
Network Processing of Documents, for Documents, by
Documents

Ichiro Satoh

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

E-mail: ichiro@nii.ac.jp

Abstract. This paper presents a content-dependent and configurable framework
for the network processing of documents. Like existing compound document
frameworks, it enables an enriched document to be dynamically and nestedly
composed of software components corresponding to various content, e.g., text,
images, and windows. It also enables each component or document to migrate
over a network under its own control utilizing mobile agent technology and uses
components as carriers or forwarders because it enables them to carry or trans-
mit other components as first class objects to other locations. Since these op-
erations are still document components, they can be dynamically deployed and
customized at local or remote computers through GUI manipulations. It therefore
allows an end-user to easily and rapidly configure network processing in the same
way as if he/she had edited the documents.

1 Introduction

Document manipulation, such as editing, viewing, and distributing documents, is still a
crucial role in modern information processing. In distributed computing systems, docu-
ments are always transmitted passively over a network by external systems, such as elec-
tronic mail systems and http servers. As a result, they cannot determine where, when, or
how they should go next. However, there have been several applications whose network
processing depends on the content of the documents that are transmitted over the net-
work. For example, tasks in workflow management systems are required to be passed
among multiple destinations with specified itineraries. End-users often want to define
network processing for documents for them to accomplish their application-specific
tasks. However, the customization and management of networking processing is too
complex and difficult for end-users.

This paper addresses such a methodology and proposes a new compound document
framework, called MobiDoc. Like other existing compound document frameworks, the
framework enables an enriched document to be composed of visual components, e.g.,
text and images. It enables network protocols for documents to be implemented by a set
of active documents. By using mobile agent technology, documents or components can
define their own itineraries and migrate under their own control, like the programmable-
packet approach in active network technology [12]. Furthermore, documents can trans-
mit other documents and multimedia content as first-class objects to their destina-
tions such as with the programmable-node approach in active network technology. The



framework introduces components for network processing such as document-centric
components, so that it allows an end-user to easily and rapidly configure network pro-
cessing in the same way as if he/she had edited the documents.

This paper is organized as follows. We first describe the background and related
work (Section 2) and then outline our compound document framework (Section 3). Af-
ter this, we present component runtime systems for executing and migrating document
components (Section 4) and present our component model (Section 5). We also de-
scribes its prototype implementation (Section 6) and illustrates several applications of
the framework (Section 7). We conclude by providing a summary and discussing future
issues (Section 8).

2 Background

Several frameworks for compound document components have been developed, such as
COM/OLE [2], OpenDoc [1], and CommonPoint [6]. They enable one document to be
composed of various visible parts, such as text, image, and video, created by different
applications. However, existing compound documents are inherently designed as pas-
sive entities in the sense that they can be transmitted over a network by external network
systems such as electronic-mail and workflow-management systems, which cannot de-
termine where they should go next. There have been component-based technologies for
distributed computing, such as Enterprise JavaBeans (EJB) [11] and Distributed COM
(DCOM). However, our framework has been designed independently of these existing
component frameworks, because it requires to treat each component as autonomous,
mobile, and document-centric, in the sense that each component can migrate or dis-
tribute itself and other components over a network.

Several attempts have been made to support active documents, e.g., Active Mail [4]
and HyperNews [5], but these haves aimed at particular application-specific documents,
such as electronic mail and newspapers, so that they have not supported editing or ex-
changing documents with varied and complex content. The fuseONE system [13] com-
poses GUI-based control panels for controlling appliances from active documents, i.e.,
GUI-based buttons and toggle switches. Like other compound document frameworks,
they cannot transmit codes for viewing and editing documents. Placeless Document [3]
provides a document management system for active documents. It enables a document
to delegate the properties of other components like our component hierarchy, but it is
not aimed at customizing the network processing of documents.

