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Network Psychometrics in Educational
Practice

Maximum Likelihood Estimation

of the Curie-Weiss Model

M. Marsman, C. C. Tanis, T. M. Bechger and L. J. Waldorp

Abstract In network psychometrics undirected graphical models—such as the Ising

model from statistical physics—are used to characterize the manifest probability

distribution of psychometric data. In practice, we often find that it is extremely

difficult to apply graphical models as the Ising model to educational data because

(i) the model’s likelihood is impossible to compute for the big data that we typically

observe in educational measurement, and (ii) the model cannot handle the partially

observed data that stem from incomplete test designs. In this chapter, we therefore

propose to use a simplified Ising model that is known as the Curie-Weiss model.

Unlike the more general Ising model, the Curie-Weiss model is computationally

tractable, which makes it suitable for applications in educational measurement. The

objective of this chapter is to study the statistical properties of the Curie-Weiss model

and discuss its estimation with complete or incomplete data. We demonstrate that

our procedures work using a simulated example, and illustrate the analysis of fit of

the Curie-Weiss model using real data from the 2012 Cito Eindtoets.

5.1 Introduction

The item response theory (IRT) model is ubiquitous in the analysis of pupil responses

to the questions in educational tests. In the model, a latent variable is posited to

represent the ability of a pupil that is measured by the test, and then characterizes the

probability that the pupil responds correctly or incorrectly to the test questions as a

function of his or her ability. But these abilities are never directly observed. What

we can estimate directly, however, are the proportion of pupils in a given population
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that obtain particular configurations of correct and incorrect responses to the test

questions (Cressie and Holland 1983). Modeling these manifest probabilities has

been the focus of several areas in the psychometric literature, such as that related to the

Dutch Identity (Holland 1990; Hessen 2012; Ip 2002), log-multiplicative association

models (Anderson and Vermunt 2000; Anderson and Yu 2007), and marginal models

(Bergsma 1997; Bergsma and Rudas 2002). A recent addition to the psychometric

literature on modeling manifest probability distributions is the network psychometric

approach (van der Maas et al. 2006; Borsboom 2008; Epskamp 2017), which utilizes

undirected graphical models to characterize the manifest probabilities and posits

observables (e.g., responses to test questions) on a graphical or network structure.

In network psychometrics, the Ising (1925; Lenz 1920) model is a commonly used

graphical model for binary random variables X , which may be used to encode the cor-

rect (X = 1) and incorrect (X = 0) responses to the questions in the test. The model

is characterized by the following probability distribution over the configurations of

k binary variables X,

p (X = x) =
exp

(

xTμ + xT�x
)

∑

x exp
(

xTμ + xT�x
) , (5.1)

where the sum in the denominator ranges across all possible configurations x of X,

� = [σij] is the symmetric k × k connectivity matrix that encodes the strength of

interactions between the response variables—i.e., the network structure—and μ is

the k × 1 vector that encodes influences from outside the network. In an educational

testing context, the σij may be taken to represent the latent processes that are shared

by questions i and j, and μi may be taken to represent factors that are attributed to

a specific question—e.g., its difficulty. This interpretation of the Ising model comes

from recent work that characterizes it as the marginal distribution of a multidimen-

sional IRT (MIRT) model (Marsman et al. 2015; Epskamp et al. 2018),

p (X = x) =
∫

Rk

k
∏

i=1

p (Xi = xi | θ) f (θ) dθ ,

where −μi was shown to be equal to the MIRT model’s difficulty parameter, and

the square root of the r-th term in the eigenvalue decomposition of the connectivity

matrix,

� =
k
∑

r=1

λrqqT,

was shown to be equal to the loadings of the vector of responses on the r-th ability

dimension. Viewed in this way, the two-parameter logistic (2PL) model corresponds

to an Ising model with a rank one connectivity matrix.

The use of graphical models such as the Ising model in large-scale educational

applications remains problematic, however. One major issue with the Ising model,
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for instance, is that the model is computationally intractable except for very small

or highly constrained problems. This intractability resides in the model’s normal-

izing constant, which requires the evaluation of 2k distinct terms. With as little as

20 questions there already are over one million terms that need to be evaluated, and

educational tests often consist of much more than 20 questions. This is particularly

problematic for estimating the model’s parameters, since closed form expressions are

unavailable, and iterative procedures are needed to estimate them. The model’s nor-

malizing constant then needs to be evaluated several times in each of the iterations.

Another important issue is that the Ising model consists of too many unknown pa-

rameters. With only k = 20 questions on the test there already are 1
2

(

k2 + k
)

= 210

free parameters, and with k = 50 test questions there are over one thousand free

parameters. When the number of questions in the test increases, both the number of

terms that are evaluated in the normalizing constant and the number of free parame-

ters quickly grow. This makes the Ising model impractical for the large applications

that are often encountered in educational measurement. Finally, the Ising model is

not closed under marginalization (Marsman et al. 2017); that is,

p
(

X(i) = x(i)
)

︸ ︷︷ ︸

not Ising model

=
∑

xi

p (X = x)
︸ ︷︷ ︸

Ising model

,

where x(i) is the vector x without element i. As a result, it is complicated to handle

data that is collected with the incomplete test designs that are commonly used in

educational testing.

As a way to work around these problems we will use a simplified Ising model that

is known as the Curie-Weiss model (Kac 1968), in which the connectivity matrix is

the scalar

� = σ 1k ,

where 1k denotes a k × k matrix of ones, and there is a constant interaction σ > 0

among variables in the network. Even though the Curie-Weiss model may seem to

be an oversimplification of the full Ising model, it is an incredibly rich model. For

example, it provides an analytic expression for the marginal Rasch model (Bock

and Aitken 1981), and is a special case of the extended Rasch model (Tjur 1982;

Cressie and Holland 1983), two well-known psychometric models for the manifest

probability distribution. But it also remains of interest in theoretical physics (e.g.,

Kochmański et al. 2013), and it is strongly related to the mean-field approximation

that is often used to study theoretical properties of Ising models in the context of,

for instance, magnetism. Moreover, it offers a pragmatic approximation to the full

Ising model, as the Ising network can be factored into cliques—fully connected sub-

graphs—and the distribution of variables in such cliques can be closely approximated

with a Curie-Weiss model. What matters here is that, unlike the full Ising model,

the Curie-Weiss model is computationally tractable, which makes it suitable for

applications in educational measurement.
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The objective of the current chapter is to study the statistical properties of the

Curie-Weiss model and discuss its estimation with complete or incomplete data.

First, we introduce the model and analyze its statistical properties. In particular, we

examine what happens when we either condition on or marginalize a part of the Curie-

Weiss network. This also provides us with the opportunity to discuss its relation to the

two Rasch-type models, and how its properties relate to these two models. Hereafter

we show how to estimate the Curie-Weiss model and its asymptotic standard errors

in both the complete data case and the incomplete data case, and then illustrate

our procedures using simulated data. Data from a large-scale educational testing

application—the 2012 Cito Eindtoets—is used to illustrate model fit procedures. We

end the chapter with a discussion.

