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The human organism is an integrated network where complex physiologic systems, each with
its own regulatory mechanisms, continuously interact, and where failure of one system can trigger

a breakdown of the entire network.

Identifying and quantifying dynamical networks of diverse

systems with different types of interactions is a challenge. Here, we develop a framework to probe
interactions among diverse systems, and we identify a physiologic network. We find that each
physiologic state is characterized by a specific network structure, demonstrating a robust interplay
between network topology and function. Across physiologic states the network undergoes topological
transitions associated with fast reorganization of physiologic interactions on time scales of a few
minutes, indicating high network flexibility in response to perturbations. The proposed system-
wide integrative approach may facilitate the development of a new field, Network Physiology.

Physiologic systems under neural regulation exhibit
high degree of complexity with nonstationary, intermit-
tent, scale- invariant and nonlinear behaviors ﬂj, E]
Moreover, physiologic dynamics transiently change in
time under different physiologic states and pathologic
conditions Bﬁ], in response to changes in the underly-
ing control mechanisms. This complexity is further com-
pounded by various coupling ﬂa, B] and feedback interac-
tions M} among different systems, the nature of which
is not well-understood. Quantifying these physiologic in-
teractions is a challenge as one system may exhibit mul-
tiple simultaneous interactions with other systems where
the strength of the couplings may vary in time. To iden-
tify the network of interactions between integrated phys-
iologic systems, and to study the dynamical evolution of
this network in relation to different physiologic states, it
is necessary to develop methods that quantify interac-
tions between diverse systems.

Recent studies have identified networks with complex
topologies ﬂﬂ—lﬁ], have focused on emergence of self-
organization and complex network behavior out of simple
interactions [14-117], on network robustness [18220], and
more recently on critical transitions due to failure in
the coupling of interdependent networks ] Growth
dynamics of structural networks have been investigated
in network models ﬂﬂ, E], and in physical systems
ﬂﬁ, @], and various structural and functional brain
networks have been explored @, ] However, under-
standing the relation between topology and dynamics of
complex networks remains a challenge, especially when
networks are comprised of diverse systems with different
types of interaction, each network node represents a
multicomponent complex system with its own regulatory
mechanism, the output of which can vary in time, and
when transient output dynamics of individual nodes af-

fect the entire network by reinforcing (or weakening) the
links and changing network topology. A prime example
of a combination of all these network characteristics
is the human organism, where integrated physiologic
systems form a network of interactions that affects phys-
iologic function, and where breakdown in physiologic
interactions may lead to a cascade of system failures ﬂﬁ]

We investigate the network of interactions be-
tween physiologic systems, and we focus on the topology
and dynamics of this network and their relevance to
physiologic function. We hypothesize that during a given
physiologic state the physiologic network may be char-
acterized by a specific topology and coupling strength
between systems. Further, we hypothesize that coupling
strength and network topology may abruptly change
in response to transition from one physiologic state to
another. Such transitions may also be associated with
changes in the connectivity of specific network nodes,
i.e., the number of systems to which a given physiologic
system is connected can change, forming sub-networks
of physiologic interactions. Probing physiologic network
connectivity and the stability of physiologic coupling
across physiologic states may thus provide new insights
on integrated physiologic function. Such a systems-wide
perspective on physiologic interactions, tracking multiple
components simultaneously, is necessary to understand
the relation between network topology and function.
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FIG. 1. Transitions in the network of physiologic interactions. (a) Dynamical network of interactions between physio-
logical systems where ten network nodes represent six physiologic systems — brain activity (EEG waves: 0, 0, «a, o, ), cardiac
(HR), respiratory (Resp), chin muscle tone, leg and eye movements. (b) Transition in the interactions between physiologic
systems across sleep stages. The time delay between two pairs of signals, (top) a-brain waves and chin muscle tone, and (bot-
tom) HR and eye movement, quantifies their physiologic interaction: highly irregular behavior (blue dots) during deep sleep is
followed by a period of time delay stability during light sleep indicating a stable physiologic interaction (red dots for the HR-eye
and orange dots for the a-chin interaction). (c) Transitions between physiologic states are associated with changes in network
topology: snapshots over 30-sec windows during a transition from deep sleep (dark gray) to light sleep (light gray). During deep
sleep the network consists mainly of brain-brain links. With transition to light sleep links between other physiologic systems
(network nodes) emerge and the network becomes highly connected. The stable a-chin and HR-eye interactions during light
sleep in (b) are shown by an orange and a red network link respectively. (d) Physiologic network connectivity for one subject
during night sleep calculated in 30-sec windows as the fraction (%) of present links out of all possible links. (brain-brain links
not included, see Fig. Bk). Red line marks sleep stages as scored in a sleep lab. Low connectivity is consistently observed
during deep sleep (0:30-1:15h and 1:50-2:20h) and REM sleep (1:30-1:45h and 2:50-3:10h), while transitions to light sleep and
wake are associated with a significant increase in connectivity.

