
The following paper was originally published in the
Proceedings of the Fifth USENIX UNIX Security Symposium

Salt Lake City, Utah, June 1995.

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Network  Randomization  Protocol:
A Proactive Pseudo-Random Generator

Chee-Seng Chow and Amir Herzberg
IBM T.J. Watson Research Center

Yorktown Heights, New York



Network Randomization Protocol�

A Proactive Pseudo�Random Generator

Chee�Seng Chow Amir Herzberg

IBM T�J� Watson Research Center

Yorktown Heights� NY �����

fcschow�amirg�watson�ibm�com

Abstract

A major security threat to any security solutions
based on a centralized server is the possibility of an
adversary gaining access to and taking control of the
server� The adversary may then learn secrets� cor�
rupt data� or send erroneous messages� In practice�
such an adversary may be more prevalent than one
would like to admit� It may be a malicious hacker� a
virus in an application program� or an unscrupulous
system administrator�

Proactive security is a novel approach to the server
security problem� It uses the distribution of data and
control to multiple servers and periodic refreshes be�
tween servers� By distributing data and control� one
or more servers may be compromised without com�
promising the system� Periodic refreshes between
servers allow a compromised server to �recover� af�
ter the attacker leaves� thereby contributing to the
system security� A fraction �in some cases all� of
the servers must be compromised simultaneously in
order to compromise the system�

This paper describes the Network Randomization
Protocol �NRP� 	 a proactive protocol for gener�
ating cryptographically secure pseudo�random num�
bers� The protocol is designed for operation in the
Internet and includes defenses against clogging at�
tacks� Issues related to the design and implementa�
tion of the protocol are discussed�

As virtually no cryptographic task is possi�
ble without a source of randomness or pseudo�
randomness� NRP is an important basic building
block for many cryptographic functions� Further�
more� it serves to illustrate the main ideas and intu�
itions of proactive security�

Keywords� cryptography� proactive security� net�
work protocol� pseudo�random generator� Internet
security� client�server�

� Introduction

��� Server Insecurity

Computers are often the main targets in security
attacks against computing systems� The security
problem becomes worse in a network environment�
The �system� is no longer a mainframe housed in
a physically secure room but consists of many geo�
graphically distributed machines linked together by
a communication network� Important data and vi�
tal functions are delegated to one or more servers�
which are not always physically secure�
While communication links in a computer network

are also subject to security attacks� the attacks are
handled by standard cryptographic techniques such
as encryption and authentication� However� security
threats against computers �servers� in particular� are
not readily dealt with� The attacks could be in the
form of a virus in an application program� a ma�
licious hacker� or an unscrupulous system operator�
The attacks may occur intermittently but over a long
period result in signi
cant loss of secret information�
corruption of vital data� and disruption of services�
One reason why security threats against servers are
not easily addressed is that such threats� especially
internal threats� are hard to formalize� Few good
solutions are known�

��� Survey of Existing Solutions

We brie�y review some existing solutions to the
problem of server security�
One approach is to use secure hardware� The ap�

proach assumes that a certain component of the sys�
tem �e�g�� where secret keys are store� is physically
secure against intruders and system operators� The
security of the system depends on the security of
the component� However� such systems tend to be



expensive� hard to service� and proprietary� The de�
sign and implementation of the secure hardware is
often not open to public review since its security
may depend on its secrecy� In this paper� we will
not discuss hardware�based solutions� Instead we
will focus on software�based solutions� which rely on
cryptographic techniques�

The Unix password security system �MT
�� re�
lies on the di�culty to invert a one�way function�
f � Instead of storing a user password� the system
stores f�password�� To login� the user supplies a
password� The system authenticates the user by ap�
plying f to the supplied password and checking the
result against the password 
le� This solution en�
sures that even if an adversary gains access to the
password 
le� she cannot masquerade as the user�
However� the solution assumes that the commu�

nication between the user and the system is secure�
Otherwise� an adversary can obtain the password by
eavesdropping� A modi
ed solution has been pro�
posed by Lamport to handle this problem �Lam����

More recently� Bellovin and Merritt �BM��� have a
solution that ensures a user password remains secure
even if an attacker has access to the server database�
Furthermore� an eavesdropper cannot mount a dic�
tionary attack to guess the user password� This work
is an extension of their earlier work �BM����

