
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infertility was visualized by using Cytoscape software. In the
network, each node represents a data element, such as a
disease, drug, active ingredient, or target. In the scale-free
network, the index node degree reflects the participation of
each node, and the size of the degree is directly proportional
to the participation of the node. After importing the data, the
Network Analyzer module was used to obtain the degree of
each data element.

2.5. Functional Nodes for Core Targets. Metascape (http://
metascape.org/) is a powerful tool for gene function an-
notation analysis that can help users apply the current
popular bioinformatics analysis methods to batch gene and
protein analysis in order to understand gene or protein
functions. In this study, we used the Metascape database to
perform gene ontology (GO) functional annotation and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
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Figure 1: Technical strategy flow diagram.
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pathway enrichment. GO analysis was used to describe the
functions of gene targets in terms of cellular component
(CC), molecular function (MF), and biological process (BP).
KEGG analysis was used to identify the signaling pathways
associated with the gene targets, and the analysis results with
statistical significance were selected (P< 0.05). A network of
the interactions between the core targets and signaling
pathway was drawn with Cytoscape software to obtain the
comprehensive information for each node.

2.6. Construction of the Component-Target PathwayNetwork.
.e top 20 pathways from the results of KEGG analysis were
filtered and combined with the file retrieval to obtain the
possible pathways related to the treatment of male infertility
and the targets that were enriched on the pathways. .e
targets connected with the effective components in the PAA
pair were ultimately used to construct a component-target
pathway network diagrams.

2.7. Ligand-Protein Docking. .e information of six proteins
(TP53, mapk1, IL-6, ANXA1, EGF, and EGFR) in the PPI
network which were most closely related to male infertility
was obtained through the RCSB PDB (https://www.rcsb.org/).
.e proteins selected as .pdb format were converted into .pdbqt
format via AutoDock (http://autodock.scripps.edu/). Docking
was performed in AutoDock with kaempferol, stigmasterol,
and quercetin.

3. Results

3.1. Identification of Ingredients and Targets of the Traditional
ChineseMedicine. .e effective components of PAA were
searched in the TCMSP and BATMAN-TCM, and the
compounds were screened according to an OB ≥ 30% and
a DL ≥ 0.18 and combined with the literature for
screening [20–23]. Ultimately, 112 potential core com-
pounds were obtained, and 977 corresponding targets
were predicted.

.e OMIM database, GeneCards database, GAD, and
DisGeNETdatabase were used to search for male infertility-
related targets. A total of 4108 targets were obtained after
deleting the duplicate items. Finally, 374 effective targets for
the treatment of male infertility were obtained by mapping
(Figure 2).

3.2. Construction of the PPINetwork. A total of 374 common
targets were imported into the STRING for PPI analysis, and
the result with a combined score ≥0.900 was selected. A total
of 1415 paired interaction relationships were obtained. .e
results were imported into Cytoscape, and after screening
was performed on the basis of betweenness centrality,
closeness centrality, degree, and MCODE score, 85 core
targets were obtained. .e PPI network was drawn with
these targets, as shown in Figure 3(a). A bar chart was also
created to show the frequency of occurrence of the top 20
targets, as shown in Figure 3(b) and Table 1.

3.3. Construction of theDrug Pair-Component-Target-Disease
Regulation Network. .e common target information and
mapping relationships between the active components of the
PAA pair and male infertility were imported into Cytoscape
software. .e topological structure of the network was
assessed with the Network Analyzer function of Cytoscape,
and the node importance was expressed in terms of the
degree. Nodes with degrees greater than 20 for the active
ingredients and 10 for the targets were selected, and a drug
pair-component-target network diagram was established, as
shown in Figure 4. .e top five compounds with regard to
degree were kaempferol, stigmasterol, beta sitosterol,
quercetin, and canavanine. Among them, kaempferol,
stigmasterol, and quercetin are closely related to male
infertility.

3.4. GO Enrichment Analysis of Core Targets. GO target
analysis yielded 398 significant results, including 382 BPs,
7 CCs, and 9MFs. .e top 10 BP, CC, and MF terms were
used to create bubble charts, as shown in Figure 5. In the BP
category, the main terms associated with the targets included
the cellular response to drug, regulation of secretion, and
response to nutrient levels terms. In the CC category, the
enriched terms for the targets included the protein kinase
complex, transferase complex, and chromosomal region
terms. In the MF category, the targets were enriched for
terms such as kinase activity, cyclin binding, and hormone
activity.