RESULTS iologic systems as well as the interactions among them,
and to track the evolution of multiple interconnected sys-
tems undergoing transitions from one physiologic state to
another (Fig. [[). We introduce the concept of time delay
stability (TDS) to identify and quantify dynamic links

among physiologic systems. We study the network of in-

Time delay stability and network of physiologic
interactions

The framework we propose is based on a complex net-
works approach to quantify physiologic interactions be-
tween diverse physiologic systems, where network nodes
represent different physiologic systems and network links
indicate the dynamical interaction (coupling) between
systems. This framework allows to quantify the topol-
ogy and the associated dynamics in the links strength
of physiologic networks during a given physiologic state,
taking into account the signal output of individual phys-

teractions for an ensemble of key integrated physiologic
systems (cerebral, cardiac, respiratory, ocular and mus-
cle activity). We consider different sleep stages (deep,
light, rapid eye movement (REM) sleep and quiet wake)
as examples of physiologic states. While earlier studies
have identified how sleep regulation influences aspects of
the specific control mechanism of individual physiologic
systems (e.g., cardiac or respiratory |3, 4,125, 26]) or have
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FIG. 2. Network connectivity across sleep stages. Group-averaged time delay stability (TDS) matrices and related
networks of physiological interactions during different sleep stages: (a) wake; (b) REM sleep; (c) light sleep (LS); (d) deep
sleep (DS). Matrix elements are obtained by quantifying the TDS for each pair of physiologic systems after obtaining the
weighted average of all subjects in the group: % TDS = (3, s:/>, Li)x100 where L; indicates the total duration of a given
sleep stage for subject ¢, and s; is the total duration of time delay stability within L; for the considered pair of physiologic
signals. Color code represents the average strength of interaction between systems quantified as the fraction of time (out of
the total duration of a given sleep-stage throughout the night) when TDS is observed. A network link between two systems is
defined when their interaction is characterized by a TDS of > 7% (arrow), a threshold determined by surrogate analysis (see
Methods). The physiologic network exhibits transitions across sleep stages — lowest number of links during deep sleep (d),
higher during REM (b) and highest during light sleep (c) and quiet wake (a) — a behavior observed in the group-averaged
network as well as for each subject. Network topology also changes with sleep-stage transitions: from predominantly brain-brain
links during deep sleep to a high number of brain-periphery and periphery-periphery links during light sleep and wake.

focused on the organization of functional connectivity of
EEG networks during slee;ﬁ%ﬂ] and under neurological
disorders such as epilepsy [2&], the dynamics and topol-
ogy of a physiologic network comprised of diverse sys-
tems have not been studied so far. Further, the rela-
tion between network topology and function, and how it
changes with transitions across distinct physiologic states
is not known. We demonstrate that sleep stages are as-
sociated with markedly different networks of physiologic
interactions (Fig. [ characterized by different number
and strength of links (Figs. Bl and M), by different rank
distributions (Fig. Bl), and by specific node connectivity
(Fig. [@). Traditionally, differences between sleep stages
are attributed to modulation in the sympatho-vagal bal-
ance with dominant sympathetic tone during wake and
REM ]: spectral, scale-invariant and nonlinear charac-
teristics of the dynamics of individual physiologic systems
indicate higher degree of temporal correlations and non-

linearity during wake and REM compared to non-REM
(light and deep sleep) where physiologic dynamics ex-
hibit weaker correlations and loss of nonlinearity E, @]
In contrast, the network of physiologic interactions shows
a completely different picture: the network characteris-
tics during light sleep are much closer to those during
wake and very different from deep sleep (Figs. 2] and B]).
Specifically, we find that network connectivity and over-
all strength of physiologic interactions are significantly
higher during wake and light sleep, intermediate dur-
ing REM and much lower during deep sleep. Thus, our
empirical observations indicate that while sleep-stage re-
lated modulation in sympatho-vagal balance plays a key
role in regulating individual physiologic systems, it does
not account for the physiologic network topology and dy-
namics across sleep stages, showing that the proposed
framework captures principally new information.
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FIG. 3. Sleep-stage stratification pattern in net-
work connectivity and network link strength. Group-
averaged number of links (a) and averaged link strength (b)
are significantly higher during wake and light sleep compared
to REM and deep sleep (student t-test p < 1072 for both
quantities when comparing REM and deep sleep with wake
and light sleep). There is no significant difference between
wake and light sleep (p > 5 x 1072). This pattern is even
more pronounced for the subnetwork formed by the brain-
periphery and periphery-periphery links shown in (c) and (d)
(p< 107° for both quantities when comparing REM and deep
sleep with wake and light sleep). In contrast, the number of
brain-brain links remains practically unchanged with sleep-
stage transitions (e), and the average brain-brain link is ~ 5
times stronger in all sleep stages compared to the other net-
work links (f). The group-averaged patterns in the number
of network links and in the average link strength across sleep
stages (black bars) are consistent with the behavior observed
for individual subjects (red bars in all panels represent the
same subject). The group-averaged number of links for each
sleep stage is obtained from the corresponding group-averaged
network in Fig. The average link strength is measured in
% TDS and is obtained by taking the mean of all elements
in the TDS matrix for each sleep stage (Fig. 2)); it represents
the average strength of all links in a network obtained from a
given subject during a specific sleep stage which then is aver-
aged over all subjects. Error bars indicate standard deviation
obtained from a group of 36 subjects (Methods).