5.2 The Curie-Weiss Model

In a now famous series of lectures (Chrétien et al. 1968), Marc Kac lectured about the

mathematical mechanisms of phase transitions (Kac 1968; Kac and Thompson 1966),

and in particular the phase transitions that are observed in the study of magnetism.

The Ising model is often used in this context to study dynamic properties such as the

shift from a non-magnetic to a magnetic state when the material is cooled. But since

it is very difficult to produce analytic results with the Ising model, Kac proposed to

start with a simpler model based on the theories of magnetism of Pierre Curie and

Pierre-Ernest Weiss. His version of the Curie-Weiss model is characterized by the

probability distribution over the configurations of k random variables Y that take

values in {−1, + 1},

p (Y = y) =
exp

(
J
k

∑

i

∑

j yiyj

)

∑

y exp
(

J
k

∑

i

∑

j yiyj

) ,

where the interaction strength J/k depends on the size of the network and is constant

throughout the network. In this context, the variables Y refer to the magnetic moments

of electrons, which may point up (Y = +1) or point down (Y = −1). Since every

variable in the Curie-Weiss network is related to all other variables, it is sometimes

referred to as the fully-connected Ising network (Gould and Tobochnik 2010). For a

detailed analysis of its dynamical properties we refer the interested reader to recent

work by Kochmański et al. (2013).

Our interest in this chapter will focus on the statistical properties of the Curie-

Weiss model, which inspired us to work with the following version of it

p (X = x) =
exp

(
∑

i xiμi + σ
∑

i

∑

j xixj

)

∑

x exp
(
∑

i xiμi + σ
∑

i

∑

j xixj

) , (5.2)
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which differs in three important ways from the original version that was introduced

by Kac. Firstly, our version of the Curie-Weiss model is used to model the distribu-

tion of {0, 1}-variables X instead of {−1, + 1}-variables Y . This formulation suits

the typical {0, 1} coding that is used to score responses to educational test items.

Secondly, we have introduced the external fields μ (c.f. Kochmański et al. 2013),

which are used here to model differences in item difficulty. Moreover, since our

interest is focused on its statistical instead of its dynamical properties—e.g., phase

transitions—we will not investigate networks that increase in size. Therefore we have

simplified the association strength from J/k to σ so that it does not explicitly depend

on the network’s size.

5.2.1 Some Statistical Properties of the Curie-Weiss Model

Before we continue with the problem of estimating the model’s parameters μ and σ ,

we will first review the model and its conditioning and marginalization properties.

From our formulation of the Curie-Weiss model in Eq. (5.2) we readily find the

simplified expression,

p (X = x) =
exp

(
∑

i xiμi + σ
∑

i

∑

j xixj

)

∑

x exp
(
∑

i xiμi + σ
∑

i

∑

j xixj

)

=

(
∏k

i=1 exp (xiμi)

)

exp
(

σx2
+
)

∑

x

(
∏k

i=1 exp (xiμi)

)

exp
(

σx2
+
)

=

(
∏k

i=1 exp (xiμi)

)

exp
(

σx2
+
)

∑k
s=0 γs (μ) exp

(

σ s2
) , (5.3)

where x+ is used to denote the sum score
∑

i xi, and γs (μ) is used to denote the

elementary symmetric function of order s of the vector μ. The elementary symmetric

function of order s of the vector μ is defined here as

γs (μ) =
∑

x: x+=s

k
∏

i=1

exp (xiμi) ,

where the sum ranges across all configurations of x for which the total score x+ is

equal to s.
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Observe that the normalizing constant of this version of the Curie-Weiss model

k
∑

s=0

γs (μ) exp
(

σ s2
)

,

is linear in the number of variables in the network. Even though this expression

depends on the elementary symmetric functions γs (μ), their computation using,

for example, the summation algorithm (Fischer 1974; Verhelst et al. 1984) is of a

quadratic order of complexity (Baker and Harwell 1996). As a result, the computation

of the normalizing constant also has a quadratic order of complexity, which is a huge

improvement over the exponential order of complexity of computing the normalizing

constant of the Ising model. As a result, the normalizing constant of the Curie-Weiss

model can be efficiently computed.

Let A ⊂ � = {1, 2, . . . , k} be a subset of the variables and Ā its complement,

such that � = A ∪ Ā. Consider the conditional distribution p
(

X(A) | x(Ā)
)

of the

variables in subset A given the remaining variables. We find

p
(

X(A) = x(A) | x(Ā)
)

=
p
(

x(A), x(Ā)
)

∑

x(A) p
(

x(A), x(Ā)
)

=

(∏

i∈A exp (xiμi)
)

exp

(

σ

[
(

x
(A)
+

)2

+ 2x
(A)
+ x

(Ā)
+

])

∑

x(A)

(∏

i∈A exp (xiμi)
)

exp

(

σ

[
(

x
(A)
+

)2

+ 2x
(A)
+ x

(Ā)
+

])

=

(
∏

i∈A exp
(

xi

[

μi + 2σx
(Ā)
+

]))

exp

(

σ

(

x
(A)
+

)2
)

∑|A|
r=0 γr

(

μ(A) + 2σx
(Ā)
+

)

exp
(

σ r2
)

,

where x
(A)
+ =

∑

i∈A xi denotes the sum score on the item set A ⊂ �, and r the index

of the rest-score that ranges from zero to the size of the set A. Note that we have

used a well-known property of elementary symmetric functions (e.g., Verhelst et al.

1984). Namely, that

γs (μ + c) = exp (s c) γs (μ) ,

such that

γr

(

μ(A) + 2σx
(Ā)
+

)

=
∑

x(A):x(A)
+ =r

∏

i∈A

exp
(

xi

[

μi + 2σx
(Ā)
+

])

= exp
(

r 2σx
(Ā)
+

) ∑

x(A):x(A)
+ =r

∏

i∈A

exp (xiμi)
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is the elementary symmetric function of order r of the sub-vector μ(A) shifted by

the constant 2σx
(Ā)
+ . Since the conditional distribution is a Curie-Weiss model it

follows that the model is closed under conditioning. That is, the distribution of

variables in a Curie-Weiss network conditional upon a subset of the variables in

the network results in a Curie-Weiss model. Furthermore, p
(

X(A) = x(A) | x(Ā)
)

=

p
(

X(A) = x(A) | x
(Ā)
+

)

.

Of particular interest is the conditional distribution of one variable xj conditional

upon the remaining variables x(j),

p
(

Xj = xj | x(j)
)

=
exp

(

xj

[

μj + σ + 2σx
(j)
+

])

1 + exp
(

μj + σ + 2σx
(j)
+

) , (5.4)

which depends on the remaining variables only through the rest score x
(j)
+ =

∑

i �=j xi

and does not depend on the external fields μ(j) that are associated to the k − 1

variables we conditioned on. In sum, Eq. (5.4) provides an analytic expression of the

item-rest regressions that can be useful for assessing the fit of the Curie-Weiss model.

