
VU Research Portal

Network Protocols

Tanenbaum, A.S.

published in
ACM Computing Surveys

1981

DOI (link to publisher)
10.1145/356859.356864

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Tanenbaum, A. S. (1981). Network Protocols. ACM Computing Surveys, 13(4), 453-489.
https://doi.org/10.1145/356859.356864

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 09. Aug. 2022

https://doi.org/10.1145/356859.356864
https://research.vu.nl/en/publications/cdc086e3-31f9-493e-825b-9c4e84739be1
https://doi.org/10.1145/356859.356864

Network Protocols

ANDREW S. TANENBAUM

W~skund~g Semmar~um, Vr~]e Unwers~te~t, Amsterdam, The Netherlands

Dunng the last ten years, many computer networks have been designed, implemented,

and put into service in the United States, Canada, Europe, Japan, and elsewhere. From

the experience obtamed with these networks, certain key design principles have begun to

emerge, principles that can be used to design new computer networks in a more

structured way than has tradltmnally been the case. Chmf among these principles is the

notion of structuring a network as a hmrarchy of layers, each one built upon the previous

one. This paper is a tutorial about such network hierarchies, using the Reference Model

of Open Systems Interconnectmn developed by the International Organization for

Standardization as a grade. Numerous examples are gwen to illustrate the principles.

Key Words and Phrases: computer network, data communicatmn, ISO OS! Reference

Model, layered architecture, network, protocol

CR Categorws" 1.3, 4.9, 6.9

INTRODUCTION

Ten years ago, only a handful of computer
networks existed, mostly experimental net-
works built by research organizations. To-
day dozens of national and international
networks and innumerable local networks
operate on a commercial basis around the
clock. From the beginning, many networks
were designed hierarchically, as a series of
layers, each one building on the one below.
At first, each network design team started
out by choosing its own set of layers. How-
ever, in the past few years, a consensus has
begun to develop among network designers,
a consensus embodied in the International
Organization for Standardization's Refer-
ence Model of Open Systems Interconnec-
tion (ISO OSI). In this paper we present an
informal introduction to computer net-
working using this model as a guide. A more
thorough treatment of the ISO OSI model
itself can be found in ZIMM80.

Before getting into the subject of network
protocols, it is worth saying a few words

about what we mean by a computer net-
work. A computer network is a collection of
computers, called hosts, that communicate
with one another. The hosts may be large
multiprogrammed mainframes or small
personal computers. Networks can be clas-
sified as local networks or long-haul net-
works. The hosts on a local network are
typically contained in a single building or
campus and are connected by a high-band-
width cable or other communication me-
dium specifically designed for this purpose.
Long-haul networks, in contrast, typically
connect hosts in different cities using the
public telephone network, an earth satel-
lite, or both.

Local networks are nearly always com-
pletely owned by a single organization,
whereas long-haul networks normally in-
volve at least two organizations: the carrier,
which operates the communication facility
(telephone lines, microwave dishes, satel-
lite, etc.), and the users, who own the hosts.
This division of labor into (1) the provider
of the communication facility and (2) the

Permission to copy without fee all or part of thin maternal is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notme is given that copying is by permmslon of the Association for Computing Machinery. To
copy otherwise, or to republish, requrres a fee and/or specific permmslon.
© 1981 ACM 0010-4892/81/1200-0453 $00 75

Computing Surveys, Vol. 13, No. 4, December 1981

454 • Andrew S. Tanenbaum

CONTENTS

INTRODUCTION

Protocols

Overvmw of the ISO OSI Layers

1. THE PHYSICAL LAYER

1 1 The Telephone System

1 2 Communication Satellites

1 3 Local Networks

1.4 An Example Physmal Layer Protocol X 21

2 THE DATA LINK LAYER

2 1 Stop-and-Walt Protocols

2.2 Shding-Wmdow Protocols

2 3 An Example Data Link Layer Protocol HDLC

2 4 Channel Allocation in Satellite Networks

2 5 Channel Allocation m Local Networks

3 THE NETWORK LAYER

3 1 Routing m Point-to-Point Networks

3 2 Congestion Control m Point-to-Point Networks

3.3 An Example Network Layer Protocol X 25

4 THE TRANSPORT LAYER

4 1 The Transport Station

4 2 Establishing and Closing Connectmns

4 3 Flow Control and Buffering

4 4 Connectmn Multiplexing

5 THE SESSION LAYER

6 THE PRESENTATION LAYER

6.1 Text Compression

6 2 Encryptlon Protocols

6 3 Virtual-Terminal Protocols

6 4 File Transfer Protocols

7 SUMMARY

ACKNOWLEDGMENTS

REFERENCES

A

v

users of the communication facility has im-
portant ramifications for network architec-
tures, as we shall see later.

The communication facility in a long-
haul network is called the (communication)
subnet, and often consists of a collection of
minicomputers variously called IMPs (in-
terface message processors), nodes, or
switches connected by high-bandwidth
leased telephone lines or a satellite. Figure
1 shows a network using telephone lines.
Such a network is called apoint-to-point or
store-and forward network, as opposed to
a broadcast network, such as a satellite
network. The terms "host," "IMP," and
"communication subnet" come from the
U.S. Department of Defense's ARPANET,
one of the first large-scale networks
[McQu77]. We use this terminology gener-

ically because no consensus on nomencla-
ture exists.

When the IMPs are connected by tele-
phone lines, they are normally located on
the carrier's premises, with each IMP serv-
icing multiple hosts. To save on long-dis-
tance leased-line line charges, hosts and
terminals are often funneled through re-
mote concentrators. When the IMPs are
connected by a satellite, the IMPs may be
located on the customer's premises {e.g., on
the roof). Local networks do not have
IMPs; instead, each host has an interface
card inserted into its backplane to control
access to the network. This card is attached
to the communication subnet, which is typ-
ically just a cable.

Although the ISO Reference Model can
be used for both long-haul and local net-
works, it was designed primarily with the
former in mind. Accordingly, in this paper
we also treat both kinds of networks, but
we emphasize slightly the long-haul variety,
since issues such as routing and congestion
control play a more prominent role in long-
haul networks than in local networks.

In passing, we note that the subject of
connecting distinct networks together is an
increasingly important one, although it lies
beyond the scope of this article. For an
introduction to this subject see BOGG80 and
POST80.

Protocols

As mentioned above, networks are almost
always organized as a hierarchy of layers.
Each layer performs a small set of closely
related functions. The ISO Reference
Model has seven layers:

(1) the physical layer,
(2) the data link layer,
(3) the network layer,
(4) the transport layer,
(5) the session layer,
(6) the presentation layer,
(7) the application layer,

as shown in Figure 2. All layers are present
on the hosts, but only layers 1, 2, and 3 are
present on the IMPs.

Each layer should be thought of as a
program or process (possibly embedded in
a hardware device) that communicates with

Computing Surveys, Vol. 13, No 4, December 1981

Network Protocols • 455

SuOn t bouodory

High bandwidth trunk

• IMP

Host

Concentrator

Q Terminal

Figure 1. A typmal point-to-point long-haul network.

~p
Apphc__at,on Ia_yer p_ro_toco_]

Prgsentatron laler protocol _~q 6 I

Session Igyer protocot

TrQnsport layer protocol

Network ~ N e t w o r k

L I I

hyslca] ~ Phys~cnl

Host A IMP Host B

Figure 2. The seven-layer ISO Reference Model.

the corresponding process on another ma-
chine. In Figure 2, host layers 1, 2, and 3
think that they are communicating with
their corresponding layers on the IMP,
called peers. (In this example, hosts A and
B are serviced by a common IMP; in gen-
eral, multiple IMPs may intervene.) Layers
4-7, in contrast, communicate directly with
their peer layers on the other host. The
rules governing the layer k conversation are
called the layer k protocol. The ISO model
thus has seven protocols.

In reality, data are not transmitted hori-
zontally, from machine to machine within
a given layer, but are passed vertically down

the layers of the sending machine and up
the layers of the receiving machine. Only in
layer 1 does actual intermachine commu-
nication occur. When an application pro-
gram, running in layer 7 on host A, wants
to send a message to the application in
layer 7 on host B, it passes the message
down to the presentation layer on its own
machine. The presentation layer trans-
forms the data, adds a layer 6 header con-
taining control information used by the
layer 6 protocol, and passes the resulting
message down to the session layer. The
session layer then adds its own header and
passes the new message down to the trans-
port layer. The complete path from layer 7
on host A to layer 7 on host B is shown in
Figure 2 by the solid line. The boundary
between adjacent layers is called an inter-
face. The layers, interfaces, and protocols
in a network form the network architec-
ture.

No layer is aware of the header formats
or protocols used by other layers. Layer k
on the sending machine regards its job as
getting the bits that come in from layer
k + 1 over to the receiving machine some-
how (using the services of the lower layers).
It neither knows nor cares what the bits
mean.

A three-layer analogy may be helpful in
understanding how multilayer communi-
cation works. Consider the problem of the

Computing Surveys, Vol 13, No. 4, December 1981

456 ° Andrew S. Tanenbaum

two talking philosophers. Philosopher 1
lives in an ivory tower in Kenya and speaks
only Swahfli. Philosopher 2 lives in a cave
in India and speaks only Telugn. Neverthe-
less, Philosopher 1 wishes to convey his
affection for Oryctolagus cuniculus to his
Indian colleague (the philosophers are layer
3 peers). Since the philosophers speak dif-
ferent languages, each engages the services
of a translator (layer 2 process) and an
engineer (layer 1 process).

To convey his thoughts, Philosopher 1
passes his message, in Swahili, to his trans-
lator, across the 3/2 interface. The trans-
lator may convert it to English, French,
Dutch, or some other language, depending
only on the layer 2 protocol. The translator
then hands his output to his engineer across
the 2/1 interface for transmission. The
physical mode of transmission may be tel-
egram, telephone, computer network, or
something else, depending only on the layer
1 protocol. When the Indian engineer re-
ceives the message, he passes it to his trans-
lator for rendition into Telugu. Finally, the
Indian translator gives the message, in Te-
lugn, to his philosopher.

This analogy illustrates three points.
First, each person thinks of his communi-
cation as being primarily horizontal, with
his peer (although in reality it is vertical,
except in layer 1). For example, Philosopher
1 regards himself as conversing with Phi-
losopher 2, even though his only physical
communication is with translator 1. Sec-
ond, actual communication is vertical, not
horizontal, except in layer 1. Third, the
three protocols are completely independ-
ent. The philosophers can switch the sub-
ject from rabbits to guinea pigs at will; the
translators can switch from English to
Dutch at will; the engineers can switch from
telegram to telephone at will. The peers in
any layer can change their protocol without
affecting the other layers. It is for precisely
this reason that networks are designed as a
series of layers--to prevent changes in one
part of the design (e.g., caused by techno-
logical advances) from requiring changes in
other parts.

Overview of the ISO OSI Layers

The remainder of this article concerns the
various layers in the ISO Reference Model,

one section per layer. Before looking at the
layers in detail, we first present a brief
overview of each layer, to put the hierarchy
in perspective.

The physical layer protocol is concerned
with the transmission of a raw bit stream.
Its protocol designers must decide how to
represent O's and l's, how many microsec-
onds a bit will last, whether transmission is
full- or half-duplex, how the connection is
set up and torn down, how many pins the
network connector has, what each pin is
used for, and other electrical, mechanical,
and procedural details.

The data link layer converts an unrelia-
ble transmission channel into a reliable one
for use by the network layer. The technique
for doing so is to break up the raw bit
stream into frames, each containing a
checksum for detecting errors. (A checksum
is a short integer that depends on all the
bits in the frame so that a transmission
error will probably change it and thus be
detectable.) The data link protocol usually
ensures that the sender of a data frame will
repeatedly transmit the frame until it re-
ceives an acknowledgment frame from the
receiver.

The network layer in a point-to-point
network is primarily concerned with rout-
ing and the effects of poor routing, namely,
congestion. In a broadcast network, routing
is not an issue, since only one channel ex-
ists.

The task of the transport layer is to pro-
vide reliable host-to-host communication
for use by the session layer. It must hide all
the details of the communication subnet
from the session layer, so that, for example,
a point-to-point subnet can be replaced by
a satellite link without affecting the session,
presentation, or application layers. In ef-
fect, the transport layer shields the cus-
tomer's portion of the network (layers 5-7)
from the carrier's portion (layers 1-3).

The session layer is responsible for set-
ting up, managing, and tearing down pro-
cess-to-process connections, using the host-
to-host service provided by the transport
layer. It also handles certain aspects of
synchronization and recovery.

The presentation layer performs gener-
ally useful transformations on the data to
be sent, such as text compression. It also

Computing Surveys, Vol. 13, No 4, December 1981

Network Protocols • 457

performs the conversions required to allow
an interactive program to converse with
any one of a set of incompatible intelligent
terminals.

The content of the application layer is up
to the users. Nevertheless, standard proto-
cols for specific industries, such as airlines
and banking, are likely to develop, although
few exist now. For this reason we say no
more about the application layer in this
paper.

Although the ISO OSI Reference Model
says nothing about how the layers are to be
implemented, one possible configuration
might have the physical layer in hardware,
the data link layer in a special protocol
chip, the network layer in a device driver,
the transport and session layers in the op-
erating system proper, the presentation
layer in a set of library routines in the user's
address space, and the application layer be
the user's program.

At this point we have covered enough
background material to say a little bit about
the ISO OSI Reference Model itself. Basi-
cally, it is a framework for describing lay-
ered networks. It discusses the concept of
layering in considerable detail, and intro-
duces a uniform terminology for naming
the various entities involved. Finally, it
specifies the seven layers mentioned thus
far, and for each layer gives its purpose, the
services provided to the next higher layer,
and a description of the functions that the
layer must perform. The value of the model
is that it provides a uniform nomenclature
and a generally agreed upon way to split
the various network activities into layers.

However, the ISO OSI Reference Model
is not a protocol standard. By breaking a
network's functions up into layers, it sug-
gests places where protocol standards could
be developed (physical layer protocols, data
link layer protocols, and so on), but these
standards themselves fall outside the do-
main of the model. With the model in hand,
other organizations such as the Consulta-
tive Committee for International Tele-
phony and Telegraphy (CCITT), the Inter-
national Federation for Information Proc-
essing (IFIP), and the American National
Standards Institute (ANSI) may develop
specific protocol standards for the various
layers. Although these standards may even-

tually be officially approved by ISO, such
work is still in progress and, in any event,
falls far outside the scope of the model.

As a final note, before plunging into the
details of the various layers, we would like
to point out that this article is about net-
work protocols, with the ISO OSI Refer-
ence Model used as a guide; it is not an
article about the model itself. We empha-
size the communication algorithms and
protocols themselves, a subject about which
the Reference Model says nothing.

1. THE PHYSICAL LAYER

In this section we look at a variety of as-
pects related to the physical layer. Our
emphasis is on the conceptual organization
of the physical transmission facilities, not
on the hardware details themselves. Point-
to-point, satellite, and local networks are
discussed. We conclude with a brief discus-
sion of the X.21 physical layer protocol.

The function of the physical layer is to
allow a host to send a raw bit stream into
the network. The physical layer is in no
way concerned with the way the bits are
grouped into larger units, or what they
mean. Nor does it rectify the problem of
some bits being garbled by transmission
errors. Recovery from such errors is up to
the data link layer.

The communication subnet can be orga-
nized in one of two ways. In circuit switch-
ing, a fixed amount of transmission capac-
ity (bandwidth) is reserved when the source
initiates a conversation and released only
when the conversation is over. The tele-
phone system uses circuit switching. When
someone calls a time-sharing service in a
distant city, the connection is established
after dialing and remains in force until one
end hangs up. If the user goes out to lunch
while still logged in, the connection remains
intact and the charges continue to accu-
mulate, even though the connection is ac-
tually idle.

With packet switching, in contrast, the
user initially sets up a connection between
his terminal or host and the nearest IMP,
not the destination host. (We assume that
the destination host also is connected to
some IMP.) Whenever the user has data to
send, he sends them to the IMP as a series
of packets, typically 10-1000 bytes long.