We constructed a mobile agent system, called MobileSpaces, which we discussed
in a previous paper [7]. We constructed a compound document framework based on the
MobileSpaces system [8, 10]. Since the previous framework was inherently designed
based on a mobile agent system, there were serious mismatches between mobile agent-
based components and the requirements of document components. Moreover, the pre-
vious framework could not define or customize any network processing, because it was
proposed only as an application of the MobileSpaces system.



3 Approach

The key idea behind the framework was to enable network protocols for documents
to be implemented by a set of documents. That is, documents could define their own
itineraries, like the programmable packet approach in active networks. Furthermore,
documents can transmit other documents as first-class objects to their destinations such
as with the programmable node approach.

3.1 Component Model

Like other existing compound-document frameworks, this framework provides document-
centric components but enables them to define and manage network processing. It also
introduces two notions of components. The first is the notion of a self-contained com-
ponent, where the content of each component and its codes are inseparable even when
it is migrated to another computer. Therefore, when a user receives a document, he/she
can view or edit it by using its code instead of any applications deployed at its current
computer. To our knowledge, no existing software component frameworks, including
compound document frameworks, make the code and state of each component indi-
visible. The second is the notion of hierarchical components. Each component can be
contained by at most one component and it can dynamically migrate to other compo-
nents along with all its inner components. It can instruct its inner components to move
to other components, marshal, and destroy them, whereas it cannot control its container
component. Nevertheless, the former is still a self-contained component so that it can
be removed from the latter.

3.2 Configurable Network Processing

This framework provides two approaches for enabling components to customize their
own network processing. The first is to make components mobile in the sense that they
can define their itinerary and travel among multiple computers along the itinerary by
using mobile agent technology. The second enables components to define network pro-
cessing for themselves. The framework also introduces a container component, called
forwarder, that can treat its inner components as first-class objects and migrate them
to other components. Components can also carry or forward other components over a
network and visual components can not only contain visual components but also car-
rier and forwarder components. They can be customized and assembled through GUI
manipulations and embedded into a document as visual components. Therefore, end-
users can define and customize their application-specific network processing by comb-
ing components through GUI manipulations in the same way as if they were editing
visual components in documents.

4 Design

This framework consists of two parts: runtime systems and components. It can execute
components and migrate them to/from other runtime systems, even when underlying
systems, i.e., operating systems and hardware, are heterogeneous, since runtime sys-
tems and components are constructed on Java language and executed on Java VM.



Runtime System

OS/Hardware

Java Virtual Machine

Network

Component
migration

Computer A Computer B

TCP connection
manager

Marashalling
managerComponent

execution
manager

MDContainer
Window
component

Program

Data

MDComponent
Text component
Program Data

Runtime System

OS/Hardware

Java Virtual Machine

TCP connection
manager

Marashalling
managerComponent

execution
manager

MDContainer
Document
component

Program

Data

MDComponent
Text component

Program Data

Program Data
Image component

MDComponent

Program Data
Image component

MDComponent

Fig. 1. Component migration between two computers.

4.1 Component Runtime System

Each runtime system governs all the components inside it. It maintains the life-cycle
state of each component, e.g., creation, execution, migration, persistence, and termina-
tion. It establishes TCP connections with other systems and exchanges control messages
and components through the connection. Fig. 1 outlines the basic structure of a runtime
system. When a runtime system saves or migrates a component over a network, it mar-
shals the component, the component’s inner components, and information about their
containment relationships and visual layouts, called component nodes, into a bit-stream
and transmits the marshaled component to its destination through an extension of the
HTTP protocol. When a runtime system receives components, it unmarshals the com-
ponents and information from the bit-stream later. The current implementation uses the
Java object serialization package for marshaling the states of components. The package
does not support the capturing of stack frames of threads. Consequently, our system
cannot marshal the execution states of any thread objects. Instead, the runtime system
propagates certain events to components before and after marshaling and unmarshal-
ing them. To reduce the size of the bit-stream, the current implementation compresses
the bit-stream. If inner components embedded in a component share the same codes,
the runtime system can detect and remove such redundant codes from the bit-stream
corresponding to the marshaled component, including its inner components.

