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Gliomas are the most frequent primary brain tumors and include a variety of different 
histological tumor types and malignancy grades. Recent achievements in terms of 
molecular and imaging fields have created an unprecedented opportunity to perform 
a comprehensive interdisciplinary assessment of the glioma pathophysiology, with 
direct implications in terms of the medical and surgical treatment strategies available for 
patients. The current paradigm shift considers glioma management in a comprehensive 
perspective that takes into account the intricate connectivity of the cerebral networks. 
This allowed significant improvement in the outcome of patients with lesions previously 
considered inoperable. The current review summarizes the current theoretical framework 
integrating the adult human brain plasticity and functional reorganization within a dynamic 
individualized treatment strategy for patients affected by diffuse low-grade gliomas. The 
concept of neuro-oncology as a brain network surgery has major implications in terms 
of the clinical management and ensuing outcomes, as indexed by the increased survival 
and quality of life of patients managed using such an approach.

Keywords: awake surgery, functional brain mapping, intraoperative mapping, anatomofunctional connectivity, 
low-grade gliomas, neuroplasticity, direct electrical stimulation

inTRODUCTiOn

Neurosurgical resection remains the standard of care for gliomas, and the extent of resection (EOR) 
is one of the most important factors affecting the patients’ survival and quality of life for both high- 
and low-grade gliomas (1–9). The diffuse low-grade gliomas (DLGGs) portray a distinct clinical 
and radiological behavior and display particular gene expression signatures. DLGG is thought to 
represent a chronic invasive lesion that migrates along the white matter pathways, and eventually 
undergoes malignant transformation leading ultimately to death (10).

The concept of individualized surgery in neuro-oncological treatment of glial tumors is based 
on the goal of achieving a maximal tumor resection without inducing new neurological deficits. 
Analogously, for tumors located in proximity to critical functional areas, the use of intraoperative 
cortical and subcortical electro stimulation mapping (IEM) during awake craniotomy evolved over 
time and allows a substantial increase in the survival and quality of life of patients (1, 6, 9, 11–14).

The joint efforts of neuroscientists, researchers, and clinicians have provided an unprecedented 
ability to localize lesions and to assess the human brain function at the microscopic, mesoscopic, 
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and macroscopic scales (15). The resultant array of invasive and 
non-invasive measures allowed surgeons to push the boundaries 
of safe surgical resection with subsequently improved clinical 
outcomes. As depicted by the extensive work performed by 
several research groups, the concepts of brain connectome and 
brain plasticity represent promising notions that advanced the 
neurosurgical treatments available for neurosurgical patients 
affected by DLGG.

A Dynamic Concept: Tumor Growth and 
Functional neuroplasticity
The survival benefit associated with an increased EOR has been 
demonstrated for both high- and low-grade gliomas; however, 
such oncological benefits need to take into account the risks 
of inducing neurological deficits. Although it is acknowledged 
that in DLGG, tumor infiltration follows the white matter tracts 
beyond the boundaries visualized on standard neuroimaging 
techniques, current treatment thresholds are still based on static 
radiological perceived boundaries. For instance, conventional 
radiotherapy protocols target a 2 cm conventional Euclidean dis-
tance around the macroscopically visible tumor, without taking 
into account the infiltrative and dynamic growth patterns of the 
lesion, thus equally radiating “non-cancerous brain tissue that 
could not only cause neurological deficits but also restrict the 
residual plasticity potential while leaving alive cancerous cells in 
other areas” (15).