It is clear from this �non�exhaustive� survey of
server security solutions that server break�ins are a
major security concern� The common approach of
all the above solutions is to avoid keeping �secret�
in the server� Nevertheless� an active attacker can
disrupt services to selected clients by corrupting the
server database or masquerade as a server to unsus�
pecting clients�

��� Proactive Security

We now look at a di�erent approach to server se�
curity� where there is secret information to be pro�
tected�

One solution is to do secret sharing �Sha
�� on
multiple servers� This approach makes sense espe�
cially if the system already has multiple servers for
load�sharing� However traditional secret sharing has
the following drawback� An adversary can compro�
mise one server at a time until su�cient number of
servers are compromised to reveal the secret�

This is how proactive security comes in� The two
key ideas of proactive security are� ��� the distribu�
tion of data and control to multiple servers� and ���
periodic refreshes between the servers� Each server is
initialized with an initial secret �share�� By distrib�
uting data and control to multiple servers� a fraction

of the servers may be compromised without compro�
mising the system� The periodic refreshes allow a
compromised server to recover �regain secrecy� after
an attacker leaves� The refresh period is a security
parameter� it could be minutes� hours� days� weeks�
or months depending on the application and the se�
curity desired� It is a tradeo� between security and
performance�

Since a compromised server can recover and con�
tribute to the overall system security� in order to
compromise the system� a fraction �in some cases
all� of the servers must be compromised simultane�
ously� In particular� an attacker can compromise one
server at a time until all servers have been compro�
mised �though not in the same time period� and yet
the system remains secure� The notion of recovery
is a key property of proactive security�

The idea of a mobile adversary has been used by
others �OY��� in another context� It does not model
all attacks� but captures a large class of real�life at�
tacks� Some examples of such �transient� attacks
are malicious hackers �who carry out attacks from
the network during wee hours�� untrustworthy sys�
tem operators �who snoop during their shifts�� and
viruses �which are removed when the system period�
ically reboots��
We call the approach proactive security because

the refreshes are send periodically independent of
whether the system is under attack or not� In par�
ticular� they are not sent in reaction to attacks or
suspected attacks� While a server is compromised�
refreshes from its neighbors do not help� But as soon
as the adversary leaves� the refreshes help the server
recover� By sending the refreshes periodically� the
system does not need to know whether a server is
compromised or not� since detecting an attack is of�
ten harder than preventing one�
In practice� servers often have the same �aws�

While it is true that an adversary may exploit
the same weaknesses to break into multiple servers�
proactive security makes this signi
cantly harder�
since the adversary must break into the servers si�
multaneously� Of course� one can also improve secu�
rity by making sure that the servers are su�ciently
di�erent in architecture� located far apart� and ad�
ministered by di�erent groups of people�

We and others in our group are currently explor�
ing various applications of proactive security� Some
possible applications are� ��� public key certi
cation
and signature authority ��� authentication and key
distribution center ��� server�server key maintenance
��� pseudo�random number generation�

In this paper� we discuss the application of proac�
tive security to the problem of generating pseudo�



random numbers� This is the simplest application�
it is also the best understood� More importantly�
we have actually implemented the solution and have
dealt with the implementation issues� This simple
but important application serves well to illustrate
the main ideas and the power of proactive security�

��� Pseudo�Random Number Gener�
ation

We brie�y review the problem of pseudo�random
number generation and the importance of random�
ness in security� For a more detailed discussion� see
�ECS��� for an excellent treatment of the topic�
Modern security systems increasingly rely on cryp�

tography for security assurances� However� the secu�
rity of many cryptographic algorithms and protocols
depends on a continuous source of random numbers�
Some crucial applications of such numbers are in the
generation of cryptographic keys� key renewal� nonce
generation� and so on� In particular� the Unix pass�
word solution �MT
�� and its modi
cation �Lam���
both require randomness for password generation�
The works of Bellovin and Merritt �BM��� BM���
also require a random source� Virtually no crypto�
graphic task is possible without a source of random�
ness or pseudo�randomness�

The most direct means of getting random num�
bers is through special hardwares� As discussed ear�
lier� special hardwares are expensive� non�portable�
and usually proprietary� Moreover� most existing
computers� including many security servers� are not
equipped with such hardwares� There are many pit�
falls in using supposedly random sources in a com�
puter �such as disk access times and system clocks�
as a source of randomness� �See �ECS�����

In contrast� software solutions are cheap� portable�
and are repeatable �an essential property in testing
and debugging�� The problem of generating numbers
with random properties in software is well�studied�
�See� e�g�� �Knu����� Such numbers are pseudo�
random� in contrast to random numbers generated
from physical random sources such as shot�noise or
quantum devices� A basic requirement of pseudo�
random numbers is that they have similar statistical
properties to random numbers�

For security applications� we are interested in
the generation of cryptographically secure pseudo�
random numbers� A computationally bounded ad�
versary cannot distinguish such numbers from ran�
dom numbers �except for some negligible advan�
tage�� In particular� the numbers should appear un�
predictable to the adversary�
To generate cryptographically secure pseudo�

random numbers� the program must hold a secret
key �seed� unknown to the adversary� �The algo�
rithm is �public knowledge��� If only one server is
used and the server is compromised� then the num�
bers generated are no longer secure since the adver�
sary can also generate them �using the same seed as
the server�� This suggests a proactive approach to
the problem�

��� Network Randomization Proto�

col

Network randomization protocol �NRP� is a practi�
cal adaptation of the theoretical protocol in �CH����
Whereas �CH��� is synchronous� assumes a fully con�
nected topology� and is based on pseudo�random func�
tions� NRP is asynchronous� allows arbitrary topol�
ogy� and is based on pseudo�random generators� Un�
like �CH��� which also provides reconstructibility�
the sole purpose of NRP is randomization�
Similar in concepts to the Network Time Proto�

col� which provides time services using a group of
servers for synchronization� NRP provides �crypto�
graphically secure� pseudo�random numbers using a
group of servers� Each server is initialized with a
randomly �or pseudo�randomly chosen� seed and pe�
riodically generates and sends pseudo�random val�
ues �refreshes� to its neighbors� Upon receiving a
refresh� the server updates its seed� NRP provides
a simple� uniform way to integrate di�erent sources
of randomness �local such as disk�access time� user�
keyboard time and remote such as network delay or
random values from other servers��
NRP is speci
cally designed for the Internet en�

vironment� In this environment� it is easier for an
adversary to break into a server or to carry out ac�
tive attacks against a server than to eavesdrop or to
intercept all messages to a server� Messages may ar�
rive at the server via di�erent routes� The protocol
is also applicable to other network environments as
well� Finally� NRP is designed to run as a daemon
process� as we do not expect servers dedicated for
running NRP�

��	 Contributions

This paper introduces the key ideas of proactive se�
curity from a system perspective� The discussion is
informal and intuitive� We show that the ideas are
practical� e�cient� and simple by presenting an in�
depth discussion on the design and implementation
of NRP� The discussion is distilled from our experi�
ence implementing the protocol on an IBM RS�����
workstation running AIX�



��
 Organization

The paper is organized as follows� In section � we
discuss the adversary model� introduce a modi
ed
pseudo�random generator� and describe the random�
ization protocol� In Section �� we discuss the design
and implementation of the server� server�server com�
munications� and some practical extensions to the
protocol� Section � describes the client�server in�
terface and addresses some related security issues�
Finally� we summarize and discuss some conclusions
in Section ��

� Basic Concepts

��� Adversary Model

Throughout this paper we make the standard com�
putational complexity assumptions in cryptography
such as certain problems cannot be e�ciently solved
�e�g�� in polynomial time� and that adversaries are
computationally bounded� All actions by the adver�
saries or servers occur in polynomial time�
When servers are compromised� the adversaries

have total control of the servers� Adversaries can
learn secret information� corrupt critical data� crash
servers� and make them send erroneous messages to
other servers� The adversaries can do all these in a
fully coordinated manner�

In addition� the adversaries are mobile� An adver�
sary can move from one server to another� When
an adversary leaves� the server reverts to the origi�
nal program� though corrupted program data remain
corrupted� �This is to model a large class of attacks
that are transient�� Without such an assumption�
the notion of an adversary leaving a server would
not make sense�
Another type of attacks are �clogging attacks��

which deny service to the server by overwhelming
the server with messages� In general such attacks�
are extremely di�cult� if not impossible� to prevent�
The best that one can do is to log the occurrences
for a system administrator to handle o�ine and to
limit the maximal work in response to a message�

Communication links between servers are not im�
mune from attacks� Links may be compromised� in
which case an adversary can read� remove� alter� or
inject messages� We assume that injecting a message
is easier than eavesdropping �which is often the case
in Internet��

Servers can protect their communications through
cryptographic techniques such as encryption and au�
thentication� However� all these techniques require a
server to keep some secret keys� Consequently when

a server is compromised all communications into and
out of the server are also compromised� Further�
more� a malicious adversary may corrupt the keys�
resulting in communication breakdowns even though
the physical links are fully operational� Fortunately�
as we will see in Section �� NRP does not need en�
cryption or authentication�

��� Pseudo�Random Generator

The network randomization protocol is based on a
modi
ed pseudo�random generator to be described
in this section� The discussion is informal and intu�
itive� Proofs and a more formal treatment are de�
ferred to another paper�

A traditional pseudo�random generator �BM��� is
a function that when given a secret seed outputs a
stream of bits that appear random to the adversary�
In particular� the adversary cannot guess an unseen
bit better than chance �plus a negligible advantage�
after observing other output bits� The adversary
also cannot guess the secret seed better than chance
�plus a negligible advantage�� In practice� there are
e�cient implementations which are believed to be
pseudo�random� For example� one can use the out�
put of the DES�CBC encryption function� with the
secret seed as encryption key� on some input string�

For our purpose� we use a modi
ed pseudo�
random generator �PRG� that consists of an s�bit in�
ternal seed variable and a traditional pseudo�random
generator function� To limit the damage when the
server is compromised� the seed is updated whenever
an output is generated�

The following operations are supported by the
PRG� PRG�Create� PRG�Free� PRG�Get�

value� and PRG�Update�seed� The 
rst func�
tion PRG�Create takes as input an s�bit pseudo�
random value� instantiates a PRG� and initializes the
seed with the input� The second function releases
system resources used by the PRG� Of interest are
the last two functions�

The function PRG�Get�value when invoked �af�
ter PRG�Create� outputs an ��bit pseudo�random
value and updates the internal seed� A possible im�
plementation of the function is as follows� The seed
is used by the traditional generator function to gen�
erate s�� pseudo�random bits� where � bits are out�
put� The remaining s bits are used to update the
seed�

Let fk denote the traditional pseudo�random gen�
erator with seed k� and �o�� o�� denote the output of
fk� where o� and o� are of lengths s and �� respec�
tively� When PRG�Get�Value is invoked� the PRG



is updated according to the following equations�

�o�� o�� � fk

k � o��

and PRG�Get�Value outputs o��
The function PRG�Get�value should have the

following properties�

A�� An adversary cannot guess an output value bet�
ter than chance �plus some negligible advan�
tage� by observing other outputs� In particu�
lar� an adversary cannot guess any seed values
better than chance �plus some negligible prob�
ability��

A�� If the seed is revealed to the adversary at some
time� then the adversary cannot guess any prior
unseen outputs ofPRG�Get�valuebetter than
chance �plus some negligible advantage��

Property A�� limits the amount of information re�
vealed when a server is compromised� In particu�
lar� the adversary cannot deduce its prior pseudo�
random outputs from the seed�

Refreshes from other servers provide new random�
izations to a server� The pseudo�random values
from other servers are incorporated into the PRG
using PRG�Update�seed� which takes an s�bit in�
put� PRG�Update�seed does not simply replace
the seed with the input but combine them in such a
way that the following properties hold�

A�� If an adversary does not know the seed� then no
matter what sequence of updates u�� u�� � � � � uN
an adversary chooses and applies to the PRG
�using PRG�Update�seed�� the seed of the
PRG remains pseudo�random� The adversary
may invoke any number of PRG�Get�value in
between PRG�Update�seed�

A�� If an adversary knows the seed and chooses all
of the updates u�� u�� � � � � ui� � � � � uN � except ui
which is a pseudo�random value unknown to the
adversary� then the PRG regains its pseudo�
randomness when updated with ui� The ad�
versary may invoke any number of PRG�Get�
value in between PRG�Update�seed� �Note
that all the updates except ui may be known to
the adversary� they may be functions of ui��

Property A�� ensures that a server PRG remains
pseudo�random even if an adversary has complete
control of all communications into a server�
Property A�� �is often stronger than needed but�

ensures that a single refresh that evades the adver�
sary allows a previously compromised server to re�

gain pseudo�randomness� This property handles re�
play attacks where the adversary resends an update
without knowing the value �e�g�� the value is en�
crypted�� Note that simply taking the exclusive or
of the seed with the update would not satisfy Prop�
erty A��� since an adversary may resend ui� without
knowing ui� to nullify it�
A possible implementation of PRG�Update�

seed is as follows� An s�bit value is formed by taking
the exclusive or of the input with the current seed�
The value is used in the traditional pseudo�random
generator function to generate an s�bit value which
will be the new seed� IfPRG�Update�seed is given
the update u� PRG is updated as follows�

k � k � u

�o�� o�� � fk

k � o��

�Note that this is simply invoking PRG�Get�value
once� after taking the exclusive or of the update with
the current seed��

��� Network Randomization Proto�
col

Network randomization protocol �NRP� runs on a
group of servers� The subset of servers that a server
refreshes are its neighbors� For simplicity� we will
assume that the graph of neighborhood relationship
is symmetric and connected�

����� Update Protocol

Each server has its own PRG� At the beginning�
the PRG in every server is initialized with an in�
dependently and pseudo�randomly chosen seed� Pe�
riodically� a server sends to each of its neighbors
a pseudo�random value� the output of PRG�Get�
value� When a server receives a refresh� it updates
its seed using PRG�Update�seed with the refresh
as input� Each server runs the update protocol inde�
pendently� possibly with a di�erent refresh period�
The state of a server is completely determined by

its seed and the refreshes received� �For simplic�
ity� we have assumed that the sending of refreshes
within a period is an atomic operation�� To predict
the state of the server� an adversary must know the
seed and monitors all refreshes into the server� If
the adversary misses a single refresh� the server will
regain its pseudo�randomness�

����� Properties

NRP have following properties�



B�� If all� but one� servers are compromised� then
the uncompromised server remains secure no
matter what refreshes are sent to it�

B�� If an adversary knows the states of all servers
and knows all messages in transit except for
one refresh� then the unseen refresh can re�
randomize the entire network�

Intuitively� it is easy to see that Properties B�� and
B�� follow from Properties A�� and A�� of the PRG�
respectively� A more formal treatment and proofs of
the properties are deferred to another paper�

� Server Design

This section describes some practical aspects related
to the design and implementation of an NRP server�
The security of server�server communications and
some practical extensions to the protocol are also
discussed� We begin with a review of the design ob�
jectives�

��� Design Objectives

The objectives are to keep the server simple and e��
cient� To minimize processing� no detailed account�
ing of refreshes is kept� Refreshes are sent using the
unreliable datagram protocol �UDP� for e�ciency�
The idea is that pseudo�random values are cheap to
produce �cf� Property A��� and are readily incorpo�
rated �cf� Property A����

One of the states of a server is its seed� The goal is
to avoid introducing new states to the server� This
is especially important in proactive security since it
limits what an adversary can learn or corrupt when
the server is compromised� it also simpli
es the re�
covery process when the adversary leaves�

��� Server�Server Communications

At 
rst it seems that cryptographic means are
needed to ensure con
dentiality and authentication
of server�server communications� This is not an ap�
pealing prospect as it introduces shared keys be�
tween neighbors� Beside being computationally ex�
pensive� it introduces states in the server�

Fortunately� the encryption and authentication of
refreshes are not needed� They do not improve se�
curity in our model� The reasons are as follows�
We consider two cases� First� if the adversary has
complete information about a server and monitors
all communications into the server� it can perfectly

predict the server states� No cryptographic process�
ing in the server can help� Second� if the adver�
sary does not know some secret information in the
server �e�g�� an encryption key�� then that informa�
tion could have been incorporated into the PRG
�using PRG�Update�seed� and no matter what
an adversary does to the communication links� the
server remains secure�

Some of the data in a refresh are as follows� a
message�type 
eld� a positive count to indicate the
number of pseudo�random values in the message� an
array of pseudo�random values� More details on the
message format will be provided in another docu�
ment �CH����

��� Sources of Randomness

To improve randomization� NRP can �and should�
be used in conjunction with any locally available ran�
dom sources� Three interfaces are provided for this
purpose� ��� message IPC queue ��� UDP port ���
function linkage�

The 
rst two methods involve sending a message
to the server� The last method requires implement�
ing and linking with the server a function that gets
values from local random sources� At initialization�
the operator can also input a �password� to generate
the initial seed for the PRG�

For further randomization� we provide a program
that �samples� micro�second clock readings� The
sampler provides periodic local randomness to the
server�

Normally the system clock would be a poor source
of randomness� A novelty here is the interaction
between the server and the random sampler �which
runs as a separate Unix process�� The sampler gets
random values from the server �using the client�
server interface to be described in the next section�
and combines them with the clock readings �using
DES for mixing��

The sampler sends random values to the server
using the message IPC queue� The server updates
its pseudo�random generator using refreshes received
from the sampler� �Refreshes from the sampler
are treated no di�erent from refreshes from other
servers�� This interaction and feedback between the
sampler and the server can be viewed as a local ver�
sion of NRP�

��� Practical Extensions

There are some simple� practical extensions to im�
prove the security of the protocol�



To make it harder for an adversary to monitor
communications� a server can send refreshes prob�
abilistically �e�g�� send a refresh only if the parity
of a pseudo�random value is even�� And to ex�
ploit the randomness of network delays� the send�
ing of refreshes can be spread out over the refresh
period� This allows incoming refreshes to interleave
with outgoing refreshes� By interleaving invocations
of PRG�Get�value with PRG�Update�seed� the
server makes it much harder for an adversary to
track its states� Since refreshes are sent unreliably�
the loss of refreshes over the links is an additional
source of randomness�

To detect clogging attacks� the server checks that
the number of UDP messages received in a period is
below some threshold� When an attack is detected�
the server raises an alarm and logs all relevant mes�
sages� The 
nal determination and handling of the
attack is left to the system administrator�

� Client�Server Interface

We now discuss the design and implementation of
the client�server interface� The interface allows
clients to get pseudo�random values from their local
server� Security issues related to malicious clients
are also addressed�

��� Modi�ed Adversary Model

In this section we consider a modi
ed adversary
model where the adversary has partial control of a
server machine� In a multi�user� multi�process envi�
ronment such as Unix� the adversary may control a
client process without controlling the operating sys�
tem or the server process� Such an adversary may
eavesdrop or disrupt client�server communications�
masquerade as a client or as a server� and attack the
server or other clients within the limitations imposed
by the operating system�

��� Design Objectives

For clients to regain security after an adversary
leaves �i�e�� to be proactive�� they should periodically
get pseudo�random values from the server� A simple
function call interface� which hides the interprocess
communication �IPC� details� is provided�

The objectives are to protect the server and the
clients from malicious clients with partial control of
the system and to keep the server stateless� The
design of the interface is complicated because Unix

does not provide secure IPC mechanisms� Extra ef�
forts are needed to authenticate messages between
processes�

��� Application Programming Inter�
face

We design a simple� secure application programming
interface �API� for client applications to get pseudo�
random values from the server� The interface is im�
plemented using a PRG �pseudo�random generator��
Instead of directly using pseudo�random values ob�
tained from the server� each client has its own PRG�
Pseudo�random values from the server are used to
update the PRG� This provides proactive security to
clients and at the same time reduces communication
overhead�
We would like to design the interface similar to the

standard C�library pseudo�random functions srand
and rand �Note that this library is not cryptograph�
ically secure�� However our interface is necessarily
more complicated because it hides the IPC details�
The API provides the following functions� NRP�

Create� NRP�Free� and NRP�Get�value�
NRP�Create creates and initializes a PRG by

requesting a pseudo�random value from the server�
The client can also provide a pseudo�random value
for additional randomization�
NRP�Free performs the reverse operations�

cleans up and releases resources to system�
NRP�Get�value gets pseudo�random outputs

from the PRG �using PRG�Get�value�� Periodi�
cally it uses a secure IPC interface to get pseudo�
random values from the server to randomize the
PRG �using PRG�Update�seed��

��� Secure IPC from Server to Client

We now describe the IPC mechanism between clients
and the server�
A general solution to ensure secure client�server

communication is to introduce shared keys between
server and clients� However� the server doesn�t need
any keys� since only clients need to obtain secure
pseudo�random values from the server� Therefore it
su�ces for the server to provide a unique pseudo�
random value to each client at the beginning of ser�
vice� A client can then use the value to initialize its
PRG�
The IPC message interface between client and

server is implemented as follows� The server has a
well�known IPC queue that only it can read but can
be written by other processes� To keep the server
stateless� the server sends a pseudo�random value