3.5. KEGG Analysis of Core Targets. A total of 153 pathways
were obtained through KEGG enrichment analysis. Com-
bined with literature search, the top 20 pathways with high
significance were selected for bubble mapping based on the
size of P value. A literature search revealed that among the
20 pathways were important signaling pathways related to
infertility, including the PI3K-Akt, HIF-1, AGE-RAGE, IL-
17, and thyroid hormone signaling pathways. .ese path-
ways all involved targets such as TP53, mapk1, IL-6,
ANXA1, EGF, and EGFR, and detailed information is
available in Table 2. .ese results are shown in Figure 6.

3.6. Results of Docking. A total of 18 docking results were
obtained, as shown in Table 3. .e results of this study show
that the binding energies of the ligands to the receptors are
all negative, which indicates that there is binding activity
between the compounds and the target protein, strong
binding activity when the binding energy is less than −5 kJ/
mol, and strong binding activity when it is less than −7 kJ/
mol. .e docking mode at which each ligand had the lowest
binding energy was selected for display (see Figure 7).

4. Discussion

A previous report on the use of traditional Chinese medi-
cines for the treatment of male infertility indicated that both
Astragalus and Angelica are very frequently used in tradi-
tional Chinese medicines [24]. .ey are often used to treat
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infertility due to deficiency of both qi and blood. According
to the theory of traditional Chinese medicine, Qi can
generate blood, and blood can carry Qi. Qi deficiency cannot
generate blood, and blood deficiency cannot transform es-
sence. Astragalus and Angelica can supplement both qi and
blood and regulate Yin and Yang.

A total of 112 effective components, 980 corresponding
targets, and 4108 disease targets of the PAA pair were
screened from the component database, and 374 potential
targets for male infertility were obtained after mapping. .is
finding shows that PAA has multicomponent and multi-
target characteristics in the treatment of male infertility. .e
drug pair-component-target network diagram shows that
kaempferol, stigmasterol, beta sitosterol, quercetin, and
canavanine are the top active ingredients. .e association of

these several components with male infertility is as follows.
Kaempferol is a flavonoid that can significantly increase the
levels of antioxidants such as SOD (superoxide dismutase),
CAT (catalase), and GPX (glutathione peroxidase) in the
sperm of diabetic rats; reduce the levels of inflammatory
factors such as NF-κB (nuclear factor kappa B) and TNF-α
(tumor necrosis factor alpha) in sperm; alleviate sperm
damage [25]; and significantly improve sperm quality in
mice with infertility induced by benzopyrene, a product of
incomplete combustion of energy substances [26]. Quercetin
and other flavonoids also have good anti-inflammatory
effects [27]. Relevant studies have shown that after treatment
with quercetin, the content of mtDNA (mitochondrial
DNA) in patients’ sperm significantly decreases, while the
content of Cyt b (cytochrome b) andNADH 5 (nicotinamide

603 374 3734
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Drug Target
(977)

Figure 2: Targets of the PAA inmale infertility treatment..e number in the blue circle is the unique target number of AS&AN, the number
in the yellow circle is the unique target number of male infertility, and the middle number is the common target number common for both.
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Table 1: Detailed data of the top 20 targets.

Target Degree Betweenness centrality Closeness centrality MCODE score

MAPK1 44 0.11909067 0.40682415 3.181818182
TP53 44 0.07271146 0.37349398 3.454545455
AKT1 40 0.10656178 0.4005168 4.169117647
Jun 39 0.04830527 0.38993711 2.759259259
AGT 37 0.07377641 0.3583815 17
RXRA 35 0.10861121 0.40207523 6.222222222
RELA 31 0.0222772 0.3708134 2.675324675
HSP90AA1 31 0.02770788 0.36470588 3.264705882
NCOA1 30 0.03957597 0.37575758 6.222222222
ANXA1 30 0.01792683 0.32460733 17
EDN1 30 0.03558045 0.37530266 11
EGFR 29 0.04140608 0.36172695 8
TNF 29 0.03633951 0.36299766 2.810526316
NR3C1 28 0.0253214 0.38130381 2.685714286
MED1 27 0.03261089 0.36172695 6.222222222
ADCY1 27 0.01606181 0.31155779 17
ESR1 26 0.04038295 0.37621359 2.947368421
IL6 26 0.02207884 0.35107588 6
PPARA 25 0.05492241 0.39340102 6.222222222
VEGFA 25 0.02270293 0.35227273 2.911764706