One of glioma’s hallmark properties is the ability of cancer 
cells to invade healthy tissue, extensive attempts having been 
made both on the microscopic and macroscopic scales in order 
to determine the underlying pathophysiology. The different 
mechanisms involved in the plasticity of tumor cell motility 
have already been summarized by Taddei et al. and Cuddapah 
et al. (16, 17). Among the different structural and cellular adap-
tive strategies displayed by cancer cells, enhanced cell motility 
as well as resistance to hypoxia and acidity represent some of 
the key factors allowing tumors to elude antineoplastic drugs 
and radiotherapy treatments. From a biological perspective, the 
migration and invasion of tumor cells requires an increase in cel-
lular motility, which involves formation of actin-based dynamic 
protrusions of the plasma membrane (18–20). Actin represents 
one of the key cytoskeletal filaments and its instability caused 
by hypoxia or tissue injury can facilitate entry of the cell into 
mitosis, thereby acting as an epigenetic determinant of the cell 
fate (21). Also, tumor cell motility can be modulated by acidity 
as the assembly of actin filaments in migrating cells increases 
with an intracellular pH higher than 7.2 (16). Moreover, in vivo 
imaging of membrane tube development over time revealed that 
the microtube-connected astrocytoma cells create a multicel-
lular anatomical network that serve as routes for brain invasion, 
proliferation, and communication over long distances (18, 19). 
Disconnection of astrocytoma cells by targeting their tumor 
microtubes was already proposed as a possible new therapeutic 
strategy against cancer (22). Ion channels and transporters also 
appear to play a major role in the invasion strategies by mediat-
ing the hydrodynamic shape and volume changes displayed by 
tumor cells (17, 23–26). For instance, K+ and Cl− ions are 
thought to function as osmotically active ions that facilitate 

the dynamic cytoplasmic volume regulation occurring in tumor 
cells as they migrate and invade the surrounding tissue (25, 26).

The diffuse invasion exhibited by cancer cells can follow 
the same “extracellular routes of migration that are traveled by 
immature neurons and stem cells,” which similarly migrate along 
extracellular routes such as intracranial vasculature and white 
matter tracts (17, 27). Although the origin of gliomas is still 
unknown, it likely represents a complex phenomenon involving 
both genetic and epigenetic factors with a suspected cellular ori-
gin from a neural stem cell or an oligodendrocyte precursor cell 
(27–29). In addition, tumor recurrence occurs predominantly at 
the primary location of the tumor for both low- and high-grade 
gliomas. Tumor relapses might be linked to the presence of a cell 
subpopulation with stem cell characteristics, labeled as glioma 
stem cells (29, 30). While multiple studies assessed the presence 
of tumorigenic stem cells in high-grade lesions, the occurrence 
of those cells has equally been reported in patients harboring 
LGG (30). These cells are highly resistant to conventional chemo-
therapeutic drugs and could equally mediate tumor recurrence 
following radiation therapy (31–33). Tumor cell dissemination 
and heterogeneity represent important aspects that should be 
taken into account in order to improve the medical and surgi-
cal therapeutic regimens (34). Computational models attempt 
to simulate the functional consequences associated with brain 
tumor growth by incorporating the tumor-induced plastic com-
pensatory mechanism along with the structural and biological 
heterogeneity of gliomas (35).