Computing Surveys, Vol. 13, No. 4, December 1981

458 • Andrew S. Tanenbaum

Packets are routed from IMP to IMP
within the subnet, until they get to the IMP
which services the destination host. No cir-
cuits are reserved in advance within the
subnet for the terminal-to-host connection
{except the terminal-to-IMP and IMP-to-
host circuits). Instead, the high-bandwidth
IMP-IMP lines are dynamically shared
among all the users on a demand basis;
IMP-IMP bandwidth is only tied up when
data are actually being transmitted.

Although the above discussion is cast in
terms of a point-to-point network, the same
considerations apply to broadcast channels.
If a portion of the channel (e.g., one fre-
quency band) is dedicated to a given con-
versation throughout its duration, without
regard to actual usage, the network is cir-
cuit switched. If, however, the channel is
dynamically requested, used, and released
for every packet, the network is packet
switched.

Circuit-switched networks are best suited
to communication whose bandwidth re-
quirements do not change much over time.
Transmission of human speech is such an
application, so it makes sense for the tele-
phone network to be circuit switched. Ter-
minal-to-computer and computer-to-com-
puter traffic, however, is usually bursty.
Most of the time there are no data to send,
but once in a while a burst of data must be
transmitted. For this reason, most com-
puter networks use packet switching to
avoid tying up expensive transmission fa-
cilities when they are not needed. However,
in the future, all digital transmission sys-
tems will allow computers to dial a call,
send the data, and hang up, all within a few
milliseconds. If such systems become wide-
spread, circuit switching may come back
into favor.

1.1 The Telephone System

Since most existing long-haul networks use
the telephone system for their transmission
facilities, we shall briefly describe how the
latter is organized. Most telephones are
connected to a nearby telephone company
switching office by a pair of copper wires
known as a local loop. The switching offices
themselves are connected by high-band-
width trunks onto which thousands of un-
related calls are multiplexed. Although

some trunks utilize copper wire, many uti-
lize microwave relays, fiber optics, or wave
guides as the transmission medium.

Because the bandwidth of the local loop
is artificially limited to about 3000 Hz
(hertz), it is difficult to transmit informa-
tion over it by using, for example, +5 volts
for a binary one and 0 volts for a binary
zero. Such square wave signaling depends
on high-frequency harmonics that are well
above the 3000-Hz cutoff frequency. Only
with very low date rates might enough in-
formation be below 3000 Hz to be intelligi-
ble. Instead, a device called a modem is
inserted between the host and the tele-
phone line. The input to the modem is pure
digital data, but the output is a modulated
sine wave with a base frequency of gener-
ally between 1000 and 2000 Hz. Since the
modulated sine wave has fewer high-fre-
quency components than the original
square wave, it is affected less by the lim-
ited bandwidth.

A sine wave has three properties that can
be modulated to transmit information: an
amplitude, a frequency, and a phase. In
amplitude modulation, two different ampli-
tude values are used to represent 0 and 1.
In frequency modulation, different frequen-
cies are used for 0 and 1, but the amplitude
is never varied. In phase modulation, nei-
ther the amplitude nor the frequency is
varied, but the phase of the sine wave is
abruptly switched to send data. In the most
common encoding scheme, phase shifts of
45, 135, 225, and 315 degrees are used to
send 00, 01, 10, and 11, respectively. In
other words, each phase shift sends two
bits. The three methods can be combined
to increase the transmission capacity.

Many such transmission systems have
been standardized and form an important
class of physical layer protocols. Unfortu-
nately, in many cases, the standards in the
United States and Canada differ from those
used by the rest of the world. For example,
those ubiquitous 300-bit-per-second fre-
quency modulation modems found near ter-
minals around the world use different sig-
naling frequencies in North America and
Europe.

Probably the best known physical layer
standard at present is RS-232-C, which
specifies the meaning of each of the 25 pins

Computing Surveys, Vol 13, No 4, December 1981

on a terminal connector and the protocol
governing their use. However, a new stan-
dard, RS-449, has been developed to re-
place this aging workhorse. RS-449 is up-
ward compatible with RS-232-C but uses a
37-pin connector to accommodate the new
signals. Unfortunately, 37 pins are insuffi-
cient, so users wishing to take advantage of
all the features of RS-449 (notably the sec-
ondary channel) need a second 9-pin con-
nector as well.

The transmission technology and proto-
cols used on the interoffice trunks are dif-
ferent from those used on the local loop. In
particular, digital rather than analog tech-
niques are becoming increasingly wide-
spread. The most common digital system is
pulse code modula t ion (PCM), in which
the analog signal coming in from the local
loop is digitized by sampling it 8000 times
per second. Eight bits (seven data and one
control) are transmitted during each 125-
#s (microsecond) sampling period. In North
America, 24 such PCM channels are
grouped together into 193-bit frames, with
the last bit being used for synchronization.
With 8000 193-bit frames per second, the
gross data rate of this system, known as T1,
is 1.544 Mbits/s (megabits per second). In
Europe, the 1.544-Mbit/s PCM standard
uses all 8 bits for data, with the 193rd bit
(which is attached to the front rather than
rear of the frame) used for signaling. Two
different (and incompatible) 32-channel
PCM standards running at 2.048 Mbits/s
are also widely used outside North Amer-
ica. For more information about the tele-
phone system see DAVI73 and DOLL78.

1.2 Communication Satellites

Although most existing long-haul networks
use leased telephone circuits to connect the
IMPs, satellite-based networks are becom-
ing increasingly common. A communica-
tion satellite is a big repeater in the sky.
Incoming signals are amplified and re-
broadcast by a transponder on the satellite.
The upward and downward signals use dif-
ferent frequencies to avoid interference. A
typical communication satellite has 5-10
independent transponders, each with a ca-
pacity of about 50 Mbits/s.

Communication satellites are put into

N e t w o r k Protocols • 459

geosynchronous equatorial orbit at an alti-
tude of 36,000 kilometers to make them
appear stationary in the sky when viewed
from the earth. Consequently, the ground
station antenna can be pointed at the sat-
ellite when the antenna is installed and
never moved. A moving satellite would re-
quire a much more expensive steerable an-
tenna and would also have the disadvan-
tage of being on the other side of the earth
half the time. On the other hand, the great
altitude required to achieve a 24-hour pe-
riod implies an up-and-down propagation
delay of 270 ms (milliseconds), which seri-
ously affects the data link layer protocols
and response time.

To avoid mutual interference, communi-
cation satellites using the 4/6-GHz (giga-
hertz) frequency band must be separated
by an angle of 4 degrees as viewed from the
earth. Since some orbit slots have been
allocated by international agreement to
television, military, and other use, the num-
ber of equatorial orbit slots available to
data communication is limited. (As an
aside, the allocation of orbit slots has been
a political battleground, with every coun-
try, especially those in the Third World,
asking for its fair share of slots for the
purpose of renting them back to those coun-
tries able to launch satellites.) The 12/14-
GHz band has also been allocated to data
communication. At these frequencies, an
orbit spacing of 1 degree is sufficient, pro-
viding four times as many slots. Unfortu-
nately, because water is an excellent ab-
sorber of these short microwaves, multiple
ground stations and elaborate switching are
needed in order to avoid rain.

Three modes of operation have been pro-
posed for satellite users. The most direct
but most expensive mode is to put a com-
plete ground station with antenna on the
user's roof. This approach is already feasi-
ble for large multinational corporations and
will become feasible for medium-sized ones
as costs decline. The second approach is to
put a small, cheap antenna on the user's
roof to communicate with a shared satellite
ground station on a nearby hill. The third
approach is to access the ground station via
a cable (e.g., a leased telephone circuit or
even the same cable used for cable televi-
sion).

Computing Surveys, Vol. 13, No. 4, December 1981

460 • A n d r e w S. T a n e n b a u m

???? ???
(a)

???
O]

El

???E
(b) (c)

Figure 3. Local network topologies. (a) Linear cable with four hosts. (b) Segmented cable with repeaters and
hosts. (c) Ring.

Physical layer satellite protocols typi-
cally have many PCM channels multi-
plexed on each transponder beam. Some-
times they are dedicated (circuit switched);
at other times they are dynamically as-
signed as needed (packet switched). For
more information about communication
satellites see MART78.

1.3 Local Networks

In most local networks, the hosts are con-
nected by a linear, tree-shaped, or ring-
shaped cable, as shown in Figure 3. In Fig-
ure 3a, all hosts tap onto a common cable.
In Figure 3b, multiple cables are used (e.g.,
one per floor of an office building), with
repeaters connecting the segments. In Fig-
ure 3c, all hosts tap onto a unidirectional
ring.

A widely imitated linear or tree-shaped
local network is the Ethernet T M network
[METC76]. The proper term for this kind of
network is CSMA/CD (Carrier Sense Mul-
tiple Access/Collision Detect), although
many people incorrectly use the term "Eth-
ernet" (which is a trademark of the Xerox
Corporation) in a generic sense. In these
networks, only one packet may be on the
cable at any instant. The cable is known as
the ether, after the luminiferous ether
through which electromagnetic radiation
was once alleged to propagate. The princi-
ple behind CSMA/CD is simple: when a

host wishes to send a packet, it first listens
to the ether to see if the ether is being used.
If it is, the host waits until the current
transmission finishes; if not, the host begins
transmitting immediately.

The interface hardware must detect col-
lisions caused by two hosts simultaneously
starting a transmission. Collision detection
is done using analog circuitry, in essence
monitoring the ether to see if it agrees with
the signal being transmitted. When a host
interface (the analog of an IMP in this
system, since the ether itself is totally pas-
sive) detects a collision, it informs the data
link layer. The collision recovery action
consists of aborting the current transmis-
sion, broadcasting a noise burst to make
sure that everyone else detects the collision
as well, waiting a random length of time,
and then trying again. Collision detection is
only feasible if the round-trip propagation
delay is short compared to the packet trans-
mission time, a condition that can be met
with cable networks, but not, for example,
with satellite networks.

Cable networks similar to the Xerox Eth-
ernet network, but without the collision
detect feature, also exist. Network design-
ers can trade off the cost of collision detec-
tion circuitry against the time lost by not
aborting colliding packets quickly.

Ring nets use a different principle: in
effect, the whole ring is a giant circular shift

Computing Surveys, Vol. 13, No 4, December 1981

DTE

T (T r a n s m i t)

C (C o n t r o l)

R (R e c e i v e)

I (I n d i c a t i o n)

S (Srgna l t i m i n g)

B (B y t e t i m i n g)

Ga (C o m m o n r e t u r n)

G (G r o u n d)

DCE

Figure 4. The DTE/DCE interface m X 21.

register. After each shift, the host interface
can read or write the bit just shifted into it.
Several different kinds of rings have been
p r o p o s e d [CLAR78, FARB72, FRAS75, LIU78,
WILK79], differing primarily in their layer
2 organizations, which we describe later.
Both CSMA/CD networks and rings typi-
cally operate at data rates of 1-10 Mbits/s.
A substantial bibliography about local net-
works can be found in FREE80 and SHOC81.

1.4 An Example Physical Layer Protocol:

X.21

At present, most physical layer standards,
like RS-232-C and RS-449, utilize analog
signaling. In the future, true digital inter-
faces will be needed. Recognizing this need,
CCITT, the international standardization
body for telephony, has developed a fully
digital interface called X.21. X.21 is in-
tended to be used to connect a host com-
puter to a network. This connection re-
mains established as long as the host wants
to communicate with the network. Conse-
quently, X.21 is a circuit-switched protocol,
but host-host connections set up over the
X.21 line may be either circuit switched or
packet switched.

In X.21 terminology, the host is a D T E

(Data Terminal Equipment) and the IMP
is a D C E (Data Circuit-Terminating Equip-
ment}. The DTE-DCE interface consists of
eight lines, as shown in Figure 4. The S line
provides a clock signal to define bit bound-
aries. The (optional) B line provides a pulse
every eighth bit, to allow byte alignment.
The C and I lines are used for control
signaling, analogous to the on-hook/off-
hook signal on a telephone. The T and R
lines are used for data and also for signaling.

N e t w o r k Protocols • 461

To see how X.21 works, let us examine
how a DTE calls another DTE, talks to it,
and then hangs up. When the interface is
idle, T, R, C, and I are all 1. The series of
events is as follows (with a telephone anal-
ogy in parentheses):

(1) DTE drops T and C (DTE picks up
phone).

(2) DCE sends "+ + + + + + . . . + + +" on
R (DCE sends dial tone).

(3) DTE sends callee's address on T
(DTE dials number).

(4) DCE sends call progress signals on R
(phone rings).

(5) DCE drops I to 0 (callee answers
phone).

(6) Full duplex data exchange on T and
R (talk).

(7) DTE raises C to 1 (DTE says good-
bye).

(8) DCE raises I to 1 (DCE says good-
bye).

(9) DCE raises R to 1 (DCE hangs up).
(10) DTE raises T to 1 (DTE hangs up).

The call progress signals in Step 4 tell
whether the call has been put through, and
if not, why not. The shutdown procedure in
Steps 7-10 operates in two phases. After
either party has said goodbye, that party
may not send more data but it must con-
tinue listening for incoming data. When
both sides have said goodbye, they then
hang up, returning the interface to idle
state, with l 's on all four lines. RS-449 and
X.21 are described in more detail in BERT80
and FOLT80.

2. THE DATA LINK LAYER

As we have seen, neither X.21, RS-232-C,
nor any other physical layer protocol makes
any attempt to detect or correct transmis-
sion errors. Nor do these protocols recog-
nize the possibility that the receiver cannot
accept data as fast as the sender can trans-
mit them. Both of these problems are han-
dled in the data link layer. In the following
sections we first discuss the relevant prin-
ciples and then we give an example of a
widely used data link protocol, HDLC
(High-Level Data Link Control). Following
the HDLC example, we look at some data
link protocols for satellite and local net-
works.

Computing Surveys, Vol. 13, No. 4, December 1981

462 • Andrew S. Tanenbaum

As mentioned earlier, the approach used
in the data layer is to partition the raw
physical layer bit stream into frames so
each transmitted frame can be acknowl-
edged if need be. An obvious question is:
"How are frames delimited?" In other
words, how can the receiver tell where one
frame ends and the next one begins?

Three methods are in common use on
long-haul networks: character count, char-

acter stuffing, and btt stuffing. With the
first method, each frame begins with a
fixed-format frame header that tells how
many characters are contained in the
frame. Thus, by simply counting charac-
ters, the receiver can detect the end of the
current frame and the start of the following
one. The method has the disadvantage of
being overly sensitive to undetected trans-
mission errors which affect the count field;
it also has the disadvantage of enforcing a
specific character size. Furthermore, lost
characters wreak havoc with frame syn-
chronization. Digital Equipment Corpora-
tion's DDCMP (Digital Data Communica-
tion Message Protocol) uses the character
count method, but few other protocols do.
Use of character counts to delimit frames
is likely to diminish in the future.

The second method for delimiting
frames, character stuffing, is to terminate
each frame with a special "end-of-frame"
character. The problem here is what to do
with "end-of-frame" characters that acci-
dently appear in the data (e.g., in the mid-
dle of a floating point number). The solu-
tion is to insert an "escape" character be-
fore every accidental "end-of-frame" char-
acter. Now what about accidental "escape"
characters? These are rendered as two con-
secutive escapes. Although these conven-
tions eliminate all ambiguity, they do so at
the price of building a specific character
code into the protocol. IBM's BISYNC
(Binary SYNchronous Communication)
protocol uses character stuffing, but, like all
other such protocols, it is gradually becom-
ing obsolete.

Modern data link protocols for long-haul
networks all use bit stuffing, a technique in
which frames are delimited by the bit pat-
tern 01111110. Whenever five consecutive
one bits appear in the data stream, a zero
bit is "stuffed" into the bit stream (nor-

mally by hardware). Doing so prevents user
data from interfering with framing, but does
not impose any character size on the data.

On local networks, one can use any of the
above methods, or a fourth method: detect-
ing frames by the presence or absence of a
signal on the cable. This method is much
more direct, but it is not applicable to long-
haul networks.

Virtually all data link protocols include
a checksum in the frame header or trailer
to detect, but not correct, errors. This ap-
proach has traditionally been used because
error detection and retransmission requires
fewer bits on the average than forward error
correction (e.g., with a Hamming code).
However, with the growing use of satellites,
the long propagation delay makes forward
error correction increasingly attractive.

