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�is paper presents VISKA, a cloud security service for dynamically detecting malicious switching elements in so	ware de
ned
networking (SDN) infrastructures. �e main contributions of VISKA lie in (1) utilizing network programming and secure
probabilistic sketching in SDN environments to dynamically detect and isolate parts of the data plane that experience malicious
behavior, (2) applying a set of focused packet probing and sketching mechanisms on isolated network partitions/views rather than
focusing the security mechanisms on the whole physical network, (3) e�ciently analyzing the network behavior of the resulting
views by recursively partitioning them in a divide-and-conquer fashion to logarithmically reduce the problem size in order to
localize abnormal/malicious switching units, and (4) providing an attack categorization module that analyzes live ingress/egress
tra�c of the maliciously detected switch(es) solely to identify the speci
c type of attack, rather than inspecting the whole network
tra�c as is done in traditional intrusion detection systems. �is signi
cantly enhances the performance of attack detection
and reduces the load on the controller. A testbed prototype implementation is realized on the Mininet network emulator. �e
experimental analysis corroborated the algorithms’ convergence property using the linear and FatTree topologies with network
sizes of up to 250 switches. Moreover, an implementation of the attack categorization module is realized and achieved an accuracy
rate of over 90% for the di�erent attack types supported.

1. Introduction

�e next generation networking model adopted is the SDN
network architecture which is based on the separation of the
network control and con
guration logic from the network
switching logic, with SDN controllers having a 
ne-grained
control over network routing and recon
guration [1]. SDN
networks, as is the case with any packet switching network,
experience a major security risk represented in the malicious
operation of the network forwarding units. With the widely
adopted network and infrastructure cloud services, which
support network tenants with o�-premise network topolo-
gies, a compelling demand is realized for dedicated security
services at the data plane to ensure that the switching units
are not executing or participating in any active attack on
network tra�c.�is dedicated security service must provide,
with high con
dence, SDN tenants with su�cient guarantees

that the network they are running their applications on is free
of malicious activities on the data plane. Moreover, such a
service should (1) trigger security alarms in real time, (2) be
e�cient in applying the network monitoring/probing oper-
ations using compact data structures, and most importantly
(3) be speci
cally designed for securing SDN networks.

�e �exibility and programmability features of the
SDN network model provide appealing advantages for the
advancement of network autonomous creation and con
gu-
ration. �e introduction of the concept of data plane/control
plane separation signi
cantly facilitates network program-
ming and central control over the switching and routing
mechanisms of the global network view [2].

In this work, we present VISKA, a cloud security service
for SDN networks that tackles security breaches in the
switching data plane by leveraging network programming
and probabilistic sketching. �e main focus in the literature
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has been directed towards applying the security mechanisms
at the whole network without taking advantage of applying
these mechanisms at smaller subsets of the network to �ex-
ibly and dynamically localize misbehaving switching nodes.
VISKA, on the other hand, provides an e�cient probing
mechanism on the network data plane and recursively par-
titions it into independent subnetworks to reach and isolate
misbehaving activities at the switch granular level. �e SDN
control plane facilitates the isolation of the resulting network
partitions/views by updating the necessary switches �ow
tables.�e probing on each network view is carried out using
e�cient data summarization “sketches” that allow VISKA
to detect with high accuracy and minimal memory require-
ments malicious deviation from the network forwarding
behavior.When theVISKAprobing and sketching algorithms
are applied, the network view recursively gets divided by
nearly half the size. �e divide-and-conquer mechanism of
the network parts continues until the malicious switches
are localized. �is process is of great signi
cance to the
VISKA security service since it results in an algorithmic
complexity that is logarithmic in terms of the network size.
A	er localizing the malicious elements of the network, a
categorization mechanism is executed to detect the nature
of the data plane malfunction. �e malfunction could be a
benign behavior such as an administrative miscon
guration
in one or more switching units, an excessive communication
delay resulting from congested switches, or even a malicious
security attack. To provide exact attack categorization and
mitigation, a security module scrutinizes live network tra�c
using data mining and analysis on the real ingress and egress
�ows of themalicious switch(es) solely rather than inspecting
the entire network tra�c �ows as is the case in traditional
intrusion detection systems. �is signi
cantly enhances the
performance of attack detection and reduces the load on
the controller. �e output of this module identi
es the type
of attacks imposed by the maliciously detected switches.
Accordingly, the control plane provides the necessary control
plane mitigation mechanisms.

�e proposed algorithms are implemented and analyzed
on the Mininet [3] network emulation platform. �e exper-
imental analysis corroborated the algorithm’s convergence
property using the linear andFatTree topologieswith network
sizes of up to 250 switching units and comprising a de
ned
set of malicious elements. A highly appealing application of
the VISKA service is in the enforcement of net neutrality [4],
a concept that forces network providers to treat all network
tra�c and services equally on their networks.

�e rest of this paper is organized as follows: in Section 2,
we provide a comprehensive literature review of the main
SDN security models related to the work proposed in this
paper. Section 3 presents the VISKA threat model and
indicates the main security attacks that can be detected
by the proposed security service. Section 4 discusses the
security service design and presents the main algorithms
for realizing the detection and localization of malicious
switching behavior and the categorization of possible attacks.
In Section 5, we present a testbed implementation of the
proposed security service on the Mininet network emulator.
Conclusions are presented in Section 6.

2. Related Work

�e great promises proposed by the SDN networking archi-
tecture in terms of centralized network visibility and data
plane programming have dramatically increased this archi-
tecture’s adoption in both SDN-compliant hardware and so	-
ware services. Security is one of the top of the list challenges
facing SDN today, speci
cally when the network encom-
passes untrusted data planes whose switching components
are con
gured and managed by several external providers. A
lot of research works targeted the security aspects in modern
SDN networks. �e authors in [5] present a comprehensive
survey on the topic focusing on the modi
cation attacks that
might be executed on the network data by the programmed
forwarding units in the data plane. �e paper stresses on the
fact that the OpenFlow protocol speci
cation [6] mentions
the use of the Transport Layer Security (TLS) protocol [7]
for enabling the mutual authentication between the SDN
controller and the data plane switches and not among the
switches themselves. Moreover, this controller-switch TLS
authentication mechanism is optional in the speci
cation,
which renders most of the prominent SDN providers not
adopting this authentication mechanism. �is is the case in
themajority of open source controllers and switches. Accord-
ingly, this lack of TLS adoption can lead to successfulman-in-
the-middle (MITM) attacks that impersonate the controller
and manipulate the control messages exchanged between the
controller and the switches. OpenFlow does not consider any
formal security mechanism for switch-to-switch communi-
cation, which aggravates the possibility of e�ective MITM
attacks in the data plane. �e survey in [5] concludes by a set
of best practices that should be considered when deploying
SDN networks to moderate the security risks imposed by
logic centralization and data plane programmability.

A more focused survey on the security implications
resulting fromdata plane programmability is presented in [8].
In this paper the authors focus on the security vulnerabilities
that may arise due to the inclusion of state maintenance
primitives in the forwarding units of the SDN data plane.
�e main challenges here are system security attacks on the
switch’s memory and CPU and MITM attacks due to the
lack of authentication among the switches in the data plane.
�e paper presents detailed attack scenarios of the above-
mentioned vulnerabilities but does not provide any attack
mitigation mechanism.

In [1], the authors present a comprehensive security sur-
vey that summarizes the security threats of SDN frameworks
and categorizes them based on the layers and SDN interface
vulnerabilities. On the other hand, the survey discusses and
categorizes the security solutions based on the SDN net-
work programmability infrastructure. �e centralization of
network programming has introduced both security threats
and at the same time new and dynamic security solutions.
Most of the solutions involve middle boxes that enforce
the network security policy and adjustment in the security
monitoring and prevention capabilities. In [11], the various
SDN threats and vulnerabilities are discussedwith a thorough
analysis.�e work proposed a secure mechanism that targets
each introduced SDN threat vector including network OS
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replication, application level replication, and so	ware and
hardware solutions on the control plane to avoid common
mode faults and bugs and increase the network tolerance to
hardware and so	ware accidents and malicious behaviors.
Moreover, the authors introduced self-healing mechanisms,
isolated security domains, fast and dynamic network recov-
ery, and redundant switch-controller association mecha-
nisms.�is work represents a call for action to trigger further
research in SDN security solutions. In [12], the authors
tackle the problem of lack of trust in the network OS
and applications running on top of them where redundant
controllers were introduced to the SDN network and a new
layer is created to compare the output of the controllers and
ensure consistency among the controllers and the network
state and policies. �is paper lays the ground for designing
a trust scheme for redundant controllers in SDN.

�e work in [13] presents a formal veri
cation method-
ology to ensure the safety, security, and reliability of SDN
applications that have access to network monitoring APIs
using the OpenFlow [6] semantics. However, it introduces
some limitations in verifying the network reliability prop-
erties, which was justi
ed due to the complexities and
nonstandardized network topologies in SDN architectures.
FRESCO in [14] introduced anOpenFlow security application
framework, which facilitates rapid and dynamic creation and
deployment of security functions for attack detection and
mitigation at the OpenFlow layer.

In [15], the authors introduce a framework ofmultiple dis-
tributed controllers that coordinate SDN control to achieve
high scalability and security measures. �is is achieved via
a cluster-based mechanism that allows the dynamic addition
and removal of controllers to the network without network
interruption anddown time.Any type ofOpenFlow controller
can be used in the proposed framework where the switches
and applications are unaware of the underlying reassignment
of controllers. �e JGroups tool, introduced in [16], is used
to synchronize controllers and to ensure correct controller-
switch mapping. �is work recommends the deployment of
multiple redundant controllers in the SDN infrastructure
without any consideration to the performance and security
implications.