Delineating the extent of tumor infiltration has been subject 
to intense research, as the boundaries between tumor and 
healthy tissue are difficult to detect macroscopically with cur-
rent imaging techniques like functional MRI (fMRI), positron 
emission tomography, spectroscopy, and diffusion tensor 
imaging (36–38). In the case of tumor-related epilepsy, such 
techniques allowed to establish a link between the peritumoral 
tissue and the tumor-related epileptogenesis, which can explain 
both the antiepileptic effects of oncological treatments (39–41) 
and the increase in seizure frequency as tumors progress (42). 
As both infiltrated peritumoral tissue and connectivity changes 
have been related to the development of seizures, understand-
ing brain reorganization mechanisms has important clinical 
implications for controlling refractory seizures (43, 44). Recent 
studies investigated the role of functional network synchroniz-
ability to predict spread of seizures before they begin and also 
described control regions that strongly synchronize or desyn-
chronize network dynamics (45). By investigating time-varying 
functional networks, the dynamic changes in the topographical 
organization of different functional networks could have wide 
applicability in mapping the plastic reorganization occurring 
in other diseases such as stroke and trauma (46–51). Similarly, 
brain tumors may also induce changes in large-scale functional 
connectivity (FC) that should be taken into account by the surgi-
cal approach (52). For instance, the complex language network 
reorganization occurring in the setting of a dominant left hemi-
sphere DLGG infiltrating classical “Broca” and “Wernicke” areas 
(53–55) allow tumor resection with no functional consequences 
as depicted in the case illustrated in Figure 1. Thus, understand-
ing the underlying neuromodulation principles governing the 
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FiGURe 1 | Left temporal diffuse low-grade glioma (DLGG). Axial FLAIR-weighted MRI (A) showing a left temporal DLGG in a 36-year-old patient who 
presented with isolated seizures and no neurological deficits. Intraoperative photograph during the first awake surgery (B), after resection was performed according 
to individual functional boundaries. Stimulation mapping demonstrated the persistence of eloquent cortical areas in the temporal lobe (tags 22, 23, 24, 25) as well as 
subcortical fibers (tag 11, corresponding to the inferior longitudinal fascicle) still critical for language function. Postoperative axial FLAIR-weighted MRI (C) revealing a 
partial resection, with a posterior residual tumor voluntarily left for functional reasons. The diagnosis of DLGG was confirmed, and the patient resumed a normal 
familial, social, and professional life. Ten years later, epileptic seizures recurred concomitantly with an imaging progression as demonstrated on the axial FLAIR-
weighted MRI (D). Reoperation was proposed to the patient. Intraoperative photograph (e) during the second awake surgery, after resection was performed 
according to the new individual functional boundaries. Electrocortical stimulation mapping revealed brain reorganization, allowing the achievement of a significantly 
wider resection compared to the first surgery. Of note, at the subcortical level, stimulation of the left inferior fronto-occipital fascicle (IFOF) (46 and 50) elicited 
semantic paraphasia when stimulated at the end of surgery. Thus, resection of the anterior part of the inferior longitudinal fascicle was possible given the 
compensation provided by the direct ventral pathway represented by the left IFOF. Postoperative axial FLAIR-weighted MRI (F) performed 3 months after the second 
surgery showing a complete resection, made possible due to mechanisms of neuroplasticity, in a patient who returned to a normal life with no permanent 
neurological deficit.
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neurosynaptic networks could lead to new methods for func-
tional restoration (48, 49, 53).

Cerebral plasticity represents the “continuous process 
allowing short-term, middle-term, and long-term remodeling 
of neurosynaptic maps, to optimize the functioning of brain 
networks” (56). The concept of adult neuroplasticity exemplifies 
the strong interplay between the cortex and other structures 
provided by the myriad of cortical and subcortical connections. 
The underlying mechanisms for this functional reorganization 
and brain plasticity are not fully elucidated, and multiple theories 
have been proposed such as modulation of synaptic efficacy, 
neurogenesis, cortical hyperexcitability, redistribution, unmask-
ing of latent networks, and establishment of new functional 
connections (51, 57–61). Although mounting evidence depict 
functional reorganization in the setting of a surgical interven-
tion, the concept of brain plasticity in the context of DLGG is 
still controversial (62). Nonetheless, our current understanding 
of the morphological, biochemical, and connectivity changes 
occurring in the setting of a tumor is still in its infancy and 
long-term large multicenter studies incorporating longitudinal 
multimodal investigations will likely allow us to gather more 
objective evidence and improve our understanding of the 
underlying mechanisms.

This approach facilitates the concepts of “functional neuro-
oncology” and of “preventive glioma surgery” in order to achieve 
earlier and more complete resections, while giving the patients 
the opportunity to enjoy a normal life. Understanding the indi-
vidual organization of the cortical and subcortical connectivity 
is essential to optimize the risk–benefit ratio of glioma surgery 
(63). Prominent experts in this field suggest an integration of the 
conceptual achievements in the neuroscience, neuroimaging, and 
genetic fields, in order to create a holistic personalized treatment 
strategy incorporating “the course of this chronic disease, reac-
tion brain remapping, and oncofunctional modulation elicited by 
serial treatments” (10).

