
ar
X

iv
:2

20
1.

12
95

0v
1 

 [
cs

.S
E

] 
 3

1 
Ja

n 
20

22

Network Programming via Computable Products

Dennis Volpano
The Johns Hopkins University Applied Physics Lab

Laurel, MD, U.S.A.
Dennis.Volpano@jhuapl.edu

ABSTRACT

The User Plane Function (UPF) aims to provide network services in

the 3GPP 5G core network. These services need to be implemented

on demand inexpensively with provable properties. Existing net-

work dataplane programming languages are not up to the task. A

new software paradigm is presented for the UPF. It is inspired by

model checking a concurrent reactive system where conceptually

each component of the system is modeled as an extended finite-

state machine and their product is verified. We show how such a

product can be computed for one example of a UPF and how its

state invariants can be inferred, thereby eliminating the need to

formally verify the product separately. Code can be generated from

the product and regenerated on the fly to remain optimal for the

probability distribution of network traffic the UPF must process.

1 INTRODUCTION

The User Plane Function (UPF) in the 3GPP 5G core network [36]

needs new techniques for building software that implements net-

work functions at the edge quickly, reliably with provable guaran-

tees, and inexpensively. Provisioning devices will likely be fully au-

tomatic and the software can be complex. Practical network func-

tions are reactive systems responding to inputs based on history

and time. They’re not just packet-processing pipelines. They have

control logic that manages timers, caches and mutable state.

Much work has been done in the design of high-level network

programming languages [2, 4, 5, 7, 8, 11, 14, 20, 24–26, 29, 33, 39].

In general, they are either too narrow in scope or lack support for

reuse and scalable proofs about mutable state and timers. Gode-

froid observed that model checking a concurrent reactive system

conceptually amounts to modeling each component of the system

as an extended finite-state machine and then verifying the prod-

uct of all such machines [15]. This idea can be applied to the UPF,

instances of which can be defined as the product of independent

concurrent components represented by finite-state recognizers. A

product can be transformed into branching logic and then imple-

mented on a specific target platform. The approach is illustrated

for a basic switch function implemented on an open target plat-

form using Intel’s Data Plane Development Kit (DPDK) [12].

2 A BASIC SWITCH FUNCTION

We give four independent concurrent components for a 4-port switch

UPF. It has one uplink port, namely port 1, which is in a different

broadcast domain than ports 2-4. The components are

(1) � – (hub) floods a frame to every port except the port at

which it arrived and the uplink port.

(2) � – (bridge) forwards a frame to the port behind which the

frame’s destination MAC address was learned.

(3) " – learns the ports of MAC addresses.

(4) � – interleaves ingress and egress activity guaranteeing that

every received frame is transmitted.

No component depends on another so all are independent and form

reusable building blocks of a switch. Components are recognizers

that run concurrently on a trace. For example, Table 1 shows a trace

of our 4-port switch in the presence of the ARP protocol [13]. Each

Table 1: A trace of 4-port switch with uplink port 1

time dest address (da) src address (sa) proto location

t ff:ff:ff:ff:ff:ff 04:0c:ce:d2:08:6c arpreq {2i}

t + 1 ff:ff:ff:ff:ff:ff 04:0c:ce:d2:08:6c arpreq {3e, 4e}

t + 2 04:0c:ce:d2:08:6c 7c:d1:c3:e8:a4:67 arpreply {3i}

t + 3 04:0c:ce:d2:08:6c 7c:d1:c3:e8:a4:67 arpreply {2e}

port is divided into an ingress and egress interface, denoted by 8

and 4 . At time C , an ARP request arrives at the ingress interface of

port 2. Then at time C + 1, the request is at the egress interfaces

of ports 3 and 4 as we would expect since port 1 is uplink and

the frame is flooded to all ports except its ingress port. An ARP

reply is received at time C + 2 at port 3 and fowarded to port 2

at time C + 3 because its destination address was learned there at

time C . Elements of a trace are referenced within a recognizer by

free variables C (current time), 5 (frame in the trace at time C ), loc

(location of 5 ) and port (the ingress port of 5 when 5 is located at

an ingress interface).