In [17], the authors proposed a security framework to
detect suspicious changes in network topology and the SDN
data plane. �e work uses the �ow graphs abstraction to
approximate the network operations and thereby detect any
suspicious deviation that may be considered as an attack.�e
main limitation of the work is that the detection mechanism
is nondeterministic and is dependent on the accuracy of the
�ow graph approximation mechanisms.

In [18], the authors presented a tra�c monitoring system
in SDNbased on sketches.�ismodel, named “Open Sketch”,
can support the detection of suspicious tra�c surges thatmay
spring as a result of a denial of service (DoS) attack on a
particular network part. �e main limitation in this work is
mainly related to the following points:

(1) �e monitoring operates on the physical network
layer of the SDN model, which, as stated previously,
renders it a traditional network security solution with

no focus on the advantages of network so	warization
and programming.

(2) So	ware engines running on SDN switches them-
selves carry out the sketch calculation and updates.
Trusting the switches in calculating the sketches can
falsify the resulting tra�c monitoring measurements
by compromised switches and accordingly can mis-
lead any security decision related to the source of
possible attacks.

(3) �e work mainly focuses on detecting suspicious
deviations in network tra�c (similar to [19]) and
does not address tra�c dropping, augmenting, and
modi
cation attacks.

Several research works have proposed the application of
machine learning (ML) techniques to provide intrusion
detection services in the SDN network architecture [20].
�ese approachesmainly focused onDeepLearning (DL) and
classi
cation algorithms to enhance the accuracy of the intru-
sion detection system and maintain low false posities rates.
In [20] the authors present a DL-based system for detecting
distributed denial of service attacks in SDN. �e system is
implemented as a network application on top of the POX
controller. DL is mainly employed for tra�c classi
cation
and for reducing the large set of features extracted for the
packet headers and needed for attack detection. �e main
limitation in [20] is the high processing resources it requires
on the SDN controller in the packet collection and features
extraction phases. In this DL model, every network packet
across the whole network is collected for feature extraction
which imposes a sizeable load on the SDN controller. �is
fact is aggravated in vast SDN networks composed of a
large number of forwarding switches in the data plane which
results in a serious bottleneck on the SDN controller. �e
VISKA SDN attack categorization model presented in this
paper targets the detection of more attack types in addition
to denial of service attacks such as interruption attacks,
blocking attacks, and man-in-the-middle attacks. Moreover,
VISKA imposes minimal overhead on the SDN controller by
isolating the source of attack using a highly e�cient probing
mechanism before proceeding with attack categorization.
As a result, the attack categorization module on the SDN
controller needs to collect the ingress/egress network packets
of a small set of switches that are detected malicious instead
of collecting the entire network tra�c.

A similar DL-based approach is presented in [21]. In this
work Tang et al. propose a �ow-based anomaly detection sys-
tem based on deep neural networks for intrusion detection in
SDN. �is model uses a limited number of network features
for attack detection for the purpose of enhancing the feature
extraction process. �e main limitation in [21] is represented
in the accuracy of attack detectionwhich reaches 75.75%.�is
renders it infeasible for competing with existing intrusion
detection systems or for application in commercial products.
In [22] the authors propose a framework for detecting and
classifying anomalies in SDN using information theory and
machine learning techniques. �e network tra�c pro
les
are collected using S�ow [23]. �e process consumes high
memory and processing power to analyze tra�c information



4 Security and Communication Networks

and inspect packets.�e resulting framework identi
es �ows
as malicious, benign, or unknown to be further analyzed.
In [24] the authors address DDoS attacks based on Support
Vector Machine (SVM) classi
cation algorithms in SDN
environments. �e design is based on the information col-
lected from the switches �ow table states. �e �ow table
information is used to create six-tuple characteristic values
based onwhich the SVMalgorithm classi
es tra�c as normal
or attacker abnormal tra�c. �e disadvantages of this work
are that it only addresses the DDoS attack on one hand; on
the other hand, the training phase has to be executed on
real network data and on predetermined periods of time to
ensure the correctness of the resulting classi
er model. �is
necessitatesmore computing resources and processing power
on the SDN controller. Similar ML-based intrusion detection
approaches are presented in [25, 26].

Part of the work presented in this paper appeared in the
proceedings of the IEEE International Conference on Com-
munications (ICC’17) [27]. We comprehensively improved
the article and added signi
cant extensions and technical
details to the protocol design and implementation addressing
delay attacks, early attack detection, and categorization.

3. Adversary Model

�e VISKA security service operates in a typical SDN net-
work composed of a set of physical switching elements (data
plane) con
gured and controlled by one or more controllers
(control plane). �e control plane is responsible of con
gur-
ing the data plane with the necessary �ow rules that form the
basis of the switching units’ �ow tables. �e communication
between the control and data planes is governed by the rules
of a protocol such as OpenFlow.

�e adversary model we consider in this work is repre-
sented by a set of switching nodes within the SDN physical
network. VISKA is capable of detecting, with high con
dence
levels, active attacks related to malicious or misbehaving
switch operation and localizing the source(s) of the attacks.
Active attacks mainly include packet modi
cation, packet
dropping, and packet injection, which induce a deviation
from the normal network behavior. �ese attacks are ana-
lyzed and categorized in order to further secure the data
plane and the control plane in the underlying SDN network.
Examples of such active attacks consist of one or more
switches colluding to

(1) inject malicious packets for the purpose of instigating
DoS attacks on both layers, data and control, of the
SDN network;

(2) drop network packets for the purpose of maliciously
occluding particular network �ows;

(3) augment network �ows with padding packets to
conceal the malicious e�ect of packet dropping;

(4) modify the contents of packets to cause tra�c rerout-
ing, to execute man-in-the-middle attacks, or to
poison particular network �ows;

(5) delay the forwarding of network tra�c to disrupt the
quality of service (QoS) of the SDN network.

VISKA assumes that the SDN controller is trusted and free
of malicious security vulnerabilities. In other words, the
controller is expected to be operated by legitimate adminis-
trative authorities and that it executes valid code that delivers
authentic �ow rules to the data plane switching units.

�e VISKA service can be divided into two complemen-
tary modules: (1) packet probing-based security module for
detecting malicious data plane elements; (2) real network
data-based module for categorizing attacks and creating
signatures for novel attacks within the SDN network.

�e VISKA security algorithms are designed to operate
in a highly malicious SDN environment and can tolerate
relatively large number of misbehaving switches. �is comes
at the expense of the time complexity of the attack localization
algorithms as will be demonstrated in Section 4.5. �e
accurate localization of the attack source highly facilitates
the process of mitigating the attack. �is is one of the great
security advantages provided by the VISKA service. �e
mitigation strategy proceeds by 
rstly ceasing the malicious
switch(es) forwarding activities and reporting this action,
together with the details of the categorized attack, to the SDN
service provider. �e latter can administratively execute the
necessary technical actions to inspect and possibly rectify
the con
guration and operational context of the malicious
source(s) to resume its/their forwarding activities by leverag-
ing the control plane global network view and the OpenFlow
protocol.

4. System Design

�e VISKA service architecture, as depicted in Figure 1,
utilizes network programming for recursively partitioning
the SDN data plane. �e controller routing and forwarding
achieved through OpenFlow messages on the data plane
allow for the segregation of network partitions, consequently
isolating parts of the SDN network referred to as views that
would recursively map to the malicious switches, if any. To
achieve the goal of localizing maliciously behaving switches,
a graph-theoretic partitioning algorithm recursively divides
the data plane network into two equal-degree network parti-
tions that haveminimal interconnecting edges. Each network
partition is probed by a set of data packets dynamically
generated by a probing module on top of the SDN controller.
�e controller probing module consists of two processes, a
sender process (Ps) responsible of generating and pushing the
probing packets into the data plane, and a receiver process
(Pr) responsible of receiving the probing packets from the
data plane.�e routing of the probing packets from Ps to Pr is
transparently updated by the SDN controller in the switches’
�ow table entries.

To achieve the goal of real-time detection of malicious
activities in the network data plane, the Tug-of-war sketch
data structure is employed on the probing streams. Sketches
are probabilistic data structures that compactly represent the
frequency of occurrences of items in data streams using a
hashing function in sublinear space. Sketching algorithms are
adopted in this work due to their e�cient summarization
of large data sets which allows VISKA to detect deviations
in detect abnormal switch behavior in real time. For each
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Figure 1: VISKA’s conceptual SDN design. S(D1) and S(D2): the source and destination sketch data structures, TSAs and TSAr: the sender
and receiver time stamp accumulator data structures, and Vals and Valr: the sender and receiver validity vectors.

probing time interval �, the computations of summarized
sketches of the probing packets are generated at Ps and
are appended with a timestamp accumulator indicating the
packets’ transmission time, ��. �e sketch data structure and
the timestamps are sent to the active security service in
the cloud for inspection. Analogously, the receiver process,
Pr, computes and sends the sketch of the received probing
packets and the corresponding packet receipt timestamps.
�e VISKA cloud security service algorithms compile the
data structures received from Ps and Pr in order to

(1) recognize the levels of deviation between the data
sketches of the sent and received probing packets,

(2) compute the average time delay on the probe path
based on the sent and received timestamp accumu-
lators.