A simple checksum algorithm is: com-
pute the Exclusive OR of all the bytes or
words as they are transmitted. This algo-
rithm will detect all frames containing an
odd number of bits in error, or a single error
burst of length less than the checksum, and
many other combinations. In practice, a
more complex algorithm based on modulo
2 polynomial arithmetic is used [PETE61,
SLOA75].

2.1 Stop-and-Wait Protocols

As a first example of a data link layer
protocol, consider a host A wishing to send
data to another host B over a perfectly
reliable channel. At first glance you might
think that A could just send at will. How-
ever, this idea does not work, since B may
not be able to process the data as fast as
they come in. If B had an infinite amount
of buffer space, it could store the input for
subsequent processing. Unfortunately, no
host has infinite storage. Consequently, a
mechanism is needed to throttle A into
sending no faster than B can process the
data. Such mechanisms are called flow con-
trol algorithms. The simplest one calls for
A to send a frame and then wait for B to
send explicit permission to send the next
frame. This algorithm, called stop-and-
wast, is widely used.

More elaborate protocols are needed for
actual channels that make errors. An ob-
vious extension to our basic protocol is to

Compuung Surveys, Vol. 13, No 4, December 1981

Sender

Receiver

@@
(a) (b)

Network Protocols • 463

(c) (d) (e) (f) (g)

Figure 5. The shding-window algorithm.

have A put a sequence number in each data
link frame header and to have B put in
each acknowledgment frame both a se-
quence number and a bit telling whether
the checksum was correct or not. Whenever
A received a negative acknowledgment
frame (i.e., one announcing a checksum er-
ror), it could just repeat the frame.

Unfortunately, this protocol fails if either
data or acknowledgment frames can be lost
entirely in noise bursts. If a frame is lost, A
will wait forever, creating a deadlock. Con-
sequently, A must time out and repeat a
frame if no acknowledgment is forthcoming
within a reasonable period. Since each
frame bears a sequence number, no harm is
done if A has an itchy trigger finger and
retransmits too quickly; however, some
bandwidth is lost.

2.2 Sliding-Window Protocols

Stop-and-wait works well if the propagation
time between the hosts is negligible. Con-
sider, for a moment, how stop-and-wait
works when 1000-bit frames are sent over
a 1-Mbit/s satellite channel:

Time

(ms) Event

0 A starts sendmg the frame

1 Last bit sent, A starts to walt

270 Fncst bit arrives at B

271 Last bit arrives at B

271 B sends a short acknowledgment

541 The acknowledgment arrives at A

For each millisecond of transmission, A has
to wait 540 ms. The channel utilization is
thus 1/541, or well below 1 percent. A better
protocol is needed.

One such protocol is the shd ing-window

protocol, in which the sender is allowed to
have multiple unacknowledged frames out-
standing simultaneously. In this protocol,
the sender has two variables, SL and Su,
that tell which frames have been sent but
not yet acknowledged. SL is the lowest num-
bered frame sent but not yet acknowledged.
The upper limit, Su, is the first frame not
yet sent. The current send window size is
defined as Su - SL.

The receiver also has two variables, RL
and Ru, indicating that a frame with se-
quence number N may be accepted, pro-
vided that RL ~ N < Ru. If Ru - RL = 1,
then the receiver has a window of size 1,
that is, it only accepts frames in sequence.
If the receiver's window is larger than 1, the
receiver's data link layer may accept frames
out of order, but normally it will just buffer
such frames internally, so that it can pass
frames to the network layer in order.

To keep sequence numbers from growing
without bound, arithmetic is done modulo
some power of 2. In the example of Figure
5, sequence numbers are recorded modulo
8. Initially (Figure 5a), SL ~ 0, S u ~ 0,

RL = 0, and Ru = 1 (receiver window size is
1 in this example). The current window is
shown shaded in the figure. When the data
link layer on the sending machine receives
a frame to send (from the network layer),
it sends the frame and advances the upper
edge of its window by 1, as shown in Figure
5b. When it receives the next frame from
the network layer, it sends the frame and
advances the window again (Figure 5c).
When the first frame arrives at the receiver,
the receiver's window is rotated by advanc-

Computmg Surveys, Vol 13, No. 4, December 1981

464 • A n d r e w S. T a n e n b a u m

ing both edges (Figure 5d), and an acknowl-
edgment is sent back. If frame 1 arrives at
the receiver before the acknowledgment
gets back to the sender, the state will be as
shown in Figure 5e. When the first acknowl-
edgment arrives, the lower edge of the
sender's window is advanced (Figure 5f).
Figure 5g shows the variables after both
acknowledgments arrive.

As with stop-and-wait, the sliding-win-
dow protocol uses timeouts to recover from
lost frames. The sender maintains a timer
for each frame currently in its window.
Whenever the lower edge of the window is
advanced, the corresponding timer is
stopped. Suppose, for example, that frames
0-4 are transmitted, but frame 1 is lost. The
receiver will acknowledge frame 0, but dis-
card frames 2-4 as they arrive, because they
are outside the receive window {still size 1
in our example). Eventually, frames 1-4 will
all time out and be retransmitted.

How many frames may our example
sender have outstanding at any instant?
The answer is seven, not eight, as might at
first appear. To see why, consider the fol-
lowing scenario:

(1) The sender transmits frames 0-7.
(2) All eight frames arrive and are ac-

knowledged.
(3) All eight acknowledgments are lost.
(4) The sender times out and retransmits

the eight frames.
(5) The receiver unknowingly accepts the

duplicates.

The problem occurs after Step 2, when the
receiver's window has rotated all the way
around and it is prepared to accept frame
0 again. Unfortunately, it cannot distin-
guish frame 9 from frame 0, so the stream
of frames passed to the network layer will
contain undetected duplicate frames.

The solution is to restrict the sender's
window to seven outstanding frames. Then,
after Step 2 above, the receiver will be
expecting frame 7, and will reject all the
duplicate frames, informing the sender after
each rejection that it expects frame 7 next.

In the above example, whenever a frame
is lost, the receiver is obligated to discard
subsequent frames, even though they are
correctly received. To avoid this ineffi-
ciency, we can allow the receiver's window

to be greater than 1. Now let us look at the
lost frame problem again, with both the
sender's and receiver's windows of size 7.
When frames 2-4 come in, the receiver
keeps them internally. Eventually frame 1
times out and is retransmitted. The receiver
replies to the correct receipt of frame 1 by
saying that it expects frame 5 next, thereby
implicitly acknowledging frames 2-4 and
preventing their retransmission. With
frames 1-4 now safely in hand, the data link
layer can pass them to the network layer in
sequence, thus completely shielding the lat-
ter from the lost frame and its recovery.
This strategy is often called se l ec t i ve re-

p e a t , as opposed to the go b a c k n strategy
implied by a receiver window size of 1.

Unfortunately, even with the window set-
tings used above, the protocol can fail. Con-
sider the following scenario:

(1) The sender transmits frames 0-6.
(2) All frames arrive; the receiver's window

is now 7, 0,1, 2, 3, 4, 5.
(3) All seven acknowledgments are lost.
(4) The sender times out and retransmits

frames 0-6.
(5) The receiver buffers frames 0-5 and

says it wants frame 7 next.
(6) The sender transmits frames 7-13 (se-

quence numbers 7, 0,1, 2, 3, 4, 5).
(7) The receiver accepts frame 7 but rejects

frames 0-5 as duplicates.

At this point the receiver has frames 7, 0, 1,
2, 3, 4, and 5 buffered. It passes them all
to the unsuspecting network layer. Con-
sequently, undetected duplicates sneak
through again. To prevent this, the window
size must be restricted to not more than
half the size of the sequence number space.
With such a restriction, the receiver's win-
dow after having received a maximum
batch of frames will not overlap what it was
before having received the frames. Hence
no ambiguity arises about whether a frame
is a retransmission or an original.

2.3 An Example Data Link Protocol: HDLC

As an example of a data link protocol that
is widely used, we now briefly look at
HDLC (High-Level Data Link Control).
HDLC has many brothers and sisters (e.g.,
SDLC, ADCCP, LAP, LAPB), each having

Computing Surveys, Vol 13, No 4, December 1981

B i t s 8 8 8

J 01111110 Address Cont ro l

(a)

Network Protocols

0 - o o 16

• 4 6 5

8

I In fo rmot lon Checksum 01111110

B~ts

F i g u r e 6.

3 1 3

Sequence P/F Next In formation

' I 1
0 Type P / F

I

Next Supervlsory

] 1 Type P/F Mod i f ie r Unnumbered
I

(b)

(a) The HDLC frame format. (b) The control byte for the th ree kinds of frames.

minor, but irritating, differences in the con-
trol frames. How this situation came about
has to do with how certain large bureau-
cracies view certain other large bureau-
cracies, a stone best left unturned here.

HDLC and its friends all use bit stuffing
for delimiting frames. Their format is
shown in Figure 6a. The Address field is
used for addressing on multipoint lines
(lines connecting more than two com-
puters). The Control field is different for
each of the three classes of frames (see
Figure 6b). In Information frames (i.e., or-
dinary data}, the Sequence and Next fields
contain the sequence number of the current
frame and of the next frame expected, re-
spectively. When A sends a frame to B, the
Sequence field is the number of the frame
being sent and the Next frame is an ac-
knowledgment to B saying that A has cor-
rectly received all frames sent by B up to
but not including Next. Attaching an ac-
knowledgment field to an outgoing data
frame is widely known as piggybacking.
The practice saves bandwidth by requiring
fewer frames. Reducing the number of
frames sent also reduces the number of
frames received, and hence reduces the
number of I /O interrupts on the receiving
machine.

When no reverse traffic is present on
which to piggyback acknowledgments, a
Type = 0 supervisory frame is used. The

other types of supervisory frames are for
negative acknowledgment, selective repeat,
and receiver temporarily not ready. The
P /F bit stands for Poll/Final and has mis-
cellaneous uses, such as indicating polling
frames on multipoint lines and the final
frame in a sequence.

Unnumbered frames consist of a hodge-
podge of control information and comprise
the area of greatest difference between the
various HDLC-like protocols. Most of these
frames are used to initialize the line and to
report certain abnormal conditions.

Although Figure 6 depicts HDLC as hav-
ing a 3-bit sequence number, an alternate
format with 7-bit sequence numbers also
exists, for use on satellite or other channels
where large windows are needed to keep
the channel busy. Gelenbe et al. [GELE78]
have constructed a mathematical model of
HDLC that can be used to calculate the
throughput as a function of window size.

2.4 Channel Allocation in Satellite Networks

At this point we switch from the data link
layer of point-to-point networks to that of
broadcast networks, in particular, satellite
and local networks. Broadcast networks are
characterized by having a single channel
that is dynamically requested and released
by hosts for every packet sent. A protocol
is needed for determining who may use the

Computing Surveys, Vok 13, No 4, December 1981

466 • Andrew S. Tanenbaum

channel when, how to prevent channel
overload, and so on. These problems do not
occur in point-to-point networks. On the
other hand, since every host receives every
packet, broadcast networks usually do not
have to make any routing decisions. Thus
the main function of the network layer is
not relevant.

As a consequence of these fundamental
differences, it is not really clear where the
channel-access protocol should be placed in
the ISO OSI Reference Model, which does
not mention the issue at all. It could be put
in the data link layer, since it deals with
getting packets from one machine to the
next, but it could equally well be put in the
network layer, since it also concerns getting
packets from the source host to the desti-
nation host. Another argument for putting
it in the network layer is that the main task
of the access protocol is to avoid congestion
on the channel, and congestion control is
specifically a network layer function. Last,
in most broadcast networks the transport
layer is built directly on top of this protocol,
or in some cases on top of an internetwork
protocol, something lacking in the ISO OSI
Reference Model. Nevertheless, we treat
the subject as part of the data link layer
because the IEEE local network standards
committee (802) is probably going to put it
there. By analogy, the contention resolu-
tion protocol for satellite channels also be-
longs in the data link layer.

A satellite link can be operated like a
terrestrial point-to-point link, providing
dedicated bandwidth for each user by time-
division or frequency-division multiplexing.
In this mode the data link protocols are the
same as in point-to-point networks, albeit
with longer timeouts to account for the
longer propagation delay.

Another mode of operation, however, is
to dynamically assign the channel among
the numerous competing users. Since their
only method of communication is via the
channel itself, the protocol used for allocat-
ing the channel is nontrivial. Abramson
[ABRA70] and Roberts [ROBE73] have de-
vised a method, known as slotted ALOHA,
that has some interesting properties. In
their approach, time is slotted into units of
a (fixed-length) packet. During each inter-
val, a host having a packet to send can

either send or refrain from sending. If no
hosts use a given slot, the slot is just wasted.
If one host uses a slot, a successful trans-
mission occurs. If two or more hosts try to
use the same slot, a collision occurs and the
slot is also wasted. Note that with satellites
the hosts do not discover the collision until
270 ms after they start sending the packets.
Owing to this long delay, the collision de-
tection principle from CSMA/CD is not
applicable here. Instead, after detecting a
collision, each host waits a random number
of slots and tries again.

Clearly, if few hosts have packets to send,
few collisions will occur and the success
rate will be high. If, on the other hand,
many hosts have packets to send, many
collisions will occur and the success rate
will be low. In both cases the throughput
will be low: in the first case because of lack
of offered traffic, in the second case because
of collisions. Hence the throughput versus
offered traffic curve starts out low, peaks,
and then falls again. Abramson [ABRA73]
showed that the peak occurs when the
mean offered traffic is one packet per slot,
which yields a throughput of 1/e or about
0.37 packets per slot. Hence the best one
can hope for with slotted ALOHA is a 37
percent channel utilization.

Slotted ALOHA has another problem, in
addition to the low throughput: stability.
Suppose that an ALOHA system has many
hosts. By accident, during one slot k hosts
transmit and collide. After detecting the
collision, each host decides to retransmit
during the next slot with probability p (a
parameter of the system). In other words,
each host picks a random number between
0 and 1. If the number is less than p, it
transmits; otherwise it waits until the next
slot to pick another random number.

If kp >> 1, many hosts will retransmit
during each succeeding slot and practically
nothing will get through. Worse yet, these
retransmissions will compete with new
packets from other hosts, increasing the
number of hosts trying to use the channel,
which just makes the problem worse. Pretty
soon all hosts will be trying to send and the
throughput will approach zero, collapsing
the system permanently.

The trick to avoid collapse is to set the
parameter p low enough that kp < 1 for the

CompuUng Surveys, Vol 13, No 4, December 1981

Network Protocols • 467

k values expected. However, the lower p is,
the longer it takes even to attempt retrans-
mission, let alone succeed. Hence a low
value ofp leads to a stable system, but only
at the price of long delay times.

One way to set p is to use a default value
on the first retransmission, say 0.5, on the
assumption that two hosts are involved in
the collision. On each subsequent collision,
halve p. Gerla and Kleiurock [GERL77]
have another proposal; they suggest that
each host monitor the channel all the time,
just to measure the collision rate. When the
collision rate is low, the hosts can set p
high; when the collision rate is high, the
hosts can set p low to minimize collisions
and get rid of the backlog, albeit slowly.

A completely different way to avoid col-
lisions is to attempt to schedule the slots in
advance rather than have continuous com-
petition for them. Crowther et al. [CROW73]
proposed grouping slots into n-slot time
slices, with the time slice longer than the
propagation delay. In their system, conten-
tion is used initially, as described above.
Once a host has captured (i.e., successfully
used) a slot, it is entitled to use the same
slot position in the next slice, forbidding all
other hosts from trying to use it. This al-
gorithm makes it possible for a host to
transmit a long file without too much pain.
If a host no longer needs a slot position, it
sets a bit in the packet header that permits
other users to contend for the slot the next
time around.

Roberts [ROBE73] also proposed a
method of reducing contention. His pro-
posal also groups slots into time slices. One
slot per slice is divided into minislots and
used for reserving regular slots. To send a
packet, a host must first compete for a
minislot. Since all hosts see the results of
the minislot contention, they can all keep
track of how long the queue is and hence
know who gets to send when. In effect, the
use of minislots greatly reduces the amount
of time wasted on a collision (like the
CSMA/CD rule about aborting collisions
as soon as they are detected).