2.1 Hub component � (self )

Hub component� (self ) is defined in Table 2 using a special type of

recognizer called a _-SFA. It is a type of deterministic symbolic fi-

nite automaton (SFA) [37, 38] with lambda bindings that allow it to

more succinctly remember history.1 � (self ) has three transitions

Table 2: � (self ) relays between non-uplink ports

H1 → H1

loc = {port i} ⇒ (port = uplink-port ∨ 5 .da = haddr (port))

H1 → H2

_G. loc = {port i} ∧ port ≠ uplink-port ∧ 5 .da ≠ haddr (port)

H2 → H1

(self e ∈ loc ∧ ((bcast (G.5 .da) ∧ ¬arp-reqrx (G.5 , G .port)) ∨

ucast (G.5 .da))) ⇒ (5 = G.5 ∧ self ≠ G.port ∧ self ≠ uplink-port)

and two states H1 and H2 where H1 is the start state (the first tran-

sition listed is always from the start state). The proposition that

labels a transition is shown below it. A transition fromH1 to H2 oc-

curs when a frame arrives at an ingress port other than the uplink

1_ is an input binding operator as in _ calculus, not a name for the null string as in
finite automata.
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port and its destination hardware address 5 .da doesn’t match the

hardware address of the port, which indicates link-layer forward-

ing rather than handling traffic destined for the switch. Otherwise

it stays in H1. Notice that if� (self ) were started in stateH1 at time

C + 1, then it stays in H1 because loc = {3e, 4e} at that time, and

thus loc = {port i} is false then. This is a stutter step that allows

the SFA to ignore actions in a trace that are not of interest to it in

state H1, namely egress activity [22]. For the trace in Table 1, the

bindings of the free variables of � (self ) are given in Table 3.

Table 3: Free variables of � (self ) bound by trace in Table 1

time f.da x.f.da port x.port

t ff:ff:ff:ff:ff:ff − 2 −

t + 1 ff:ff:ff:ff:ff:ff ff:ff:ff:ff:ff:ff − 2

t + 2 04:0c:ce:d2:08:6c ff:ff:ff:ff:ff:ff 3 −

t + 3 04:0c:ce:d2:08:6c 04:0c:ce:d2:08:6c − 3

With respect to our 4-port switch, � (self ) has four recognizer

instances � (1)−� (4), one for each port. Assuming that the ARP

request in the trace is not a request for the hardware address of port

2 (¬arp-reqrx(G.5 , 2) is true), each instance can make a transition

on every entry in the trace, albeit for different reasons in some

states. At time C +3, for instance, all but� (2) move from H2 to H1

by vacuously satisfying its condition since only 2e is a member of

loc. But� (2) must satisfy its consequent (5 = G.5 ∧2 ≠ 3∧2 ≠ 1).

If loc were {2e, 3e} then while � (2) can transition out of state H2,

� (3) cannot.We say� (3) is “stuck” in this case. If locwere {2e, 4e}

then � (2) and � (4) can both transition out of H2 as � (4) would

also satisfy its consequent (5 = G.5 ∧ 4 ≠ 3 ∧ 4 ≠ 1). The fact

that loc doesn’t include 4e in the trace suggests the switch learned

the port for MAC address 04:0c:ce:d2:08:6c. That brings us to our

second component, namely bridging.

2.2 Bridging component � (self )

The bridging component is given in Table 4. It forwards a unicast

frame only to the port behind which the unicast destination ad-

dress was learned. Like � , it is parameterized on self . The port

behind which a MAC address is learned is stored in MAC learn-

ing table mlt and mto is the MAC learning table timeout govern-

ing when table entries expire. For all 8 ∈ dom(mlt), mlt (8).mac is

a MAC address that was last seen as an ingress source address at

timemlt (8).C at portmlt(8).port. From state B2, a unicast frame can

Table 4: � (self ) bridges between non-uplink ports

B1 → B1

loc = {port i} ⇒ (port = uplink-port ∨ 5 .da = haddr (port))

B1 → B2

loc = {port i} ∧ port ≠ uplink-port ∧ 5 .da ≠ haddr (port)

B2 → B1

(self e ∈ loc ∧ ucast (5 .da)) ⇒ (

∃8 .mlt (8) .mac = 5 .da ∧ C −mlt (8) .C ≤ mto ∧mlt (8) .port = self ∨

∀8 .mlt (8) .mac ≠ 5 .da ∨ C −mlt (8) .C > mto )

exit port self only if the frame’s destination address has an entry

in mlt, the entry is unexpired and the port at which the destina-

tion address was learned matches the egress port (dash underlined

condition), or the port for the destination address is unknown or

expired (underlined condition). The latter condition allows a uni-

cast frame to be flooded.