�e VISKA algorithms use these computations in order to
decide on the probability of malicious switch behavior in the
corresponding network partition and furthermore categorize
the type of attack in the infected regions of the network by
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inspecting the real tra�c on the egress and ingress ports of
exclusively the maliciously detected switch(es) and not of the
whole network tra�c.

�e VISKA algorithms are thoroughly elaborated in the
following subsections. It is worth mentioning here that the
VISKA procedures utilize sizeable probing data streams and
timestamps to ensure the accurate detection of misbehaving
switches along the recursively generated network partitions.
Sketching data structures in such setup lead to major
reduction in computational complexity, better utilization of
storage, and as a consequence, a performance-e�cient real-
time malicious detection.

4.1. �e View Probing and Sketching Algorithm (VPS). �e
View Probing and Sketching (VPS) algorithm produces
sketch summaries of the probing data at the source and
destination controller processes by utilizing the Tug-of-war
sketching algorithm [28]. �e probing packet stream (� :(�0 → �

V
)) is sent from Ps to Pr by traversing all the switches

in a given network view. A probe-route module running on
the SDN network controller pushes the necessary forwarding
rules to ensure that the probing packets visit each switch in
the corresponding network partition.

At Ps and Pr, the probing stream � is fed to a sketch
engine to produce a compact sketch representation �(�) that
is sent to the cloud security service for analysis. For each
probing packet ��, a four-wise independent hashing function�[��] is applied, which uniformly maps to a pair of values:
an index � in the sketch vector and a value V in {−1, +1}; V
is added to �(�) at index �. �e timestamp is appended by
the controller probing processes to the sketch data structure
corresponding to the sent and arrival times, respectively,
using accumulator data structures, as will be explained later
in this section.

�e sketch representation of the corresponding probing
data stream is evaluated as the summation of the dot product
of the hashed values and the data stream as follows: �(�) =∑V

�=0 �� ⋅ �[��] which is a randomized linear projection of
the input data stream. �e resulting �(�) vector at time � is
sent to the cloud security service for analysis. �e linearity
property of Tug-of-war sketch indicates using the same family
of pseudorandom hashing functions, �, on two sets of data
streams, �1 and �2, then for any constants � and �, ��1 +��2 = as(�1) +bs(�2).�is linearity property is essential for
estimating the di�erence between the two probe data streams
(sent and received) along a network partition.

As a result of the linearity of this sketch based on [28], the
second norm di�erence between the two received sketches
re�ects any deviation between the sent and received data
streams subject to an 
 error and with minimum probability
of (1 − �); thus
����� (�1) − � (�2)����2 = Δ,

where Δ = (1 ± 
) × �����1 − �2����2
(1)

�e sketch’s second norm di�erence estimation results in
a more accurate representation of the deviation between
the corresponding data streams. Such deviation indicates a
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Figure 2: VISKA’s sketch data structure on probing data.

malicious activity if Δ is greater than a preset threshold, �.
�is probing and sketching procedure is repeated every time
interval � to detect abnormal switch behavior in real time.

�e Tug-of-war probabilistic sketching algorithm was
adopted in the security model because of its light-weight
processing requirements which typically consists of simple
hash function calculations. Moreover, the relatively small
sized sketch data structure representation relative to the
number of probing packets it summarizes induces minimal
overhead for network transmission and reception as well
as storage. �e sketches �(�1) and �(�2) represent a com-
pact hash representation of the probing data streams with�((1/
2) log(1/�)) computations where 
 is the error and(1 − �) is the con
dence level. Considering the network and
storage overhead imposed by the sketch representation, each
sketch data structure is comprised of � counters of � bits
each where � = 1 + (1/2) log(4(�/�) ln(200�/�)). �is is
comprehensively described in Section 4.5.

�e timestamp accumulator (TSA) data structures are
created and computed at the sender and receiver processes
concurrently with the sketch creation for the aim of detecting
delay-causing attacks or otherwise network congestion. Each
probe packet is further hashed to a value � which is utilized
as an index in the TSAr and TSAs vectors. �ese vectors
represent the summation of the timestamps of the probing
packets that map to the hash value � at the controller sender
and receiver processes, respectively.

Figures 2 and 3, respectively, describe the sketch and
timestamp accumulator data structures on the probing data.
Each outgoing probing packet is passed to the sketch engine
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Figure 3: VISKA’s timestamp accumulator data structure.

represented by the funnel symbol in Figure 2, to output an
index � and a value V in {−1, 1}, which is appended to �(�1) at
position �. �e hashing function ℎ is invoked on each packet
to yield the index {−1, +1} at which the timestamp of that
packet is appended in the TSAs and TSAr vectors. When
the probing stream is entirely transmitted, the sketch �(�1)
comprises the corresponding sketch values and each TSAs

entry represents the sum of the time stamps of the packets
according to the hash value mapping to TSAs entry indices.
In order to ensure the correctness of the packets timestamps,
a validity vector (Val) is updated for each probing packet to
count the number of packets according to their hashed value.
Each time a timestamp is appended at index �, and the validity
vector is incremented by one at that same index. Ultimately,
the probing packets are sent to the controller process Pr while�(�1), TSAs, and the validity vector Vals are transferred to the
VISKA cloud service for analysis.

Analogously, at the controller probing process Pr, the data
structures �(�2), TSAr, and Valr are created and calculated.
�ese data structures are sent to the VISKA service for
comparison and malicious activity detection.

�eVPS algorithm calculates the second norm di�erenceΔ of the two sketches �(�1) and �(�2) received at the VISKA
service. If Δ is greater than a preset threshold �, the network
is considered malicious and the attack categorization and
summarization module MACM is invoked. On the other
hand, the di�erence in the sent and received timestamps is
calculated on the probing stream by the following:

(1) First, check that the validity vectors from sender and
receiver at each index � are equal; this indicates that
the corresponding packets are successfully received
and the timestamp counters at that index � are valid.

(2) �e timestamp di�erence TSAr[�] − TSAs[�] is cal-
culated and added to the total ΔTSA, which is the
total di�erence in timestamp of the current probing
stream. �e total time ΔTSA is divided by the sum
ValCount of the corresponding valid packet counts
in vector Vals and Valr. �is results in the average
time delay of the correctly received probing stream as
described in

� = (TSAr − TSAs)
ValCount

(2)

If the value of � exceeds a threshold Γd, the net-
work is considered malicious. Otherwise, if the time
delay is greater than the congestion threshold Γc, the
corresponding data plane elements are considered
congested.

�e values of Γd and Γc depend on the overall network
round trip time (RTT). Since RTT can change from
one probing period to the other (even within an
individual probing period), the values of Γd and Γc
dynamically change based on this variation in RTT.
To maintain a smooth variation in the values of Γd
and Γc we followed an algorithm analogous to the
retransmission timer calculation algorithm followed
in TCP [29]. �e details of the Γd and Γc calculations
are presented in the following smoothing equations
using the estimators mRTT and vRTT, respectively,

representing the mean and variance of RTT in the �th
probing period.

mRTT�+1 = � × ��� + (1 − �) ×mRTT� (3)
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vRTT�+1 = � × (������� −mRTT�
����) + (1 − �)

× vRTT�+1
(4)

Γ��+1 = mRTT�+1 + 4 × vRTT�+1 (5)

Γ��+1 = 2 × Γ��+1 (6)

�e gains � and � are set to 1/4 and 1/8, respectively.
In the 
rst probing period the mean and variance
estimators are set as follows:

mRTT1 = ���;
vRTT1 = ���/2.

(3) Finally, if the two values Δ and � are within safe
boundaries, the network is interpreted as normally
operating.

A	er sending each sketch data and timestamp data struc-
tures, the probing hosts �ush them to compute the following
interval sketch.

�e TLS protocol is implemented on the controller
probing processes to ensure the integrity and authenticity
of the source and destination sketches when transferred
to the cloud service over the network links. When the
VISKA service is to be adopted and executed in a real-
world environment, it is very important to masquerade the
patterns of the probing packets introduced in the network
to prevent any malicious node ability to recognize VISKA
functionality. �is is addressed in the same sense wherein
the so	ware-based control on the probing processes and
their parameters provide the VISKA probing module the
control on randomizing certain 
elds in the probing packets
IP header (e.g., Identi
cation, TTL, Options and Padding,
and ECN 
elds), the data sections are randomized to conceal
any deterministic features that may reveal the probing nature
of these packets.

It is worth noting here that the feasibility of using the
timestamp accumulator data structure relies on the accurate
time synchronization among the system clocks of the nodes
in the network. To achieve this, we utilize the control plane
centralization property of the SDN architecture by deploying
a Network Time Protocol (NTP) [30] server on the SDN
controller. NTP is the de facto standard in achieving high-
quality time synchronization in modern Internet networking
infrastructures. Relying on the local SDN controller in time
synchronization instead of utilizing a remote NTP public
server aids in a more precise time synchronization by avoid-
ing the asymmetrical latency delays incurred by the NTP
time packets exchanged between the probing module and
the public time server. �is results in a maximum of 0.5
to 1.5 msec time lag between any two network nodes. �is
is su�cient for correct operation of the VISKA timestamp
accumulator realization.