4.2 Component Hierarchy

As we can see Fig. 3, a hierarchy of components is maintained as a tree structure in
which each component can contained by at most one component node. Fig. 2 shows the
structure of hierarchical components. Each node is defined as a subclass of two com-
ponent layout manager classes, MDContainer or MDComponent, where the first
supports components, which can contain more than one component inside them and
the second supports components, which cannot contain any components. The runtime



system basically provides a node derived from the MDContainer class for compo-
nents, except for the visual components that is designed to have no inner components,
e.g., text-viewer and sound-player components. For example, when a component has
two other components inside it, the nodes that contains the two inner components are
attached to the node that wraps the first component. Component migration in a tree is
only performed as a transformation of the subtree structure of the hierarchy. When a
component is moved over a network, on the other hand, the runtime system marshals
the node of the component, including the nodes of its children, into a bit-stream and
transmits the component and its children, and the marshaled component to the destina-
tion.

4.3 Visual Layout Management

When a component contain components inside it, its MDContainer object is responsi-
ble for assigning its inner components and their rectangular estates within its estate, and
controlling the sizes, positions, offsets, and order of their estates. This framework pro-
vides an editing environment for manipulating the components for network processing
as well as for compound documents. The environment supports GUIs for manipulating
components. It also deals with in-place editing services similar to those provided by
OpenDoc [1] and OLE/COM [2].

Runtime system

Callback method

Callback method

Program

DataContext
object

Callback manager

Service 
methods

Component (Java object)

Component tree node

Internal program

Component layout manager
Component Runtime System

Component execution manager

Program

Data

Component B

Component layout manager

Component tree node

Program

Data

Component C

Component layout manager

Component tree node

Program

Data

Component A

component layout manager

Component tree node

Fig. 2. Component hierarchy and structure of components.

4.4 Components for Network Processing

Each component for network processing is designed to provide its service to its inner
components. A component can directly instruct its inner components to move to another
location, and can transform them. When a component wants a service, it migrates into
one of the components that can provide the service. We present four basic network
processing components for other components as outlined in Fig. 4.

– Forwarding: A forwarding component can redirect its inner components to other
places. When it receives a component, it automatically transfers the visiting com-
ponent to its specified destination.



MDContainer

size
position

size
position

component layout manager

program
data

MDContainer

size

position

component layout manager

Box Component

program
data

Component
tree node

program
data

MDComponent

Text Component

program
data

C

D

B

Image Component

MDComponent

Component 
tree node

Component
tree node

Component tree node

Window Component

Image view

Box Frame

Text

Window

Fig. 3. Component Hierarchy

Duplicator Component

Component A

Component A

Component A'

Synchronizer Component

Component A
Component B Component C

Forwarder Component

Component A
Component A

Component A

Component A

Component A

Component B

Component C

Carrier Component

Fig. 4. Basic components for network processing.

– Duplication:A duplicator component can create copies of its inner components in-
cluding all instance variables. When receiving the original components, the cloned
components have the same content as the original components.

– Synchronization:A synchronizer component can strand its inner components until
it can satisfy specified conditions. Within the notion of barrier synchronization, a
typical synchronizer component defines a group of moving components. Until it
receives all the components within the group, it strands the visiting components
inside it.

– Carrier:A carrier component can carry its inner components to other places. When
it receives a component, it encapsulates the visiting component within it and carries
the component to its own destination or the visiting component’s destination.

– Linking: A reference component is a representative of another component, which
may be located at a remote computer. When it receives a component, it fetches its
referring component for the visiting component.

The above components have properties that customize their processing and provide
support to GUI editors.

4.5 Security

Security is essential in active documents as well as mobile agents, because such doc-
uments run their own programs and access resources within the computers they visit.