2.5 Channel Allocation in Local Networks

As mentioned earlier, when a CSMA/CD
host detects a collision, it jams the channel,
aborts the current packet, waits a random

time, and tries again. How long should it
wait? Metcalfe and Boggs [METC76] de-
cided to use a default maximum time inter-
val on the first collision, with the actual
waiting time being picked by multiplying a
random number in the range 0.0-1.0 by the
maximum time interval. On each successive
collision the maximum time interval is dou-
bled and a new random number is gener-
ated. They called their algorithm binary

exponential backoff
Various other algorithms have been pro-

posed for CSMA/CD, including some that
prevent all collisions. For example, Chlam-
tac [CHLA76], Chlamtac et al. [CHLA79],
and Scholl [ScHo76] have suggested slot-
ting time into intervals equal to the channel
acquisition time (the round-trip propaga-
tion delay). After a successful transmission
by host n, the next bit slot is then reserved
for host (n + 1) (modulo the number of
hosts). If the indicated host does not claim
its right to use the channel, the next host
gets a chance during the succeeding bit slot,
and so on. In effect, a virtual baton is passed
from host to host, with hosts only allowed
to transmit when holding the baton.

Rothauser and Wild [ROTH77] have also
proposed a collision-free CSMA/CD pro-
tocol. To illustrate their suggestion, we
shall assume that there are 1024 hosts,
numbered from 0 to 1023 (in binary, al-
though other radices can also be used).
After a successful transmission, ten bit slots
will be used to determine who goes next.
Each host attempts to broadcast its 10-bit
number in the ten slots, subject to the rule
that as soon as a host realizes that a higher
numbered host wants the channel, it must
stop trying. If, for example, the first three
bits are 011, then some host in the range
368-511 wants the channel, and so hosts
below 368 must desist from competing on
the current round. No host above 511 wants
the channel, as evidenced by the leading 0
bit. In effect, the channel is allocated to the
highest numbered contender. Since this
system gives high-numbered stations an ad-
vantage, it is desirable to make the host
numbers virtual, rotating them one position
after each successful transmission.

Protocols that allow only a limited num-
ber of collisions have also been proposed
[CAPE79a, CAPE79b, KLEI78]. Capetanakis'

Computing Surveys, Vol. 13, No 4, December 1981

468 • A n d r e w S. T a n e n b a u m

0 1 2 3 4 5 6 7

Figure 7. Eight machines organized in Capetanakis'
(vu'tual) tree.

idea is illustrated in Figure 7 for a system
with eight hosts. Initially, all hosts may
compete. If a collision occurs, only those
hosts under node B of the tree, namely, 0,
1, 2, and 3, may compete. If another colli-
sion occurs, the only descendants of node
D may try, and so forth. As an example,
suppose hosts 2, 3, and 4 all want the chan-
nel. After initial collisions for A (2, 3, and
4) and B (2 and 3), it will be node D's turn
and the channel will lie idle. Next comes
node E and another collision. Then 2 and
3 each get a private slot, followed by C. At
low load, the algorithm allows pure conten-
tion, but under high load it walks the tree
looking for hosts that want to send.

Although more could be said about
CSMA/CD protocols, we now turn our at-
tention to ring networks. In one of the best-
known rings [FARB72], an 8-bit token cir-
culates around the ring when there is no
traffic. When a host wants to transmit, it
must first capture and destroy the token.
Having done so, it may send its packet.
When it is finished, it must put the token
back, giving the next host downstream a
chance to seize it.

If the token is ever lost {e.g., as a result
of a ring interface malfunctioning), some
mechanism is needed to regenerate it. One
possibility is that each host wishing to send
must monitor the ring. Having failed to see
a token within the worst case interval--
namely, all other hosts sending a maxi-
mum-length packet--the host generates a
new token itself. However, with a little bad
luck, two hosts might generate tokens si-

multaneously. Hence, it appears that token
recovery in a ring net is similar to conten-
tion in CSMA/CD in systems. Clark et al.
[CLAR78] have taken this observation to its
logical conclusion and proposed a conten-
tion ring that is a hybrid of the token ring
and CSMA/CD.

Yet another type of ring is exempli-
fied by the Cambridge Ring [NEED79,
WILK79]. This 10-Mbit/s ring contains sev-
eral small slots around it, each slot consist-
ing of 16 bits of data, an 8-bit source ad-
dress, an 8-bit destination address, a bit
telling whether the slot is full or empty, and
a few other control bits. To transmit, a host
interface just waits for a free slot and fills
it up. When the slot arrives at the destina-
tion, the receiving interface sets the control
bits telling whether it was accepted or not.
About 10 #s after transmission, the slot
comes back around again so that the sender
can find out what happened to it. The
sender is not permitted to reuse the slot
immediately, as an antihogging measure.
By having such small slots and preventing
their immediate reuse, the ring guarantees
an extremely short delay for small packets,
but at the price of higher overhead than
the token ring under heavy load.

Still another design is discussed in LIU78.
In Liu's design, each ring interface has a
shift register equal in length to the maxi-
mum packet size. When a host wants to
send a packet, it loads up the shift register
and inserts the shift register into the ring
between two packets. This mechanism
leads to low delay, since a host need only
wait until the current packet has passed
through. When the shift register becomes
empty (through a period of low traffic), it
can be removed from the ring.

From the above discussion, it should be
obvious that many local network protocols
have already been devised, with more being
threatened all the time. Without standards,
the most likely development would be a
proliferation of local networks from various
vendors, all incompatible; vendor A's ter-
minal would not talk to vendor B's CPU
because they would have different proto-
cols embedded in their hardware. In an
attempt to nip this incipient chaos in the
bud, the Institute of Electrical and Elec-
tronics Engineers (IEEE) set up a commit-

Computing Surveys, Vol 13, No 4, December 1981

tee in February 1980 to develop a standard
for local network protocols. Although the
standard, IEEE 802, was not completed at
the time of this writing, the general picture
looks as if it will probably be as follows:

The standard treats the physical and
data link layers. The physical layer allows
for base-band, broad-band, and fiber optics
communication, and describes the interfac-
ing of the host (DTE) to the cable. The
data link layer handles channel access, as
mentioned earlier, as well as addressing,
frame format, and control.

The data link layer is split up into two
sublayers, media access and data link con-
trol, with a third optional sublayer for in-
ternetworking (whose presence in the data
link layer instead of in the network layer is
certainly arguable). The media access sub-
layer handles channel allocation. It is here
that a choice had to be made between
CSMA/CD and some kind of ring. The
arguments for CSMA/CD were that it was
fair, easy to implement on a single chip, had
six years of operational experience, and had
three major companies (DEC, Intel, and
Xerox) already publicly committed to it.

The token ring supporters' counterargu-
ments were as follows: rings, unlike CSMA/
CD, provide a guaranteed worst case access
time (needed for real-time work, such as
speech transmission); rings can be logical
as well as physical, accommodating various
topologies and allowing important hosts
better access by inserting them into the
logical ring in several places; and ring per-
formance does not degrade at high load, as
does CSMA/CD owing to the many colli-
sions. Unfortunately, neither camp had the
necessary two-thirds majority required by
IEEE rules, and so a compromise was made
in which both CSMA/CD and a token ring
were included.

The data link control sublayer was de-
signed to be as compatible with HDLC as
possible, on the theory that the last thing
the world needed was yet another brand-
new data link protocol. Two types of service
are provided for: connection oriented and
pure datagram. In the former, the data link
layer times out and retransmits lost frames,
guarantees arrival in sequence, and regu-
lates flow using the standard HDLC sliding-
window protocol. In the latter, the data link

Network Protocols • 469

layer guarantees nothing; once sent, the
frame is forgotten (at least by the data link
layer).

The major difference between the 802
frame and HDLC's is the presence in 802 of
two addresses, source and destination, in-
stead of the one address in HDLC, and the
use of variable-length addresses (from 1 to
7 bytes), instead of fixed-length, 1-byte ad-
dresses. HDLC was designed for two-party,
point-to-point lines, where no address is
needed, and for multipoint master/slave
lines, in which only the slave's address is
needed. In contrast, 802 is aimed at multi-
point symmetric lines, where any machine
can send to any other machine, and so two
addresses are required. The decision to
have variable-length addresses up to 7
bytes is intended to allow processes to be
designated by a worldwide unique address.
Three of the 7 bytes are to be administered
by an as-yet-unidentified international or-
ganization, and 4 are for local use. Most
networks will only need 1- or 2-byte ad-
dresses for internal traffic.

3. THE NETWORK LAYER

When a frame arrives at an IMP in a point-
to-point network, the data link layer strips
off the data link header and trailer and
passes what is left, called a packet, to the
network layer. The network layer must
then decide which outgoing line to forward
the packet on. It would be nice if s~:ch
decisions could be made so as to avoid
having some lines congested and others
idle. Hence congestion control is intimately
related to routing. We first look at routing
and then at congestion control, both for
point-to-point networks. With the channel
acquisition protocol for broadcast networks
in the data link layer, the network layer for
these networks is essentially empty.

Two opposing philosophies exist con-
cerning the network layer. In most local
networks and some long-haul networks, the
network layer provides a service for deliv-
ering independent packets from source to
destination with a high probability of suc-
cess (although less than 1.0). Each packet
carried is unrelated to any other packet,

past or future, and must therefore carry a

full destination address. Such packets are

called datagrams.

Computing Surveys, Vol 13, No. 4, December 1981

470 • Andrew S. Tanenbaum

The other approach, taken in many pub-
lic data networks {especially in Europe), is
to require a transmitter to first send a setup
packet. The setup packet chooses a route
for subsequent traffic and initializes the
IMPs along the route accordingly. The user
chooses, or is given, a virtual circuit num-
ber to use for subsequent packets going to
the same destination. In this organization,
data packets belonging to a single conver-
sation are not independent, since they all
follow the same route, determined by the
virtual circuit number in them.

The advantage of using virtual circuits is
that it guarantees that packets will be de-
livered in order and helps reduce congestion
by making it possible to reserve resources
{e.g., buffers) along the route in advance.
The disadvantage is that a lot of IMP table
space is taken up by idle connections and
that there is a lot of overhead in setting up
and closing down circuits, the latter a great
concern in transaction-oriented database
systems [MANN78]. With a datagram sys-
tem, a query-response requires just two
packets. With a virtual circuit system it
requires six packets: setup, acknowledg-
ment, query, response, close circuit, and
acknowledgment.

3.1 Routing in Point-to-Point Networks

Many routing algorithms have been pro-
posed, for example, BARA64, FRAT73,
McQu74, RUDI76, SCHW80, and SEGA81.
Below we sketch a few of the more inter-
esting ones. The simplest algorithm is static
or directory routing, in which each IMP
has a table indexed by destination, telling
which outgoing line to use. When a packet
comes in, the destination address is ex-
tracted from the network layer header and
used as an index into the routing table. The
packet is then passed back down to the
data link layer (see Figure 2) along with the
chosen line number.

A variant algorithm provides two or more
outgoing lines for each destination, each
with a weight. When a packet arrives, a line
is chosen with a probability proportional to
its weight. Allowing alternatives eases
congestion by spreading the traffic around.
Note that when virtual circuits are used

within the subnet, the routing decision is
only made for setup packets, not data
packets.

Several proposals have been made for
determining the routes to be put in the
tables. Shortest path routing, which mini-
mizes the number of hops (IMP-IMP lines),
is an obvious candidate. In FRAT73 another
method, based on flow deviation, is given.

The problem with static routing is just
tha t - - i t is static--it does not adapt to
changing traffic patterns and does not try
to route packets around congested areas.
One way to have the network adapt is to
have one host function as a routing control
center. All IMPs send it periodic reports on
their queue lengths and line utilizations,
from which it computes the best routes and
distributes the new routing tables back to
the IMPs.

Although seemingly attractive, central-
ized routing has more than its share of
problems [McQu74]. To start with, if the
routing control center malfunctions, the
network will probably be in big trouble.
Second, the complete optimal routing cal-
culation for a large network may require a
large dedicated host and even then may not
be able to keep up with the traffic fluctua-
tions. Third, since IMPs near the routing
control center get their new tables before
more distant IMPs do, the network will
operate with mixed old-new tables occa-
sionally, a situation that may cause traffic
{including the new routing tables) to loop.
Fourth, if the network is large, the traffic
flow into and out of the routing control
center may itself get to be a problem.

One of the earliest routing algorithms
[BARA64] adapts to changing traffic, but
does so without any central control. In hot-
potato routing, when a packet arrives, it is
assigned to the output line which has the
shortest transmission queue. This strategy
gets rid of the packet as fast as possible,
without regard to where it is going. A much
better idea is to combine static information
about the suitability of a given output line
with the queue lengths. This variant is
known as shortest queue plus bias. It could
be parameterized, for example, to use the
shortest queue unless the line is going the
wrong way, or to use the statically best line
unless its queue exceeds some threshold.

Comput,mg Surveys, Vol 13, No 4, December 1981

Network Protocols • 471

Algorithms like this are known as ~solated
adaptive algorithms [McQu74].

Rudin's delta routing [RUDI76] com-
bines some features from centralized and
isolated adaptive algorithms. In this
method, IMPs send periodic status reports
to the routing control center, which then
computes the k best paths from each source
to each destination. It considers the top few
paths equivalent if they differ (in length,
estimated transit time, etc.) by an amount
less than some parameter 8. Each IMP is
given the list of equivalent paths for each
destination, from which it may make a
choice based on local factors such as queue
lengths. If 3 is small, only the best path is
given to the IMPs, resulting in centralized
routing. If 8 is large, all paths are considered
equivalent, producing isolated adaptive
routing. Intermediate strategies are ob-
viously also possible.

A completely different approach is dis-
tributed adaptive routing [McQu74], first
used in the ARPANET, but replaced after
ten years owing to the problems with loop-
ing discussed below. With this algorithm,
each IMP maintains a table indexed by
destination giving the estimated time to get
to each destination and also which line to
use. The IMP also maintains an estimate of
how long a newly arrived packet would take
to reach each neighbor, which depends on
the queue length for the line to that neigh-
bor.

Periodically, each IMP sends its routing
table to each neighbor. When a routing
table comes in, the IMP performs the fol-
lowing calculation for each destination. If
the time to get the neighbor plus the neigh-
bor's estimate of the time to get to the
destination is less than the IMP's current
estimate to that destination, packets to that
destination should henceforth be routed to
the neighbor.

As a simple example, consider a five-IMP
network. At a certain instant, IMP 2 has
estimates to all possible destinations, as
shown in Figure 8a. Suddenly the routing
table from IMP 3 (assumed to be adjacent
to IMP 2) arrives, as shown in Figure 8b.
Let us assume that IMP 2 estimates the
delay to IMP 3 to be 10 ms, on the basis of
the size of its transmission queue for IMP
3. IMP 2 now calculates that the transit

D ~ s t l n a t l o n

0 70 l
I 4o

3 10

4 6O

(at

1 0 0 7 0

5 0 4 0

1 0 0

0 10

4 0 5 0

(b) (c)

Figure 8. Distributed adaptive routing. (a) An IMP's
original routing table. (b) Routing table arriving from
a neighboring IMP (c) The new routing table, assum-
ing a 10-ms delay to the neighbor.

time to IMP 0 via IMP 3 is 10 + 100 ms.
Since this time is worse than the 70 ms for
its current route, no change is made to
entry 0 of the table. Similarly 10 + 50 > 40,
and so no change is made for destination 1
either. However, for destination 4, IMP 3
offers a 40-ms delay, which, when combined
with the I0-ms delay to get to IMP 3, is still
better than the current route (10 + 40 <
60). Therefore, IMP 2 changes its estimate
of the time required to get the IMP 4 to 50
ms, and records the line to IMP 3 as the
way to get there. The new routing table is
given in Figure 8c.

Although this method seems simple and
elegant, it has a problem. Suppose that A,
B, and C are connected by lines AB and
BC. If number of hops is used as a metric,
B thinks it is one hop from A, and C thinks
it is two hops from A. Now imagine that
line AB goes down. B detects the dead line
directly and realizes that its delay to A is
now infinite via AB. Sooner or later, how-
ever, C offers B a route to A of length two
hops. B, knowing that line AB is useless,
accepts the offer, and modifies its tables to
show that A is three hops away via C. At
this point B is routing packets destined for
A to C, and C is sending them right back
again. Having packets loop forever is not
considered a good property to have in one's
routing algorithm. This particular problem
causes great anguish for the transport layer,
as we shall see shortly.