4.2. �e Network Views Partitioning Algorithm (NVP). To
guarantee malicious-free switch behavior at the network data
plane, the correct network functionality should be checked
at the switch granularity level. In order to minimize the

executions of the VPS algorithm, described in Section 4.1, in
checking the physical switches, the SDN network is recur-
sively partitioned into two semiuniform network partitions.
Each resulting partition is probed for possible sources of devi-
ation in the forwarding mechanism. Only partitions marked
as malicious will be further subdivided using the NVP algo-
rithm. In this sense, the NVP algorithm generates the net-
work partitions and feeds them to the probing algorithmVPS
to check any deviation in the corresponding current network
partition. If the VPS algorithm indicates an above-threshold
deviation in the sketch calculations and/or the timestamp
analysis, the VISKA service recursively executes NVP to
partition the respective network topology into two separate
network views with minimum interconnecting edges. �e
two resulting network partitions are fed separately to the
VPS algorithm at the controller for subsequent behavior
check.�is recursive partitioning method is applied until the
algorithm isolates the source of maliciousness in the data
plane, if present.

�e e�cient real-time detection and localization of mal-
function were fully achieved in VISKA by ensuring the segre-
gation of the network partitions owing to the programmable
SDNnetwork architecture. Twomain approaches contributed
to the feasibility of isolating the problem within separate
network views:

(1) Karger’s randomized algorithm for generating min-
imum graph cuts [31] was adopted in the NVP
algorithm in order to partition the network graph
into two separate sets (mapped to the corresponding
network partitions) with minimum interconnecting
edges.

(2) A probe-route module is executed on the SDN
controller for the probing packets to traverse the
switches incorporated within a network view. �e
controller pushes the necessary rules to the data
plane switches to restrain the probing data stream to
the corresponding network partition, thus ensuring
network views segregation.

�is recursive partitioning of the network views isolates the
malfunctioning views, which results in a near logarithmic
time complexity in the size of the network.

Karger’s graph cut algorithm is based on the contraction
of edges and merging the nodes in a connected unidirec-
tional graph �( , !). �is algorithm continues by randomly
selecting nodes and merging them iteratively until the graph
is reduced into two sets represented by two vertices. �ese
two sets remain connected; to minimize the connecting
edges between the two sets, Karger’s algorithm repeats this
contraction procedure a prede
ned number of times until a
minimum graph cut is produced between the two partitions
with a high probability. For a graph of  vertices and ! edges,
Karger’s contraction method returns a minimum graph cut

with a probability of success: Pc ≥ ( �2 )−1 and a probability of
not attaining a minimum cut of Pnc ≤ 1/ 

�e algorithm randomly repeats the contraction proce-
dure � = ( �2 ) ln( ) times in order to arrive at a minimum cut
in time complexity of �(� ⋅ !) = �( 2! log  ).



Security and Communication Networks 9

In summary, the network topology graph is input to
the NVP partitioning algorithm, which outputs two sets of
switches constituting two separate network partitions with
minimum interconnecting edges. Each partition is fed to the
VPS algorithm to check if any malfunctioning is present.
Depending on the output of the VPS algorithm, a network
view/partition is either rendered correctly functioning and is
thus discarded, or malfunctioning and thus, it is recursively
partitioned by the NVP algorithm until the size of the
switches in the respective partition is less than or equal to a
minimum,$.

4.3. �e Malfunction and Attack Categorization and Sum-
marization Module (MACM). �e 
rst stage of the VISKA
service operation is the VISKA malicious switch detection
(Sections 4.1 and 4.2) where the VISKA VPS algorithm
returns the switch(es) that was/were classi
ed as malicious.
�e second stage of the VISKA service is the MACMmodule
which is responsible of identifying and categorizing the
attacks induced by the malicious network elements. �e
MACM module is invoked in Algorithm 1 in the VPS
function when a malicious activity is detected. �is stage is
essential for securing the SDNnetwork provider services.�e
SDN provider utilizes the VISKA service to detect malicious
operation in its data plane. VISKA aids in guarding against
an important set of attacks that initiate in these network
infrastructures such as DoS, interruption, blocking, delay,
and man-in-the-middle attacks. �e second stage of the
VISKA service, the MACM, primarily identi
es two classes
of data plane malfunction:

(1) �e distorted tra�c malfunction class (CatI), where
the second norm di�erence of the sent and received
sketches is beyond a preset threshold �, which re�ects
a malicious deviation in the probing stream intro-
duced by the data plane elements of the current
network partition.

(2) �e time delay malfunction class (CatII), where the
packets are received by the probing host correctly (no
signi
cant sketch di�erence is recognized Δ < �);
however, the average time delay of the transmitted
probe packet stream is beyond a normal network
congestion value, � ≥ Γd.

In the case of CatI malfunction detection, the maliciously
categorized data plane switching elements are further inves-
tigated to summarize the attack in order to deduce and block
probable network wide malfunction.

�e egress and ingress tra�c of the malicious detected
switches are collected for certain time periods �� in order
to categorize and summarize the investigated attack. �e
SDN infrastructure is utilized in investigating the tra�c
ingress and egress of the malicious switches by forwarding
tra�c in and out of the malicious switch to the controller.
�e set of switches, $�, that are one-hop away from the
malicious switch in the network, are primarily identi
ed. A
data collecting module running on the controller sends the$c switches the necessary action rules that dictate sending
all packets having the malicious switches as their next hop

to the controller. �e controller monitoring module utilizes
data mining features on the periodically collected data to
categorize and summarize the attack or otherwise specify the
malfunction as a benign behavior.

In order to achieve anomaly categorization and early
stage attack detection, the VISKA cloud service primarily
identi
es the malicious switches in the VPS and NVP
algorithms. Next, the VISKA MACM algorithm exploits
the SDN controller centralized network programmability
to capture the egress and ingress tra�c of the malicious
switches on the controller as depicted in Figure 4. �ese
packets are 
rst prepared and analyzed by grouping them
according to source address, destination address, source port,
and destination port. Important packet header 
elds are
stored and grouped at the controller and are prepared for
comparison and categorization at the VISKA cloud service to
identify and specify potential network attacks. �e MACM
process consists of the following three phases.

Phase 1. �e analysis of the egress and ingress tra�c of the$ switches is demonstrated in Figure 5. �e packets are
sent by the malicious switches neighbouring switches ($�) to
the controller. �e controller in turn captures these packets
and passes them to the MACM module, which stores the
necessary header information of the captured packets. �e
collected data is prepared and grouped according to speci
c
header 
elds in information tables.

In Figure 5, two hashing functions are applied on spe-
ci
c 
elds of the packets’ headers in order to 
nd certain
patterns and characteristics in the captured tra�c for time
intervals ��. First, the packets’ destination IP addresses are
input to the hashing function hashd. Packets with the same
hashed destination IP address are aggregated. �e resulting
E Dest table includes the packet information categorized by
their corresponding destination IP addresses. Analogously,
another hash function hashs is applied on the source address
of the captured packets to categorize and prepare the source
address aggregation table (E Src).

�is procedure of hashing and aggregation is done on
both egress and ingress tra�c to prepare the data for analysis
by the MACM algorithm. �e prepared attributes that are
stored for analysis in the aggregation tables for each packet
include the source IP, destination IP, transport protocol,
SYN packet, and ACK packet �ags. �is collected packet
information is ready to be analyzed in phase 2.

Phase 2. �e tra�c information tables collected in phase
1 from the egress and ingress ports of the malicious data
elements are analyzed, and certain features are extracted for
the purpose of attack categorization. �e following is a list
of the parameters and features characterizing the collected
packets:

(1) I Sum(): the sum of the size of the ingress packet �ow
in bytes.

(2) E Sum(): the sum of the size of the egress packet �ow
in bytes.

(3) I count(destIP): the number of ingress packets with
the same destination IP, destIP
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VISKA Malicious Switch(es) Detection/Attack Categorization Algorithm
Let G be the graph representing the SDN network
Let n be number of switches in G
Let e be the number of edges in G
Let V be the granular network view/partition to be checked for maliciousness. Initially V = G
Let m be the maximum malicious partition size ($ = 1 to reach single switch granularity)
Let ��, �� be the controller probing processes allocated for probing the bootstrapping network view V
VISKA(V, ��, ��)

If (VPS(V, ��, ��) = malicious)
if ( <= $)
return V (containing malicious switch)

else
(V1, V2,��, ��) = NVP (G, n, e)
VISKA(V1, ��, ��)
VISKA(V2, ��, ��)

else return (correct or congested partition behavior)
VPS: View Probing and Sketching function
VPS(V, ��, ��)

Randomly Generate probing data D1(�1 . . . ��) at ��
and send to ��
sketch: create sketch data vector � = 0, and TSAs = 0, counts=0 at ��
for each V packet �

V
in D1

compute (�, value) = ��[�V
]

insert at index � in sketch �(�1) vector:�(�1)�+ = V�%&!
compute (�) = ℎ(�

V
)�'*��+ = �! � ��$!���$-(3�)�+ = 1

send: �(�1), �'*�, 3�%� to VISKA service for analysis
Compute: (steps sketch through send) on �� to generate and send V!��56� �(�2),�'*6, � � 3�%	
At VISKA

count=0Δ = |s(D1) − s(D2)|2
for � from 1 to �

if 3�%�� = 3�%	�Δ
��+ = �'*6� − �'*��
ValCount+ = (3�)�� = Δ
��/ValCount

if Δ ≥ threshold � or � ≥ Γ�
return malicious, call MACM (Δ, �)

else if � ≥ Γ�
return correct, congested

else
return correct

NVP: Network Views Partitioning Function
NVP (G, n, e)

(G1, G2) = Karger(G, n, e)
Insert forwarding rules for the probing packets
on controller
At the SDN network controller

(i) Isolate network partitions V1, V2 corresponding
to the Karger output (G1, G2)
return(V1, V2, ��, ��)