Connectomics and Glioma Surgery
Functional connectivity is a measure used to express the degree 
of communication between brain areas and thus to describe brain 
networks (64). One of the main proposed mechanisms of adult 
plasticity reposes on the connectome concept where the brain 
processing relies on “dynamic large-scale, parallel subcircuits 
able to interact and to compensate themselves following cerebral 
injury” (65, 66). The concept of brain connectome depicts the 
dynamical structural and functional neural networks that form 
at multiple spatial and temporal scales (67). While it is possible 
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to portray structural networks delineating anatomical connectiv-
ity with deterministic tractography-derived fiber tracts (68), 
“functional networks” are derived from statistical estimates of 
time series data such as resting-state fMRI (69). For instance, 
using multimodal magnetic resonance images derived from the 
Human Connectome Project, Glasser and colleagues performed 
a multimodal parcelation of distinct cortical areas using an objec-
tive, semiautomated neuroanatomical approach and a robust 
machine-learning classifier (70). Although such non-invasive 
imaging studies outline a detailed non-invasive mapping of the 
macroscopic functional connectome, it provides just one view of 
the “complete” brain connectome and cannot provide the direct 
neuronal activity flow available through electrophysiological 
techniques (67, 71).

Brain tumors alter the normal structural and FC of the brain, 
consequently impacting the normal functioning of the brain. 
Altered FC in patients with brain tumors affects not only the 
tumor area but also other brain areas, as demonstrated through 
different imaging modalities (72–77). For instance, changes in 
resting-state networks in patients with tumors localized in the 
left hemisphere were observed in the contralateral side and cor-
related with alterations in some cognitive functions even before 
the onset of major symptoms (74). Intrinsic FC measures can also 
predict surgical outcome, and thereby could “provide informa-
tion regarding the residual presence of function and also could 
define the extent of brain tumor invasion that may not be evident 
on structural MRI” (78).

As described by De Benedictis and Duffau, the classical “topo-
logical” representation ought to be replaced by a “hodotopical” 
framework, which takes into account the changes occurring in the 
large-scale networks of the brain (65). Only by acknowledging the 
complex cortico-subcortical network of the brain, the clinicians 
could further understand and take into account the dynamical 
neural processes occurring at distinct spatial and temporal scales 
(79). The functional connectome framework refined our under-
standing of functional localization as evidenced through the 
contemporary concepts of language organization, namely, that 
neuronal groups participate as components of a network allowing 
reorganization and recruitment of parallel circuits in the setting 
of injury (80–83).

Considering glioma surgery as “brain networks surgery” has 
led not only to a dramatic decrease of permanent neurologic 
impairment (<2% in series using intraoperative cortico-
subcortical mapping) but also to improvement of higher order 
functions such as working memory, neurocognitive functions, 
and emotions and behavior, as evidenced by postoperative neu-
ropsychological assessments following surgery (84). Therefore, 
the concept of neuro-oncology as a brain network surgery has 
major implications in terms of the clinical management and ensu-
ing outcomes, as indexed by the increased survival and quality of 
life of patients managed using such an approach.

Awake Craniotomy and intraoperative 
Mapping
Although the art and science of brain mapping was once the 
purview of epilepsy surgeons, the use of this technique in the 
neuro-oncological field had seen an exponential increase over 

the last decades. Proper choice and execution of brain mapping 
techniques has improved the precision and safety of the surgical 
treatment for some of the most challenging cases and can cur-
rently allow a more radical surgical resection than indicated by 
presumed preoperative functional localization. This entails an 
optimization of the intraoperative tests’ selection based on the 
functional cortico-subcortical networks expected to be encoun-
tered as well as on the specific preoperative neurological and 
neuropsychological assessments of each patient (85–87).

Although many promising brain mapping techniques are cur-
rently being refined, the large interindividual differences between 
healthy and diseased brain preclude the ability to reliably identify 
standard imaging-based biomarkers for functional connectomics 
(88, 89). As such, cortical and subcortical mapping via direct elec-
trical stimulation continues to remain the most reliable approach 
for accurate localization of highly functional centers specific to 
each patient; the usefulness of this technique being described 
even for children (90). Furthermore, the continuous assessment 
of cognitive and neurophysiological parameters provides the 
neurosurgeon with immediate feedback on the impact of his/her 
intervention.