To quantify the interaction between physiologic sys-
tems and to probe how this interaction changes in time
under different physiologic conditions we study the time
delay with which modulations in the output dynamics of
a given physiologic system are consistently followed by
corresponding modulations in the signal output of an-
other system. Periods of time with approximately con-
stant time delay indicate a stable physiologic interac-
tion, and stronger coupling between physiologic systems
results in longer periods of time delay stability (TDS).

Utilizing the TDS method we build a dynamical network
of physiologic interactions, where network links between
physiological systems (considered as network nodes) are
established when the time delay stability representing the
coupling of these systems exceeds a significance threshold
level, and where the strength of the links is proportional
to the percentage of time for which time delay stability
is observed (Methods).

Transitions in network topology with physiologic
function

We apply this new approach to a group of healthy
young subjects (Methods). We find that the network
of interactions between physiologic systems is very sensi-
tive to sleep-stage transitions. In a short time window of
just a few minutes the network topology can dramatically
change — from only a few links to a multitude of links
(Fig. @) — indicating transitions in the global intercon-
nectivity between physiological systems. These network
transitions are not associated with random occurrence
or loss of links but are characterized by certain orga-
nization in network topology where given links between
physiological systems remain stable during the transition
while others do not — e.g., brain-brain links persist dur-
ing the transition from deep sleep to light sleep while
brain-periphery links significantly change (Fig. [Ik). Fur-
ther, we find that sleep-stage transitions are paralleled
by abrupt jumps in the total number of links leading to
higher or lower network connectivity (Fig. [k, d). These
network dynamics are observed for each subject in the
database, where consecutive episodes of sleep stages are
paralleled by a level of connectivity specific for each sleep
stage, and where sleep-stage transitions are consistently
followed by transitions in network connectivity through-
out the course of the night (Fig. ). Indeed, the network
of physiologic interactions exhibits a remarkable respon-
siveness as network connectivity changes even for short
sleep-stage episodes (arrows in Fig. [[d), demonstrating a
robust relation between network topology and function.
This is the first observation of a real network evolving
in time and undergoing topological transitions from one
state to another.

To identify the characteristic network topology for each
sleep stage we obtain group-averaged time delay sta-
bility matrices, where each matrix element represents
the percentage of time with stable time delay between
two physiological systems, estimated over all episodes of
a given sleep stage throughout the night. Matrix ele-
ments above a threshold of statistical significance (Fig.
[, Methods) indicate stable interactions between phys-
iologic systems represented by network links (Fig. [I).
We find that matrix elements greatly vary for different
sleep stages with much higher values for wake and light
sleep, lower values for REM and lowest for deep sleep.
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FIG. 4. Network connectivity and link strength of the brain-brain subnetwork for different sleep stages. While
the topology of the brain subnetwork does not change, the strength of network links significantly changes with strongest links
during light sleep and deep sleep (brown and dark red color), intermediate during wake (red and orange color) and weakest

links during REM sleep (yellow color).

This is reflected in higher network connectivity for wake
and light sleep, lower for REM and significantly reduced
number of links during deep sleep (Fig. Bh). Further,
the TDS matrices indicate separate subgroups of inter-
actions between physiologic systems — brain-periphery,
periphery-periphery and brain-brain interactions — that
are affected differently during sleep stages and form dif-
ferent sub-networks. Specifically, matrix elements repre-
senting interactions between peripheral systems (cardiac,
respiratory, chin, eye, leg) and the brain as well as inter-
actions among the peripheral systems are very sensitive
to sleep-stage transitions, leading to different network
topology for different sleep stages (Fig. [B). We find
sub-networks with high number of brain-periphery and
periphery-periphery links during wake and light sleep,
lower number of links during REM and a significant re-
duction of links at deep sleep (Fig. Bk). In contrast, ma-
trix elements representing brain-brain interactions form
a subnetwork with the same number of brain-brain links
(Fig. Be), and stable topology consistently present in
the physiologic network during all sleep stages (Fig. [2J).
Sleep-stage related transitions in network connectivity
and topology are not only present in the group-averaged
data but also in the physiologic networks of individual
subjects, suggesting universal behavior (Fig. [). No-
tably, we find a higher number of brain-periphery links
during REM compared to deep sleep despite inhibition of
motoneurons in the brain leading to muscle atonia during
REM [29]. The empirical observations of significant dif-
ference in network connectivity and topology during light
sleep compared to deep sleep are surprising, given the
similarity in spectral, scale-invariant and nonlinear prop-
erties of physiologic dynamics during light sleep and deep
sleep [3, 4, 25, 26] (both stages traditionally classified as
non-rapid eye movement sleep (NREM)), and indicate
that previously unrecognized aspects of sleep regulation

may be involved in the control of physiologic network
interactions.