Figure 4: .e drug pair-component-target-disease regulation network..e red node is the traditional Chinese medicine, the yellow node is
the active ingredient, the green node is the target, the orange node between the two circles is the common active ingredient ofAstragalus and
Angelica, and the dark green node is the common target of Astragalus and Angelica.
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Table 2: Male-infertility-related pathways and involved targets.

Description Count Targets

cAMP signaling
pathway

18
ACOX1, ADCY1, ADRB2, AKT1, CFTR, CHRM2, CREB1, DRD2, EDN1, EDNRA, FOS, HTR1A,

NFKB1, NFKBIA, PPARA, PRKCA, MAPK1, SST
PI3K-Akt signaling
pathway

20
AKT1, CCND1, CDK2, CDKN1A, CHRM2, CREB1, EGF, EGFR, HSP90AA1, HSP90AB1, IL4, IL6,

KDR, NFKB1, NOS3, PRKCA, MAPK1, RXRA, TP53, FGF23
IL-17 signaling pathway 12 CASP8, FOS, HSP90AA1, HSP90AB1, IFNG, IL1B, IL4, IL6, IL13, NFKB1, NFKBIA, MAPK1
FOXO signaling
pathway

11 AKT1, CCND1, CAT, CDK2, CDKN1A, EGF, EGFR, IL6, MAPK1, SLC2A4, TGFB1

MAPK signaling
pathway

13 AKT1, EGF, EGFR, FOS, IL1B, IL6, KDR, NFKB1, PRKCA, MAPK1, TGFB1, TP53, FGF23
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Figure 6: Top 20 of KEGG enrichment (the y-axis represents top 20 of KEGG terms, and the x-axis represents the rich factors).

Table 3: Docking results.

Ligand Receptor (PDB ID) Lowest binding energy (kJ/mol)

Stigmasterol EGF (1nql) −14.0
Stigmasterol EGFR (5ug9) −11.5
Quercetin EGF (1nql) −11.5
Stigmasterol ANXA1 (1mcx) −11.0
Stigmasterol IL6 (4cni) −10.0
Stigmasterol EGFR (5ug9) −9.3
Quercetin EGF (1nql) −9.0
Kaempferol IL6 (4cni) −8.8
Kaempferol TP53 (3d06) −8.7
Kaempferol EGF (1nql) −8.5
Stigmasterol TP53 (3d06) −8.3
Stigmasterol MAPK1 (2waj) −7.5
Kaempferol ANXA1 (1mcx) −7.2
Quercetin TP53 (3d06) −6.9
Quercetin ANXA1 (1mcx) −5.7
Kaempferol MAPK1 (2waj) −5.0
Quercetin IL6 (4cni) −3.8
Quercetin MAPK1 (2waj) −2.8
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adenine dinucleotide 5) in sperm significantly increases,
which plays a role in improving sperm hyperactivity and the
acrosome reaction [28]. Stigmasterol belongs to the class of
phytosterols. Studies have shown that dietary phytosterol
supplementation can significantly increase the sperm
number and sperm motility and reduce the sperm oxidative
stress response [29]. .erefore, kaempferol, stigmasterol,
quercetin, and other compounds may be the core com-
pounds by which PAA alleviates male infertility.