To get around the problem of looping
packets, several researchers (e.g., CHU78,
SEGA81) have proposed using the optimal-

Computing Surveys, Vol. 13, No. 4, December 1981

472 • Andrew S. Tanenbaum

ityprinciple to guarantee loop-free routing.
This principle states that if B is on the
optimal route from A to C, then the best
route from B to C falls along the same
route. Clearly if there were a better route
from B to C, the best route from A to C
could use it too. Consequently, the set of
best routes to C (or any other destination)
from all other IMPs forms a tree rooted at
C. By explicitly maintaining all the trees,
the routing algorithm can adapt but pre-
vent looping. A good survey of routing al-
gorithms can be found in ScHw80.

3.2 Congestion Control in Point-to-Point
Networks

Now we turn to the problem of congestion
in point-to-point networks. Actually, little
is known about how to deal with it, and all
the proposed solutions are rather ad hoc.
Davies [DAvI72] suggested starting each
network with a collection of special packets
called permits that would roam about ran-
domly. Whenever a host wanted to send a
packet, its IMP would have to capture and
destroy a permit before the new packet
could be injected into the network.

This mechanism guarantees that the
maximum number of packets in the net-
work can never exceed the initial number
of permits, which helps somewhat, but still
does not guarantee that all the legal packets
will not someday end up in one IMP, over-
loading it. Furthermore, no one has been
able to devise a way to regenerate permits
lost in IMP crashes (short of deadstarting
the whole network, which is unacceptable).
If these permits are not generated, carrying
capacity will be permanently lost.

Another congestion control scheme is
due to Irland [IRLA78]. This scheme calls
for IMPs to monitor the utilization of each
outgoing line. When a line utilization moves
above a trigger value, the IMP sends a
choke packet back to the source of each
new packet needing that line, telling the
source to slow down.

Kamoun [KAMOS1] has proposed a
congestion control scheme based on the
observation that when packets must be dis-
carded in an overloaded IMP, some packets
are better candidates than others. In partic-
ular, if a packet has already made k hops,
throwing it away amounts to discarding the

investment in resources required to make
those k hops. This observation suggests
discarding packets with the smallest k val-
ues first. A variation of this idea that does
not require a hop counter in each packet is
to have IMPs discard newly injected pack-
ets from local hosts in order to salvage
transit traffic with k _> 1.

The limiting case of a congested network
is a deadlocked network. If hosts A, B, and
C are all full (no free buffers), and A is
trying to send to B and B is trying to send
to C and C is trying to send to A, a deadlock
can occur, as shown in Figure 9.

Merlin and Schweitzer [MERL80a,
MERL80b] describe several ways to prevent
this kind of store-and-forward deadlock
from occurring. One way is to provide each
IMP with m 4- 1 packet buffers, where m is
the longest path in the network. A packet
newly arriving in an IMP from a local host
goes into buffer 0. At the next IMP along
the path it goes in buffer 1. At the following
IMP it uses buffer 2. After having made k
hops, it goes in buffer k. To see that the
algorithm is deadlock free, consider the set
of all buffers labeled m. Each buffer is in
one of three states:

(1) empty,
(2) holding a packet destined for a local

host,
(3) holding a packet destined for a distant

host.

In Case 2 the packet can be delivered and
the buffer freed. In Case 3 the packet is
looping and must be discarded. In all cases
the complete set of buffers labeled m can
be made empty. Consequently, all packets
in buffers labeled m - 1 can be either
delivered or discarded, one at a time. The
process can then be repeated, freeing the
buffers labeled m - 2, and so on.

Other kinds of deadlocks in computer
networks are discussed in GUNT81.

3.3 An Example Network Layer Protocol:

X.25

To help standardize public long-haul net-
works, CCITT has devised a three-layer
protocol of its own. The physical layer is
X.21 (or X.21 bis, a stopgap analog interface
to be used until the digital network arrives).

Computing Surveys, VoL 13, No. 4, December 1981

L

Network Protocols • 473

IMP- IMP lines
Packet queued up
for transrnlsslon to A

; j
E3/SHEE53-

A B

Figure g. Store-and-forward lockup (deadlock).

C

8 b~ts 8 b i ts

0001 I

Log ica l channel

Type= CALL REQUEST 1

Leng th 1 Length 2

0001 I

Log ica l channe l

Type

(b)

Addresses

Fatalities
O0

Length

F a c i h t l e s

User data

o[olo l
Log;co l channel

N e x t M Seq

0 - 1 2 8 b y t e s

of da ta

o

(a) (c)

Figure 10. X.25 headers. (a) CALL REQUEST packet (b) Control packet. (c) Data packet.

The data link layer consists of two variants
of HDLC (LAP and LAPB). Whether the
next layer is network layer protocol or a
transport layer protocol is a matter of some
debate in the network community. Let us
call it a network layer protocol and discuss
it now.

X.25 (which is the collective name for all
three layers) is virtual circuit oriented
[RYBc80]. To set up a virtual circuit, a host
(DTE) sends a CALL REQUEST packet
into the network. The remote host can
either accept or reject the incoming call. If
it accepts it, the virtual circuit is set up;
otherwise the circuit is cleared.

Figure 10a shows the format of the CALL
REQUEST packet. The first 4 bits are 0001.

The next 12 bits are the virtual circuit
number chosen by the originating host. The
third byte is the type code of CALL RE-
QUEST. The next byte gives the number
of decimal digits in the caller's and callee's
addresses, followed by up to 30 bytes con-
taining the addresses themselves in binary
coded decimal. (The telephone community
has been using decimal numbers for 100
years, and old habits die hard.) The Facil-
ities field is used to request services such
as calling collect. Since the facilities field is
variable length, a length field is needed.
Finally, the user data field can be used in
any way the user chooses, for example, to
indicate which process within the called
host expects the call.

CompuUng Surveys, Vol. 13, No. 4, December 1981

474 . Andrew S. Tanenbaum

When the CALL REQUEST packet ar-
rives at the destination, that machine ac-
cepts or rejects the call by sending a packet
of the form shown in Figure 10b. Accept-
ance or rejection is indicated in the Type
field. Once the virtual circuit has been set
up, both sides may send data packets at
will, which makes the connection, by defi-
nition, full duplex. Either side may termi-
nate the call by sending a CLEAR RE-
QUEST packet, which is acknowledged by
a CLEAR CONFIRMATION packet.

An ordinary data packet is shown in Fig-
ure 10c. The Sequence and Next fields are
analogous to those in HDLC. Like HDLC,
X.25 layer 3 also has an optional format
with 7-bit sequence numbers. The M bit
can be used by a host to indicate that more
data follow in the next packet, thus parti-
tioning the packet stream into multipacket
units.

The meaning of the Q bit is not specified,
but it is provided to allow the transport
layer a means for distinguishing transport
layer data packets from control packets.
The D bit stands for Delivery confirmation.
If a host sets it on all the packets sent on a
certain virtual circuit, the Next field will
contain a true acknowledgment from the
remote host, producing an end-to-end con-
firmation. If, however, it is always set to 0,
then the Next field just means that the
local IMP (DCE) received the packet spec-
ified, not that the remote host did. Conceiv-
ably, when D = 0, the local IMP could write
all the packets on magnetic tape to be
mailed to the remote IMP for delivery in a
couple of days (bargain basement service).

In the original version of X.25, only
D ffi 0 was provided. That point generated
so much controversy that delivery confir-
mation was added later, as was a pure da-
tagram facility and something called Fast
Select. With the Fast Select facility, the
user data field in the CALL REQUEST
packet is extended to 128 bytes and a sim-
ilar field is added to the CLEAR RE-
QUEST packet (used to reject incoming
calls). Thus a host can send a short query
in the CALL REQUEST packet and get
the reply in the CLEAR REQUEST
packet, without having to open a virtual
circuit.

Because layers 2 and 3 in X.25 have so

much overlap, it is perhaps useful to point
out that the layer 2 sequence numbers and
acknowledgments refer to the traffic be-
tween host and IMP for all virtual circuits
combined. If a host sends the IMP seven
packets (frames), each one for a different
virtual circuit, the host must stop sending
until an acknowledgment comes back. The
layer 2 protocol is required to keep the host
from flooding the IMP. In contrast, in layer
3, the sequence numbers are per virtual
circuit and therefore flow control each con-
nection separately.

X.25 layer 3 also has a few control pack-
ets. These include RESET and RESET
CONFIRMATION, used to reset a virtual
circuit; RESTART and RESTART CON-
FIRMATION, used to reset all virtual cir-
cuits after a host or IMP crash; RE-
CEIVER READY, used for acknowledg-
ments; RECEIVER NOT READY, used to
indicate temporary problems and stop the
other side even though the window is not
full; and INTERRUPT and INTERRUPT
CONFIRMATION, used to send out-of-
band signals, such as breaks. All these con-
trol packets use the format of Figure 10b,
in some cases augmented with an additional
byte or two for additional information.

4. THE TRANSPORT LAYER

The network layer does not necessarily en-
sure that the bit stream sent by the source
arrives intact at the destination. Packets
may be lost or reordered, for example, ow-
ing to malfunctioning IMP hardware or
software. The X.25 standard provides a
mechanism {RESET and RESTART pack-
ets) for the network to announce to a host
that it has crashed and lost track of both
the current sequence numbers and any
packets that may have been in transit. To
provide truly reliable end-to-end (i.e., host-
to-host) communication, another layer of
protocol is needed: the transport layer.
(Note that X.25 with D = 1 comes close to
being end to end, but is not quite enough
since it provides no way to transparently
recover from network RESETs and RE-
STARTs.)

Another way of looking at the transport
layer is to say that its task is to provide a
network independent transport service to

Computing Surveys, Vol 13, No 4, December 1981

the session layer. The session layer should
not have to worry about any of the imple-
mentation details of the actual network.
They must all be hidden by the transport
layer, analogous to the way a compiler must
hide the actual machine instructions from
the user of a problem-oriented program-
ming language.

4.1 The Transport Station

The program within the host that imple-
ments the transport service is called the
t ranspor t station. Its chief functions are to
manage connection establishment and tear-
down, flow control, buffering, and multi-
plexing. Although a transport station might
conceivably offer only datagram primitives
to its users, most offer (and emphasize)
virtual-circuit primitives. As a bare mini-
mum, the following primitives or their
equivalents are normally available:

connum = CONNECT(local, remote),
connum = LISTEN(local),

status = CLOSE(connum),
status = SEND(connum, buffer, bytes),
status = RECEIVE(connum, buffer,

bytes)

The primitives for establishing a trans-
port connection, CONNECT and LISTEN,
take t ranspor t addresses as parameters.
Each transport address uniquely identifies
a specific transport station and a specific
por t {connection endpoint) within that
transport station. For example, CCITT has
decreed that X.25 will use 14-digit numbers
for addressing. The first three identify the
country, and the fourth identifies the net-
work within the country. (Multiple country
codes have been assigned to countries that
expect to have more than ten public net-
works.) The last ten digits of the X.25 ad-
dress are assigned by each network opera-
tor, for example, five digits to indicate hosts
and five digits for the hosts to allocate
themselves.

In our example, the LISTEN command
tells the transport station that the process
executing it is prepared to accept connec-
tions addressed to the indicated local ad-
dress. The process executing the LISTEN
is blocked until the connection is estab-
lished, at which time it is released, with the
variable connum being set to indicate the

N e t w o r k Protocols • 475

connection number. The connection num-
ber is needed because multiple connections
may be open at the same time and a sub-
sequent SEND, RECEIVE, or CLOSE
must be able to tell which connection is
meant. If something goes wrong, an error
number can be returned in connum (e.g.,
positive for connection established, nega-
tive for error).

The CONNECT command tells the
transport station to send a message (e.g.,
X.25 CALL REQUEST) to another host to
establish a connection. When the connec-
tion has been established (or rejected, for
example, due to illegal addresses), the con-
nection number or error code is returned in
connum.

An important design issue is what should
the transport station do if a CALL RE-
QUEST packet comes in specifying a trans-
port address for which no LISTEN is pend-
ing? Should it reject the request immedi-
ately, or should it queue the request in the
hope that a LISTEN will be done shortly?
If the request is queued, should it time out
and be purged if no LISTEN is forthcoming
within a reasonable time? If so, what hap-
pens if the LISTEN finally occurs after the
timeout?

In the above example, both LISTEN and
CONNECT are blocking primitives, that is,
the caller is halted until the command com-
pletes. Some transport stations use non-
blocking primitives. In other words, both
calls complete immediately, perhaps only
checking the syntactic validity of the ad-
dresses provided. When the connection is
finally established, or definitively rejected,
the respective processes are interrupted.
Some transport stations that use nonblock-
ing primitives also provide a way for a
process to cancel an outstanding LISTEN
or CONNECT, as well as a method for a
listening process to inspect an incoming
connection request before deciding to ac-
cept or reject it.

The primitive CLOSE speaks for itself.
The status returned would normally be
"OK" if the connection actually existed and
"error" if it did not.

The SEND and RECEIVE primitives do
the real work of message passing. For the
sake of clarity, we refer to the entities ex-
changed here as "messages," to distinguish

Computing Surveys, Vol. 13, No. 4, December 1981

476 • Andrew S. Tanenbaum

them from the "packets" of the network
layer and "frames" of the data link layer. A
message will be encased in a packet, which
will be inserted into a frame before trans-
mission, of course. SEND specifies the con-
nection on which to send, the buffer ad-
dress, and the number of bytes. RECEIVE
has the same parameters, although here
bytes might initially contain the buffer size
and later be filled in with the size of the
received message. Again, both of these
could be provided in nonblocking as well as
blocking versions.

A more elaborate transport station could
offer commands to send and receive data-
grams, to send and receive interrupt signals,
to reset the connection in the event of error,
and to interrogate the status of the other
side, a facility particularly useful for re-
covering from network layer failures.

4.2 Establishing and Closing Connections

As we pointed out earlier, one consequence
of adaptive routing is that packets can loop
for an indefinite period of time. If a packet
gets trapped, the sending transport station
will eventually time out and send a dupli-
cate. If the duplicate gets through properly,
but the original packet remains trapped for
a while, problems can arise when it finally
escapes and is delivered. Imagine, for ex-
ample, what would happen if a message
instructing a bank to transfer a large sum
of money were stored and later repeated,
long after the transaction had already been
completed.

A useful first step is to limit the amount
of time that a packet can exist in the net-
work. For example, a counter could be put
in the packet header. Each time the packet
was forwarded, the counter could be dec-
remented. When the counter reached zero,
the packet would be discarded. Alterna-
tively, a timestamp in the packet could be
used to render it obsolete after a certain
interval.

The next step is to have the transport
stations use a sequence space so large (e.g.,
32 bits) that no packet can live for a com-
plete cycle. As a result, delayed duplicates
can always be detected by their sequence
numbers. However, if all new connections
always start with sequence number 0, pack-

ets from previous connections may come
back to plague later ones. Therefore, it is
necessary to have each new connection in-
itialize its sequence numbers to a value
known to be higher than that of any existing
packet.

Unfortunately, not even these measures
are enough. Since each host has a different
range of sequence numbers outstanding,
each one must specify the initial sequence
number for packets it will send. Assume
that sequence numbers are chosen during
the call establishment phase. With some
bad luck, the following scenario could occur
at an instant when A wanted to set up
a connection with sequence number 100
toB:

(1) A sends a CALL REQUEST packet
with sequence number 100.

(2) The packet is lost.
(3) An old CALL REQUEST with se-

quence number 50 suddenly arrives
a tB .

(4) B's CALL ACCEPT packet, with se-
quence number 700, is lost.

(5) An old CALL ACCEPT from B with
sequence number 650 suddenly arrives
at A.

At this point the connection is fully estab-
lished, with A about to send packet 100, but
B expecting packet 50. Similarly, B intends
to send packet 700, but A expects 650. The
result is a deadlock.