Physiologic states and network link strength
stratification

Networks with identical connectivity and topology can
exhibit different strength of their links. Network link
strength is determined as the fraction of time when TDS
is observed (Methods). We find that the average strength
of network links changes with sleep-stage transitions:
network links are significantly stronger during wake and
light sleep compared to REM and deep sleep — a pat-
tern similar to the behavior of the network connectivity
across sleep stages (Fig. Bh, b). Further, subnetworks
of physiologic interactions exhibit different relationship
between connectivity and average link strength. Specif-
ically, the subnetwork of brain-periphery and periphery-
periphery interactions is characterized by significantly
stronger links (and also higher connectivity) during wake
and light sleep, and much weaker links (with lower net-
work connectivity) during deep sleep and REM (Fig. B,
d). In contrast, the subnetwork of brain-brain interac-
tions exhibits very different patterns for the connectivity
and the average link strength — while the group average
subnetwork connectivity remains constant across sleep
stages, the average link strength varies with highest val-
ues during light sleep and deep sleep, and a dramatic
~ 40% decline during REM. The observation of signifi-
cantly stronger links in the brain-brain subnetwork dur-
ing NREM compared to REM sleep is consistent with the
characteristic of NREM as EEG-synchronized sleep and
REM as EEG-desynchronized sleep |29]. During NREM
sleep adjacent cortical neurons fire synchronously with
a relatively low frequency rhythm [30] leading to coher-
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FIG. 5. Rank distributions of the strength of network links. Group-averaged strength of individual physiologic network
links for different sleep stages. Rank 1 corresponds to the strongest link in the network, i.e., highest degree of time delay
stability (TDS) (shown are all periphery-periphery and brain-periphery links). (a) The rank distributions for different sleep
stages are characterized by different strength of the network links measured in % TDS — consistently lower values for most
links during deep sleep, higher values during REM and highest during light sleep and wake, indicating that the stratification
pattern in Fig. Bl is present not only for the average link strength (when averaging over different types of links in the network)
but also for the strength of individual links. Indeed, links from all ranks are consistently stronger in light sleep compared to
deep sleep and REM: such rank-by-rank comparison of links across sleep stages is possible because the rank order of the links
does not change significantly from one sleep stage to another (Wilcoxon signed-rank test for all pairs of rank distributions yields
0.77 < p < 0.93). A surrogate test based on TDS analysis of signals paired from different subjects, which eliminates endogenous
physiologic coupling, leads to significantly reduced link strength (p < 1073) and close to uniform rank distributions with no
difference between sleep stages (open symbols), indicating that the TDS method uncovers physiologically-relevant information.
Error bars for the original and surrogate data indicate the standard error for a specific link when averaged over all 36 subjects
or over 36 surrogate pairs respectively. (b) Rescaling the plots reveals two distinct forms of rank distributions: a slow decaying
distribution for wake and REM, and a fast decaying distribution for light sleep and deep sleep with a pronounced plateau in
the middle rank range corresponding to a cluster of links with similar strength, most of which related to the cardiac system.

ence between frequency bands in the EEG signal, and
thus to stable time delays and strong network links (Fig.
BF). In contrast, during REM sleep cortical neurons are
highly active but fire asynchronously [30], resulting in
weaker links (Fig. Bf). Our findings of stronger links in
the brain-brain subnetwork during non-REM sleep (Fig.
Bf and Fig. M) indicate that bursts (periods of sudden
temporal increase) in the spectral power of one EEG-
frequency band are consistently synchronized in time
with bursts in a different EEG-frequency band, thus lead-
ing to longer periods of time delay stability and corre-
spondingly stronger network links. This can explain some
seemingly surprising network links — for example, we
find a strong link between o and § brain activity during
non-REM sleep (Fig. ) although o waves are greatly
diminished and § waves are dominant |29]. Since the
spectral densities of both waves are normalized before
the TDS analysis (Methods), the presence of a stable «
- 0 link indicates that a relative increase in the spectral
density in one wave is followed, with a stable time delay,
by a corresponding increase in the density of the other
wave — an intriguing physiologic interaction which per-
sists not only during deep sleep but is also present in
light sleep, REM and quiet wake (Fig. 2]). Notably, the
average link strength of the brain-brain subnetwork is by
a factor of ~ 5 higher compared to all other links in the

physiologic network (Fig. BU, f).