MACM: Malfunction and Attack Categorization Module
MACM (Δ, �)

if  ≤ $
if Δ ≥ �7��9 = 1 (attack ∈ to Category I where an active attack is being initiated in the network)

else // � ≥ Γ�7��99 = 1(attack ∈ to Category II where a time delay introducing attack is introduced in the network)
if 7��9 = 1
malicious switch(es) ingress and egress tra�c is collected and mined:
if E Sum( )/I Sum( ) > ΓEd

Algorithm 1: Continued.
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for each destIP in table E Dest
if (E Sum(destIP)-I Sum(destIP)> Γdos) AND
(E count(destIP) – I count(destIP)> Γp)

alarm: DoS on destIP (Flooding)
if (E count ACK(destIP)-E count SYN(destIP) < Γcon)
AND (E Avg(destIP)< Γsyn) AND ((E count(destIP)
– I count(destIP)> Γp)

alarm: DoS on destIP (SYN attack)
else if E Sum()/I Sum() < ΓId

for each destIP in table E Dest
if (E count(destIP) – I count(destIP))< Γbh

alarm: interruption of tra�c to destIP
else // E Sum()/I Sum() within boundaries)

for each destIP in table I Dest
if (dest-IP is not in E Dest) AND

(I count(destIP)- E count(destIP) < Γbh)
alarm: blocking on dest IP

for each srcIP in table I Src
if (srcIP is not in E Src) AND (I count(srcIP)-
E count(srcIP) < Γbh)

alarm: blocking on srcIP
for each destIP in E Dest

if destIP is not in I Dest AND
E count(destIP)> Γmitm

alarm: MITM attack at destIP

Algorithm 1: VISKA algorithms.

Table 1

E Sum(destIP) E count(srcIP) E count srcIP(destIP)

E Avg(destIP) E count(destIP) E count SYN(destIP)

E SD(destIP) E count ACK(destIP)

(4) I count srcIP(destIP): the count of the di�erent
source IPs for the ingress �ows with the same desti-
nation IP, destIP.

(5) I Sum(destIP), I Avg(destIP), I SD(destIP): the sum,
average and standard deviation, respectively, of the
size of the ingress packet �ow with the same destina-
tion IP address in bytes.

(6) I count SYN(destIP), I count ACK(destIP): the
number of ingress packets of type SYN and ACK,
respectively, with the same destination IP address.

(7) I count(srcIP): number of ingress packets with the
same source IP, srcIP.

(8) I count SYN(srcIP), I count ACK(srcIP): the num-
ber of ingress packets of type SYN and ACK, respec-
tively, with the same destination IP address.

Similarly, the parameters computed for the egress tra�c
are shown in Table 1.

Phase 3. �e information tables, the features, and the char-
acteristics of the ingress and egress data, which are collected
and computed in phases 1 and 2, are subsequently utilized
and analyzed to categorize the network attacks induced by

the$ switches.�e following is a list of theMACM identi
ed
attacks.

(1) DoS on the Controller. �e egress tra�c is checked
for packets where the controller is the destination address
including packet-in messages from the malicious switch. If
the number of these packets exceeds a certain permitted
threshold for normal network operation Γc, then the switch
is considered “DoSing” the controller.

(2) DoS on Network Node. �is attack could be on a host
or switching element in the network. �is is identi
ed by
checking the count of the egress packets with the same
destination address.When this count is larger than that of the
ingress packets and at the same time it is beyond a threshold,Γdos, the corresponding destination is detected to be DoSed,
and further analysis is done by the network administrator to
identify the rival attack. �e VISKA algorithms utilize the
SDN centralization and programmability features for early
detection of such DoS attacks on the network nodes in real-
time and in early stages. As a result, the VISKA service
secures the tenants SDN network against presumable DoS
attacks.

(3) Data Blocking Attack. �is intruder attack selectively
blocks tra�c to speci
c destinations in the network for
the aim of inducing erroneous network operation. Such
attacks decrease the tenants’ trust in the corresponding
SDN network provider. To avoid this, the VISKA MACM
algorithms inspect the ingress and egress packets of the
malicious switches (detected by the VPS VISKA algorithms)
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Figure 4: Ingress/egress tra�c capture at the controller of the$ switches neighbouring switches$�.

and if the egress tra�c is found to be less by a certain
network permissible threshold, Γbh, from the ingress one,
the malicious switches are identi
ed to be blocking network
tra�c. �e blocking attack is therefore detected on the
destination address or from the speci
c source address in
the investigated network tra�c. �e IP addresses of the
captured packets that were blocked are further analyzed and
the involved network elements are inspected by the network
administrator.

(4) Man-in-the-Middle (MITM) Attack. VISKA algorithms
detect MITM attacks at very early stages in real-time. MITM
attack prevention is of high signi
cance to network tenants to
ensure network con
dentiality and integrity in the cloud.�e
MACMcaptures packets at themalicious switches and checks
the homogeneity of all source-destination packet �ows on the
egress and ingress ports of the malicious switch. If the �ows
are not homogeneous within a certain permissible network
limit, the packets are further investigated by checking the size
of tra�c to a single unique destination address with the same
group of source addresses in the corresponding �ows. �is

destination IP does not appear in the consequent �ows on
the ingress ports and concurrently, the count of the source
addresses is the same as the investigated source address
classi
ed packet counts.�erefore, the samepackets are being
forwarded to another destination host, which indicates a
MITM attack.

Note that the attack detection mechanism is extendable
to address additional attack categories based on tenants’
demands and for speci
c network requirements. �is is
made feasibly by leveraging the controller’s programmability
features in SDN platforms and the modular VISKA attack
detection module design.

�e VISKA attack detection and categorization algo-
rithms are summarized in Algorithm 1. A block diagram
summarizing the architecture of the VISKA algorithmic
modules and their interaction is illustrated in Figure 6.

�e values of the thresholds in the MACM module are
set empirically and are bounded in the ranges depicted in
Table 2.�e threshold values are dependent on themaximum
throughput of the switching elements in the data plane, the
average packet size, the time of ingress/egress �ow collection,
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Figure 5: Egress �ow summarization aggregated based on source and destination IPs (analogous hashing structures are applied on the Ingress
tra�c).

Table 2: Attack detection threshold ranges.

Attack type �reshold(s) Range

Denial of Service Attack

(1 + ?
) ≤ ΓE� ≤ 3 × (1 + ?
)⌊Ρavg × Cmax × �� × ?
⌋ ≤ Γdos × 105 ≤ ⌊2 × Ρavg × Cmax × �� × ?ℎ⌋
⌊ΓdoslowΡavg ⌋ ≤ Γp ≤ ⌊ΓdoshighΡavg ⌋

Interruption/Blocking Attack ⌊Cmax × �� × H
⌋ ≤ Γbℎ × 105 ≤ ⌊Cmax × �� × Hℎ⌋
Man-in-the-Middle Attack ⌊Cmax × �� × J
⌋ ≤ Γmitm × 105 ≤ ⌊Cmax × �� × Jℎ⌋

and the minimum and maximum percent of packets gen-
erated at the maximum switch throughput in the collection
time period that are necessary to initiate a particular attack.
�is network-speci
c speci
cation of the threshold ranges
facilitates a more accurate threshold selection mechanism in
real SDN network environments. �e individual threshold
range parameters for each attack type are presented in
Table 2.
Ρakg is the average size of a packet in the deployment

network.
�max is the maximum throughput of the switching

elements in the deployment network.
�� is the data collection time period used by the MACM

module.
��, �ℎ are, respectively, the minimum and maximum

percent of packets generated by the malicious switching
element at themaximum throughputCmax in the time period

�� (multiplied by a factor of 10−5) necessary to initiate a DoS
attack.
��, �ℎ analogous to ?
 and ?ℎ, H
, and Hℎ are, respectively,

the minimum andmaximum percent of packets generated by
themalicious switching element at themaximum throughputCmax in the time period �� (multiplied by a factor of 10−5)
necessary to initiate an Interruption/Blocking attack.
��, �ℎ analogous to ?
 and ?ℎ, J
, and Jℎ are, respectively,

the minimum andmaximum percent of packets generated by
themalicious switching element at themaximum throughputCmax in the time period �� (multiplied by a factor of 10−5)
necessary to initiate an Interruption/Blocking attack.

According to the nature of the detected attack in the
network, the controller mitigates the attack by sending the
necessary �ow rules to isolate and suspend the operation
of the maliciously detected forwarding element in the data
plane.
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Figure 6: VISKA general architecture.

4.4. Algorithm Complexity and Convergence Analysis

4.4.1. Analysis of theMalicious Switch Detection Functions. In
this section, we provide a mathematical complexity analysis
of the worst case, average case, and best case running
times of the VISKA malicious switch detection algorithms
as a function of the network size. Moreover, we present
the cost of the MACM malfunction and attack catego-
rization algorithm invoked when a malicious activity is
detected.

Worst Case Analysis. �e worst case scenario arises when
a malicious behavior is detected by the VPS function in
every recursive network partition provided by the NVP
partitioning function. �e worst case runtime complexity�( ) is given by

�� ( ) = 2�� ( 2) + Cost (NVP) + Cost (VPS) (7)

where  is the network size and Cost(NVP) and Cost(VPS)
are the costs of running the NVP and VPS functions, respec-
tively. �e multiplicative factor of 2, in 2��( /2), indicates
that the recursive steps are applied on the two network

partitions produced by the NVP function. �is case arises
when the VPS algorithm detects malicious activity in both
network views. From the previous subsections

Cost (NVP) = � ( 2! log  )
and Cost (VPS) = �( 1
2 log 1�) .