.e results showed that the potential targets of Angelica
and Astragalus in the treatment of male infertility include
TP53 (tumor protein P53), mapk1 (mitogen-activated
protein kinase 1), IL-6 (interleukin-6 receptor), ANXA1
(annexin-A1), EGF (epidermal growth factor), and EGFR
(epidermal growth factor receptor). Here, the relationship
between these six targets and male infertility is described.
.e TP53 gene, an important tumor suppressor gene, can
regulate cell growth, differentiation, aging, and the immune
response. Meiosis is crucial in spermatogenesis, and TP53
mRNA and protein are expressed in primary spermatocytes
and play important roles in spermatogenic cell apoptosis,
suggesting that TP53 participates in meiosis [30, 31]. A
growing number of studies on cancer have confirmed that
the PI3K-Akt pathway can provide positive and negative
regulation of p53 levels [32]. However, whether this regu-
lation affects male fertility is not yet evidenced. MAPK
(mitogen-activated protein kinase) is an important part of
the MAPK signaling pathway. MAPK is closely related to
proliferation, inflammation, differentiation, apoptosis, and
other processes in male sperm [33]. ANXA1, an important
member of the mammalian annexin family, is closely related
to cell proliferation and membrane fusion [34]. Studies on
human sperm have found that ANXA1 can bind and interact
with F-actin in a Ca2+-dependent manner [35], and the
actin cytoskeleton plays an important role in sperm ca-
pacitation and the acrosome reaction [36]. IL-6 is an in-
flammatory cytokine secreted by macrophages. Although it
is mainly involved in the inflammatory reaction in vivo, its
levels are significantly increased in the semen of infertile
patients [37]. EGF is closely related to the reproductive
activity of male animals. An appropriate dose of EGF can

specifically promote the proliferation of spermatogonial
stem cells through EGFR in a time-dependent manner [38].
In addition, studies have shown that EGF can regulate the
proliferation of Leydig cells and maintain the concentration
of testosterone [39]. As shown in Table 2, these targets are
upstream or downstream of PI3K-Akt, IL-17, camp, FOXO,
MAPK, and other signal pathways. .ey may play a key role
in the treatment of male infertility by PAA.

KEGG enrichment analysis showed that the target
pathways of PAA in the treatment of male infertility in-
cluded the PI3K-Akt, IL-17 (interleukin 17), cAMP, FOXO,
MAPK, and other signaling pathways. A mechanism dia-
gram is shown in Figure 8. How these signaling pathways
relate to the development or treatment of male infertility is
briefly described below. As shown in Figure 6, the PI3K-Akt
signaling and cAMP signaling pathways involved the most
targets. .e PI3K/AKT pathway is an important signaling
pathway in the human body. PI3K is a heterodimer that
simultaneously exhibits serine/threonine kinase activity and
phosphatidylinositol kinase activity. It is composed of the
regulatory subunit P85 and the catalytic subunit p110, which
is closely related to spermatogenesis and maturation; for
example, it affects the proliferation and differentiation of
spermatogonial stem cells and the meiosis of spermatocytes
[40]. PI3K can be activated not only by tyrosine kinase
(receptor tyrosine kinase, RTK) and ras proteins on the cell
membrane but also by other proteins. AKT is the direct
target gene of PI3K [41, 42]. After PI3K activation, Akt can
be activated by phosphorylation of phosphatidylinositol 4-
phosphate and phosphatidylinositol 4-diphosphate. Some
studies have found that a PI3K-specific inhibitor (LY294002)
can significantly improve human sperm motility and the
percentage of forward sperm motility [43], and the effect is
more obvious in people with asthenospermia [44]. .is
finding suggests that PI3K negatively regulates the motility
of human sperm cells. In addition, PI3K is a negative reg-
ulator of autophagy, and autophagy can participate in the
regulation of sperm survival and movement. Notably, af-
latoxin can induce sperm cells autophagy by inhibiting the
PI3K/AKT/mTOR pathway, thereby causing damage to
male fertility [45]. FOXOs are located downstream of growth

(a) (b) (c)

Figure 7: Schematic diagram of the molecular docking model. (a) Schematic diagram of docking between EGF and quercetin. (b) Schematic
diagram of docking between EGF and stigmasterol. (c) Schematic diagram of docking between EGFR and kaempferol.
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factor and nutrient signaling. In mammals, the FOXOs
include Foxo1, Foxo3, and Foxo4, which coordinate var-
ious responses, including cell cycle arrest and programmed
cell death [46]. FOXO transcription factors are the key
nodes at the intersections of many signaling pathways [46].
Previous studies have confirmed that FOXOs are located
downstream of the PI3K/AKT signaling pathway and are
regulated by Akt-dependent phosphorylation. When AKT
is phosphorylated, FOXOs are inhibited [47]. In terms of
reproduction, FOXO1 plays an important role in sper-
matogenesis [48, 49]. FOXO also plays an important role in
the self-renewal and differentiation of spermatogonial stem
cells (SSCs). When PI3K/AKT is activated, FOXO1 loses its
activity, which further inhibits the self-renewal of SSCs
[50], indicating that this FOXO plays an important regu-
latory role in the late stage of spermatogenesis. MAPK
belongs to the serine/threonine kinase family. .ere are
three main subfamilies: the ERK, c-Jun N-terminal kinase
(JNK), and p38MAPK (MAPK14) subfamilies; this family
is thought to be one important determinant of sperm
development [51–54]. In rat testes, phosphorylated ERK1/
22, JNK1/2, and p38MAPK are localized in SSCs, which
play an important role in regulating nutritional supply,