2.3 Learning component "

The MAC learning table is managed by the learning component

defined in Table 5. It has only one state and merely constrains the

Table 5: " learns MAC addresses at non uplink ports

ML →ML

_G. [ (loc = {port i} ∧ port ≠ uplink-port ∧ ucast (5 .B0) ∧

(∃:. G.mlt (:) .mac = 5 .sa ∨ ∃:. C − G.mlt (:) .C > mto)) ⇒

∃:.mlt = G.mlt (:) {mac = 5 .sa, C = C, port = port }] ∧

[(loc ≠ {port i} ∨ port = uplink-port ∨ ¬ucast (5 .sa) ∨

(∀:. G.mlt (:) .mac ≠ 5 .sa ∧ ∀:. C − G.mlt (:) .C ≤ mto)

) ⇒ mlt = G.mlt ]

MAC learning table in that either the table is updated (dash un-

derlined condition) or remains unchanged (underlined condition).

An update occurs if a frame arrives at a non-uplink port with a

unicast source MAC address and either that address is already in

the table or it’s not but there’s room in the table for it because

there’s an expired entry. Otherwise the table remains unchanged

(mlt = G.mlt). It also remains unchanged on egress activity in a

trace (loc ≠ {port i}).

We expect a frame to be output in response to every frame in-

put. The response can be the input frame, a rewrite of it or some

other response frame. This much will be determined by other com-

ponents, however, we still need a component to enforce an egress

action after every ingress action. The interleaving component �

accomplishes this. It has an ingress transition I1 → I2 labeled

with loc = {port i} and an egress transition I2 → I1 labeled with

loc ⊆ egress.

3 TENSOR PRODUCT

Tensor product � (self ) × � (self ) × � × M gives the semantics of

our 4-port switch function and is shown in Table 6. The product is

computed with the help of the Yices SMT solver [40], which elim-

inates transitions with unsatisfiable propositions. Notice how the

product automatically creates the desired control logic, splitting

frame processing into handling frames destined for the switch (e.g.

management frames or frames to be routed), conveyed by the un-

derlined condition, and those that are not (switched), conveyed by

the dash underlined condition. This happens because interleaving

component � doesn’t allow the hub component to spin on succes-

sive ingress frames arriving at the uplink port and remain in state

H1. In state H1I2, loc ⊆ egress is true which makes constraint

loc = {port i} ⇒ (port = uplink-port ∨ 5 .da = haddr (port)) on

H1 → H1 vacuously true. Handling frames destined for the switch

function occurs in state H1B1I2ML, which is incomplete with re-

spect to the components presented because none of them is con-

cerned with handling such frames. Thus this state merely requires

loc ⊆ egress to transition out.
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Table 6: _-SFA for � (self ) × � (self ) × � ×"

H1B1I1ML → H1B1I2ML

_G. loc = {port i} ∧ (port = uplink-port ∨ 5 .da = haddr (port)) ∧

( (port ≠ uplink-port ∧ ucast (5 .sa) ∧

(∃:. G.mlt (:) .mac = 5 .sa ∨ ∃:. C − G.mlt (:) .C > mto)) ⇒

∃:.mlt = G.mlt (:) {mac = 5 .sa, C = C, port = port }) ∧

( (port = uplink-port ∨ ¬ucast (5 .sa) ∨ (∀:. G.mlt (:) .mac ≠ 5 .sa

∧ ∀:. C − G.mlt (:) .C ≤ mto)) ⇒ mlt = G.mlt)

H1B1I1ML → H2B2I2ML

_G. loc = {port i} ∧ port ≠ uplink-port ∧ 5 .da ≠ haddr (port) ∧

( (ucast (5 .sa) ∧

(∃:. G.mlt (:) .mac = 5 .sa ∨ ∃:. C − G.mlt (:) .C > mto)) ⇒

∃:.mlt = G.mlt (:) {mac = 5 .sa, C = C, port = port }) ∧

( (¬ucast (5 .sa) ∨ (∀:., G .mlt (:) .mac ≠ 5 .sa ∧

∀:. C − G.mlt (:) .C ≤ mto)) ⇒ mlt = G.mlt)

H1B1I2ML → H1B1I1ML

loc ⊆ egress No action taken for frames destined for switch.

