Network planning using two-stage programming under uncertainty

Lukáš Adam

András Prékopa: Network planning using two-stage programming under uncertainty

3. 11. 2009

Introduction Outline of the problem Examples

Introduction

Outline of the problem

Examples

Lukáš Adam Network planning using two-stage programming under uncertainty

ъ

Definition of the problem

The underlying deterministic problem is the following:

 $\begin{aligned} \min(c'u+d'v)\\ Au \geq b\\ Tu+Mv \geq \xi, \end{aligned}$

where ξ is random variable.

First stage problem:

$$\begin{aligned} \min(c'u + \mathsf{E}(\mu(u,\xi))) \\ Au \geq b, \\ u \in K, \end{aligned}$$

where $\mu(u,\xi)$ is the optimal value of the **Second stage problem**

 $\min(d'v)$ $Tu + Mv \ge \xi,$

and $K = \{u; \forall \xi \exists v : Tu + Mv \ge \xi\}.$

How to solve?

- Solve the first stage problem (function to be minimalized depends only on u)
- ▶ Realize ξ
- ▶ Decide on *v*

Properties

- ► *K* is a convex polyhedron.
- For every fixed ξ the second stage optimal value μ(u, ξ) is a convex function of the variable u.
- If the set of possible values of ξ is convex, then $\mu(u,\xi)$ is convex in ξ .
- If E(ξ) exists and μ(u, ξ) is finite for every u and ξ, then E μ(u, ξ) exists and is a convex function of u.

Introduction Outline of the problem Examples

Up to now we assumed that there exists $\mu(u, \xi)$ for every ξ . Because such assumption is not always valid, we will require the solvability of the second stage problem only by probability:

First stage problem:

$$\min(c'u + \mathsf{E}(\mu(u,\xi)))$$

 $Au \ge b,$
 $P(u \in K) \ge p,$

where p is prescribed and $\mu(u,\xi)$ is the optimal value of the new **Second** stage problem

$$\min(d'v + t'z)$$
$$Tu + Mv + z \ge \xi,$$

where t'z is the cost of infeasibility. Sometimes non-linear function $\sum t_j(z_j)$ will be used.

Assumptions

- The power systems form a network.
- ► The system must have a reliability level 1 LOLP ≥ p, where LOLP is the probability that demand will be higher than supply.
- ▶ We may increase the power generating and the tie line capacities.
- ▶ No distinction will be made between capacity and reserve capacity.
- Each power system can help others. The tie line between systems a and b is not necessarily the same as that between b and a.
- Power dispatching and outage cost money.

Notations

 x_j $x_i^{(l)}$

Yhk

i_j i_{hk}

ρ ξj

 $c_i(.)$

 d_{hk}

Number of power systems

- Generating capacity of the j^{th} system, to be determined
- Prescribed lower and upper bound for x_j
- Capacity of the line between system h and system k, to be determined

 $y_{hk}^{(l)}, x_{hk}^{(u)}$ Prescribed lower and upper bound for y_{hk}

- Total power dispatched from j^{th} system
- Power dispatched for system h to system k
 - Prescribed lower level for $1 \mathsf{LOLP}$
 - Random demand for electric power at the j^{th} system
 - Cost function of the generating capacity at the j^{th} system
- $c_{hk}(.)$ Cost function of the interconnection capacity between systems h and k
 - Cost of dispatching one unit of power from system h to system k
- $t_j(.)$ Cost of outage of magnitude z at system j

Let $A(x, y, \xi)$ denote the event that for fixed x and y the total demand in the pool can be met by a suitable power dispatch.

The problem now looks like the following:

$$\begin{split} \min(\sum_{j} c_{j}(x_{j}) + \sum_{h} \sum_{k} c_{hk}(y_{hk}) + \mathsf{E}(\mu)) \\ \mathcal{P}(\mathcal{A}(x, y, \mu)) \geq p, \\ x_{j}^{(l)} \leq x_{j} \leq x_{j}^{(u)}, \\ y_{hk}^{(l)} \leq y_{hk} \leq y_{hk}^{(u)} \end{split}$$

A **flow** *i* on a network is defined as a function on $N \times N$ satisfying for all $h, k \in N$ the relations

$$i(h,k) + i(k,h) = 0,$$

$$i(h,k) \le y_{hk}.$$

Further define **network demand** $q: N \to \mathbb{R}$ as $q_j = x_j - \xi_j$ and for $S, T \subset N$:

$$q(S) = \sum_{h \in S} q(h),$$

$$i(S, T) = \sum_{h \in S} \sum_{k \in T} i(h, k).$$

-

Properties of q and iFor all S_1, S_2, T such as $S_1 \cap S_2 = \emptyset$ we have

$$q(S_1 \cup S_2) = q(S_1) + q(S_2),$$

$$i(S_1 \cup S_2, T) = i(S_1, T) + i(S_2, T),$$

$$i(T, S_1 \cup S_2) = i(T, S_1) + i(T, S_2),$$

$$i(S, S) = 0,$$

$$i(S, T) \le y_{ST},$$

where

$$y(S,T) = \sum_{h \in S} \sum_{k \in T} y_{ST}$$

-

The network demand is called **feasible** if there exists a flow *i* such that for every $a \in N$ we have

$$i(N,a) \geq q(a)$$

Theorem (Feasibility theorem)