maintaining cell connections and supporting mitosis and
meiosis of germ cells [57]. .e migration of germ cells and
the release of sperm require adherens junctions (AJs) and
tight junctions (TJs) between Sertoli cells (SC-SC junc-
tions) and Sertoli cells (SC-GC junctions). .is require-
ment makes normal spermatogenesis dependent on SSCs.
Activation of the p38MAPK and ERK pathways interferes
with the AJs between Sertoli cells, and activation of ERK
pathways also affects the dynamics of these two connec-
tions, thus affecting the self-renewal of SSCs [55]. Many
cells can respond to reproductive toxicants, and many of
these responses are mediated by activation of the MAPK
pathway; for example, bisphenol A can activate the ERK
and JNK signaling pathways to induce apoptosis [56], and
under the influence of di-n-butyl-phthalate (an endocrine
disruptor), the rat testicular tissue is damaged, semen
quality is decreased, and there is an elevated p-ERK1/2 and
p-JNK expression in the MAPK pathway, but not p38
MAPK phosphorylation levels [57]. In other experiments,
however, p38mpak was suggested to play a major role in
Sertoli cell injury [58]. Although existing studies have
reported inconsistent conclusions, it has become a fact that
MAPKs have a close connection with male infertility, which
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is in accordance with the findings of the present experi-
ment. Camp is closely related to sperm motility [59].
Specifically, it plays an important role in the initiation,
alteration, and maintenance of sperm motility [60]. In
recent years, IL-17 has been shown to be a proinflammatory
cytokine. .rough specific binding with its receptor, it can
promote inflammation, the immune response, hemato-
poiesis, and other processes. A cross-sectional study found
that IL-17 levels in the semen of infertile patients were
significantly higher than those in the semen of normal men
[61].

5. Conclusion

In conclusion, this study uses a network pharmacologymethod
to study the therapeutic effects of PAA on male infertility at
multiple levels and finds that TP53, MAPK1, IL-6, ANXA1,
EGF, EGFR, and other genesmay be key targets..e PI3K-Akt,
IL-17 cAMP, FOXO, and MAPK signaling pathways may be
key pathways that mainly play anti-inflammatory and anti-
oxidant roles and promote cell proliferation and cell ATP
production to treat male infertility. A possible molecular
mechanism by which this drug pair treats male infertility has
been revealed. A limitation of this study is that the pharma-
cologically active components and targets discovered through
network pharmacology are predictions; thus, the results should
be verified experimentally. Subsequent research will verify the
findings in animal experiments and clinical studies to improve
the rationality and scientific basis of clinical PAA application.
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“.e checkpoint monitoring chromosomal pairing in male
meiotic cells is p53-independent,” Cell Death & Differentia-
tion, vol. 8, no. 3, pp. 316-317, 2001.

[31] Q. Jin, B. Wang, J. Wang et al., “Association betweenTP53-
gene Arg72Pro polymorphism and idiopathic infertility in
southeast Chinese Han males,” Systems Biology in Repro-
ductive Medicine, vol. 59, no. 6, pp. 342–346, 2013.

[32] A. G. Abraham and E. O’Neill, “PI3K/Akt-mediated regula-
tion of p53 in cancer,” Biochemical Society Transactions,
vol. 42, no. 4, pp. 798–803, 2014.

[33] L. Yu, X. Yang, B. Ma et al., “Abnormal arachidonic acid
metabolic network may reduce sperm motility via P38
MAPK,” Open Biology, vol. 9, no. 4, p. 180091, 2019.