The conditional distribution also reveals how the Curie-Weiss model operates: The

field μj models the general tendency to respond correctly or incorrectly to item j,

and the interaction parameter σ scales the influence of the remaining k − 1 response

variables x(j) on the response to item j. Observe that the tendency to respond correctly

increases with both μj and σ .
While the Curie-Weiss model is closed under conditioning, it is not closed under

marginalization. To see this, we derive the expression for the marginal distribution
of the first k − 1 variables of a k variable Curie-Weiss network

p
(

X(k) = x(k)
)

= p
(

xk = 1, X(k) = x(k)
)

+ p
(

xk = 0, X(k) = x(k)
)

=

{

exp
(

μk + σ
[

1 + 2x
(k)
+
])

+ 1
} (
∏k−1

i=1 exp (xiμi)

)

exp

(

σ
(

x
(k)
+
)2
)

∑k
s=0 γs (μ) exp

(

σ s2
) .

Using the recursive property of elementary symmetric functions (Fischer 1974,

p. 250):

γs (μ) = exp (μk) γs−1

(

μ(k)
)

+ γs

(

μ(k)
)

we can simplify this expression to

p
(

X(k) = x(k)
)

=

{

exp
(

μk + σ

[

1 + 2x
(k)
+
])

+ 1
} (
∏k−1

i=1 exp (xiμi)

)

exp

(

σ

(

x
(k)
+
)2
)

∑k−1
r=0 {exp (μk + σ [1 + 2r]) + 1} γr

(

μ(k)
)

exp
(

σ r2
) ,

(5.5)
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Since we cannot factor out the terms that depend on variable i from the sum in the

denominator due to its interaction with the rest score x
(k)
+ , we are unable to simplify

this expression to the form of a Curie-Weiss model. It follows that the Curie-Weiss

model is not closed under marginalization.

5.2.2 The Curie-Weiss to Rasch Connection

Equation (5.3) can be written as:

p (X = x) =

(
∏k

i=1 exp (xiμi)

)

γx+ (μ)

γx+ (μ) exp
(

σx2
+
)

∑k
s=0 γs (μ) exp

(

σ s2
)

= p (X = x | X+ = x+) p (X+ = x+) , (5.6)

where p (X = x | X+ = x+) can be recognized as the conditional likelihood function

of the Rasch (1960) model (Andersen 1973) with item difficulties −μi. In fact, it is

readily seen that our Curie-Weiss model is a special case of the extended Rasch model

(ERM; Tjur 1982; Cressie and Holland 1983). In general, the ERM is characterized

by the following distribution

p (X = x) =
∏k

i=1 exp(xiμi) λx+
∑k

s=0 γs (μ) λs

, (5.7)

which equals the Curie-Weiss model when λs = exp
(

σ s2
)

. An empirical illustration

of such a quadratic relation can be found in Brinkhuis (in press, Chap. 5).

Importantly, the ERM can be expressed as a marginal Rasch model (MRM; Bock

and Aitken 1981) iff it’s score parameters λs form a moment sequence (Cressie and

Holland 1983). That our Curie-Weiss model is an MRM can be seen from the original

derivation by Kac, who used the following well-known identity (Stratonovich 1957;

Hubbard 1959),

exp
(

σ s2
)

=
∫

R

1√
π

exp
(

2
√

σ s η − η2
)

dη,

in which we replace the exponential of a square with the integral on the right hand
side—the expectation E

(

exp
(

2
√

σ s H
))

of the normal random variable H . Writing
the right hand side of this identity for the squared exponential in the numerator of
the Curie-Weiss model gives
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p (X = x) =

(
∏k

i=1 exp (xiμi)

)
∫

R

1√
π

exp
(

2
√

σ x+ η − η2
)

dη

∑k
s=0 γs (μ) exp

(

σ s2
)

=
∫

R

k
∏

i=1

exp
(

xi

[

μi + 2
√

ση
]) exp

(

−η2
)

√
π
∑k

s=0 γs (μ) exp
(

σ s2
)dη

=
∫

R

k
∏

i=1

exp
(

xi

[

μi + 2
√

ση
])

1 + exp
(

μi + 2
√

ση
)

∏k
i=1

{

1 + exp
(

μi + 2
√

ση
)}

exp
(

−η2
)

√
π
∑k

s=0 γs (μ) exp
(

σ s2
) dη

=
∫

R

k
∏

i=1

exp (xi [μi + θ ])

1 + exp (μi + θ)

∏k
i=1 {1 + exp (μi + θ)} exp

(

− 1
4σ

θ2
)

√
4σπ

∑k
s=0 γs (μ) exp

(

σ s2
) dθ

=
∫

R

k
∏

i=1

p (Xi = xi | θ) f (θ) dθ,

where we have used the change of variable θ = 2
√

ση. Noting that p (Xi = xi | θ)

is a Rasch model with item difficulties −μi, it follows that the Curie-Weiss model

corresponds to a marginal Rasch model albeit with a rather peculiar1 latent variable

distribution f (θ) that depends on the item parameters. This distribution closely re-

sembles a normal distribution or a skewed-normal distribution (Marsman et al. 2018;

Haslbeck et al. 2018), depending on the value of the scaling parameter σ .

It is easy to verify that both the ERM and the MRM are closed under marginaliza-

tion (e.g., Maris et al. 2015) whereas, as we showed earlier, the Curie-Weiss model

is not. Specifically, the marginal distribution in Eq. (5.5) is not a Curie-Weiss model,

although it is an ERM with

λr = exp
(

σ r2
) [

1 + exp (μk + σ (1 + 2 r))
]

,

for r = 0, . . . , k − 1. Thus, marginalization gives us an ERM, but not a Curie-Weiss

model. The reason that the ERM in Eq. (5.7) is closed under marginalization yet the

Curie-Weiss model is not is because the characterization λs = exp
(

σ s2
)

introduces

a dependency between the score parameters that is not found in Eq. (5.7). The issue

with the MRM is slightly different. Observe first that the MRM itself is closed under

marginalization (Marsman et al. 2017), such that

p
(

X(k) = x(k)
)

=
∫

R

∑

xk

k
∏

i=1

p (Xi = xi | θ) f (θ) dθ =
∫

R

k−1
∏

i=1

p (Xi = xi | θ) f (θ) dθ,

where the latent trait model is the Rasch model. In the Curie-Weiss model, the latent

variable distribution f (θ) explicitly depends on the model parameters, including the

1A similar construction of the latent variable distribution can also be found in, for instance, Cressie

and Holland (1983) and McCullagh (1994), and is used by Marsman et al. (in press) to generalize

the Dutch Identity (Holland 1990).
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field μk of variable k. Even though this ought not be a problem in practical applica-

tions with incomplete test designs, it does show why the marginal is not a Curie-Weiss

model, since it is clear that the expectations Ef

[

p (x | 	)
]

and Ef

[

p
(

x(k) | 	
)]

dif-

fer.

Compared to a regular MRM, the Curie-Weiss model has a number of convenient

properties. One is that the origin of the ability distribution is identifiable so that

absolute values of the item difficulties can be interpreted. Furthermore, the posterior

distribution of the latent variable is available in closed form:

f (θ | X = x) = f (θ | X+ = x+) = 1√
4σπ

exp

(

− 1

4σ
(θ − 2σx+)2

)

.