Tomlinson [TOML75] proposed a connec-
tion establishment protocol that works
even in the face of delayed control packets.
It is called the three-way handshake. An
example follows (S means sequence, A
means acknowledgment):

(1) A sends a CALL REQUEST packet
with S -- 100.

(2) B sends a CALL ACCEPTED packet
with S ~ 700, A = 100.

(3) A sends a packet with S = 101, A -- 700.

Now consider what happens in the face of
the same lost and duplicate packets that
lead to deadlock above. When B receives
the CALL REQUEST with S = 50, it replies
with S = 700, A = 50. If this packet gets
through, A sees the bad acknowledgment
and rejects the connection. The only way A
can be spoofed is for an old CALL AC-

Computing Surveys, Vol 13, No. 4, December 1981

CEPTED packet with A = 100 to appear
out of the blue. Such a packet could only
be generated in response to an old CALL
REQUEST packet with S = 100, something
A has not sent for a long time. Sunshine
and Dalal (SuNs78] discuss this problem in
more detail.

By now you should be convinced that the
protocol required to establish a transport
layer connection in the face of an unreliable
network layer is nontrivial. What about
closing a connection? Surely that, at least,
is easy: A sends B a request to close, and B
sends back a close acknowledgment. Unfor-
tunately, things are not that simple. As an
example, let us briefly consider the two-
army problem.

Two divisions of the white army are en-
camped on the opposite walls of a valley
occupied by the blue army. If both divisions
attack simultaneously, the white army will
win; if either division attacks alone, it will
be massacred. The white army divisions
must synchronize their attack using an un-
reliable channel (e.g., a messenger subject
to capture). Suppose that white's A division
sends the message: "Let's attack at tea-
time," and gets the reply "OK." Division B
has no way of being sure that the reply got
back. If it just goes ahead and attacks, it
might get slaughtered. Furthermore, A is
well aware of this line of reasoning and
hence may be afraid to attack, even after
having received an acknowledgment.

At this point you may be thinking: "Why
not use a three-way handshake here?" Un-
fortunately, it does not work. A could con-
firm receipt of B's acknowledgment, but
because this confirmation could get lost, A
does not know which situation holds:

(1) B got the confirmation and the war is
o n .

(2) The confirmation got lost and the war
is off.

How about a four-way handshake? This is
no better. An n-way handshake? Still no
good. In all cases, the sender of the last
message cannot tell whether or not it ar-
rived. If its arrival is essential to starting
the war, the sender has no way of telling
whether the receiver is going to attack or
not. If its arrival is not essential to starting
the war, one can devise an equivalent pro-

N e t w o r k P r o t o c o l s • 477

tocol not containing it and apply the above
reasoning to the new protocol.

The implication of all this is that a closing
protocol in which neither side can hang up
until it is convinced that the other side also
intends to hand up is, at the very least,
more complicated than it at first appears.
The issue is discussed further in SuNs78
and YEMX79.

4.3 Flow Control and Buffering

An important design issue in the transport
layer is flow control. Since no transport
station has an infinite amount of buffer
space, some way must be provided to pre-
vent a fast sender from inundating a slow
receiver. Flow control is well known in
other contexts, such as operating systems
design, where it is known as the producer-
consumer problem. Although it also occurs
in the data link and network layers, some
new complications are present in the trans-
port layer.

To start with, the data link layer usually
has one connection for each adjacent
IMP--a handful at most--whereas the
transport layer in a large multiprogrammed
computer may have many connections
open simultaneously. A stop-and-wait pro-
tocol in the transport layer is usually un-
desirable, since both sender and receiver
would have to be scheduled and run for
every message sent. If each machine had a
response time of 500 ms between the mo-
ment a process became ready to run and
the time it ran, the transport connection
could support two messages per second, at
best, and probably fewer. Consequently,
large windows are needed to achieve high
throughput, but the combination of large
windows and many open connections ne-
cessitates many buffers, most of which are
idle most of the time.

An alternative design is not to dedicate
buffers to specific connections, but to main-
tain a buffer pool and pull buffers out of the
pool and assign them to connections dy-
namically, as needed. This strategy entails
some risk, since no buffer may be available
when one is needed. To avoid this risk, a
buffer reservation protocol is needed, in-
creasing traffic and overhead. Furthermore,
if the buffers are of fixed size and messages

Computing Surveys, Vol 13, No. 4, December 1981

478 • A n d r e w S. Tanenbaum

E

l - -

A B

J Message 0 J

I Message 1 I

J Message 2 I

J Message 3 J

(A blocked now)

(A sttlt blocked)

Message 4]

(A blocked again)

Message 5 1

I Messooe6 I

(A blocked)

Figure 11,

I Cred~ttoS=3 I

. I Ack3 I

4 [Or°dittoS=4]

, Icred,ttoS=6 I

. I Ack J

Flow control us ing credits.

vary from a few characters to thousands of
characters, a pool of fixed-sized buffers is
not attractive either. No one solution is
best. Each transport station must make
compromises appropriate to its expected
work load.

Another important issue is the relation
of flow control to error control. With the
sliding-window protocol, an acknowledg-
ment message has two distinct functions: to
announce that a message has arrived and
to grant the sender permission to send an-
other message. In the transport layer, this
coupling is not always desirable.

To see why, consider the dilemma of a
transport station that is chronically short
of buffer space. What should it do if a
message arrives, but the process using the
connection has no RECEIVEs outstand-
ing? If it does nothing, the sending trans-
port station will eventually time out and
send it again. If it sends an acknowledg-
ment, the other transport station may send

yet another message. The problem comes
from the fact that the transport station has
no control over the rate at which the user
does RECEIVEs. Earlier, we more or less
assumed that the network layer was always
hungry for new packets--a reasonable as-
sumption, since the network code has little
else to do.

One way out of this dilemma is to decou-
ple acknowledgments and flow control. To
do so, we introduce two kinds of control
messages: acknowledgments and credits.
An acknowledgment simply says that a cer-
tain message (and by implication, all lower
numbered messages} has arrived safely.
Upon receiving an acknowledgment, the
sender may release the buffers containing
all the acknowledged messages, since none
of them will ever be retransmitted. How-
ever, an acknowledgment does not imply
permission to send any more messages.

Such permission is granted by a credit
message. When a connection is established,
the receiver grants some credits to the
sender. These credits may be for so many
messages or so many bits or both. Every
time a message is sent, the credits for mes-
sage count and/or bit count are decre-
mented. When the credits are all used up,
the sender must stop sending until more
credits arrive. Such credits may be sent as
distinct messages or they may be piggy-
backed onto data or acknowledgment mes-
sages. This scheme provides a simple and
flexible mechanism for preventing unnec-
essary retransmissions in the presence
of heavy and variable demands on limi-
ted buffer space. An example is given in
Figure 11.

4.4 Connection Multiplexing

Multiplexing of connections plays an im-
portant role in several layers. In lower lay-
ers, for example, packets and frames ulti-
mately destined for different hosts are mul-
tiplexed onto the same output lines. In the
transport layer, two different forms of mul-
tiplexing occur. In upward mul t ip lexing

(shown in Figure 12a} several transport
connections are multiplexed onto the same
network connection (e.g., the X.25 virtual
circuit). Upward multiplexing is often fi-
nancially better, since some carriers charge

Computing Surveys, Vol 13, No 4, December 1981

by the packet and also by the second ior
each virtual circuit that is open.

Now consider the plight of an organiza-
tion (e.g., an airline) that has 100 telephone
operators to handle customer inquiries. If
each operator is assigned to a separate vir-
tual circuit, 100 virtual circuits to the cen-
tral computer will be open all day. The
other option would be to use a single virtual
circuit to the computer, with the first byte
of data being used to distinguish among the
operators. The latter has the disadvantage
that if the traffic is heavy, the flow control
window may always be full, thus slowing
down operation. With a dedicated virtual
circuit per operator, full windows are much
less likely to occur.

The other form of multiplexing, down-

ward multiplexing {Figure 12b), becomes
interesting when the network layer window
is too small. Suppose, for example, a certain
network offers X.25, but does not support
the 7-bit sequence number option. A user
with a large number of data to send might
find himself constantly running up against
full windows. One way to make an end run
around the problem is to open multiple
virtual circuits for a single-transport con-
nection. Packets could be distributed
among the virtual circuits in a round-robin
fashion, first a packet on circuit 0, then a
packet on circuit 1, then one on circuit 2,
and so on.

Conceivably the two forms could even be
combined. For n connections, k virtual cir-
cuits could be set up with traffic being
dynamically assigned.

5. THE SESSION LAYER

In many networks, the transport layer es-
tablishes and maintains connections be-
tween hosts. The session layer establishes
and maintains connections, called sessions,

between specific pairs of processes. On the
other hand, some networks ignore the ses-
sion layer altogether and maintain trans-
port connections between specific pro-
cesses. The ISO OSI Reference Model is
exasperatingly vague on this point, stating
only that the session layer connects "pre-
sentation-entities" and that the transport
layer connects "session-entities."

To keep the following discussion from

Network Protocols • 479

T r a n s p o r t connec t ions

\ / f
Network connec t i ons

(a) (b)
Figure 12. (a) Upward multiplexing. (b) Downward
multiplexing.

vanishing in a linguistic fog, we assume that
transport connections are between hosts
and session connections are between pro-
cesses. Thus, when a process wants to talk
to another process, it makes its desires
known to the session layer, which then
engages the services of the transport layer
to set up a transport connection to the
remote host for use by the session.

A principal task of the session layer is to
connect two processes together into a ses-
sion. Since it is inconvenient for users to be
aware of hard transport addresses, the ses-
sion layer could allow them to refer to
destinations by symbolic name, with the
session layer doing the mapping onto trans-
port addresses. For example, a user could
say, in effect, "Give me a phototypesetter
process," with the session layer worrying
about where such beasts were to be found.

When a session is set up, an activity often
call session binding, certain conventions
about the coming session can be estab-
lished. Typical conventions are half-duplex
versus full-duplex data transfer, character
codes, flow control window sizes, the pres-
ence or absence of encryption or text com-
pression, and how to recover from transport
layer failures.

Another task that the session layer can
perform is particularly useful in networks
where the user primitives for sending and
receiving messages are nonblocking, and
where the user may have multiple requests
outstanding on the same session at any
instant. Under these circumstances, replies

Computing Surveys, Vol. 13, No. 4, December 1981

480 • Andrew S. Tanenbaum

may come back in an order different from
that in which the requests were sent. The
session layer's dialog control function can
keep track of requests and replies and reor-
der them if need be to simplify the design
of the user programs.

Another aspect of dialog control is brack-
eting groups of messages into atomic units.
In many database applications it is highly
undesirable that a transaction be broken
off part way, as a result of a network failure,
for example. If the transactions consists of
a group of messages, the session layer could
make sure that the entire group had been
successfully received at the destination be-
fore even attempting to start the transac-
tion.

Our discussion of the session layer is now
complete. The brevity of this section is
directly related to the fact that few net-
works make much of a distinction between
the transport and session layers. In fact,
many networks have neither a session layer
nor any of the dialog control functions be-
longing to the session layer. While there are
no internationally accepted standards for
the transport layer yet, there are at least a
few serious proposals that have been under
discussion for several years [DEPA76,
INWG78]. Session layer protocols have not
come as far yet. This situation has occurred
because the protocol community has been
tackling the layers more or less bottom up
and is currently in the vicinity of layer 4.
Higher layer standards will no doubt be
forthcoming in the future.

6. THE PRESENTATION LAYER

The function of the presentation layer is to
perform certain generally useful transfor-
mations on the data before they are sent to
the session layer. Typical transformations
are text compression, encryption, and con-
version to and from network standards for
terminals and files. We examine each of
these subjects in turn.

6.1 Text Compression

Bandwidth is money. Sending thousands of
trailing blanks across a network to be
"printed" is a good use of neither. Although
the network designers could leave the mat-
ter of text compression to each user pro-

gram, it is more efficient and convenient to
put it into the network architecture as one
of the standard presentation services.

Obvious candidates for text compression
are runs of repeated bits (e.g., leading zeros)
and repeated characters (e.g., trailing
blanks). Huffman coding is also a possibil-
ity. Since text compression is such a well-
known subject outside the network context
(see, e.g., DAVS76), we do not consider it
further here.

6.2 Encryption Protocols

Information often has great economic
value. As an example, just think about the
data transmitted back by oil companies
from exploratory sites. With more and more
data being transmitted by satellite, the
problem of data security looms ever larger.
The financial incentive to erect an antenna
to spy on competitors is great and the cost
is low. Furthermore, privacy legislation in
many countries puts a legal requirement on
the owners of personal data to make sure
such data are kept secret. All these factors
combine to make data encryption an essen-
tial part of most networks. The December
1979 issue of Computing Surveys [COMP79]
is devoted to cryptography and contains
several introductory articles on it.

An interesting question is: "In which
layer does the encryption belong?" In our
view, encryption is analogous to text com-
pression: ordinary data go in and com-
pressed or indecipherable data come out.
Since everyone agrees that text compres-
sion is a presentation service, logically en-
cryption should be too. For historical rea-
sons and implementation convenience,
however, it is often put elsewhere, typically
the transport layer or the data link layer.

The purpose of encryption is to trans-
form the input, or plaintext, into an output,
or ciphertext, that is incomprehensible to
anyone not privy to the secret key used to
parameterize the transformation. Thus
plaintext is converted to ciphertext in the
presentation layer of the source machine
and reconverted to plaintext in the presen-
tation layer of the destination machine. In
neither machine should the user programs
be aware of the encryption, other than hav-
ing specified encryption as an option when
the session was bound.

Computing Surveys, Vol 13, No 4, December 1981

Output 08

" ~ oz

06

05

04

03

02

01

* k
Plamt~xt
stream N

Key

I

17

16

DES 15
chlp

14

13

I2

Excluswe or

8 Input
/

C~phertext
stream

f

Network Protocols • 481

Key

1
08

07

06

05

04

03

02

01

_2 M.I

f
Exclusive or

DES
ch~p

18

17

16

15

14

13

12

ll

Plamtcxt
stream

Figure 13. A stream cipher usmg DES. Data arrives from the left and is encrypted for transmission. The
destination machine decrypts it and outputs the plamtext.

One of the best-known encryption meth-
ods is the substitution cipher, in which a
unit of plaintext is converted into a unit of
ciphertext. In a monoalphabetic c~pher,
each letter is converted into another letter
according to a fixed rule. For example, "a"
becomes "M," "b" becomes "R," "c" be-
comes "G," etc. In this example, the en-
cryption key is M R G . . . , that is, the ciph-
ertext corresponding to the plaintext
abc Although 26! different monoalpha-
betic substitutions exist, these ciphers can
be broken by a clever ten-year-old using
the frequency statistics of natural language.

Most computer ciphers use the same
principle, but on a larger scale. The U.S.
federal government has adopted a substi-
tution cipher that is fast becoming a de
facto standard for nongovernmental orga-
nizations as well. The DES (Data Encryp-
tion Standard) cipher takes a 64-bit plain-
text input block and produces a 64-bit ciph-
ertext output block. The transformation is
driven by a 56-bit key. Conceptually, at
least, one could prepare a big table, with 2 ~
columns, one for each possible input, and
2 ~6 rows, one for each possible key. Each
table entry is the ciphertext for the speci-
fied input and key.

DES can also be operated as a stream
cipher, as shown in Figure 13. The input
shift registers on both source and destina-
tion machine are initialized to the same 8-
byte (random) number, I1 Is. Data

are presented for encryption 1 byte at
a time, not 8 bytes at a time. When a
byte arrives, the DES chip converts
the 8 bytes I1 , I8 into the output
O1, . . . , 08. Then O~ is Exclusive Or'ed with
the input to form the ciphertext byte. The
ciphertext byte is both transmitted and fed
back into/1, shifting I2 to/3, and so on. Is
is shifted out and lost. Decryption at the
other end is similar. Note that feeding back
the ciphertext into the DES input register
makes subsequent encryption dependent
on the entire previous plaintext, and so a
given sequence of 8 plaintext bytes will
have a different ciphertext on each appear-
ance in the plaintext.