The network demand q is feasible if and only if for every $S \subset N$ we have

$$q(\overline{S}) \leq y(S,\overline{S}).$$

Example 1

Let us consider the pool constisting only of two points. Denote $y = y_{12} = y_{21}$. The feasibility theorem gives

$$egin{aligned} &\xi_1 - x_1 + \xi_2 - x_2 \leq 0, \ &\xi_1 - x_1 \leq y, \ &\xi_2 - x_2 \leq y. \end{aligned}$$

If we denote i = i(1,2) = -i(2,1), we also receive following inequalities

$$\begin{aligned} x_1 - i &\geq \xi_1, \\ x_2 + i &\geq \xi_2, \\ -y &\leq i \leq y. \end{aligned}$$

∃ >

Example 2

In this example the pool will be formed by three noded conncted together. Denote $y_1 = y_{12}, y_2 = y_{23}$ and $y_3 = y_{31}$. Using the feasibility theorem

$$\begin{array}{c} \xi_1 - x_1 + \xi_2 - x_2 + \xi_3 - x_3 \leq 0, \\ & \xi_1 - x_1 \leq y_1 + y_3, \\ & \xi_2 - x_2 \leq y_1 + y_2, \\ & \xi_3 - x_3 \leq y_2 + y_3, \\ & \xi_1 - x_1 + \xi_2 - x_2 \leq y_2 + y_3, \\ & \xi_2 - x_2 + \xi_3 - x_3 \leq y_1 + y_3, \\ & \xi_1 - x_1 + \xi_3 - x_3 \leq y_1 + y_3. \end{array}$$

The next result will be also similar to that one received in the previous example

$i_{21} + i_{31}$	\geq	$\xi_1-x_1,$
$i_{12} + i_{32}$	\geq	$\xi_2 - x_2,$
$i_{13} + i_{23}$	\geq	$\xi_3 - x_3$,
$i_{12} + i_{21}$	=	0,
$i_{23} + i_{32}$	=	0,
$i_{13} + i_{31}$	=	0,
$-y_{12} \leq y_1$	\leq	<i>y</i> ₁₂ ,
$-y_{23} \le y_2$	\leq	<i>y</i> ₂₃ ,
$-y_{13} \leq y_3$	\leq	<i>y</i> ₁₃ ,

-

-

Example 3

The power system is the same as in example 1 but this time we will use the model presented in the introduction.

The first stage problem is the following:

$$\begin{split} \min(c_1(x_1) + c_2(x_2) + c(y) + \mathsf{E}(\mu(x_1, x_2, y, \xi_1, \xi_2))) \\ & P\begin{pmatrix} \xi_1 + \xi_2 \le x_1 + x_2 \\ \xi_1 \le x_1 + y \\ \xi_2 \le x_2 + y \end{pmatrix} \ge p \\ & x_j^{(l)} \le x_j \le x_j^{(u)} \\ & y^l \le y \le y^{(u)} \end{split}$$

and the second stage problem

$$\begin{split} \min(d_{12}i^+ + d_{21}i^- + t_1(z_1) + t_2(z_2) \\ x_1 - i^+ + i^- + z_1 \ge \xi_1, \\ x_2 + i^+ - i^- + z_2 \ge \xi_2, \\ 0 \le i^+, i^- \le y, \\ i^+, i^-, z_1, z_2 \ge 0. \end{split}$$

-

3

The main task of this example is to compute $E(\mu)$. But firstly we have to consider four possible cases:

And finally

$$E(\mu) = \int_{x_2}^{\infty} \int_{-\infty}^{x_1} (d_{12} \min(x_1 - v_1, v_2 - x_2, y) + + t_2(v_2 - x_2 - \min(x_1 - v_1, v_2 - x_2, y)))f(v_1, v_2)dv_1dv_2 + + \int_{-\infty}^{x_2} \int_{x_1}^{\infty} (d_{21} \min(v_1 - x_1, x_2 - v_2, y) + + t_1(v_1 - x_1 - \min(v_1 - x_1, x_2 - v_2, y)))f(v_1, v_2)dv_1dv_2 + + \int_{x_2}^{\infty} \int_{x_1}^{\infty} (t_1(v_1 - x_1) + t_2(v_2 - x_2))f(v_1, v_2)dv_1dv_2$$

where $f(v_1, v_2)$ is joint probability density function of continuous joint distributions ξ_1 and ξ_2 .

-

Introduction Outline of the problem Examples

Than you for your patience.

< 🗇 🕨

크 > 크