This is a normal distribution2 with mean 2 σ x+ and variance 2 σ . Sampling so-called

plausible values is thus trivial in the Curie-Weiss model. If we write the association

parameter in its original form, σ = J/k, the posterior is a normal distribution with

mean 2 J x̄ and variance 2 J/k:

f (θ | X = x) = f (θ | X+ = x+) =
√

k√
4Jπ

exp

(

− k

4J
(θ − 2J x̄)2

)

,

Note that the posterior standard deviation now shrinks with a rate of 1/
√

k. Note

further that the posterior variance is the same for all test scores, x+, which suggests

that test information is the same for all values of the latent variable. This constant rate

of information is more in line with classical test theory, for example, than with regular

IRT models where information is larger for abilities close to the item difficulties.

Another convenient property of the Curie-Weiss model is that it provides ana-

lytic expressions for the distribution of observables, and in particular the item-rest

regressions—e.g., Eq. (5.4)—and the distribution of test scores—e.g., the second

factor in Eq. (5.6). The benefit of having analytic expressions for these distributions

is that they can be used to assess the fit of the Curie-Weiss model.

5.3 Maximum Likelihood Estimation

of the Curie-Weiss Model

Maximum likelihood (ML) estimation of the Curie-Weiss model has been worked

out for the case of a single realization of the Curie-Weiss network with an external

field μ that is the same for each variable in the network. It is easily shown that for this

constrained n = 1 case the two parameters σ and μ cannot be consistently estimated

(e.g., Comets and Gidas 1991). In psychometrics and educational measurement,

however, we typically have many replications of the Curie-Weiss network, i.e., n ≫ 1.

2Since the Rasch model is in the exponential family, the posterior ability distribution depends on

the data only through the sufficient statistic X+ (Dawid 1979).
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We will focus here on the ML procedure for estimating μ and σ ; first for the complete

data case, then for the incomplete data case. Sample R-code is provided in an online

repository located at https://osf.io/4m3dq/.

5.3.1 Maximum Likelihood in the Complete Data Case

The factorization in Eq. (5.6) shows that the external fields of the Curie-Weiss model

can be consistently estimated with conditional maximum likelihood (CML) as used

for the regular Rasch model (Andersen 1970, 1973). We may then estimate the

association strength conditional upon the CML-estimates of the external fields with

little loss of information (Eggen 2000). This is complicated, however, by the fact

that the parameters of the Curie-Weiss model are identified, but the parameters of

the conditional Rasch model are not.3 We will therefore focus on joint estimation of

the model parameters.

The complete data likelihood for the Curie-Weiss parameters μ and σ based on

the responses of n pupils to k test questions is

L (μ, σ | x1, . . . , xn) =
n
∏

p=1

(
∏k

i=1 exp
(

xpiμi

)
)

exp
(

σx2
p+

)

∑k
s=0 γs (μ) exp

(

σ s2
)

=
exp

(
∑k

i=1 x+iμi + σ
∑n

p=1 x2
p+

)

(
∑k

s=0 γs (μ) exp
(

σ s2
)
)n ,

and only depends on the (sufficient) statistics x+i, for i = 1, . . . , k, and
∑

p x2
p+. We

seek values μ̂ and σ̂ that maximize the likelihood function, or, similarly, the roots

of its gradient ∇ ln L (μ, σ | x1, . . . xn). The roots of the gradient can be found using

iterative procedures such as the Newton-Raphson (NR) procedure. Unfortunately,

NR procedures require the computation of the Hessian matrix of mixed partial (sec-

ond order) derivatives in every iteration to update parameter values, which can be

expensive to compute in practice. We therefore choose a divide and conquer strat-

egy and maximize each of the parameters in turn, while ignoring cross-parameter

dependency during optimization. Even though this might slow down convergence,

it circumvents having to compute (and invert) the complete Hessian matrix in every

iteration.

We first investigate the maximization of ln L (μ, σ | x1, . . . xn) with respect to

the external field μi of the response variable i, fixing the parameter values of

the remaining k parameters to their current estimates. The partial derivative of

3This implies that we lose a degree of freedom by factoring the joint distribution and condition on

the observed test score. To consistently estimate the parameters of the Curie-Weiss model using

a two-step procedure, we therefore need to estimate a shift of the external fields in the test score

distributions p (X+ = x+).

https://osf.io/4m3dq/
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ln L (μ, σ | x1, . . . xn) with respect to μi is

∂

∂μi

ln L (μ, σ | x1, . . . xn) = x+i − n exp (μi)

∑k−1
s=0 γs

(

μ(i)
)

exp
(

σ s2
)

∑k
s=0 γs exp

(

σ s2
) .

where we have used the following well-known property of the elementary symmetric

function,
∂

∂μi

γs (μ) = exp (μi) γs−1

(

μ(i)
)

.

Setting the derivative to zero we obtain the following closed form expression for the

parameter μi:

μi = ln

(
x+i

n − x+i

)

+ ln

( ∑k−1
s=0 γ (i)

s exp
(

σ s2
)

∑k−1
s=0 γ

(i)
s exp

(

σ (s + 1)2
)

)

,

where the first term is a function of the sufficient statistics and the second term is a

function of the remaining k parameters of the model. In an iteration t of our numerical

procedure, we fix the states of these parameters to their current estimates μ̂
(i)
t and σ̂t

to compute an updated value for μi.

What remains is the maximization of ln L (μ, σ | x1, . . . xn) with respect to the

association strength σ . The partial derivative of ln L (μ, σ | x1, . . . xn) with respect

to σ is

∂

∂σ
ln L (μ, σ | x1, . . . xn) =

n
∑

p=1

x2
p+ − n

∑k
s=0 s2γs (μ) exp

(

σ s2
)

∑k
s=0 γs (μ) exp

(

σ s2
) .

Setting this derivative to zero does not lead to a closed form solution for the parameter

σ . We therefore propose a one-dimensional NR step:

σ = σ̂ −
∂
∂σ

ln L (μ, σ | x1, . . . xn)
∣
∣
σ=σ̂

∂2

∂σ 2 ln L (μ, σ | x1, . . . xn)

∣
∣
∣
σ=σ̂

= σ̂ +
1
n

∑n
p=1 x2

p+ −
∑k

s=0 s2 γs(μ) exp(σ̂ s2)
∑k

s=0 γs(μ) exp(σ̂ s2)
∑k

s=0 s4 γs(μ) exp(σ̂ s2)
∑k

s=0 γs(μ) exp(σ̂ s2)
−
(
∑k

s=0 s2 γs(μ) exp(σ̂ s2)
∑k

s=0 γs(μ) exp(σ̂ s2)

)2
,

where in an iteration t we evaluate the partial derivatives based on the current esti-

mates μ̂t and σ̂t to compute our update of σ .
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5.3.1.1 Asymptotic Standard Errors for the Complete Data Case

We estimate the variance-covariance matrix of our estimators for the parameters μ

and σ , by evaluating the inverse of the Fisher information matrix at the estimated

values μ̂ and σ̂ :

Var
(

μ̂, σ̂
)

≈
[

I
(

μ̂, σ̂
)]−1

,

where I
(

μ̂, σ̂
)

denotes the Fisher Information matrix. To compute the Fisher in-

formation matrix we work out (minus) the second order mixed derivatives from the

Q-function. As the Curie-Weiss model is a member of the exponential family of

distributions, the second derivatives will not depend on data, and we do not have

to (numerically) evaluate any expectations in computing the information matrix. In

Appendix 1 we present the mixed partial derivatives of the Q-function.