H2B2I2ML → H1B1I1ML

self e ∈ loc ⇒ [ (

( (¬bcast (G.5 .da) ∨ arp-reqrx (G.5 , G .port)) ∧ ¬ucast (G.5 .da)) ∨

(5 = G.5 ∧ self ≠ G.port ∧ self ≠ uplink-port) ) ∧

(¬ucast (5 .da) ∨

(∃8 .mlt (8) .mac = 5 .da ∧ C −mlt (8) .C ≤ mto ∧mlt (8) .port = self

∨ ∀9 .mlt ( 9 ) .mac ≠ 5 .da ∨ C −mlt ( 9 ) .C > mto)) ]

∧ loc ⊆ egress ∧mlt = G.mlt

The switch function between non-uplink ports, on the other

hand, is complete. On the ingress side (state H1B1I1ML), a frame

arriving at a non uplink port that is not destined for the hardware

address of the port causes an update to the MAC learning table

if its source hardware address is unicast. If the source address is

already in the table or there’s an expired entry allowing it to be

inserted then the learned port and timestamp fields are reset. If for

some reason the source address is not unicast or it is but it’s not

already in the table and no entries in the table are expired then the

MAC learning table remains unchanged. On the egress side (state

H2B2I2ML), we have self among the egress ports for the output

frame if the input frame is a broadcast but not an ARP request for

the ingress port’s hardware address or it’s a unicast. In this case,

the current frame 5 to be output is constrained to be G.5 and self

cannot be the uplink port or the ingress port (G.port). In addition,

if the destination hardware address of 5 , which is the destination

address of x .f since 5 = x .f , is unicast then self is governed by the

learning component.

4 CODE GENERATION FOR DPDK PLATFORM

Every formula governing a transition in a product is converted into

aminimumdisjunctive normal form (DNF). Branching logic is then

computed for each DNF formula. Finally, the disjuncts of these for-

mulas are discharged into C code using the DPDK API.

Ideally, both branch size and expected running time should be

optimized but this isn’t always possible. Minimizing expected run-

ning time requires minimizing expected residuals:

Definition 4.1. Given a predicate ? and a set of disjuncts � , let

res(?,�) = ∅ if ? ∈ � . Otherwise, a predicate @ is in res(?,�) if

¬@ ∉ res(?,�), @ ≠ ? and there’s a disjunct 3 ∈ � such that @

occurs in 3 and 3 ∧ ? is satisfiable. If � is a truth assignment for

members of res(?,�) then the expected residual of ? relative to �

and � is

Pr[? |�] × |res(?,�) | + (1 − Pr[? |�]) × |res(¬?,�) |

For instance, consider DNF formula (� ∧ �) ∨ (� ∧ �) ∨ �, so

� = {� ∧�, � ∧�, �}. Suppose predicate � is more likely to be true

than �, � and � , reflected say by the distribution Pr[�] = 12/16,

Pr[�] = 2/16 and Pr[� ] = Pr[�] = 1/16. If � is true then � , �

and � remain to be evaluated, thus |res(�,�) | = 3. And if it’s false

then only � remains, so |res(¬�,�) | = 1. Residuals can likewise be

computed for the other predicates. The expected residuals of the

predicates then with respect to � and � = ∅ become:

Pr[�] × 3 + (1 − Pr[�]) × 1 = 36/16 + 4/16 = 40/16

Pr[�] × 3 + (1 − Pr[�]) × 3 = 6/16 + 42/16 = 48/16

Pr[� ] × 3 + (1 − Pr[� ]) × 3 = 3/16 + 45/16 = 48/16

Pr[�] × 0 + (1 − Pr[�]) × 3 = 0 + 45/16 = 45/16

Since � has the least expected residual, branching would begin by

evaluating � tominimize expected running time. Note that by start-

ing this way, the final branch size will not be minimal since the

minimum size is achieved by evaluating � first. So it is not always

possible to minimize both size and expected running time.