[34] S. Noh, A. Go, D. B. Kim, M. Park, H. W. Jeon, and B. Kim,
“Role of antioxidant natural products in management of
infertility: a review of their medicinal potential,”Antioxidants,
vol. 9, no. 10, p. 957, 2020.

[35] E. Brener, S. Rubinstein, G. Cohen, K. Shternall, J. Rivlin, and
H. Breitbart, “Remodeling of the actin cytoskeleton during

mammalian sperm capacitation and acrosome Reaction1,”
Biology of Reproduction, vol. 68, no. 3, pp. 837–845, 2003.

[36] G. Berruti, “Evidence for Ca-mediated F-actin/phospholipid
binding of human sperm calpactin II,” Cell Biology Interna-
tional Reports, vol. 15, no. 10, pp. 917–927, 1991.

[37] A. Sharma, S. V. Lagah, D. Nagoorvali et al., “Supplemen-
tation of glial cell line-derived neurotrophic factor, fibroblast
growth factor 2, and epidermal growth factor promotes self-
renewal of putative buffalo (Bubalus bubalis) spermatogonial
stem cells by upregulating the expression of miR-20b, miR-21,
and miR-106a,” Cellular Reprogramming, vol. 21, no. 1,
pp. 11–17, 2019.

[38] C. Foresta, A. Bettella, M. Merico, A. Garolla, A. Ferlin, and
M. Rossato, “Use of recombinant human follicle-stimulating
hormone in the treatment of male factor infertility,” Fertility
and Sterility, vol. 77, no. 2, pp. 238–244, 2002.

[39] E. M. Eldamnhoury, G. A. Elatrash, H. M. Rashwan, and
A. I. El-Sakka, “Association between leukocytospermia and
semen interleukin-6 and tumor necrosis factor-alpha in in-
fertile men,” Andrology, vol. 6, no. 5, pp. 775–780, 2018.

[40] H. Xu, L. Shen, X. Chen et al., “mTOR/P70S6K promotes
spermatogonia proliferation and spermatogenesis in Sprague
Dawley rats,” Reproductive BioMedicine Online, vol. 32, no. 2,
pp. 207–217, 2016.

[41] J. T. Busada, B. A. Niedenberger, E. K. Velte, B. D. Keiper, and
C. B. Geyer, “Mammalian target of rapamycin complex 1
(mTORC1) Is required for mouse spermatogonial differen-
tiation in vivo,” Developmental Biology, vol. 407, no. 1,
pp. 90–102, 2015.

[42] L.-X. Feng, N. Ravindranath, andM. Dym, “Stem cell factor/c-
kit up-regulates cyclin D3 and promotes cell cycle progression
via the phosphoinositide 3-Kinase/p70 S6 kinase pathway in
spermatogonia,” Journal of Biological Chemistry, vol. 275,
no. 33, pp. 25572–25576, 2000.

[43] M. Luconi, L. Bonaccorsi, G. Forti, and E. Baldi, “Effects of
estrogenic compounds on human spermatozoa: evidence for
interaction with a nongenomic receptor for estrogen on
human sperm membrane,” Molecular and Cellular Endocri-
nology, vol. 178, no. 1-2, pp. 39–45, 2001.

[44] S. S. du Plessis, D. R. Franken, E. Baldi, and M. Luconi,
“Phosphatidylinositol 3-kinase inhibition enhances human
sperm motility and sperm-zona pellucida binding,” Inter-
national Journal of Andrology, vol. 27, no. 1, pp. 19–26, 2004.

[45] W. Huang, Z. Cao, J. Zhang, Q. Ji, and Y. Li, “Aflatoxin B1
promotes autophagy associated with oxidative stress-related
PI3K/AKT/mTOR signaling pathway in mice testis,” Envi-
ronmental Pollution, vol. 255, no. Pt 2, p. 113317, 2019.

[46] D. R. Calnan and A. Brunet, “.e FoxO code,” Oncogene,
vol. 27, no. 16, pp. 2276–2288, 2008.

[47] P. Huang, Z. Zhou, F. Shi et al., “Effects of the IGF-1/PTEN/
Akt/FoxO signaling pathway on male reproduction in rats
subjected to water immersion and restraint stress,”Molecular
Medicine Reports, vol. 14, no. 6, pp. 5116–5124, 2016.