The finding of completely different sleep-stage strat-
ification patterns in key network properties of the
brain-brain subnetwork compared to the periphery-
periphery /brain-periphery subnetworks suggests a very
different role these sub-networks play in coordinating
physiologic interactions during sleep. The similarity in
the brain-brain subnetwork during deep sleep and light
sleep indicates that the proposed TDS approach is sen-
sitive to quantify synchronous slow-wave brain activ-
ity during NREM sleep that leads to stronger brain-
brain links during light sleep and deep sleep (= 50-60%
TDS) compared to REM (= 35% TDS), as shown in
(Fig. Bf and Fig. ). The significant difference between
light sleep and deep sleep observed for the periphery-
periphery /brain-periphery subnetwork in the number of
links (t-test: p < 107!2?) as well as in the average link
strength (t-test: p < 1071), indicates that the interac-
tions between physiologic dynamics outside the brain are
very different during these sleep stages.

Our finding that the average link strength exhibits a
specific stratification pattern across sleep stages (Fig. [3)
raises the question whether the underlying distribution
of the network links strength is also sleep-stage depen-
dent. To this end we probe the relative strength of indi-
vidual links, and we obtain the rank distribution of the
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FIG. 6. Transitions in connectivity and link strength of individual network nodes across sleep stages. The number
of links to specific network nodes significantly changes, with practically no links during deep sleep, a few links during REM and
much higher connectivity during light sleep and wake. Notably, the average strength of the links connecting a given network
node is also lowest during deep sleep and highest during light sleep and wake. Shown are connectivity and average link strength
for two network nodes: (a) heart and (b) chin. This sleep-stage stratification pattern in individual node connectivity and in
the average strength of the links connecting a specific network node is consistent with the transitions of the entire network
across sleep stages shown in Fig. Bl ¢ and d. Networks for (a) heart and (b) chin are obtained by averaging the corresponding
networks for all subjects. During deep sleep no links to the heart are shown since the strength of each link averaged over all
subjects is below the significance threshold (Fig. [2 and Fig. [7, Methods). Right bars in the panels represent for different sleep
stages the group mean of the average strength of network links connecting heart and chin respectively, and error bars show
the standard deviation. Left bars represent an individual subject. Note that the absence of a link between heart rate and
respiration in the physiologic network does not indicate absence of cardio-respiratory coupling but rather that this coupling
as represented by time delay stability (TDS) is rarely stable for periods longer than 2-4 min (where 2 min is the minimum
window over which TDS is determined; Method section), and that cardio-respiratory TDS episodes form less than 7% of the
recordings, which is the significance threshold level (Method section). Such “on” and “off” intermittent interaction between
these two systems is observed also in other independent measures of cardio-respiratory coupling — respiratory sinus arrhythmia
(RSA) |41, 142] and the degree of phase synchronization [6] — where relatively short “on” episodes are separated by periods of
no interrelation as quantified by these measures.

strength of network links for each sleep stage averaged
over all subjects in the group (Fig. Bh). We find that
the rank distribution corresponding to deep sleep is ver-
tically shifted to much lower values for the strength of
the network links, while the rank distribution for light
sleep and wake is for all links consistently higher than
the distribution for REM. Thus, the sleep-stage strati-
fication pattern we find for the average strength of the
network links (Fig. BH) originates from the systematic
change in the strength of individual network links with
sleep-stage transitions. Notably, while the strength of
individual network links changes significantly with sleep
stages, the rank order of the links does not significantly
change. After rescaling the rank distributions for light
sleep and REM (by horizontal and vertical shifts), we
find that they collapse onto the rank plots of deep sleep
and wake respectively, following two distinct functional
forms: a slow and smoothly decaying rank distribution
for REM and wake, and a much faster decaying rank

distribution for deep sleep and light sleep with a charac-
teristic plateau in the mid rank range indicating a cluster
of links with similar strength (Fig. Eb). We note that,
although the form of the rank distributions for deep sleep
and light sleep as well as for wake and REM are respec-
tively very similar, the average strength of the links is
significantly different between deep sleep and light sleep
and between wake and REM (Fig. BW).

Local topology and connectivity of the physiologic
network

Our observations that physiologic networks undergo
dynamic transitions where key global properties signifi-
cantly change with sleep-stage transitions, raise the ques-
tion whether local topology and connectivity of individ-
ual network nodes also change during these transitions.
Considering each physiologic system (network node) sep-
arately, we examine the number and strength of all links