Residual calculations are then made for � = {�, �, �} for the

“then” branch and for � = {�} for the “else” branch, each with

respect to � = {�}. If � is a predicate asserting a frame is a broad-

cast, for instance, and � is a predicate asserting the frame is an

ARP request then Pr[� |�] is the probability the frame is an ARP

request given it’s a broadcast. This can vary depending on the net-

work environment of the UPF. An advantage of our approach is

that branching logic can be regenerated continuously in response

to observed traffic that causes the distribution to change. So the

UPF can adapt in real time and remain optimal for the given envi-

ronment.

After branching is computed for each DNF formula, the for-

mula’s disjuncts are discharged in the context of declarations pro-

vided by a service-discipline wrapper. This requires distinguishing

checkable predicates from enforceable ones. The former translates

into guards and the latter into statements of the generated C code.

An enforceable predicate is one whose truth can always be guar-

anteed at run time, otherwise, it is checkable. For example, the for-

mula on the transition from H2B2I2ML in Table 6 has disjunct:

self e ∈ loc ∧ ucast (x .f .da) ∧ 5 = x .f ∧

self ≠ G.port ∧ self ≠ uplink-port ∧

∃8 .mlt(8).mac = f .da ∧ C −mlt(8).C ≤ mto ∧mlt (8).port = self ∧

loc ⊆ egress ∧mlt = G.mlt

Underlined predicates are checkable and all others are enforceable.

Our wrapper code within which generated code runs always guar-

antees loc ⊆ egress, so this predicate can be eliminated at com-

pile time. Further, the wrapper code runs on a single Intel core so

there’s no way for a concurrent thread to change the MAC learn-

ing table before entering state H2B2I2ML. Thus mlt = G.mlt can

be eliminated (no locking required at run time). Both predicates
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are enforceable. In contrast, the existential constraint on mlt is

checkable. On the surface, there’s nothing to suggest it cannot be

enforced by an implementation that sets the fields of mlt as pre-

scribed. But this cannot be done as it implies control over network

function inputs! " has a single state invariant ΦML given in Ta-

ble 7. It relates the contents of the MAC learning table to an input

sequence, specifically that f .dawas learned at port self in the past.

This prevents enforcement of the constraint since no implementa-

tion can control what is learned at a port.

A discharge table maps predicates to be discharged into C, lever-

aging Intel’s Data Plane Development Kit (DPDK) [12]. The DPDK

provides a rich API. For instance, checkable predicate ucast (f.da)

can be discharged directly into C using the DPDK Ethernet API:

is_unicast_ether_addr(dst_haddr(bufs[buf]))

It will be much easier to prove discharge tables correct than to

prove entire C programs correct. Furthermore, it need only be done

once. Thereafter, proving any property of C code generated for a

network function will reduce to proving properties of finite-state

machines (_-SFA), which are easier to reason about than C code.

Our service-discipline wrapper is a simple round-robin service

wrapperwritten in C (580 lines of code) using theDPDKAPI (v17.05)

[12] and running on an 8-core Intel Xeon 2.1Ghz server with 4

X540-AT2 10Gb Ethernet NICs, one for each port of our switch

function. It repeatedly gets for each port a burst of frames using

the DPDK API. For each ingress frame, it resets the port mask and

current time by reading the timestamp counter register. It then ex-

ecutes our generated code, producing an output frame and a port

mask defining the egress ports of the frame. It is a simple service

discipline. Other disciplines like deficit round robin could be used

instead.

5 PROVING COMPONENT PROPERTIES

The correctness of a given component is established relative to a

requirement formulated as a property of a timed state sequence

[1]. One formulates invariants for the states of the component and

proves them by mutual induction. As examples, we have formu-

lated invariants for state B1 of learned forwarding component� (self )

and state ML of MAC learning component " . They are shown in

Table 7. ΦB1 relates the current frame to the MAC learning table,

and ΦML relates the MAC learning table to timed state sequences.