The concept of “eloquent” cortex depends on the view that, 
although all cortical areas are “capable of being engaged in useful 
function, some brain regions are clearly more critical than oth-
ers” (91), causing some degree of functional decline if resected 
or disconnected. This framework shift has direct implications 
in the clinical practice as the presumed eloquence represents a 
modifiable risk factor for survival (92, 93). Although a detailed 
knowledge of both cortical and subcortical anatomical structures 
represents the cornerstone of neurosurgery, understanding the 
underlying functional correlations provide the fine details of the 
relationship between the lesion to be managed and the healthy 
brain (94). Figure  1 shows an illustrative case depicting the 
importance of performing intraoperative mapping of cortical 
and subcortical fibers in a patient with a left temporal DLGG. As 
portrayed, the respect of functional boundaries during the first 
surgery allowed the patient to enjoy a normal life for 10 years, 
whereas the language network reorganization occurring in the 
setting of a slowly growing tumor allowed subsequent resection 
of tumoral tissue at sites where functionality prevented tumor 
resection initially (Figure 1).

Despite the fact that the precise influence on the electrophysi-
ological state of brain’s networks and the biophysical modeling 
of the electrode–tissue interface is not well elucidated (95), 
direct electrical stimulation represents a highly reliable and 
reproducible technique (58, 95–101). IEM has equally allowed to 
increase the quality of life for patients affected by a glioma in the 
non-dominant hemisphere by testing functions such as spatial 
awareness (102) or even mentalizing (103) to avoid injuring the 
networks involved in those functions. Furthermore, IEM during 
awake craniotomy allows the unique opportunity to assess and 
validate the anatomo-functional connectivity for multimodal 
systems such as sensorimotor, language, visuospatial, and socio-
cognitive systems (82) providing a real-time understanding of the 
individual organization of both cortical epicenters and subcorti-
cal connectivity (104). We can envisage the future development 
of platforms allowing neurosurgeons to link the intraoperative 
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cortical stimulation results with macroscopic neuronal network 
models and use connectivity-based modeling to predict func-
tional changes.

Several manuscripts provide a comprehensive overview of 
the methods and technical nuances proposed for a maximal safe 
resection during awake brain tumor surgery (105–107). There 
is increasing evidence that this technique allows to improve the 
outcomes by maximizing the EOR while preserving functional 
cortex in both low- and high-grade gliomas (1, 6, 9, 108, 109). 
Other benefits associated with this technique are shorter hospital 
stay, less blood loss, shorter operative time, reduced pain and 
anxiety, cost effectiveness, as well as lower complications and 
morbidity (110, 111). Nonetheless, careful preoperative planning 
by a dedicated multidisciplinary team with an informed patient 
remains an important prerequisite for a successful awake crani-
otomy (90).

COnCLUSiOn

The paradigm shift encouraging the translation of the most 
recent findings in the field of neurological science to the 
clinical setting allowed a better understanding of the interac-
tions between the infiltrative and dynamic growth patterns of 

DLGG and brain adaptation mechanisms (such as neuroplas-
ticity and network reorganization). Using multimodal imaging 
studies and different neurophysiological tools does not take 
the place of a meticulous surgical technique and an extensive 
knowledge of the functional–structural anatomy in order to 
protect the cortical and subcortical FC. The concept of awake 
craniotomy as a brain network surgery allows neurosurgeons 
to adequately assess the dichotomy between the neurological 
and oncological risk management. It also highlights the delicate 
function–oncological balance that needs to be maintained, as it 
will ultimately reflect on the quality of life and overall survival 
rate of the patients. A  joint multidisciplinary approach where 
the emerging advancements from different fields are integrated 
in clinical practice in a personalized dynamic approach using 
ongoing feedback from clinical–radiological monitoring could 
provide more effective treatment options for patients affected by 
DLGG as already demonstrated by the increased survival and 
quality of life of patients treated using such a treatment strategy.
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