(8)

Substituting in (3) we get

�� ( ) = 2�� ( 2) + � ( 2! log  ) + �( 1
2 log 1�) (9)

Note that�((1/
2) log(1/�)) depends on the size of the sketch
data structure allocated on the controller probing module.
Since it does not depend on the network size  , it can be
replaced by a constant 7 in (9) to get

�� ( ) = 2�� ( 2) + � ( 2! log  ) + 7 (10)

Solving the recursive equation in (5), we get a closed form

worst case runtime complexity of �( 2!(log  )2).
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Table 3: VISKA worst case complexity analysis summary.

Term Meaning Value

�� ( )
�e worst case runtime complexity of the VISKA
malicious switch detection algorithms.  designates the
network size.

2�� ( /2) + Cost (NVP) +
Cost(VPS)

Cost (NVP) �e worst case runtime complexity of the Network
Views Partitioning function. �is is typically the cost of
the Karger algorithm.

� ( 2! log  )

Cost (VPS)
�e worst case runtime complexity of the View Probing
and Sketching function. �is cost depends on the size
of the sketch data structure and not on the network
size. Accordingly it can be replaced by an constant 7.

� ((1/
2) log (1/�))
�� ( ) A	er solving the recurrence relation in Equation (5). � ( 2!(log  )2)

Table 4: VISKA average case complexity analysis summary.

Term Meaning Value

��( )
�e average case runtime complexity of the VISKA

malicious switch detection algorithms.  designates the
network size. Note that ��( /2) is not multiplied by a
factor of 2 since the recursion is only applied on one

network partition.

�� ( /2) + Cost (NVP) +
Cost(VPS)

Cost (NVP) �e worst case runtime complexity of the Network
Views Partitioning function.

� ( 2! log  )

Cost (VPS)
�e worst case runtime complexity of the View Probing
and Sketching function. �is cost depends on the size
of the sketch data structure and not on the network
size. Accordingly it can be replaced by an constant 7.

� ((1/
2) log (1/�))
�� ( ) A	er solving the recurrence relation in Equation (5). �( 2!(log  ))

A summary of the worst case complexity equations and
their meaning is presented in Table 3.

Average Case Analysis. �e average case scenario arises when
a malicious behavior is detected by the VPS function in one
of the two recursive network views provided by the NVP
partitioning function. �e average case runtime complexity��( ) is given by

�� ( ) = �� ( 2) + Cost (NVP) + Cost (VPS) (11)

Note that ��( /2) is not multiplied by a factor of 2 since the
recursion is only applied on one network partition and not on
both partitions as is the case in the worst case scenario.

Replacing the values of Cost(NVP) andCost(VPS) in (11),
we get

�� ( ) = �� ( 2) + � ( 2! log  ) + 7 (12)

Solving the recursive equation in (12) we get a closed form

average case runtime complexity of �( 2!(log  )).
A summary of the average case complexity equations and

their meaning is presented in Table 4.

Best Case Analysis. �e best case analysis scenario obviously
occurs when the whole network does not contain any mali-
cious activity. In this case, no recursive partitioning is going to

be carried out on the network view and thus, the base casewill
be reached by 
rst applying the VPS function on the network
view. As such, the best case runtime is simply a constant 7.

�e convergence of theVISKAmalicious switch detection
algorithm is evidently guaranteed by having a deterministic
base case step in Algorithm 1 that ends the recursion on
a particular network view when either (1) a set of source
malicious switches of size $ is isolated by the VPS function,
or (2) a network view is found to be nonmalicious by the VPS
function.

4.4.2. Analysis of the Attack Categorization Module. �e
MACM module is executed once the malicious switches
are detected and identi
ed. �e main complexity in this
module is related to the transmission of the ingress/egress
tra�c to the SDN controllers by the $� switches and the
analysis of such tra�c by the controller for the purpose of
attack categorization. �e complexity mainly depends on the
number of $� switches and the �ow size crossing them per
unit time. We faithfully believe that an SDN controller can
tolerate such tra�c load and categorization processing due to
the following reasons:

(1) �eMACMmodule analyses the ingress/egress tra�c
�owing solely into/from the maliciously detected
switch(es) rather than inspecting the whole network
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tra�c as is the case in traditional intrusion detection
systems in the literature.

(2) �e number of $� switches in modern data center
topologies is minimal compared to the total number
of network switches. For instance, in the �-ary FatTree
topology, which is widely deployed in today’s data

centers, the total number of switch nodes is�(�2+�).
Each edge switch is connected to �(�/2) neighbours
and each aggregation or core switch to �(�) neigh-
bours.

(3) �e MACM algorithm operates merely on the packet
headers, thus eliminating the need to transmit the
entire �ow of packets to the controller.�is drastically
reduces the size of the ingress/egress �ows transmit-
ted to the SDN controller and the resources needed to
process them.

(4) Most modern SDN architectures are relying on repli-
cated controller instances, which aid in balancing
and distributing the processing load of the collected
network data for analysis and mining.

(5) A feasible approach that can be easily employed in
the VISKA implementation to reduce the load on
the SDN controller is to employ a central dedicated
host for tra�c collection and analysis. In this sense
the MACM attack categorization module can be e�-
ciently deployed on an external host connected to the
controller to further enhance the VISKA e�ciency
and performance.

MACM Malfunction and Attack Categorization Cost. �is
module is invokedwhen themalicious switches, with the pre-
determined granularity size$, are detected. As demonstrated
in Section 4.3 (MACMphases 1 and 2), the algorithm captures
packets at the malicious switch(es) ingress and egress ports
and stores necessary header information of the real network
tra�c captured packets (this collection process of phase 1 has
a constant runtime complexity C).�e collected information
tables from the egress and ingress ports of the malicious data
element(s) are analyzed, and certain features are extracted
for the attack categorization. �e basic operation in the
MACM phase 2 complexity is the hashing operation (refer
to Figure 5) which is executed on the total number of
packets in the ingress and egress tra�c �owing into the $
maliciously detected switch(es). LetOem andOim, respectively,
represent the number of egress and ingress packets in the
collected tra�c. �is renders the complexity of phase 1 as
follows:

Cost of MACMphase 1,2 = P (C + 2 (Oem + Oim)) (13)

�e factor 2 in (13) is the result of applying the hashing
operations on the source as well as on the destination IP
packet addresses in the collected �ows as demonstrated in
Figure 5.

�eMACMphase 3 (Malfunction andAttackCategoriza-
tion Module), presented in Algorithm 1, analyzes the tra�c
information tables collected and stored in phases 1 and 2.�e

complexity of this phase depends on the speci
c attack type
which is summarized in (14) below:

cost of MACMphase 3

= cost (DoS detection)
+ cost (Interruption detection)
+ cost (blocking on dest IP)
+ cost (blocking on srcIP)
+ cost (MITM attack at destIP)

(14)

Analyzing (14) based on the MACM phase 2 code in Algo-
rithm 1, we get (15) which depends on the number of egress
and ingress packets in the collected tra�c, Oem and Oim,
respectively. �is is formulated as follows:

Cost MACMphase 3 = � (Oem) + � (Oem) + � (Oim)
+ � (Oim) + � (Oem)

= � (Oem + Oim)
(15)

Based on (9) and (11), the complexity cost of the MACM
module is designated as follows:

�MACM (Oem, Oim) = Cost of MACMphase 1,2

+ Cost of MACMphase 3

�MACM (Oem, Oim) = P (C + 2 (Oem + Oim))
+ � (Oem + Oim)

(16)

�e MACM module is therefore e�ective order of O(Oem +Oim).
A summary of the complexity analysis of the MACM

module is presented in Table 5.

4.5. Sketch Size Analysis. �e sketch data structures are cre-
ated on the controller probing module and are incrementally
updated based on the probing data packets. �e size of the
sketch allocated counters has a great in�uence on the error 

and the con
dence level � of the sketch computations.

Sketch Number of Counters �. Based on the analysis in [32,
33], using two four-wise independent hashing functions for
the index {0, ..�−1} and the value {−1, +1} computations, the

second normal di�erence |�(�1) − �(�2)|2 = Δ will correctly

estimate |�1 − �2|2 with error 
 and con
dence level (1 − �)
given that the depth of the sketch � (number of counters)
is directly proportional to the number of computations
required by the four-wise independent hashing function in

the worst case complexity analysis: � ∈ �((1/
2) log(1/�)).
�is is described in Section 4.1. �erefore, � for each
sketch is dependent on the error 
 and the con
dence level� and not on the number of the probing data packets �.
Having � independent of the size of the input data is of



Security and Communication Networks 17

Table 5: VISKA complexity analysis summary of the MACM attack categorization module.

Term Meaning Value

�MACM(Oem, Oim)
�e cost of the MACM attack categorization module as
a function of the number of egress packets Oem and the
number of ingress packets Oim.

Cost of MACMphase 1,2 +
Cost of MACMphase 3

Cost of
MACMphase 1,2

Represents the cost of data collection and applying the
hash operation on the destination IP and source IP
addresses of each egress and ingress packet.

P (7 + 2 (Oem + Oim))

Cost MACMphase 3

�e worst case runtime cost of detecting the di�erent
types of DoS, Interruption/Blocking, and MITM
attacks.