More precisely, ΦB1 says if a unicast frame, arriving at a non-uplink

port, is not destined for the switch and at the next time step g8+1 it

exits at port self then theMAC learning table at time g8+1 either has

an unexpired entry for it, consisting of its destinationMAC address

and the port self , or does not. ΦML on the other hand states what is

true of all destination MAC address/port pairs (<,?) stored in the

MAC learning table relative to timed state sequences. Specifically,

destination address < is the source MAC address of a frame that

arrived at port ? at some time g 9 prior to g: where g: − g 9 ≤ mto.

Putting the two invariants together then gives us that ? is the

port at which destination address < was seen as a source MAC

address within the last mto seconds. Note the invariants alone are

insufficient for relating the current frame to a timed state sequence

but together they accomplish it in the product state H1B1I1ML,

which has partial invariant ΦB1 ∧ ΦML.

The invariant of a product state in general is the conjunction of

invariants of its component states. The proof is a straight-forward

extension of the standard correctness proof for product automata

[21]. This homomorphic property is what allows proofs about prop-

erties of individual components to scale up to proofs about proper-

ties of products at no extra cost. This is key to making verification

practical for 5G providers.

State invariants are proven bymutual induction on the length of

a timed state sequence. Suppose X̂ is the multistep transition func-

tion for a transition function X [21], defined as X̂ (@, (F0, g0), f) =

(@,f) and for = > 0, X̂ (@, (F0 · · ·F= , g0 · · · g=), f) = (?,f ′′) if

X̂ (@, (F0 · · ·F=−1, g0 · · · g=−1), f) = (@′, f ′)

and X (@′, (F=, g=), f
′) = (?, f ′′). Note there is no empty timed

state sequence; (F0, g0) reflects the initial state and g0 the time

at which initialization of that state is complete. It forms the base

case for induction over sequences. Then we can show for all MAC

addresses < and sequences ` = (F0 F1 · · · F= , g0 g1 · · · g=)

satisfying

(F0, g0) |= ∀3.g0 −mlt(3).C > mto ∧mlt(3).mac ≠<

iff andf0 aremappings wheref0 (G) = (F0, g0) and X̂ (ML, `, f0) =

(ML, f) then ΦML (`) holds. Proof is by induction on =.

6 RELATED WORK

Much work has been done in the design of high-level network pro-

gramming languages to configure multiple packet-forwarding de-

vices into a particular network topology [29]. Frenetic [14], ND-

log [26], OpenBox [8], Nettle [39] and P4 [7]. All lack an explicit

treatement of time and the ability to reason about timeouts. In [11],

the aim is to verify bounded execution and crash freedom for dat-

aplanes constructed as a packet processing pipeline of Click ele-

ments that do not share mutable state beyond the packet and its

metadata. The efforts of [25, 33] involve annotating P4 dataplane

code with assertions and looking for an initial state that leads to

their violation. None of this work can reason about time, history or

mutable state. OpenBox is unique in that it attempts to define the

intersection of packet-processing pipelines via a merge algorithm

on packet processing graphs. However the algorithm is described

informally so its soundness is difficult to assess, especially with

potential packet modification conflicts.

An intermediate network program representation, called a net-

work transaction automaton, is described in [23, 24]. However the

product of such automata is not well defined. A transition can as-

sign to a variable and the product construction requires taking the

union of two assignments. But what is the union of G := 0 and

G := 1? NetKat [2] allows one to specify forwarding policies via a

small set of primitive commands and combinators. NetKat expres-

sions can be represented as deterministic finite automata (DFA).

So the intersection of policies is defined by the standard product

of DFA, which is an instance of a tensor product. Temporal NetKat

[5], NetKat extended with linear temporal operators, also lacks an

explicit treatment of time.

Emphasis on reusability can be found in the early work around

kernel network stack development: G-kernel [17], Scout [31, 34],

and later in extensible routers [10, 18, 20] and decomposition of se-

curity services in SDN networks [35]. Click [20], is a Linux-based

4
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Table 7: State invariants ΦB1 and ΦML.

ΦB1 (F0 · · ·F=, g0 · · ·g= ) :

∀8 . 0 ≤ 8 < =.