connecting the system with the rest of the network.
Specifically, we find that the cardiac system is highly
connected to other physiologic systems in the network
during wake and light sleep (Fig. [). In contrast, dur-
ing deep sleep we do not find statistically significant time
delay stability in the interactions of the cardiac system,
which is reflected by absence of cardiac links (Fig. [l).
Further, we find that the average strength of the links
connected to the cardiac system also changes with sleep
stages: stronger interactions (high % TDS) during wake
and light sleep, and significantly weaker interactions be-
low the significance threshold during deep sleep (Fig. [l).
Such ‘isolation’ of the cardiac node from the rest of the
network indicates a more autonomous cardiac function
during deep sleep — also supported by earlier observa-
tions of breakdown of long-range correlations and close
to random behavior in heartbeat intervals in this sleep
stage [3]. Transition to light sleep, REM and wake, where
the average link strength and connectivity of the cardiac
system is significantly higher indicating increased inter-
actions with the rest of the network, leads to correspond-
ingly higher degree of correlations in cardiac dynamics
[3]. Similarly, respiratory dynamics also exhibit high de-
gree of correlations during REM and wake, lower dur-
ing light sleep and close to random behavior during deep
sleep [26]. Such transitions in the number and strength
of links across sleep stages we also find for other network
nodes (Fig. [6). Moreover, the sleep-stage stratification
pattern in connectivity and average link strength for indi-
vidual network nodes (Fig. [f]) is consistent with the pat-
tern we observe for the entire network (Fig. B]). Our find-
ings of significant reduction in the number and strength
of brain-periphery and periphery-periphery links in the
corresponding sub-networks during deep sleep indicate
that breakdown of cortical interactions, previously re-
ported during deep sleep [31], may also extend to other
physiologic systems under neural regulation. Indeed, the
low connectivity in the physiologic network we find in
deep sleep may explain why people awakened during deep
sleep do not adjust immediately and often feel groggy
and disoriented for a few minutes. This effect is not
observed if subjects are awakened from light sleep [29]
when we find the physiologic network to be highly con-
nected (Fig. 2)). Further, since risk of predation modi-
fies sleep architecture [32-34] and since abrupt awakening
from deep sleep is associated with increased sleep inertia,
higher sensory threshold, and impaired sensory reaction
and performance [35, [36] that may lead to increased vul-
nerability, the fact that deep sleep (lowest physiologic
network connectivity) dominates at the beginning of the
night and not close to dawn, when many large predators
preferably hunt, may have been evolutionarily advanta-
geous.

DISCUSSION

Introducing a framework based on the concept of TDS
we identify a robust network of interactions between
physiologic systems, which remains stable across sub-
jects during a given physiologic state. Further, changes
in the physiologic state lead to complex network transi-
tions associated with a remarkably structured reorgani-
zation of network connectivity and topology that simul-
taneously occurs in the entire network as well as at the
level of individual network nodes, while preserving the
hierarchical order in the strength of individual network
links. Such network transitions lead to the formation
of sub-networks of physiologic interactions with different
topology and dynamical characteristics. In the context
of sleep stages, network transitions are characterized by
a specific stratification pattern where network connec-
tivity and link strength are significantly higher during
light sleep compared to deep sleep and during wake com-
pared to REM. This can not be explained by the dy-
namical characteristics of the output signals from indi-
vidual physiologic systems which are similar during light
sleep and deep sleep as well as during wake and REM.
The dramatic change in network structure with transi-
tion from one physiologic state to another within a short
time window indicates a high flexibility in the interac-
tion between physiologic systems in response to change
in physiologic regulation. Such change in network struc-
ture in response to change in the mechanisms of con-
trol during different physiologic states suggests that our
findings reflect intrinsic features of physiologic interac-
tion. The observed stability in network topology and
rank order of links strength during sleep stages, and the
transitions in network organization across sleep stages
provide new insight into the role which individual phys-
iologic systems as well as their interactions play during
specific physiologic states. While our study is limited to
a data-driven approach these empirical findings may fa-
cilitate future efforts on developing and testing network
models of physiologic interaction. This system-wide inte-
grative approach to individual systems and the network
of their interactions may facilitate the emergence of a
new dimension to the field of systems physiology [&] that
will include not only interactions within but also across
physiologic systems. In relation to critical clinical care,
where multiple organ failure is often the reason for fatal
outcome [24, 137], our framework may have practical util-
ity in assessing whether dynamical links between physio-
logic systems remain substantially altered even when the
function of specific systems is restored after treatment
[38]. While we demonstrate one specific application, the
framework we develop can be applied to a broad range
of complex systems where the TDS method can serve as
a tool to characterize and understand the dynamics and
function of real-world heterogeneous and interdependent



networks. The established relation between dynamical
network topology and network function has not only sig-
nificant medical and clinical implications, but is also of
relevance for the general theory of complex networks.