[48] J.-H. Paik, R. Kollipara, G. Chu et al., “FoxOs are lineage-
restricted redundant tumor suppressors and regulate endo-
thelial cell homeostasis,” Cell, vol. 128, no. 2, pp. 309–323,
2007.

[49] T. Hosaka 3rd, W. H. Biggs, D Tieu et al., “Disruption of
forkhead transcription factor (FOXO) family members in
mice reveals their functional diversification,” Proceedings of
the National Academy of Sciences of the United States of
America, vol. 101, no. 9, pp. 2975–2980, 2004.

[50] M. J. Goertz, Z. Wu, T. D. Gallardo, F. K. Hamra, and
D. H. Castrillon, “Foxo1 is required in mouse spermatogonial

Evidence-Based Complementary and Alternative Medicine 11



stem cells for their maintenance and the initiation of sper-
matogenesis,” Journal of Clinical Investigation, vol. 121, no. 9,
pp. 3456–3466, 2011.

[51] T. Almog and Z. Naor, “Mitogen activated protein kinases
(MAPKs) as regulators of spermatogenesis and spermatozoa
functions,” Molecular and Cellular Endocrinology, vol. 282,
no. 1-2, pp. 39–44, 2008.

[52] X. Guo, P. Bian, J. Liang et al., “Synergistic effects induced by a
low dose of diesel particulate extract and ultraviolet-A in
Caenorhabditis elegans: DNA damage-triggered germ cell
apoptosis,” Chemical Research in Toxicology, vol. 27, no. 6,
pp. 990–1001, 2014.

[53] B. B. Friday and A. A. Adjei, “Advances in targeting the Ras/
Raf/MEK/Erk mitogen-activated protein kinase cascade with
MEK inhibitors for cancer therapy,” Clinical Cancer Research,
vol. 14, no. 2, pp. 342–346, 2008.

[54] P.-B. Sun, Y.-Y. Wang, T. Gao et al., “Hsp90 modulates
human sperm capacitation via the Erk1/2 and p38 MAPK
signaling pathways,” Reproductive Biology and Endocrinology,
vol. 19, no. 1, 2021.

[55] F.-D. Ni, S.-L. Hao, and W.-X. Yang, “Multiple signaling
pathways in Sertoli cells: recent findings in spermatogenesis,”
Cell Death & Disease, vol. 10, no. 8, p. 541, 2019.

[56] J. Peretz, L. Vrooman, W. A. Ricke et al., “Bisphenol A and
reproductive health: update of experimental and human ev-
idence, 2007-2013,” Environmental Health Perspectives,
vol. 122, no. 8, pp. 775–786, 2014.

[57] H. Wang, W. Zhou, J. Zhang, and H. Li, “Role of JNK and
ERK1/2 MAPK signaling pathway in testicular injury of rats
induced by di-N-butyl-phthalate (DBP),” Biological Research,
vol. 52, no. 1, p. 41, 2019.

[58] Y. Song, Y. Shi, H. Yu, Y. Hu, Y. Wang, and K. Yang, “p,p′-
Dichlorodiphenoxydichloroethylene induced apoptosis of
Sertoli cells through oxidative stress-mediated p38MAPK and
mitochondrial pathway,” Toxicology Letters, vol. 202, no. 1,
pp. 55–60, 2011.

[59] M. Balbach, V. Beckert, J. N. Hansen, and D. Wachten,
“Shedding light on the role of cAMP in mammalian sperm
physiology,” Molecular and Cellular Endocrinology, vol. 468,
pp. 111–120, 2018.

[60] C. J. Brokaw, “Regulation of sperm flagellar motility by cal-
cium and cAMP-dependent phosphorylation,” Journal of
Cellular Biochemistry, vol. 35, no. 2, pp. 175–184, 1987.

[61] A. P. Mary, H. Nandeesha, D. Papa, T. Chitra, R. N. Ganesh,
and V. Menon, “Matrix metalloproteinase-9 is elevated and
related to interleukin-17 and psychological stress in male
infertility: a cross-sectional study,” Int J Reprod Biomed,
vol. 19, no. 4, pp. 333–338, 2021.

12 Evidence-Based Complementary and Alternative Medicine