�(Oem + Oim)

�MACM (Oem, Oim)
Adding the costs of phases 1, 2, and 3 and simplifying
the complexity terms, we get the worst case runtime
cost of the MACMmodule to be in the order ofOem + Oim.

P(7 + 2(Oem + Oim)) +�(Oem + Oim)=�(Oem + Oim)
Table 6: Simulation environment technical details.

SDN controller FloodLight 0.91 [9]

Network topology Linear and FatTree

Network size
For each topology, we implemented 
ve network sizes comprising 10, 50, 100, 150, 200, and 250
SDN switching elements. �ese parameters are chosen to cover a wide range of data center sizes
for viably testing the scalability of the algorithms on real SDN networks.

Remote cloud service
�e cloud algorithms are developed using the Java platform and deployed on an Amazon EC2 [10]
VM.

Cloud VM instance the t2.micro with 1 vCPU and 1GB RAM

Physical machine running Mininet
MacBook Pro Mid 2015 laptop running OSX10.12 and supported with 2.5 GHz Intel Core i7 and
16GB of DDR3 RAM

great signi
cance in the VISKA algorithm implying that the
probing size can be dynamically increased with limited space
requirements on the controller.

Sketch Counter Size �. Each counter in the sketch data
structure can hold values between [−�, +�] as a result of the
increments/decrements of the hash function on the probing
data packets. Range � depends on the size of memory
allocated for each counter. Evidently, � is dependent on the
size of the probing input �, the depth of the sketch, and
the computations’ con
dence level. Based on the following
equation, � is �(log �):

z = log (2�) = 1 + 12 log(4 �� ln(200W� )) (17)

Equation (13) is based on the following analysis and com-
putations [32]. Based on the union bound [2], no counter
over�ows in the counter array with a maximum probability
of (1 − �/100) since the con
dence level is (1 − �) for the
correct functioning of the sketch with error 
. �is su�ces
that a counter would over�owwith amaximumprobability of((1/�)(�/100)). Consider variableC� to represent the sketch
resulting values in {−1, +1} to be stored in the sketch counters
at index �. C� will be equal to 1 with probability �/2 and -1

with probability�/2 and 0 otherwise. Variable C = ∑��=1C�
is the result count in each bin a	er applying all the input
probing packets. Applying the Cherno� bound [34] for the

size of each counter |C| to exceed the allocated size �, we get
the following:

S (|C| ≥ �) ≤ 2!−�2/2�var[��] < �100� (18)

Knowing that var[C�] = 1/� and solving (18) result in (17).

5. System Implementation

�e VISKA system design is implemented on top of the
Mininet network emulator. We created two main testbed
network topologies in Mininet represented in the theoretical
linear topology and the popular data center FatTree [35]
network topology. �is choice is adopted to test the VISKA
algorithm behavior on diverse network topologies in order
to empirically analyze the performance e�ciency of the
algorithms on linearly and hierarchically connected network
switch infrastructures. �e technical speci
cation of the
simulation environment is described in Table 6.

A probing module is developed on the FloodLight SDN
controller for the purpose of (1) exchanging a set of �
probing packets, (2) calculating the corresponding sketches
and timestamp accumulators, and (3) sending their sketch
and timestamp data structure results to the VISKA cloud
service.

�e VISKA cloud service calculates the sketch’s second
norm di�erence estimation as well as the valid timestamp
di�erences of the probing packets and recursively executes
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Table 7: Attack types supported by the MACMmodule.

Attack Type Description

DoS attack on host with IP address
10.0.0.4

To simulate this attack, we cra	ed a static �ow action rule that commands the malicious switch
SW6 to forward all tra�c received on any of its ingress ports to the IP address 10.0.0.4. �e
following is an example of a StaticEntryPusher command that simulates this attack:
curl − X POST −d �{''�T���ℎ'' :''00 : 00 : 00 : 00 : 00 : 00 : 00 : 06'', '' �$!'': ''��' 5 10.0.0.4'',
''-6�56��V'': ''32768'', ''� -56�'': ''� V'', ''����V!'': ''�6&!'', ''!�ℎ �V-!'': ''0X0800'', ''����5 �'':
''�!� O�!%� = !�ℎ ��� → �6 : �8 : 34 : 23 : 8! : 42, �!� O�!%� = �-V4 ��� → 10.0.0.4, 5&�-&� =�%%''}� http://localhost:8080/wm/staticentrypusher/json

DoS attack on controller
Analogous to the DoS attack on a speci
c IP, we command SW6 to send all tra�c received on any
of its ingress ports to the controller.

Interruption of tra�c to host with IP
address 10.0.0.4

To simulate this attack scenario, we cra	 a static �ow action rule that commands the switch SW6
to drop a portion of the packets destined to host 10.0.0.4. For instance, switch SW6 only drops the
packets with destination IP 10.0.0.4 and received on ingress port 1. Packets received on ingress
ports 2 and 3 and destined to 10.0.0.4 are forwarded normally.

Blocking tra�c destined to host: IP
address 10.0.0.4

To simulate this attack, we cra	ed a rule similar to the one above but which commands the
malicious switch SW6 to drop all packets destined to host 10.0.0.4. �at is SW6 drops packets
destined to 10.0.0.4 received on any of its ingress ports. �is is achieved using the
StaticEntryPusher commands.

Blocking tra�c from host with IP
address 10.0.0.3

In this attack scenario the malicious switch SW6 is commanded to drop all packets with source IP
10.0.0.3 received on any of its ingress ports.

Man-in-the-Middle attack via host
10.0.0.2

In this attack scenario, the malicious switch SW6 modi
es the destination IP and Ethernet
addresses to those of the host 10.0.0.2.

the NVP graph partitioning algorithm based on the detection
of malicious operation in the tested partitions.

To simulate the Category II attack (refer to Section 4.3),
we used the Mininet delay property on all the links con-
necting the malicious switch SW6 to the neighbouring
switches SW3, SW4, SW7, and SW10 (refer to Figure 4). �e
implementation value set for the delay property to initiate a
delay attack is 40ms.

To simulate the various Category I attacks presented
in Section 4.3, we used the Floodlight REST APIs. Table 7
describes the list of attacks supported.

We simulated the attacks described in Table 7 using
the Floodlight REST APIs. �is resulted in generating a
dataset for testing the performance (accuracy) of the attack
categorization algorithms in the testbed implementation as
well as in further real-world deployments on target SDN
networks. �e generated dataset is comprised of TCPDump
raw network packets collected in the SDN network topology
presented in Figure 4 and generated using the IPerf tool
[36], web browsing, email messaging, and video streaming
over a time period of 4 hours. �e dataset consists of 130547
packetswith a total size of 978MBs simulating 30DoS attacks,
30 interruption/Blocking attacks, and 30 MITM attacks. �e
main purpose of the generated data set is to tune the attack
detection thresholds employed in the MACM algorithm to
optimal values based on the ROC curves described later in
this section.

�e attacks introduced in Table 7 change in the probing
streams that resulted in a second norm di�erence in the
calculated sketches Δ ≥ � and in a timestamp di�erence � >Γd in the delay attack simulation. Subsequently, the attacks
were successfully detected to the granularity of $ switches,
which was set to as low as one switch in the experiments.

Table 8: Summary of terms used in the simulation.

Network Size  10, 50, 100, 150, 200, 250

� (≥ 
) 0.1

1 − � 99%

Δ ≥ 0.1
� 108 packets

� 18 bits

� > ((1/
2) log(1/�)),
size of (TSA), size of (Val)

700 counters

Maximum malicious
partition size$ 3

Percent malicious switchesY� (resulting in Δ ≥ �) 5%, 10%, and 15% of network size

A highly signi
cant parameter that is considered in the
experiments is the percent of malicious switches introduced
(Ms). �erefore, we tested a malicious switch number con-
sisting of 5%, 10%, and 15% of the network size for the
two topologies. �e parameters used in the experiments are
summarized in Table 8. It is worth mentioning here that we
employed a sketch data structure of 1575 bytes (� = 700 and� = 18 bits), which is typically the size of a single IP packet,

to summarize a network tra�c �ow consisting of 108 probing
packets.

In this work we present the analysis of the DoS, interrup-
tion/Blocking, and MITM attacks for each of the previously
mentioned topologies and sizes. In the analysis of the VISKA
attack detection and localization part, for each tested con
gu-
ration, we calculate the average number of recursive steps and
the total average convergence time needed by the VISKAVPS
and NVP algorithms to localize all malicious nodes in the
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Figure 7: Average number of recursive steps required to detect the
malicious switches in the linear network topology.
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Figure 8: Convergence time required by VISKA to detect the
malicious switches in the linear network topology.

di�erent SDN network topologies. �e experiments on each
con
guration are replicated 5 times. �e average number of
recursive steps and the convergence time results are plotted
in Figures 7 and 8, respectively, for the linear topology, and
Figures 9 and 10 for the FatTree topology.

�e VISKA algorithms successfully converged to detect-
ing the sources of malicious forwarding in the SDN data
plane in all the executed experiments. �e presented results
demonstrate relatively better performance of VISKA on the
FatTree topology compared to the linear one. �e improve-
ment reached an average of 42% in the number of recursive
steps and 49.6% in the convergence time over the di�erent
network sizes and degrees of maliciousness tested. �is
renders the VISKA algorithms better suited for operation on
a real hierarchical data center topology represented by the
FatTree topology. Evidently, the convergence time of VISKA
algorithms is proportional to the SDN network size and
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Figure 9: Average number of recursive steps required to detect the
malicious switches in the FatTree network topology.