METHODS

Data

We analyze continuously recorded multi-channel phys-
iologic data obtained from 36 healthy young subjects (18
female, 18 male, with ages between 20-40, average 29
years) during night-time sleep [39] (average record dura-
tion is 7.8 hours). This allows us to track the dynamics
and evolution of the network of physiologic interactions
during different sleep stages and sleep-stage transitions
(Fig. ). We focus on physiologic dynamics during sleep
since sleep stages are well-defined physiological states,
and external influences due to physical activity or sen-
sory inputs are reduced during sleep. Sleep stages are
scored in 30 sec epochs by sleep lab technicians based
on standard criteria. In particular, we focus on the elec-
troencephalogram (EEG), the electrocardiogram (ECG),
respiration, the electrooculogram (EOG), and the elec-
tromyogram (EMG) of chin and leg. In order to com-
pare these very different signals with each other and to
study interrelations between them, we extract the follow-
ing time series from the raw signals: the spectral power
of five frequency bands of the EEG in moving windows of
2 sec with a 1 sec overlap: § waves (0.5-3.5 Hz), 6 waves
(4-7.5 Hz), o waves (8-11.5 Hz), o waves (12-15.5 Hz), S
waves (16-19.5 Hz); the variance of the EOG and EMG
signals in moving windows of 2 sec with a 1 sec over-
lap; heartbeat RR-intervals and interbreath intervals are
both re-sampled to 1 Hz (1 sec bins) after which values
are inverted to obtain heart rate and respiratory rate.
Thus, all time series have the same time resolution of 1
sec before the TDS-analysis is applied.

Utilizing sleep data as an example we demonstrate that
a network approach to physiologic interactions is neces-
sary to understand how modulations in the regulatory
mechanism of individual systems translate into reorgani-
zation of physiologic interactions across the human or-
ganism.

Time Delay Stability (TDS) Method

Integrated physiologic systems are coupled by feed-
back and/or feed forward loops with a broad range of
time delays. To probe physiologic coupling we propose
an approach based on the concept of time delay stabil-
ity: in the presence of stable/strong interactions between
two systems, transient modulations in the output signal
of one system lead to corresponding changes that occur

N-—_——— - ————— — — — — =

1 2 3 4 5 6 8 9 10
TDS threshold level for the strength of network links [%6]

Fraction of statistically significant network links

FIG. 7. Determining significance threshold for the
strength of network links. With increasing the time de-
lay stability (TDS) threshold level which allows only stronger
links with higher TDS values to be considered in the physio-
logic network, the fraction of statistically significant network
links that carry physiologically relevant information also in-
creases, and at a significance threshold of ~ 7% TDS (marked
by a vertical dashed line) all network links (100%) are statis-
tically significant. Periphery-periphery and brain-periphery
links during all sleep stages are considered when determining
this threshold. Statistical significance of a specific physio-
logic link is estimated by comparing the strength distribution
of this link across all subjects in the group with a distribu-
tion of surrogate links representing “interactions” between the
same systems paired from different subjects). Based on this
surrogate test, a p-value < 10~ obtained from the student t-
test indicates statistically significant strength of a given link.

with a stable time lag in the output signal of another cou-
pled system. Thus, long periods of constant time delay
indicate strong physiologic coupling.

The TDS method we developed for this study consists
of the following steps:

(1.) To probe the interaction between two physiologic
systems X and Y, we consider their output signals {z}
and {y} each of length N. We divide both signals {z}
and {y} into Ny overlapping segments v of equal length
L = 60 sec. We choose an overlap of L/2 = 30 sec which
corresponds to the time resolution of the conventional
sleep-stage scoring epochs, and thus Nj, = [2N/L] — 1.
Prior to the analysis, the signal in each segment v is
normalized separately to zero mean and unit standard
deviation, in order to remove constant trends in the data
and to obtain dimensionless signals. This normalization
procedure assures that the estimated coupling between
the signals {2} and {y} is not affected by their relative
amplitudes.

(2.) Next, we calculate the cross-correlation function,
Cy, (1) = %Ele xi’jr(yil)% y;/+(u—1)§+r’ within each
segment ¥ = 1,..., Ny by applying periodic boundary
conditions. For each segment v we define the time de-
lay 7§ to correspond to the maximum in the absolute
value of the cross-correlation function Cy, (7) in this seg-
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FIG. 8. Cross-correlation and surrogate analysis. Rank
plots obtained from cross-correlation analysis show no statis-
tically significant differences between real and surrogate data,
indicating that cross-correlation is not a reliable measure to
identify physiologic interactions.

ment 75 = Thczy(q.)‘z‘cgy(f/” vr- Time periods of stable
interrelation between two signals are represented by seg-
ments of approximately constant 79 (light shade region
in Fig. [b) in the newly defined series of time delays,
{r8}v=1....N,- In contrast, absence of stable coupling
between the signals corresponds to large fluctuations in
7o (dark shade region in Fig. [Ib).

(3.) We identify two systems as linked if their cor-
responding signals exhibit a time delay that does not
change by more than 41 sec for several consecutive seg-
ments v. We track the values of 79 along the series {74 }:
when for at least four out of five consecutive segments v
(corresponding to a window of 5 x 30 sec) the time delay
remains in the interval [ro — 1,79 + 1] these segments are
labeled as stable. This procedure is repeated for a sliding
window with a step size one along the entire series {74}
The % TDS is finally calculated as the fraction of stable
points in the time series {7}'}.

Longer periods of TDS between the output signals of
two systems reflect more stable interaction/coupling be-
tween these systems. Thus, the strength of the links in
the physiologic network is determined by the percentage
of time when TDS is observed: higher percentage of TDS
corresponds to stronger links. To identify physiologically
relevant interactions, represented as links in the physio-
logic network, we determine a significance threshold level
for the TDS based on comparison with surrogate data:
only interactions characterized by TDS values above the
significance threshold are considered.