( ( (F8 , g8 ) |= loc = {port i} ∧ port ≠ uplink-port ∧ f .da ≠ haddr (port)) ∧ ( (F8+1, g8+1) |= self e ∈ loc ∧ ucast (f .da)) ) ⇒

(F8+1, g8+1) |= (∃8 .mlt (8) .mac = 5 .da ∧ g8+1 −mlt (8) .t ≤ mto ∧mlt (8) .port = self ∨

∀8 .mlt (8) .mac ≠ 5 .da ∨ C −mlt (8) .C > mto

)

ΦML (F0 · · ·F=, g0 · · ·g= ) :

∀3 ∈ dom(mlt) . ∀<,?. ∀:. 0 ≤ : ≤ =.

( (F: , g: ) |= mlt (3) .mac =< ∧ g: −mlt (3) .C ≤ mto ∧ mlt (3) .port = ? ) ⇔

(F0 · · ·F: , g0 · · ·g: ) |= ∃ 9 . 0 ≤ 9 < :. (

(F9 , g9 ) |= (loc = {? i} ∧ f .sa =< ∧ ucast (f .sa) ∧ ∃8 . g9 −mlt (8) .C > mto ∨mlt (8) .mac = 5 .sa) ∧

(F: , g: ) |= g: − g9 ≤ mto ∧mlt (3) .C = g9
)

platform for building a single network stack from reusable C++

classes or “elements” linked together to form a packet-processing

chain. An element can be an arbitrarily-complex computation though

in practice it usually implements some basic step in a network

stack like fetching a route or decrementing a TTL. The work does

not facilitate rigorous construction of network functions from reusable

parts. Although packet-processing functions may be reusable they

are not expressed in a way that is well suited for combining them

algorithmically. In Click, they are C++ programs.

On the formal verification front, work has been done verifying

controllers of software-defined networks (SDN) and dataplanes. A

compiler and run-time system for NetCore [30] is verified withme-

chanical support in [16]. NICE [9], FlowLog [32], Kuai [27] and Ki-

netic [19] use model checking to verify temporal and nontemporal

properties of applications like MAC address learning. Vericon [3]

takes a different approach, formulating invariants of networks and

properties of SDN programs in first-order logic and then checking

satisfiability using Z3.

In [11], the aim is to verify bounded execution and crash free-

dom for dataplanes constructed as a packet processing pipeline of

Click elements that do not share mutable state beyond the packet

and its metadata. The efforts of [25, 33] involve annotating P4 dat-

aplane code with assertions and looking for an initial state that

leads to their violation. None of this work can reason about time,

history or mutable state.

Zen is a modeling language that allows one to express and an-

alyze a wide variety of network functions written in C# [6]. Com-

posing two Zen models is purely operational in that a function of

one model can call a function of the other. No attempt is made

to define it denotationally, for instance, in terms of a new a prop-

erty exhibited by the composition that a programmer can inspect.

A declarative language limited to application-layer gateway pro-

cessing is given in [4]. Using Z3 one can verify the correctness of

packet filtering and rewrite rules.

7 CONCLUSIONS

Rather thanwriting networking software and then reasoning about

it, the approach presented here involves generating code from prod-

ucts of primitive reusable components that capture various net-

work behaviors. An example product was given with four com-

ponents. These can be mechanically combined to produce a new

functional specification from which code is ultimately generated.

It is easy to add other components that introduce new features

like per-port stateful firewalling, network address translation and

so on.

No ex post facto reasoning about generated code is needed once

discharge tables are proved correct. Generated code is not mod-

ified directly since changes are made at the reusable component

level. Consequently, opportunities for introducing low-level bugs

in C are eliminated. Contrast this with the state of the art where

bugs can be introduced and then code must be analyzed to detect

them. If such analysis requires one to annotate dataplane codewith

assertions and then check whether the code is a model of them

then why bother write the code at all? Instead one should focus on

the assertion logic and derive code from it, making model check-

ing unnecessary. Others are reaching the same conclusion for SDN

controller software [28]. The challenge then shifts from verifying

code to compiling logical assertions into code that rivals the per-

formance of handwritten dataplane code, a challenging but more

tractable problem.
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