0

5

10

15

20

25

30

35

C
o

n
ve

rg
en

ce
 t

im
e 

(s
ec

s)

10 50 100 150 200 250

# of Switches n (FatTree Topology)

Ms = 5%

Ms = 10%

Ms = 15%

Figure 10: Convergence time required by VISKA to detect the
malicious switches in the FatTree network topology.

the degree of switch maliciousness. �e proposed VISKA
service is thus demonstrated to provide the network with
a scalable network security solution with the �exibility and
dynamism of so	ware. �e convergence time results support
the scalability of the algorithms on linear and hierarchical
data center topologies.

In the linear topology, the increase in network size from
10 to 50 resulted in a convergence time increase of 16 sec
(Ms=5%), 18.75 sec (Ms=10%), and 21.66 sec (Ms=15%), while
the increase from 50 to 250 resulted in an increase of 32 sec
(Ms=5%), 32.84 sec (Ms=10%), and 33.5 sec (Ms=15%).

Similar to the FatTree topology, the increase in netwok
size from 10 to 50 resulted in a convergence time increase
of 6.5 sec (Ms=5%), 8.3 sec (Ms=10%), and 8.7 sec (Ms=15%),
while the increase from 50 to 250 resulted an increase of
14.85 sec (Ms=5%), 15.3 sec (Ms=10%), and 17.8 sec (Ms=15%).

�e uniform variations in the convergence time as the
network size and degree of maliciousness increase show
that the algorithms scale well as the network size and
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degree of maliciousness increase because of the recursive
polylogarithmic nature of the VISKA partitioning algorithm,
which focuses the security probing, solely, on isolated parts
of the network.

�e analysis of the MACM attack categorization algo-
rithm is realized on the topology presented in Figure 4,
for simplifying the analysis. �is starts by implementing a
mechanism to collect the ingress and egress tra�c �owing
into/from the malicious switches, respectively. To achieve
this, we use the Floodlight REST APIs to push static �ow
action rules into the $� switches that are sending and
receiving tra�c from/to the malicious switch(es). �e static
�ows pushed by the controller will transparently result in
sending all tra�c destined to and received from amaliciously
identi
ed switch into the controller. Cra	ing such �ows in
OpenFlow is pretty simple: 
rst, we create a JSON message
indicating (1) the name of the �ow, (2) the DatapathID
(DPID) of the switch wewant to insert this �ow on, (3) the set
of criteria matching the tra�c to be transparently redirected,
and (4) the actions to be executed by the switch on the
tra�c matching the �ow criteria. For instance, transparently
sending a copy of all tra�c�owing from switch SW6 to switch
SW10 in the topology demonstrated in Figure 4, we leverage
the curl tool [37] to push the corresponding action rule as
follows:

�&6% − C S�'� − � �{''�T���ℎ'': ''00 : 00 : 00 : 00 :00 : 00 : 00 : 0�'', '' �$!'': ''O%5T − '�6 − '�10'',
''-6�56��V'': ''32768'', ''� -56�'': ''4'', ''����V!'': ''�6&!'',
''!�ℎ �V-!'': ''0X0800'', ''����5 �'': ''�!� O�!%� = 5&�-&� = 56$�%, �5 �65%%!6''}� http://localhost:8080/wm/stati-
centrypusher/json

where

(i) ''�T���ℎ'': ''00:00:00:00:00:00:00:0a'' is the DPID of
switch SW10,

(ii) ''� -56�'': ''4'' designates the SW10 interface con-
nected SW10 to SW6,

(iii) ''����5 �'': ''�!� O�!%� = 5&�-&� =  56$�%, �5 �65%%!6''
commands SW10 to send all tra�c matching the
speci
ed criteria to the controller and to the normal
interface speci
ed by the switch’s L2 pipeline.

Analogous static �ow rules are injected into switches SW3,
SW4, and SW7. Moreover, similar JSONmessages are cra	ed
to con
gure the Floodlight controller to send action rules to
switches SW3, SW4, SW7, and SW10 enforcing the transfer
of a copy of the ingress tra�c destined to SW6 into the
controller.

A	er collecting the ingress/egress tra�c, we applied the
hashs and hashd aggregation functions to categorize the
packets based on the source and destination IPs, respectively.
�e list of MACM phase 2 features speci
ed in Section 4.3
are extracted from the aggregated data and analyzed for the
purpose of attack categorization. �e hashing and analysis
procedures are implemented in Python in the Floodlight
controller’s address space.

�e most signi
cant step in the accurate detection of
the various attack types in the MACM attack categorization

module is the tuning of the threshold parameters to achieve
an optimal true positives/false positives attack detection rate.
�e MACM attack categorization module relies on

(1) the ΓEd, Γdos, and Γp threshold parameters for
detection DoS attacks,

(2) the Γbℎ threshold parameter for detecting Interrup-
tion/Blocking attacks,

(3) the Γmitm threshold parameter for detecting MITM
attacks.

In the testbedMACM implementation, we utilized 21 thresh-
old values for each attack type in the ranges speci
ed in
Table 2. �e following threshold range parameters are used:Cmax = 1.72 Mpps, Ρavg = 576 bytes, �� = 60 secs, ?
 = 10%,?ℎ = 90%, H
 = 5%, Hℎ = 70%, J
 = 5%, and Jℎ = 50%.
�e 21 threshold values are presented in Table 9 and are
generated in increments of 5% between the low threshold
range and the high threshold range. �e attack scenarios
included in the dataset described earlier in this section are
adopted on each of the 21 threshold values presented in
Table 9 in order to empirically 
nd the optimum value for
the DoS thresholds ΓEd, Γdos, Γp, the interruption/Blocking
threshold Γbℎ, and theMITM threshold Γmitm. Based on the
true positives and false positives rates of the attack detection
system observed, we generate the ROC curve for each attack
type (refer to Figures 11, 12, and 13). �e resulting ROC
curves for each attack type shows that at higher values of
thresholds, the system does not detect the attack. As we
gradually increment the threshold values, an optimum point
is reached representing the best true positives/false positives
detection rate. �is is represented in point P12 in the DoS
ROC (refer to Figure 11) where ΓEd = 1.98, Γdos = 463.6 ×103, and Γp = 804.6 at which the system resulted in almost
90% true positives rate and around 8% false positives rate.
A	er this point, for lower threshold values, the attack is
detected; however the false positives rate increases rapidly.
�e optimum threshold value for the interruption/Blocking
attack detection is located at point P12 (refer to Figure 12)
with Γbℎ = 319.4 resulting in a 93% true positives rate and
an 8.6% false positives rate. �e optimum Γmitm (213.75)
for the MITM attack detection is located at point P13 (refer
to Figure 13) with a true positives rate of 92% and a false
positives rate of 8.4%.

6. Conclusion

�e paper presented VISKA, a novel approach in localizing
malicious nodes in the SDN data plane and categorizing
any present attacks by utilizing network programming and
probabilistic sketching. �e VISKA security algorithms are
designed to run in real time with minimal convergence time
for isolatingmalicious forwarding elements in the data plane.
�is is the main contribution of the work where malicious
switch detection is achieved by an e�cient logarithmic
divide-and-conquer approach that divides the network view
in half in each recursive iteration.�e network programming
functions in SDN allow the system to autonomously isolate
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Figure 11: ROC of the true positives versus the false positives rates
for the di�erent DoS attack threshold parameter triplets ΓEd, Γdos,
and Γp.
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Figure 12: ROC of the true positives versus the false positives
rates for the di�erent values for the interruption/Blocking attack
threshold parameter Γbℎ.

P0

P13 P20

1
0

.0
0

%

2
0

.0
0

%

3
0

.0
0

%

4
0

.0
0

%

5
0

.0
0

%

6
0

.0
0

%

0
.0

0
%

% False Positives

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

%
 T

ru
e 

P
o

si
ti

ve
s

Figure 13: ROC of the true positives versus the false positives
rates for the di�erent values for the interruption/Blocking attack
threshold parameter Γmitm.

network partitions that may be experiencing malicious activ-
ity. �is is done �exibly with pure so	ware operations. �e
attacks detected include (1) network time delay insertion, (2)
MITM, (3) DoS on a certain server, (4) block on a certain
source IP, (5) block on a certain destination, (6)miscellaneous
blocks to induce network malfunction, and (7) DoS on the
controller. �e algorithms were tested for convergence using
a variety of SDN network sizes and number of malicious
switching elements. �e various attacks were experimented
and the detection thresholds were identi
ed. �e system was
capable of achieving over 90% detection accuracy. It is worth
mentioning here that a very appealing application to the
VISKAmodel is in supporting net neutrality inmodern SDN-
based NaaS provider networks. VISKA attack categorization
mechanisms can provide a valuable feedback on probable
breaches that violate net neutrality exertion in an SDN-based
network. �is is demonstrated by the following points:

(1) VISKA detects malicious tra�c shaping violations
that induce delay attacks on network packets by
leveraging the timestamp accumulator data structure
presented in Section 4.1.

(2) VISKA detects DoS attacks that interfere with the
“freedom of speech” approach pushed by the Open
Internet [38] standards. �e Open Internet approach
indicates that the full network resources should be
accessible by clients transparently and easily.

(3) VISKA prevents any discrimination by IP address by
detecting blocking attacks on a certain destination or
source network address.

(4) VISKA aids in preventing malicious over provision-
ing of network bandwidth by detecting delay attacks
resulting from unfair bandwidth distribution.

Data Availability

All the data necessary to execute the testbed experiments are
available to interested readers upon request.
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