DES has been the subject of great con-
troversy since its inception [DAvA79,
DIFF76a, HELL79, HELL80]. Some com-
puter scientists feel that a wealthy and
determined intruder who knew, for exam-
ple, that a certain message was in ASCII,
could determine the key by trying all keys
until he found one that yielded ASCII
plaintext (i.e., only codes 0-127 and not
128-255). If the ciphertext is k bytes long,
the probability of an incorrect key yielding
ASCII input is 2 -k. For even a single line of
text, it is unlikely that any key but the
correct one could pass the test.

The dispute centers about how much a
DES-breaking machine would cost. In 1977,
Diffie and Hellman [DIFF77] designed one
and computed its cost at 20 million dollars.

Computing Surveys, Vol. 13, No. 4, December 1981

482 • Andrew S. Tanenbaum

The DES supporters say this figure is too
low by a factor of 10, although even they
concede DES cannot hold out forever
against the exponential growth of very
large-scale integrated circuits.

To use DES, both the source and desti-
nation must use the same key. Obviously
the session key cannot be sent through the
network in plaintext form. Instead, a master
key is hand carried in a locked briefcase to
each host. When a session is set up, a key
manager process somewhere in the network
picks a random key as session key, encrypts
it using the master key, and sends it to both
parties for decryption. Since the plaintext
of this message is a random number, it is
hard to break the cipher using statistical
techniques. Numerous variations of the
idea exist, typically with master keys, re-
gional keys, local keys, and the like.

Shamir [SHAM79] has devised a clever
way to share (master) keys in a flexible way
among a large group of people, so that n
arbitrary people can get together and as-
semble the master key, but n - 1 people
can gain no information at all. Basically,
each person is given a data point that lies
on a degree n - 1 polynomial whose y
intercept is the key. With n data points, the
polynomial, hence the key, is uniquely de-
termined, but with n - 1 data points it is
not. Modulo arithmetic is used for obfus-
catory purposes.

All the master key methods have a sig-
nificant drawback, though: it is impossible
for computers that have not previously had
any contact with each other to agree on a
session key in a secure way. Considerable
academic research has been done on this
topic in recent years (not without its own
controversy--see SHAP77 and SUGA79),
and some interesting results have been
achieved. Merkle [MERK78a], for example,
has suggested that two strangers, A and B,
could establish a key as follows. A sends k
ciphertext messages to B with the instruc-
tion to pick one of them at random and
break it by brute force (i.e., try all possible
keys until a plaintext starting with 64 O's
appeared). The rest of the message consists
of two random numbers, the key number
and the key itself. Having broken the
cipher, B then sends the key number back
to A to indicate which message was broken.

Clearly an intruder will have to break k/2
messages on the average to find the right
one. By adjusting k and the difficulty of
breaking a message, A can achieve any
degree of security desired.

A completely different approach to key
distribution is that of public key cryptog-
raphy [DIFF76b] in which each network
user deposits an encryption key E in a
publicly readable file. The user keeps the
decryption key D secret. The keys must
satisfy the property that D(E(P)) = P for
an arbitrary plaintext P. (This is essentially
the definition of a decryption key.) The
cipher system must be such that D cannot
be deduced from the publicly known E.

With this background, the encryption
system is obvious and trivial: to send a
message to a stranger, you just encrypt it
with his publicly known key. Only he knows
the decryption key and no one can deduce
it from the encryption key, so the cipher
cannot be broken. The utility of the whole
system depends on the availability of key
pairs with the requisite properties. Much
effort has gone into searching for ways to
produce such key pairs. Some algorithms
have already been published [MERK78b,
RIVE78, SHAM80]. The scheme of Rivest et
al. effectively depends on the fact that given
two huge prime numbers, generating their
product (the public key) is computationally
easy, but given the product, finding the
prime factors (the secret key) is very hard.
In effect, their system takes advantage of
the fact that the computational complexity
of factorization is high.

Another area where cryptography plays
a major role is in authentication. Suppose
that a customer's computer instructs a
bank's computer to buy a ton of gold and
debit a certain account. The bank complies,
but the next day the price of gold drops
sharply and the customer denies ever hav-
ing issued any purchase order. How can the
bank protect itself against such unscrupu-
lous customers? Traditionally, court battles
over such matters have focused on the pres-
ence or absence of an authorized handwrit-
ten signature on a piece of paper. With
electronic funds transfers and similar appli-
cations the need for "digital" (i.e., elec-
tronic) signatures is obvious.

With a slight additional restriction, pub-

Computmg Surveys, Vol. 13, No. 4, December 1981

lic key cryptography can be used to provide
these badly needed digital signatures. The
restriction is that the encryption and de-
cryption algorithms be chosen so that
D (E (P)) = E (D (P)) . In other words, the
order of applying encryption and decryp-
tion must be interchangeable. The M.I.T.
algorithm [RIVE78] has this property.

Now let us reconsider the ton-of-gold
problem posed earlier. To protect itself, the
bank can insist that a customer C use the
following protocol for sending signed mes-
sages. First, the customer encrypts the
plaintext message P with his secret key;
that is, the customer computes Dc(P).
Then the customer encrypts this result with
the bank's public key E~, yielding
EB(Dc(P)). When this message arrives, the
bank applies its decryption key Ds to get

DB(EB(Dc(P))) = Dc(P).

Now the bank applies the customer's public
key, Ec, to recover P. The bank also saves
P and Dc(P) in case trouble arises.

When the angry letter from the customer
arrives, the bank takes both P and Dc(P)
to court and asks the judge to decrypt the
latter using the customer's public key.
When the judge sees that the decryption
works, he will realize that the bank must be
telling the truth. How else could it have
come into possession of a message en-
crypted by Dc, the customer's secret key?
Since the bank does not know any of its
customer's secret keys, it cannot forge mes-
sages (to generate commissions); hence cus-
tomers are also protected against unscru-
pulous banks. While in jail, the customer
will have ample time to devise interesting
new public key algorithms.

Unfortunately, as Saltzer [SALT78] has
pointed out, the public key digital signature
protocol suffers from some nontechnical
problems. For example, immediately after
the price of gold drops, the management of
the gold-buying company could run to the
police claiming it had just become aware of
yesterday's key burglary. Depending on lo-
cal laws, the company might or might not
be able to weasel out of obligations under-
taken with the "stolen" key. (As an aside,
note that the owner of a stolen credit card

usually has only a small liability for its
subsequent misuse.)

N e t w o r k Protocols • 483

Figure 14. A digital signature protocol with conven-
tional cryptography.

Saltzer also points out that a company is
free to change its public key at will.
Stronger yet, it may be company policy to
do so regularly. If the company changes its
key before accusing the bank of fabricating
the purchase order, it will be impossible for
the bank to convince the judge. This obser-
vation suggests that some central key reg-
istration authority may be needed. How-
ever, if such a central authority, call it Big
Brother (BB), exists, conventional cryptog-
raphy can also be used to achieve digital
signatures [NEED78, POPE79].

The signature protocol using DES is il-
lustrated in Figure 14. When a new cus-
tomer C joins the system, the customer
hand carries a secret (DES) key, Kc, to BB.
Thus, BB has each user's secret key and
can therefore send and receive secure mes-
sages from each user. In addition, BB has
a secret key of its own, X, that it never
discloses to anyone. The protocol for buy-
ing gold is as follows (P is the plaintext
purchase order):

(1) The customer sends Kc(P) to BB.
(2) BB decrypts the message and returns

X (P + identification).
(3) The customer sends X (P + identifica-

tion) to the bank.
(4) The bank sends X (P + identification)

to BB.
(5) BB sends KB(P + identification) back

to the bank.

Computing Surveys, Vol 13, No, 4, December 1981

484 • A n d r e w S. T a n e n b a u m

The "identification" appended to the mes-
sage by BB consists of the customer's iden-
tity, something that BB can guarantee since
the incoming message is encrypted by a key
only known to one user, plus the date, time,
and perhaps a sequence number. Messages
encrypted by X can be freely sent through
the network, since only BB can decrypt
them, and BB is assumed to be trusted. If
a dispute arises, the bank can go to the
judge with X (P + identification), which the
judge can then order BB to decrypt. The
judge will then see the identification and
know who sent the original message. While
in jail, the customer will have ample time
to devise interesting new signature proto-
cols using conventional cryptography.

6.3 Virtual-Terminal Protocols

Dozens of brands of terminals are in wide-
spread use, no two of which are identical.
Needless to say, a network user who has
just been told that the program or host he
wishes to use does not converse with his
brand of terminal is not likely to be a happy
user. For example, if the program treats
carriage returns and line feeds as equivalent
and the user's terminal only has a "newline"
key, which generates one of each, the pro-
gram will perceive alternate lines as being
empty.

To prevent such difficulties, protocols
have been invented to try to hide terminal
idiosyncracies from application (i.e., user)
programs. Such protocols are known as vir-

tual - terminalprotocols , since they attempt
to map real terminals onto a hypothetical
network virtual terminal. Virtual-terminal
protocols are part of the presentation layer.

Broadly speaking, terminals can be di-
vided up into three classes: scroll mode,
page mode, and form mode. Scroll-mode
terminals do not have any intelligence.
When a key is struck, the character is sent
over the line and perhaps printed as well.
When a character comes in over the line, it
is just displayed. Most hard-copy terminals,
and some of the less expensive CRT ter-
minals, are scroll-mode terminals.

Even though scroll-mode terminals are
simple, they still can differ in many ways:
character set, line length, half duplex/full
duplex, overprinting and the way line feed,

carriage return, tab, vertical tab, backspace,
form feed, and break are handled.

Page-mode terminals are typically CRT
terminals with 24 or 25 lines of 80 charac-
ters. Most of these have cursor addressing,
so that the operator or the program can
randomly access the screen. Some of them
have a little local editing capability. They
have the same potential differences as
scroll-mode terminals, and, additionally,
problems with screen length, cursor ad-
dressing, blinking, reverse video, color, mul-
tiple intensities, and the details of the local
editing.

Form-mode terminals are sophisticated
microprocessor-based devices intended for
data entry. They are widely used in airline
reservations, banking, and many other ap-
plications. In a typical situation the com-
puter displays a form for the operator to fill
out using cursor control and local editing
facilities. The completed form is then sent
back to the computer for processing. Some-
times the microprocessor can perform sim-
ple syntax checking, to make sure, for ex-
ample, that a bank account field contains
only numbers.

Two kinds of virtual-terminal protocols
are commonly used. The first one is in-
tended for scroll-mode terminals and is
based on the ARPANET Telnet protocol
[DAVD77]. When this type of protocol is
used, the designers invent a fictitious vir-
tual terminal onto which all real terminals
are mapped. Application programs output
virtual-terminal characters, which are
mapped onto the real terminal's character
set by the presentation layer at the desti-
nation. Supporting a new kind of real ter-
minal thus requires modifying the presen-
tation layer software to effect the new map-
ping, but does not require changing any of
the application programs.

Since most of the current research in
virtual-terminal protocols focuses on page-
or form-mode terminals, let us move on to
them. A general model that has been widely
accepted is the data structure model of
Schicker and Duenki [ScHI78]. Roughly
speaking, protocols based on this approach
use the model of Figure 15. Each end of a
session has a data structure that represents
the state of the virtual terminal.

The data structure consists of a collection

Computing Surveys, Vol 13, No. 4, December 1981

N e t w o r k P r o t o c o l s • 485

Data]
st ructure

Vir tual term tnal
protocal

Data I structure

Terminal

I k J y v

Host A Host B

Ftgure 15. Virtual-termmal protocol model.

of fields, each of which contains certain
attributes. Typical attributes are the size of
the field, whether it accepts numbers, let-
ters, or both, its rendition (an abstract con-
cept used to model color, reverse video,
blinking, and intensity), whether it is pro-
tected against operator modification or not,
and so forth. The program is written using
abstract operations on the data structure.
Every time the program changes the data
structure on its machine, the presentation
layer sends a message to the other machine
telling it how to change its data structure.
The remote presentation layer is responsi-
ble for updating the display on the real
terminal to make it correspond to the newly
changed data structure. Similarly, changes
made to the display by the human operator
are reflected in the data structure on the
operator's side of the sessk a. Messages are
then sent to bring the other ide up to date.
The protocol used for these 1 essages is the
virtual-terminal protocol.

Although a clever presentation layer can
come a long way toward hiding the prop-
erties of the real terminal from the user
program, it cannot work miracles. If the
program needs a 24 × 80 screen with cursor
addressing and four renditions, the presen-
tation layer will be hard pressed to map
everything onto a simple hard-copy termi-
nal. Consequently, virtual-terminal proto-
cols always have an option negotiation fa-
cility that is used to establish what each
end of the connection is able to provide and
what it wants from the other end.

This negotiation can be symmetric or
asymmetric. In symmetric negotiation,

each end announces its capabilities, in-
spects its partner's, and sets the parameters
to the lowest common denominator. For
example, if one end has a 24 x 80 screen,
and the other has a 25 x 72 screen, the
screen used will be 24 x 72. In asymmetric
negotiation, one side makes a proposal and
the other side accepts or rejects the pro-
posal. If the proposal is rejected, the pro-
poser may try again. Symmetric negotia-
tion solves the problem of who should go
first, but requires more complicated rules
to determine what the result of an exchange
is. It can also fail, for example, if both sides
want to work in alternating (half-duplex)
mode, and each wants to go first.

Another important design issue in vir-
tual-terminal protocols is how to handle
interrupts {attentions). When a user hits
the "break" or "quit" key to terminate an
infinite loop with a print statement in it,
the presentation layer must purge the pipe
of input already queued up; otherwise break
will have no apparent effect. It is easy for
the presentation layer on the terminal side
to begin discarding input upon seeing a
break, but it is much harder to determine
when to stop discarding. Waiting for the
prompt character does not work, since it
might occur in the data to be discarded. A
special out-of-band signaling protocol is
needed. A survey of virtual-terminal pro-
tocols is given in DAY80.

6.4 File Transfer Protocols

The most common uses of computer net-
works at present are for logging onto re-

Computing Surveys, Vol. 13, No. 4, December 1981

486 • Andrew S. Tanenbaum

mote machines and transferring files be-
tween machines. These two areas are simi-
lar in that just as there is a need for pro-
grams to talk to a variety of incompatible
terminals, there is a need for programs to
read a variety of incompatible files. In prin-
ciple, the same approach can be used for
file transfer as for terminals: define a net-
work standard format and provide a map-
ping from and to each existing file format.

In practice, this approach seems to work
fairly well for terminals, but less well for
files, primarily because the differences be-
tween terminals are not as great as between
file types. Mapping reverse video onto
blinking is straightforward compared to
mapping 60-bit CDC floating point num-
bers onto 32-bit IBM floating point num-
bers, especially when the numbers are
strewn randomly throughout the file.

Files are transferred for four primary rea-
sons:

(1) to store a file for subsequent retrieval;
(2) to print a remote file on the local

printer;
(3) to submit a file as a remote job;
(4) to use a remote file as data input or

output.

Each category of use has its own peculiari-
ties.

When a file is stored for subsequent re-
trieval, it must be possible to produce an
exact, bit-for-bit copy of it upon request.
Clearly transmission must be fully trans-
parent, without escape codes that do funny
things. The number of bits in the file must
be recorded in the stored file, to allow trans-
port between machines with differing word
lengths. The last word on the storage ma-
chine may be partially full, and so some
record of how many bits are in use is re-
quired.

When a file is transferred to be printed,
problems can arise as a result of different
print conventions. Some machines store
print files in FORTRAN format, with fixed-
length records {with or without some fudge
for trailing blanks), and carriage control
characters in column 1. Other machines use
ASCII style variable-length records, with
line feeds and form feeds for indicating
vertical motion. When the file is being

moved to be used for remote job entry, the
same problems are present.

Moving data files containing mixtures of
integers, floating point numbers, charac-
ters, etc., between machines is nearly im-
possible. In theory, each data item (e.g.,
integer, floating point number, character)
could occupy one record in a canonical for-
mat, with the data type and value both
explicitly stored. In practice the idea does
not seem to work well, not only because of
problems of interfacing existing software to
it, but also because of the high overhead
and the problems involved in converting
floating point numbers from one format to
another.