The TDS method is general, and can be applied to
diverse systems. It is more reliable in identifying physi-
ologic coupling compared to traditional cross-correlation
and cross-coherence analyses (Fig. [B) which are not suit-
able for heterogeneous and nonstationary signals, and are
affected by the degree of auto-correlations in these sig-
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nals [40].

To compare interactions between physiologic systems
which are very different in strength and vary with change
of physiologic state (e.g., transitions across sleep stages),
we define the significance threshold as the percent of TDS
for which all links included in the physiologic network
are statistically significant. To identify statistical sig-
nificance of a given link between two physiologic sys-
tems, we compare the distribution of TDS values for
this link obtained from all 36 subjects in our database
with the distribution of TDS values obtained for 100 sur-
rogates of this link where the signal outputs from the
same two physiologic systems taken from different sub-
jects are paired for the analysis in order to eliminate the
endogenous physiologic coupling. A student t-test was
performed to determine the statistical significance be-
tween the two distributions. This procedure is repeated
for all pairs of systems (links) in the network, and net-
work links are identified as significant when the t-test p-
value < 1073, The significance threshold level for TDS is
then defined as the value above which all network links
are statistically significant, and thus represent endoge-
nous interactions between physiologic systems. We find
that a threshold of approximately 7% TDS is needed to
identify networks of statistically significant links for all
sleep stages (Fig. [).

Surrogate tests

To confirm that the TDS method captures physiologi-
cally relevant information about the endogenous inter-
actions between systems, we perform a surrogate test
where we pair physiologic signals from different subjects,
thus eliminating physiologic coupling. Applying the TDS
method to these surrogate data, we obtain almost uni-
form rank distributions with significantly decreased link
strength (Fig. Bh) due to the absence of physiologic inter-
actions. Further, all surrogate distributions conform to
a single curve, indicating that the sleep-stage stratifica-
tion we observe for the real data reflects indeed changes
in physiologic coupling with sleep-stage transitions. In
contrast, the same surrogate test applied to traditional
cross-correlation analysis does not show a difference be-
tween the rank distributions from surrogate and real data
(Fig. B).

We find that the TDS method is better suited than the
traditional cross-correlation analysis in identifying net-
works of endogenous physiologic interactions. Rank plots
obtained from cross-correlation analysis (Fig. [B]) show
that the cross-correlation strength C,,.. (global max-
imum of the cross-correlation function) is consistently
lower for all links during deep sleep, higher for light sleep
and REM and highest during wake — a stratification re-
lated to the gradual increase in the strength of autocorre-
lations in the signal output of physiologic systems [3, 26],
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FIG. 9. Stability of sleep-stage stratification pattern in
network connectivity. Group-averaged number of network
links for two different thresholds (Th) during wake, REM,
light and deep sleep. Results for threshold of Th = 5% time
delay stability (TDS) are shown in a, ¢ and e, and results for
threshold of Th = 9% TDS are shown in b, d and f. The
sleep-stage stratification pattern observed for the significance
threshold of 7% TDS (shown in Fig. [) is preserved also
for thresholds of 5% and 9% TDS, indicating stability of the
results. Note, that the number of links in the brain-brain
subnetwork remains unchanged for different sleep stages (e,
f), since the strength of all links in this subnetwork is well
above 9% TDS (Fig. Bf).

which in turn increases the degree of cross-correlations
[40]. Surrogate tests based on pairs of signals from dif-
ferent subjects, where the coupling between systems is
abolished but physiologic autocorrelations are preserved,
show no statistical difference between the surrogate (open
symbols) and original (filled symbols) rank distributions
of Chnaz, suggesting that in this context cross-correlations
do not provide physiologically relevant information re-
garding the interaction between systems. Indeed, even
for uncoupled systems high autocorrelations in the out-
put signals lead to spurious detection of cross-correlations
[40]. In contrast, the TDS method is not affected by
the autocorrelations — surrogate rank plots for different
sleep stages collapse and do not exhibit vertical stratifi-
cation as shown in (Fig. Bh).

To test the robustness of the stratification pattern in
network topology and connectivity across sleep stages
(shown in Fig. 2l and Fig. Bl), we repeat our analyses
for two additional thresholds: 5% TDS and 9% TDS.
With increasing the threshold for TDS from 5% to 9% the
overall number of links in the network decreases (com-
pare Fig. Oh,c,e with Fig. @b,d,f). However, the general
sleep-stage stratification pattern is preserved with high-
est number of links during light sleep and wake, lower
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during REM, and significant reduction in network con-
nectivity during deep sleep (Fig. [@). The stability of the
observed pattern in network connectivity for a relatively
broad range around the significance threshold of 7% TDS
indicates that the identified network is a robust measure
of physiologic interactions.
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