We compute the information matrix in four parts:

I (μ, σ) =
(

Iμ·μ Iμ·σ
Iσ ·μ Iσ ·σ

)

.

The main effects part Iμ·μ of the information matrix may be expressed as follows:

Iμ·μ = A − vvT,

where the vector v has elements

vi =
√

n exp (μi)

∑k−1
s=0 γs

(

μ(i)
)

exp
(

σ s2
)

∑k
s=0 γs (μ) exp

(

σ (s + 1)2
) ,

and where A is a symmetric matrix with off-diagonal elements

Aij = n exp
(

μi + μj

)
∑k−2

s=0 γs

(

μ(i, j)
)

exp
(

σ (s + 2)2
)

∑k
s=0 γs (μ) exp

(

σ s2
) ,

and diagonal elements Aii = √
n vi. The contribution of the scaling parameter Iσ ·σ

is the scalar

Iσ ·σ = n

∑k
s=0 s4γs (μ) exp

(

σ s2
)

∑k
s=0 γs (μ) exp

(

σ s2
) − n

(∑k
s=0 s2γs (μ) exp

(

σ s2
)

∑k
s=0 γs (μ) exp

(

σ s2
)

)2

,

and we may express the vector Iμ·σ = I
T

σ ·μ as

Iμ·σ = w −
√

n

∑k
s=0 s2γs (μ) exp

(

σ s2
)

∑k
s=0 γs (μ) exp

(

σ s2
) v,
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where the vector w has elements

wi = n exp (μi)

∑k−1
s=0 (s + 1)2 γs

(

μ(i)
)

exp
(

σ (s + 1)2
)

∑k
s=0 γs (μ) exp

(

σ s2
) .

Sample R-code for computing this Fisher information matrix is provided at https://

osf.io/4m3dq/.

5.3.2 Maximum Likelihood Estimation in the Incomplete

Data Case

When test data are collected according to a randomized incomplete test design, the

structurally missing data patterns are assumed to be missing (completely) at random

(Eggen 1993; Eggen and Verhelst 2011). We may then obtain unbiased estimates of

the parameters from the incomplete data likelihood (Eggen 1993; Eggen and Verhelst

2011; Rubin 1976)

L
(

μ, σ | xO
1 , . . . , xO

1

)

=
n
∏

p=1

p
(

xO
p

)

=
n
∏

p=1

∑

xM
p

p
(

xO
p , xM

p

)

=
n
∏

p=1

∑

xM
p

p
(

xp

)

,

where xO
p denotes the observed responses for person p, xM

p denotes his or her missing

responses, and the complete data-likelihood p
(

xp

)

is the Curie-Weiss model. When

the complete data likelihood L (μ, σ | x1, . . . , xn) corresponds to the Curie-Weiss

model, the incomplete data likelihood L
(

μ, σ | xO
1 , . . . , xO

n

)

does not, because the

Curie-Weiss model is not closed under marginalization. As a result, estimating the

parameters of the model does not simplify to the procedure that we outlined for the

complete data case.

To come to a tractable approach for estimating the Curie-Weiss parameters in the

incomplete data case, we will use the Expectation-Maximization (EM) algorithm

(Dempster et al. 1977), treating the unobserved responses xM
1 , . . . , xM

n as missing

(completely) at random. The EM approach alternates between two steps: an Expec-

tation or E-step in which we compute the expected complete data log-likelihood of

the parameters μ and σ , and a maximization or M-step in which we find the param-

eter values μ̂ and σ̂ that maximize the expected log-likelihood that was found in the

E-step. We will outline a general procedure for which the missing data patterns are

unique to the individuals—e.g., as those obtained from computerized adaptive testing

(van der Linden and Glas 2002; Eggen 2004; van der Linden and Glas 2010)—but

note that the equations and their computations simplify considerably for the simple

testing designs that are often encountered, where subsets of the items are allocated

to “booklets” and pupils are allocated to one of these booklets (e.g., Eggen 1993).

https://osf.io/4m3dq/
https://osf.io/4m3dq/
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5.3.2.1 The E-Step

Under the assumption that the responses of individual subjects are independent, we

can write the complete data log-likelihood as

ln L
(

μ, σ | xM
1 , . . . , xM

n , xO
1 , . . . , xO

n

)

=
n
∑

p=1

ln L
(

μ, σ | xM
p , xO

p

)

,

and we may write the log-likelihood of person p as

ln L
(

μ, σ | xM
p , xO

p

)

=
k
∑

i=1

μi

[

xO
pi + xM

pi

]

+ σ

[

xO
p+ + xM

p+

]2

− ln

(
k
∑

s=0

γs (μ) exp
(

σ s2
)

)

,

where we use

xO
pi =

⎧

⎪
⎨

⎪
⎩

1 the observed response of person p on item i was correct,

0 the observed response of person p on item i was incorrect,

0 no response of person p on item i was observed,

and

xM
pi =

⎧

⎪
⎨

⎪
⎩

1 the unobserved response of person p on item i was correct,

0 the unobserved response of person p on item i was incorrect,

0 a response of person p on item i was observed.

The expected log-likelihood, or Q-function, can now be written as

Q
(

μ, σ ; μ̂, σ̂
)

=
n
∑

p=1

k
∑

i=1

μi

[

xO
pi + E{μ̂, σ̂ }

{

X M
pi

∣
∣
∣ x

O
p

}]

+ σ

n
∑

p=1

E{μ̂,σ̂ }

{
[

xO
p+ + X M

p+

]2
∣
∣
∣
∣
xO

p

}

− n ln

(
k
∑

s=0

γs (μ) exp
(

σ s2
)

)

,

and requires the computation of two expectations of the conditional distribution

p
(

xM | xO
)

.
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Since the Curie-Weiss model is closed under conditioning, we know that the

conditional distribution p{μ̂, σ̂ }
(

xM | xO
)

is a Curie-Weiss model. Specifically,

p{μ̂, σ̂ }
(

xM
p | xO

p+

)

=
exp

(
∑k

i=1 xM
pi

[

μ̂i + 2σ̂xO
p+

]

+ σ̂

(

xM
p+

)2
)

∑kM
p

r=0 γr

(

μ̂(op)
)

exp
(

r 2σ̂xO
p+
)

exp
(

σ̂ r2
)

,

=
exp

(
∑k

i=1 xM
pi

[

μ̂i + 2σ̂xO
p+

])

γxM
p+

(

μ̂(op)
)

exp
(

xM
p+ 2σ̂xO

p+
)

γxM
p+

(

μ̂(op)
)

exp
(

xM
p+ 2σ̂xO

p+

)

exp

(

σ̂

(

xM
p+

)2
)

∑kM
p

r=0 γr

(

μ̂(op)
)

exp
(

r 2σ̂xO
p+
)

exp
(

σ̂ r2
)

= p{μ̂, σ̂ }
(

xM
p | xM

p+, xO
p+

)

p{μ̂, σ̂ }
(

xM
p+ | xO

p+

)

where kM
p denotes the number of missing responses for pupil p, and γr

(

μ̂(op)
)

denotes the elementary symmetric function of order r of the subvector μ̂(op), i.e., the

external fields corresponding to the missing observations for a person p.