The current implementation uses the standard JAR file format for passing components
that can support digital signatures, allowing for authentication. It also relies on the Java
security manager like existing mobile agent systems. To protect components frommali-
cious computers, the runtime system provides an authentication mechanism for compo-
nent migration borrowed from mobile agent research, so that each runtime system host
can only send components to, and only receive from, trusted runtime systems.

4.6 Current Status

We implemented the framework using Java language (JDK1.4 or later version), and we
developed various components for compound documents and network processing. Fig.
5 shows a screen-shot of this framework. The left window is a palette of part com-
ponents and the center and right windows are compound documents contained in the
components corresponding to GUI windows. When a user wants to place a compo-
nent on his/her editing compound document, he/she drags the wanted component from
the palette and then drops it on the estate of the document. Since the palette itself is
implemented as a container component of part components, it can migrate to another
computer and be saved in secondary storage. We can register new components, which
may be edited or modified, in the palette through GUI-based data-transfers, e.g., drag-
and-drop or copy-and-past operation.

Palette
component

Web-browser
component

Document
component

Rich-text
component

Image-viewer
component Carrier component

Box
component

Window
component

Clock
component

Text
component

Fig. 5. Examples of compound documents



Even though our implementation was not built for performance, we conducted a
basic experiment on component migration with computers (Pentium III 1.2-GHz with
Windows XP and SUN JDK 1.4.2). The time for component migration measured from
one container to another in the same hierarchy was 10 ms, including the cost of draw-
ing the visible content of the moving component and checking whether the component
was permitted to enter the destination component. The cost of component migration
measured between two computers connected through a Fast-Ethernet was measured at
64 ms. The cost was the sum of marshaling, compression, opening a TCP connection,
transmission, acknowledgment, decompression, security and consistency verification,
unmarshaling, visual space layout, and drawing of content. The moving component
was a simple text viewer and its size (sum of code and data) was about 9 KB (zip-
compressed). The latency of component migration was reasonable for a Java-based vi-
sual environment for exchanging compound documents between computers.

5 Experiences

We developed a variety of components based on this framework. This section introduces
several components and their uses.

5.1 Compound Document Letter

Most electronic mail systems disallow letters from traveling among multiple destina-
tions along their own itinerary. We developed a legacy decision-making system, called
ringi, for group decision-making, which has been widely used throughout Japan. When
an employee proposes something to his/her company, he/she describes the proposition
on a workflow document, called a ringi-sho. The document must be handed over to
all sections involved with the proposed issue. When the managers of the sections con-
cerned deem the proposal to be adequate, they give it their hanko, or their stamp of
approval. Fig. 6 shows a ringi-sho component, which is a carrier component with mul-
tiple destinations. It has a destination table whose frames are the areas that its receivers
stamp with their own hankos, where each hanko is a component and cannot be removed
or modified once it is applied at the frame. The carrier can contain more than one visual
component inside it and itineraries between the computers of its receivers until all the
receivers stamp their hankos.

5.2 Application-specific Document Distribution

The second example is an editing system for an in-house newsletter. Each newsletter is
edited by automatically compiling one or more text parts, which are written by different
people as we can see from Fig. 7. A newsletter compound document has one page com-
ponent, which can contain editor components for visual content, e.g., text and images.
When the newsletter is being edited, it forwards the page component to a duplicator
component to make as many replicas of the component as the number of writers. The
duplicator component then migrates the replicas to forwarder components so that each
of the page components is forwarded to a window component on its writer’s computer.



Text viewer (read-only) components 

Multiple destination table Stamp (hanko) component
Ringo-sho component

Fig. 6. Ringi-sho compound document.

When it arrives at the destination, it displays a window for its editor program on the
screen of the computer to assist the writer. Also, the writer can add his/her visual com-
ponents to the page component. It goes back to the document after the writer finishes
writing his/her text and then the document arranges the arriving components as a bound
set. Since the newsletter document, duplicator, and forwarder components are still mo-
bile, they can thus be easily deployed and coordinated according to the requirements of
applications.

migration

step 1

Computer A

Editor Components

Computer C

Computer B

migration

migration

step 2

Computer A

Computer B

Editor components

Computer

Editor 
component

Forwarding
components

Duplicator 
component

duplications
Editor components

Forwarding
components

migration

migration

migration

Duplicator component

Computer C

Newsletter component
Newsletter
component

Fig. 7. Newsletter editing system.