Another aspect of file transfer is file ma-
nipulation. Users often need to create, de-
lete, copy, rename, and otherwise manage
remote files. Most file transfer protocols
tend to concentrate on this aspect of the
problem because it is not as hopeless as the
conversion aspect. Gien [GIEN78] has de-
scribed a file transfer protocol in some de-
tail.

7. SUMMARY

Computer networks are designed hierarchi-
cally, as a series of independent layers. Pro-
cesses in a layer correspond with their peers
in remote machines using the appropriate
protocol, and with their superiors and sub-
ordinates in the same machine using the
appropriate interface. The ISO OSI Refer-
ence Model has been designed to provide a
universal framework in which networking
can be discussed. Few existing networks
follow it closely, but there is a general
movement in that direction.

The seven-layer ISO model can be briefly
summarized as follows. The physical layer
creates a raw bit stream between two ma-
chines. The data link layer adds a frame
structure to the raw bit stream, and at-
tempts to recover from transmission errors
transparently. The network layer handles
routing and congestion control. The trans-
port layer provides a network-independent
transport service to the session layer. The
session layer sets up and manages process-
to-process connections. The presentation
layer performs a variety of useful conver-
sions. Finally the application layer is up to

Computing Surveys, Vol. 13, No 4, December 1981

the user, although some industry-wide pro- COMP79
tocols may be developed in the future. CRow73

The literature on computer networks is
huge. Readers unfamiliar with it, but wish-
ing to continue their study of the subject,
may be interested in the textbooks by DAVA79

Davies et al. [DAVI79] and Tanenbaum
[TANE81], or the book edited by Kuo

DAVD77
[Kuo81].

ACKNOWLEDGMENTS

I would hke to thank Yogen Dalai, Adele Goldberg,

and an anonymous, but arhstic, technical editor for
their numerous and helpful comments.

REFERENCES

ABRA70

ABRA73

BARA64

BERT80

BOG680

CAPE79a

CAPE79b

CHLA76

CHLA79

CHU78

CLAR78

DAVI72

DAVI73

DAVI79
ABRAMSON, N. "The ALOHA system--
another alternative for computer commu-
nications," in Proc. 1970 Fall Jt Com-
puter Conf, AFIPS Press, Arlington, Va.,
pp 281-285.
ABRAMSON, N "The ALOHA system," DAYS76
in Computer-communwat~on networks, N.
Abrarnson and F. Kuo (Eds.), Prentice-
Hall, Englewood Cliffs, N.J., 1973. DAY80
BARAN, P. "On dmtributed communica-
tion networks," IEEE Trans. Commun.
Syst. CS-12 (March 1964), 1-9. DEPA76
BERTINE, H. V. "Physical level proto-
cols," I E E E Trans. Commun COM-28
(April 1980), 433-444.
BOGGS, D R., SHOCH, J. F., TAFT, E. A.,
AND METCALF, R. M "Pup' An Internet
architecture," IEEE Trans. Commun
COM-28 (April 1980), 612-624. DIFF76a
CAPETANAK1S, J. I "Generalized TDMA: The
multi-accessing tree protocol," I E E E
Trans Commun. COM-27 (Oct. 1979),
1476-1484. DIFF76h
CAPETANAKIS, J . I . "Tree algorithms for
packet broadcast channels," I E E E Trans
Inf. Theory IT-25 (Sept 1979), 505-515. DIFF77
CHLAMTAC, I. "Radio packet broad-
casted computer network--the broadcast
recognition access method," M.S. thesis,
Dep Mathematical Sciences, Tel Aviv DOLL78
Umv, Tel Awv, Israel, 1976.
CHLAMTAC, I., FRANTA, W. R., AND LEVIN, FARE72
D. "BRAM: The broadcast recognizing
access method," I E E E Trans Commun.
COM-27 (Aug. 1979), 1183-1190.
CHU, K. "A distributed protocol for up-
dating network topology information,"
Rep. RC 7235, IBM Thomas J. Watson FOLT80
Res. Cent., Yorktown Heights, N Y., 1978.
CLARK, D D., POGRAN, K. T , AND REED,
D P. "An introduction to local area net-
works," Proe I E E E 66 (Nov. 1978), 1497- FRAS75
1517.

N e t w o r k P r o t o c o l s • 487

Computing Surveys 11, 4 (Dec. 1979).
CROWTHER, W., RETTBERG, R., WALDEN,
D., ORNSTEIN, S., AND HEART, F. "A sys-
tem for broadcast communication: Reser-
vation-Aloha," in Proc 6th Hawan Int.
Conf Systems Science, 1973, pp. 371-374.
DAVIDA, G.I. "Hellman's scheme breaks
DES in its basic form," I E E E Spectrum
16 (July 1979), 39
DAVIDSON, J , HATHAWAY, W., POSTEL, J.,
MIMNO, N., THOMAS, R., AND WALDEN,
D. "The ARPANET Telnet protocol: Its
purpose, principles, lmplementaUon, and
impact on host operating system design,"
in Proc. 5th Data Communwatmn Syrup.
(ACM/IEEE) (1977), pp. 4 10-4.18
DAVIES, D.W. "The control of conges-
tion in packet-switching networks," I E E E
Trans. Commun. COM-20 (June 1972),
546-550.
DAVIES, D. W., AND BARBER, D. L
A. Communwatmn networks for com-
puters, Wiley, New York, 1973.
DAVIES, D W., BAREER, D. L. A., PRICE,

W. L, AND SOLOMONIDES, C. M. Com-

puter networks and the~r protocols, Wiley,
New York, 1979.
DAVmSON, L, AND GRAY, R. (Eds)
Data compression, Dowden, Hutchinson
& Ross, Stroudsburg, Pa , 1976.
DAY, J. "Terminal protocols," I E E E
Trans. Commun COM-28 {April 1980),
585-593.
DEPARIS, M., DUENKI, A., GLEN, M.,

LAWS, J., LEMOLI, G., AND WEAVING,
K. "The implementation of an end-to-
end protocol by EIN centers: A survey and
comparison," in Proe. 3rd Int. Conf. Com-
puter Commun~catmn (ICCC) (Aug 1976),
pp. 351-360
DIFFIE, W., AND HELLMAN, M E. "A
critique of the proposed data encryption
standard," Commun A C M 19 (March
1976), 164-165.
DIFFIE, W., AND HELLMAN, M. E "New
directions in cryptography," I E E E Trans.
Inf Theory IT-22 (Nov. 1976), 644-654.
DIFFIE, W., AND HELLMAN, M. E.
"Exhaustive cryptanalysts of the NBS
data encryptlon standard," Computer 10
(June 1977), 74-84.
DOLL, D. R. Data communwatmns.
Wiley, New York, 1978.
FARBER, D. J., AND LARSON, K. C "The
system architecture of the distributed
computer system--the communications
system," in Syrup. Computer Networks,
Polytechnic Institute of Brooklyn, Brook-
lyn, N.Y., April 1972.
FOLTS, H. C. "Procedures for circmt-
switched service in synchronous public
data networks," I E E E Trans. Commun
COM-28 (April 1980), 489-496.
FRASER, A. G. "A virtual channel net-
work," Datamatmn 21 (Feb. 1975), 51-56.

Compuung Surveys, Vol. 13, No 4, December 1981

4 8 8 • Andrew S. Tanenbaum

FRAT73

FREE80

GELE78

GERL77

GIEN78

GUNTSI

HELL79

HELL80

INWG78

IRLA78

KAMO81

KLEI78

KuoS1

LIu78

MANN78

MART78

McQu74

McQu77

FRATTA, L., GERLA, M., AND KLEINROCK,
L. "The flow deviation method: An ap-
proach to store-and-forward communica-
tion networks," Networks 3 (1973), 97-133.
FREEMAN, H. A., AND THURBER, K
J. "Updated bibliography on local com-
puter networks," Comput. Arch. News 8
(April 1980), 20-28.
GELENBE, E., LABETOULLE, J., AND Pu-
JOLLE, G. "Performance evaluation of
the HDLC protocol," Comput Networks
2 (Sept.-Oct 1978), 409-415.
GERLA, M, AND KLEINROCK, L. "Closed
loop stability controls for S-ALOHA sat-
elhte communications," m Proc. 5th Data
Communwation Syrup. (ACM/IEEE),
(1977), pp. 2-10-2-19.
GLEN, M. "A file transfer protocol
(FTP)," Computer Networks 2 (Sept.-Oct.
1978), 312-319. METC76
GUNTHER, K. D. "Prevention of dead-
locks m packet-switched data transport
systems," IEEE Trans. Commun. COM-
29 (April 1981), 512-524. NEED78
HELLMAN, M . E . "DES will be totally
insecure within ten years," IEEE Spec-
trum 16 (July 1979), 32-39.
HELLMAN, M.E. "A cryptanalytic tLme- NEED79
memory tradeoff," IEEE Trans. Inf. The.
ory IT-26 (July 1980), 401-406.
"A proposal of an Internetwork end to end
protocol," in Proc. Syrup. Computer Net- PETE61
work Protocols, University of Liege, Bel-
gium, Feb. 1978, pp. H:5-25.
IRLAND, M.I . "Buffer management in a POPE79
packet switch," IEEE Trans. Commun.
COM-26 (March 1978), 328-337.
KAMOUN, F "A drop and throttle flow
control policy for computer networks," PosT80
IEEE Trans Commun. COM-29 (April
1981), 444-452.

KLEINROCK, L., AND YEMINI, Y. "An op- RIVE78
timal adaptive scheme for multiple access
broadcast commumcation," in Proc. ICC
(IEEE), 1978, pp 7.2.1-7.2.5.
Kuo, F. F. (Ed.) Protocols and tech-
niques for data communwation networks, ROBE73
Prentice-Hall, Englewood Chffs, N.J ,
1981.
LIu, M . T . "Distributed loop computer
networks," in Advances m Computers, M. ROTH77
C. Yomts (Ed.), Academic Press, New
York, 1978, pp 163-221.
MANNING, E G. "On datagram service
m pubhc packet-switched networks," RUDI76
Comput. Networks 2 (May 1978), 79-83
MARTIN, J. Communwatmns satelhte
systems, Prentice-Hall, Englewood Cliffs,
N.J , 1978
McQUILLAN, J .M. "Adaptive routing al- RYBC80
gonthms for distributed computer net-
works," Ph.D dissertation, Dlv. Engineer-
mg and Apphed Sciences, Harvard Univ.,
1974 SALT78
McQUILLAN, J M., AND WALDEN, D
C. "The ARPA network design decl- SCHI78

MERK78a

MERK78b

MERL80a

MERL80b

sions," Comput. Networks 1 (Aug. 1977),
243-289.
MERKLE, R.C. "Secure communications
over insecure channels," Commun. ACM
21 (April 1978), 294-299.
MERKLE, R. C., AND HELLMAN, M. E.
"Hiding information and receipts in trap-
door knapsacks," IEEE Trans. Inf. The-
ory IT-24 (Sept. 1978), 525-530.
MERLIN, P. M., AND SCHWEITZER, P. J.
"Deadlock avmdance in store-and-forward
networks--I. Store-and-forward dead-
lock," IEEE Trans. Commun. COM-28
(March 1980), 345-354.
MERLIN, P M., AND SCHWEITZER, P. J.
"Deadlock avoidance in store-and-forward
networks--II: Other deadlock types,"
IEEE Trans. Commun. COM-28 (March
1980), 355-360.
METCALFE, R. M, AND BOGGS, D R.
"Ethernet: Distributed packet switching
for local computer networks," Commun.
ACM 19 (July 1976), 395-404.

NEEDHAM, R. M, AND SCHROEDER, M.
D. "Using encryption for authentication
in large networks of computers," Commun.
ACM 21 (Dec. 1978), 993-999.
NEEDHAM, R M "System aspects of the
Cambridge ring," in Proc. 7th Syrup. Op-
erating Systems, Principles (ACM), 1979,
pp. 82-85.
PETERSON, W. W., AND BROWN, D.
T. "Cyclic codes for error detection,"
Proc IRE 49 (Jan. 1961), 228-235.
POPEK, G. J., AND KLINE, C. S.
"Encryption and secure computer net-
works," Compu~. Surveys U (Dec 1979),
331-356.
POSTEL, J .B. "Internetwork protocol ap-
proaches," IEEE Trans. Commun COM-
28 (April 1980), 604-611.
RIVEST, R. L., SHAMIR, A , AND ADLEMAN,
L. "A method for obtaining digital sig-
natures and public key cryptosystems,"
Commun. ACM 21 (Feb. 1978), 120-126
ROBERTS, L. G "Dynamic allocation of
satellite capacity through packet reserva-
tion," m 1973Nat. Computer Conf., AFIPS
Press, Arlington, Va., pp. 711-716.
ROTHAUSER, E. H., AND WILD, D.
"MLMA--a collision-free multi-access
method," Proc IFIP Congr 77, (IFIP)
(1977), 431-436.
RUDIN, H. "On routing and delta rout-
ing: A taxonomy and performance com-
parison of techniques for packet-switched
networks" IEEE Trans. Commun. COM-
24 (Jan. 1976), 43-59.
RYBCZYNSKI, A. "X.25 interface and
end-to-end virtual circmt service charac-
teristws," IEEE Trans. Commun. COM-
28 (April 1980), 500-510.
SALTZER, J . H . "On digital signatures,"
Oper. Syst Rev 12 (April 1978), 12-14
SCHICKER, P., AND DUENKI, A "The vir-

Computmg Surveys, Vol 13, No 4, December 1981

SCHO76

SCHW80

SEGA81

SHAM79

SHAMS0

SHAP77

SHOC81

SLOA75

tual terminal definition," Comput. Net- SUGA79
works 2 (Dec. 1978), 429-441
SCHOLL, M "Multiplexing techniques
for data transmission over packet switched SUNS78
radio systems," Ph.D. dmsertatlon, Com-
puter Scmnce Dep., UCLA, 1976.
SCHWARTZ, M., AND STERN, T. E.
"Routing techmques used in computer TANE81
communication networks," IEEE Trans.
Commun. COM-28 (April 1980), 539-552.
SEGALL, A "Advances in verifiable fad- TOML75
safe routing procedures," IEEE Trans
Commun. COM-29 (April 1981), 491-497
SHAMm, A. "How to share a secret,"
Commun ACM 22 (Nov. 1979), 612-613 WILK79
SHAMIR, A, AND ZIPPEL, R. "On the se-
curity of the Merkle-Hellman crypto-
graphic scheme," IEEE Trans. Inf. The-
ory IT-26 (May 1980), 339-340.
SHAPLEY, D., AND KOLATA, G. B. YEMI79
"Cryptology: Scientists puzzle over threat
to open research, pubhcation," Scwnce
197 (Sept. 30, 1977), 1345-1349.
SHOCH, J. "An annotated b]bliography
on local compuer networks," Xerox Tech. ZIMM80
Rep., Xerox PARC, April 1980.
SLOANE, N. J A. A short course on error
correcting codes, Springer-Verlag, Berlin
and New York, 1975.

N e t w o r k P r o t o c o l s • 489

SUGARMAN, R.M. "On foiling computer
crime," IEEE Spectrum 16 (July 1979),
31-32.
SUNSHINE, C. A., AND DALAL, Y. K
"Connection management in transport
protocols," Comput. Networks 2 (Dec.
1978), 454-473.
TANENBAUM, A.S. Computer networks,
Prentice-Hall, Englewood Cliffs, N.J ,
1981.
TOMLINSON, R. S. "Selecting sequence
numbers," in Proc. ACM SIGCOMM/
SIGOPS Interprocess Commanwatmn
Workshop (ACM) (1975), pp. 11-23.
WILKES, M. V., AND WHEELER, D.
J. "The Cambridge digital communica-
tion ring," m Proc. Local Area Commu-
nwat~on Network Syrup., Mitre Corp and
NBS (1979), pp. 47-61.
YEMINI, Y., AND COHEN, D. "Some is-
sues in distributed process communica-
tion," in Proc. 1st Int. Conf D~stributed
Computer Systems (IEEE), 1979, pp. 199-
203.
ZIMMERMANN, H. "OSI reference
model--the ISO model of architecture for
open systems mterconnection," IEEE
Trans. Commun. COM-28 (April 1980),
425-432.

Received January 1981, final revision accepted September 1981

Computing Surveys, Vol. 13, No 4, December 1981