The two expectations can now be found as follows. Assuming that the response

Xpi of pupil p to question i is missing, we compute its expectation as

E{μ̂, σ̂ }
{

X M
pi

∣
∣
∣ x

O
p

}

=
∑

xM
p

xM
pi p{μ̂, σ̂ }

(

xM
p | xO

p+

)

=
∑

xM
pi

xM
pi

∑

x
m(i)
p

p{μ̂, σ̂ }
(

xM
p | xO

p+

)

=
∑

xM
pi

xM
pi exp (μi)

∑kM
p −1

r=0 γr

(

μ̂(op, i)
)

exp
(

(r + 1) 2σ̂xO
p+

)

exp
(

σ̂ (r + 1)2
)

∑kM
p

r=0 γr

(

μ̂(op)
)

exp
(

r 2σ̂xO
p+
)

exp
(

σ̂ r2
)

= exp
(

μ̂i

)

∑kM
p −1

r=0 γr

(

μ̂(op, i)
)

exp
(

(r + 1) 2σ̂xO
p+

)

exp
(

σ̂ (r + 1)2
)

∑kM
p

r=0 γr

(

μ̂(op)
)

exp
(

r 2σ̂xO
p+
)

exp
(

σ̂ r2
)

,

otherwise this expectation is set to zero. In the same way, we find

E{μ̂, σ̂ }

{
[

xO
p+ + X M

p+
]2
∣
∣
∣
∣
xO

p

}

=
∑kM

p

r=0

[

xO
p+ + r

]2
γr

(

μ̂
(

op

))

exp
(

r 2σ̂xO
p+
)

exp
(

σ̂ r2
)

∑kM
p

r=0 γr

(

μ̂
(

op

))

exp
(

r 2σ̂xO
p+
)

exp
(

σ̂ r2
)

.

Both expectations are easy to evaluate expressions of the conditional Curie-Weiss

model. However, computing the basis functions for the missing item responses per

pupil might be expensive. Fortunately, for incomplete test designs these functions of-

ten need only be computed per booklet, or cluster of questions, and not per individual.
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5.3.3 The M-Step

The E-step effectively completes the incomplete data likelihood, and we now end up

with a maximization problem that is comparable to that for the complete data case.

We approach the maximization in a similar way as before, and use the same divide

and conquer strategy to maximize each of the parameters in turn, while ignoring

cross-parameter dependency during optimization.

5.3.3.1 M-Step for μi

The partial derivative of Q
(

μ, σ ; μ̂, σ̂
)

with respect to μi is

∂

∂μi

Q
(

μ, σ ; μ̂, σ̂
)

=

⎡

⎣xO
+i +

n
∑

p=1

E{μ̂, σ̂ }
{

X M
pi

∣
∣
∣ x

O
p

}

⎤

⎦

− n exp (μi)

∑k−1
s=0 γs

(

μ(i)
)

exp
(

σ s2
)

∑k
s=0 γs (μ) exp

(

σ s2
) .

When we set this derivative to zero we obtain the following closed form solution for

the parameter μi:

μi = ln

⎛

⎝

[

xO
+i +

∑n
p=1 E{μ̂, σ̂ }

{

Xpi

∣
∣ xO

p

}]

n −
[

xO
+i +

∑n
p=1 E{μ̂, σ̂ }

{

Xpi

∣
∣ xO

p

}]

⎞

⎠

+ ln

( ∑k−1
s=0 γs

(

μ(i)
)

exp
(

σ s2
)

∑k−1
s=0 γs

(

μ(i)
)

exp
(

σ (s + 1)2
)

)

,

again fixing the states of the remaining k parameters to their current estimates μ̂
(i)

and σ̂ to compute an updated value for μi.

5.3.3.2 M-Step for σ

The partial derivative of Q
(

μ, σ ; μ̂, σ̂
)

with respect to σ is

∂

∂σ
Q
(

μ, σ ; μ̂, σ̂
)

=
n
∑

p=1

E{μ̂, σ̂ }

{
[

xO
p+ + X M

p+

]2
∣
∣
∣
∣
xO

p

}

− n

∑k
s=0 s2 γs (μ) exp

(

σ s2
)

∑k
s=0 γs (μ) exp

(

σ s2
) .
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Setting this derivative to zero does not lead to a closed form solution for the parameter

σ . We therefore propose a one-dimensional NR step:

σ = σ̂ −
∂
∂σ

Q
(

μ, σ ; μ̂, σ̂
)∣
∣
σ=σ̂

∂2

∂σ 2 Q
(

μ, σ ; μ̂, σ̂
)
∣
∣
∣
σ=σ̂

= σ̂ +

1
n

∑n
p=1 E{μ̂, σ̂ }

{
[

xO
p+ + X M

p+

]2
∣
∣
∣
∣
xO

p

}

−
∑k

s=0 s2 γs

(

ˆ(μ)

)

exp(σ̂ s2)
∑k

s=0 γs

(

ˆ(μ)

)

exp(σ̂ s2)

∑k
s=0 s4 γs

(

ˆ(μ)

)

exp(σ̂ s2)
∑k

s=0 γs

(

ˆ(μ)

)

exp(σ̂ s2)
−
(∑k

s=0 s2 γs

(

ˆ(μ)

)

exp(σ̂ s2)
∑k

s=0 γs

(

ˆ(μ)

)

exp(σ̂ s2)

)2
,

where we evaluate the partial derivatives on the current states of all parameters.

5.3.3.3 Asymptotic Standard Errors for the Incomplete Data Case

The missing information principle of Louis (1982) states that the observed informa-

tion is equal to the complete information—the expression that we obtained for the

complete data case—minus the missing information (see also Tanner 1996):

I
O (μ, σ) = I (μ, σ) − I

M (μ, σ) .

The observed Fisher information I
O is computed from mixed partial derivatives of

the incomplete data likelihood,

L
(

μ, σ | XO
)

=
∏n

p=1

(
∏k

i=1 e
xO

piμi

)

e
σ

(

xO
p+
)2
∑

xM
p

(
∏k

i=1 e
xM

pi μi

)

e
σ

(
(

xM
p+
)2

+2xM
p+xO

p+

)

(
∑k

s=0 γs (μ) eσ s2
)n ,

and the missing Fisher information I
M is computed from the conditional distribution

of the missing data given the observed data,

p
(

XM | XO
)

=
n
∏

p=1

exp

(
∑k

i=1 xM
pi μi + σ

(

xO
p+ + xM

p+

)2
)

∑kM
p

r=0 γr

(

μ(op)
)

exp
(

σ
(

xO
p+ + r

)2
) .