6 Conclusion

We presented a framework for network-enabled documents, including hypermedia. It
offers five basic network processing operations for documents, i.e., forwarding, dupli-
cation, synchronization, carrying, and linking. We can achieve various types of network
processing by combining these operations. Since the operations are implemented as



document components, they can be dynamically deployed at remote computers. More-
over, the framework provides a GUI-based editor not only for editing documents but
also for easily deploying document components for network processing at remote com-
puters.

To conclude, we would like to point out further issues that need to be resolved. Re-
source management and security mechanisms in the current system were incorporated
in a relatively straightforward way. These should now be designed to incorporate com-
pound documents. When a component migrates to another component or computer, its
visual resources, the size of its estate and colors, in the destination may not be the same
as those in the source. Although it must adapt its visibility to the resources available in
the current location, the current implementation relies on Java’s layout manager. The
programming interface for the current system is not yet satisfactory. We plan to design
a more elegant and flexible interface for programming components. We developed an
approach for the development and testing of software running on mobile computers.
We are interested in applying the framework to this approach [9]. This is because the
framework enables us to easily design and implement active and configurable graphical
user interfaces for mobile computers as well as stationary computers.

References

1. Apple Computer Inc. OpenDoc: White Paper, Apple Computer Inc, 1994.
2. K. Brockschmidt, Inside OLE 2, Microsoft Press, 1995.
3. P. Dourish et al, A Programming Model for Active Documents, Proceedings of 13th Sym-
posium on User Interface Software and Technology (UIST’2000), pp.41-50, ACM Press,
2000.

4. Y. Goldberg, M. Safran, and E. Shapiro, Active Mail - A Framework for Implementing
Groupware, Proceedings of ACM CSCW’92, pp. 75-83, ACM Press, 1992.

5. J. Morin, HyperNews, a Hypermedia Electronic-Newspaper Environment based on Agents,
Proceedings of HICSS-31, pp.58-67, 1998.

6. M. Potel and S. Cotter Inside Taligent Technology, Addison-Wesley, 1995.
7. I. Satoh, MobileSpaces: A Framework for Building Adaptive Distributed Applications Using
a Hierarchical Mobile Agent System, Proceedings of International Conference on Distributed
Computing Systems (ICDCS’2000), pp.161-168, IEEE Computer Society, April 2000.

8. I. Satoh, MobiDoc: A Mobile Agent-based Framework for Compound Documents, Infor-
matica, vol.25, no.4, pp.493-500, December 2001.

9. I. Satoh, A Testing Framework for Mobile Computing Software, IEEE Transactions on Soft-
ware Engineering, vol. 29, no. 12, pp.1112-1121, December 2003.

10. I. Satoh, A Compound Document Framework for Multimedia Networking, Proceedings
of 1st International Conference on Distributed Frameworks for Multimedia Applications
(DFMA’2005), pp.80-87, IEEE Computer Society, February 2004.

11. Sun Microsystems, Inc., Enterprise JavaBeans Technology (EJB)
http://java.sun.com/products/ejb, 2002.

12. D. L. Tennenhouse et al., A Survey of Active Network Research, IEEE Communication
Magazine, vol. 35, no. 1, 1997.

13. P. Werle, F. Kilander, M. Jonsson P. Lonqvist, C. G. Jansson, A Ubiquitous Service Envi-
ronment with Active Documents for Teamwork Support, Proceedings of 3rd International
Conference on Ubiquitous Computing (UBICOMP’2001), Lecture Notes in Computer Sci-
ence, vol. 2201 pp.139-155, Springer, 2001.