This conditional distribution is a member of the exponential family and its mixed sec-

ond order partial derivatives do not depend on missing data such that we do not have

to numerically evaluate any expectations in computing the missing information. We

therefore compute the observed information as the difference between the complete

information and the missing information. In Appendix 2 we present the mixed partial

derivatives of the conditional distribution of the missing data. Sample R-code to com-

pute the observed and missing information is made available at https://osf.io/4m3dq/.

https://osf.io/4m3dq/
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5.4 Numerical Illustrations

In this section we provide two numerical illustrations of our procedures; one based

on simulated data, and one based on real data from the 2012 Cito Eindtoets.

5.4.1 Simulated Example

We illustrate that our procedures work using a small simulated example. We have

simulated the responses of n = 10,000 pupils to k = 20 test questions.4 The external

fields were sampled uniformly between −1 and +1, and the scale parameter σ was

set to 0.05 (or J = kσ = 1). For the incomplete data case, we omitted the responses

to the last five questions for 5026 randomly selected pupils and the responses to the

first five questions for the 4974 remaining pupils. This mimics a two-booklet test

design, where booklet one comprises of questions 1–15 and booklet two comprises

of questions 6–20. The parameter estimates for this example are shown in Table 5.1.

From Table 5.1 we observe that the parameter estimates in both the complete data

case and in the incomplete data case are close to their true values, and well within

the range of their 95% confidence intervals. Thus, we were able to estimate the

parameters of the Curie-Weiss model in both the complete and incomplete data case.

We also observe from Table 5.1 that the field estimates of questions for which no

data were excluded—questions 6–15—slightly differed from their estimates obtained

from the complete data case. At the same time, the (asymptotic) standard errors of

all external fields increased in size, even though half of the external field parameters

are estimated based on the same amount of observations. This reveals the impact of

cross-parameter correlations on the obtained estimates.

5.4.2 The Cito Eindtoets 2012

As an empirical example from educational measurement, we consider an application

of the Curie-Weiss model to data from the 2012 Cito Eindtoets. The data consist of

the responses of n = 133,768 Dutch pupils at the end of primary school to k = 200

questions on twelve distinct topics from the Dutch primary school curriculum related

to mathematics and language education.

The Cito Eindtoets data are typically not analyzed with a Rasch-type model.

Since the test comprises of such distinct topics from the educational curriculum,

we may a priori expect that the Curie-Weiss model fits poorly to the data from this

test. However, in an earlier analysis of Cito Eindtoets data using a low-rank Ising

model we found that the first principal component explained roughly 99% of the

4Data were generated with a Gibbs sampler (Geman and Geman 1984) utilizing the full-conditional

distributions in Eq. (5.4).
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Table 5.1 Parameter estimates of the Curie-Weiss model based on simulated data from n = 10,000

pupils responding to k = 20 test questions

True value Complete data Incomplete data

MLE (SE) MLE (SE)

μ1 0.309 0.287 (0.068) 0.320 (0.089)

μ2 −0.581 −0.590 (0.066) −0.571 (0.085)

μ3 −0.275 −0.310 (0.067) −0.336 (0.086)

μ4 0.550 0.448 (0.069) 0.426 (0.089)

μ5 −0.726 −0.739 (0.066) −0.736 (0.085)

μ6 0.250 0.261 (0.068) 0.271 (0.083)

μ7 −0.397 −0.428 (0.066) −0.418 (0.082)

μ8 −0.736 −0.755 (0.066) −0.745 (0.082)

μ9 0.372 0.355 (0.068) 0.365 (0.083)

μ10 −0.551 −0.600 (0.066) −0.590 (0.082)

μ11 0.770 0.704 (0.070) 0.714 (0.085)

μ12 0.578 0.481 (0.069) 0.491 (0.084)

μ13 0.897 0.915 (0.072) 0.924 (0.086)

μ14 0.646 0.692 (0.070) 0.702 (0.085)

μ15 −0.251 −0.308 (0.067) −0.298 (0.082)

μ16 0.296 0.289 (0.068) 0.320 (0.088)

μ17 0.541 0.556 (0.069) 0.606 (0.091)

μ18 0.054 0.003 (0.067) 0.003 (0.087)

μ19 0.181 0.163 (0.068) 0.166 (0.088)

μ20 −0.766 −0.755 (0.066) −0.742 (0.085)

σ 0.050 0.051 (0.002) 0.050 (0.002)

variation in the matrix of observed sufficient statistics (see Marsman et al. 2015). This

principal component score correlated highly with the raw test score, and moreover,

the estimated elements in the first eigenvector were found to be nearly constant (van

den Bergh et al. 2018). Both observations suggest that a one-dimensional model such

as a 2PL or Rasch-type model might show a reasonable fit to the observed data.

We assess the fit of the Curie-Weiss model to the 2012 Cito Eindtoets using

the item-rest regressions in Eq. (5.4), focusing on the rest-scores with at least 25

observations to obtain stable estimates of the observed proportions. There are 200

item-rest regressions in total, one for each test question. We show the item-rest

regressions of four questions (Questions 1, 7, 10, and 12 from the test) in Fig. 5.1,

but provide all available item-rest regressions at https://osf.io/4m3dq/. When we

investigate the item-rest regressions at https://osf.io/4m3dq/ it is clear that we did

not find a good fit of the Curie-Weiss model to all of the 200 questions from the 2012

Cito Eindtoets. An example of an item-rest regression for a poor fitting question is

that of Question 1, which is shown in the top-left panel of Fig. 5.1. Even though

https://osf.io/4m3dq/
https://osf.io/4m3dq/
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Fig. 5.1 The item-rest regressions for four questions from the Cito Eindtoets 2012

we did not find a good fit of the Curie-Weiss model to all of the questions in the

Cito Eindtoets, we did observe many questions for which the estimated Curie-Weiss

model did provide an at least reasonable fit. Two examples of questions for which the

item-rest regression revealed a reasonable fit to the estimated Curie-Weiss model are

Questions 7 and 10 in Fig. 5.1. Question 12 in Fig. 5.1 is an example of an item-rest

regression that corresponds to a good fit.

Despite the fact that several of the item-rest regressions indicate a reasonable fit to

the data at the item-level, it is evident that the Curie-Weiss model fits poorly to these

data on a global level, as it is unable to reproduce the observed score distribution.

This is illustrated in Fig. 5.2, where we compare the observed score distribution with

the theoretical score distribution, e.g. Eq. (5.6). Even though it is clear that the two

score distributions differ from each other, they have the same mean and variance.

However, the overdispersion in the observed score distribution suggests that a more

complicated model than the Curie-Weiss model, such as the low-rank Ising model

that was used in Marsman et al. (2015), is likely more suited for these data.
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Fig. 5.2 The observed score

distribution for the Cito

Eindtoets 2012 (gray dots)

and the theoretical score

distribution as predicted by

the estimated Curie-Weiss

model (black dots) using Eq.

(5.6)
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5.5 Discussion

In this chapter we have focused on the statistical analysis of the Curie-Weiss model

(Kac 1968) in the context of educational testing. In contrast to other graphical models

that are regularly used in the literature—such as the Ising model (Ising 1925; Lenz

1920)—we showed that the Curie-Weiss model is computationally tractable, which

makes it a practical tool for the large-scale applications that we often see in educa-

tional practice. One of the focal points of our statistical treatment was the analysis of

the Curie-Weiss model in the face of data that are missing at random (Rubin 1976),

such as the missing data patterns that we often observe in incomplete test designs

(Eggen 1993; Eggen and Verhelst 2011). We have developed an approach using the

EM algorithm (Dempster et al. 1977) to estimate the Curie-Weiss model on partially

observed data. (Sample R-code is made available at https://osf.io/4m3dq/.)

We have provided two illustrations of our work. Simulated data were used to

illustrate that we could recover the parameters in both the complete data case and

the incomplete data case. The example using the 2012 Cito Eindtoets data was in-

cluded for two reasons. Firstly, this example allowed us to illustrate the ease with

which the fit of the Curie-Weiss model can be investigated using the analytic expres-

sions of the item-rest regressions in Eq. (5.4), and the theoretical score distribution

in Eq. (5.6). Secondly, it allowed us to illustrate that a simple model such as the

Curie-Weiss model is able to fit complex data, at least at the item-level. The fact that

the Curie-Weiss model seems to fit reasonably well to several substantively differ-

ent questions—ranging from spelling and reading comprehension to working with

fractions—definitely warrants further investigation.

The work in this chapter is a first step in the psychometric treatment of the Curie-

Weiss model and can be generalized in several ways. For example, the factorization

in Eq. (5.6) reminds us of a two-step procedure that is used in the Cito program

SAUL (Structural Analysis of a Univariate Latent variable; Verhelst and Eggen 1989;

Verhelst and Verstralen 2002). In this program, an IRT model is analyzed and fitted

to observed data first, which in the Cito tradition comprises of either a Rasch model

or a one parameter logistic model (OPLM; Verhelst and Glas 1995): a tradition that is

pursued by the dexter R package (Maris et al. 2018). After a fitting model is obtained,

https://osf.io/4m3dq/
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its parameters are fixed, and the influence of background variables on the latent trait

is assessed. This suggests two generalizations of the Curie-Weiss model that we have

analyzed here. The first is the inclusion of integer weights or discrimination’s for each

of the variables, as with the OPLM. The advantage of using integer weights is that this

ensures that the normalizing constant of the Curie-Weiss model remains tractable.

A second generalization would be the assessment of the influence of background

variables on the network’s structure or score distribution. One way to realize this is

by explicitly modeling the scaling parameter, for instance using a regression model

to analyze differences in the scaling parameter for different pupils:

σp = exp
(

βTzp

)

,

where zp denotes a vector of covariates that correspond to a pupil p and β denotes a

set of regression parameters. Both generalizations would likely lead to the improved

fit of the Curie-Weiss model in the Cito Eindtoets example, at both the item- and test-

level. It is important to observe that the Curie-Weiss model under both generalizations

remains entirely tractable.

Even though we have focused on the statistical treatment of the Curie-Weiss model

from a classical perspective, it is easy to generalize our work to a Bayesian approach.

One way to estimate the model in the complete data case, for example, is by means of

the approximate Gibbs sampling approach of Marsman et al. (2015), that was further

analyzed by Bechger et al. (2018) and Marsman et al. (2017). Another approach is

based on the Gibbs sampler that Maris et al. (2015) developed for estimating the

ERM, and extended by Brinkhuis (in press, Chap. 5) to the incomplete data case,

where Tanis (2018) has recently shown how to adapt this Gibbs sampler for estimating

the Curie-Weiss model. Data augmentation can then be used to handle incomplete

data (Tanner and Wong 1987; Tanner 1996). This entails adding an additional step to

the Gibbs sampler to impute missing observations based on the observed data using,

for example, Eq. (5.4).

Appendix 1: Mixed Partial Derivatives Complete Data

Likelihood

To compute the Fisher information matrix, we need the following mixed partial

derivatives of the (complete data) likelihood:

∂2

∂μi∂μj

L (μ, σ | X) = n eμi+μj

{∑k−1
s=0 γs

(

μ(i)
)

eσ(s+1)2

∑k
s=0 γs (μ) eσ s2

∑k−1
s=0 γs

(

μ(j)
)

eσ(s+1)2

∑k
s=0 γs (μ) eσ s2

−
∑k−2

s=0 γs

(

μ(i, j)
)

eσ(s+2)2

∑k
s=0 γs (μ) eσ s2

}
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∂2

∂μ2
i

L (μ, σ | X) = n eμi

⎧

⎨

⎩
eμi

(∑k−1
s=0 γs

(

μ(i)
)

eσ(s+1)2

∑k
s=0 γs (μ) eσ s2

)2

−
∑k−1

s=0 γs

(

μ(i)
)

eσ(s+1)2

∑k
s=0 γs (μ) eσ s2

}

∂2

∂σ 2
L (μ, σ | X) = n

(∑k
s=0 s2γs (μ) eσ s2

∑k
s=0 γs (μ) eσ s2

)2

− n

∑k
s=0 s4γs (μ) eσ s2

∑k
s=0 γs (μ) eσ s2

∂2

∂σ∂μi

L (μ, σ | X) = n eμi

{∑k
s=0 s2γs (μ) eσ s2

∑k
s=0 γs (μ) eσ s2

∑k−1
s=0 γs

(

μ(i)
)

eσ(s+1)2

∑k
s=0 γs (μ) eσ s2

−
∑k−1

s=0 (s + 1)2 γs

(

μ(i)
)

eσ(s+1)2

∑k
s=0 γs (μ) eσ s2

}

Appendix 2: Mixed Partial Derivatives of (Conditional)

Distribution of the Missing Data

To compute the missing Fisher information, we need the mixed partial derivatives

of p
(

XM | XO
)

with respect to μ and σ . Let mpi be the missing data indicator, such

that

mpi =
{

1 if the response of pupil p to item i is missing,

0 if the response of pupil p to item i is observed.

The mixed partial derivatives of p
(

XM | XO
)

are then

∂2

∂μi∂μj
p
(

XM | XO
)

=
n
∑

p=1

mpimpj e
μi+μj

⎧

⎪
⎪
⎨

⎪
⎪
⎩

∑kM
p −1

r=0 γr

(

μ
(

Op , i
))

e
σ

(

xO
p +r+1

)2

∑kM
p

r=0 γr

(

μ
(

Op
))

e
σ

(

xO
p +r

)2

∑kM
p −1

r=0 γr

(

μ
(

Op , j
))

e
σ

(

xO
p +r+1

)2

∑kM
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(
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e
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(
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(
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(
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⎪
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where terms for which mpi = 0 are simply excluded from any computations.
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