�from PRG�Get�value� in response to a request
from a client� To reduce the e�ect of clogging at�
tacks� the server process is not interrupted when an
IPC message arrives on its queue� Instead� the server
handles the requests when it wakes up to send peri�
odic refreshes� �An adversary can still clog the server
input queue with spurious messages�� The server
raises an alarm and logs the appropriate messages
when the number of requests exceeds some thresh�
old�

All book�keeping needed to correlate reply to re�
quest is handled by the interface� The client creates
a private reply queue that only it can read from and
other processes can write to� The reply queue ID is
included in the request to the server� The client can
either wait for a reply from the server �in which case
NRP�Get�value would block� or retrieve the re�
ply at a subsequent invocation of NRP�Get�value�
The queue is destroyed when the reply is received� It
remains to show how the client authenticates a reply
from the server�

��� Authentication of Server

A well�known authentication technique is the ran�
dom challenge�response protocol� In this protocol
a client puts a pseudo�random value in the request�
The server puts the same value in the reply� The
client authenticates the reply by checking the value
in the reply� Since only the server and the client
can read their respective queues� the protocol should
work� However� it doesn�t because the client may not
be able to generate a secure pseudo�random value in
the 
rst place�

The solution we implemented uses the System V
message IPC facility and the Unix 
le protection�
First the server creates a 
le that only it can write
to but can be read by others� The server writes its
process ID in the 
le� When a client receives an
IPC message� it 
rst checks that there is exactly one
message in its queue� Since a queue is used only once
for each IPC request� more than one message in the
queue indicates an attack� The client obtains the
process ID of the sender through the message IPC
facility and authenticates the server by checking the
ID against the 
le�

��	 Shared Memory Interface

The message IPC mechanism is expensive� There�
fore this interface is used at the beginning and in�
frequently thereafter� For better performance and
better resilency against clogging attacks� we provide
a more e�cient� less secure interface�

The simplest interface is to use shared memory
for the server to refresh the clients� When a client
invokes NRP�Create� a shared memory region is
allocated and initialized� The server periodically
updates the shared memory region with pseudo�
random values� The client reads from the region
to update its PRG� whenever NRP�Get�value is
invoked�
However� in Unix it is not practical to provide a

private shared region between the server and each
client� �There may be thousands of clients�� More�
over� the design also introduces states in the server�
A better design is to use a single shared mem�

ory region that only the the server can write to but
can be read by all the clients� The server does not
need to keep track of its clients and thus remains
stateless� The server periodically writes an array of
pseudo�random values in the shared memory region�
Clients can then randomly choose some combination
of values from the region to update their PRGs� By
simultaneously writing multiple pseudo�random val�
ues in the shared region� the server provides addi�
tional randomization with minimal additional costs�
We note that a malicious client can continuously

monitor the entire shared region to learn the updates
used by other clients� However� this is not su�cient
for the adversary to learn the states of other clients�
since the IPC interface ensures that the initial seeds
in the PRGs of the other clients are secure�

��
 Final Design

We now summarize the 
nal design of the client�
server interface� Each client uses its own PRG to
generate pseudo�random values� The interface uses
a combination of IPC messages and shared memory
to obtain pseudo�random values from the server to
update the PRG�
Periodically or after some number of invocations

of NRP�Get�value� the interface reads from the
shared memory to update the PRG� At initializa�
tion �and infrequently thereafter�� a secure� but more
expensive� message IPC mechanism is used to ob�
tain private pseudo�random values from the server
directly� �In this design� the server can run as an
ordinary Unix process��
To detect clogging attacks� the server checks that

the number of IPC messages in its queue is below
some threshold� When an attack is detected� the
server raises an alarm� logs the relevant messages�
and leaves the handling of the attacks to the system
administrator�
The design has been implemented on AIX� The

implementation should be easily ported to other



Unix systems� It should be possible to port to other
multi�user� multi�process operating systems with ba�
sic 
le protection and IPC mechanisms�

� Summary and Conclusions

Proactive security introduces periodic refreshes to
the traditional notions of distributed control and se�
cret sharing� Some of the novel properties of a proac�
tive system are the robustness and resiliency against
powerful mobile adversaries� which model real�life
security threats such as hackers� untrustworthy sys�
tem administrators� viruses� and rogue programs� In
practice� the threats are often less mobile and less
coordinated�

We presented an in�depth discussion on the design
and implementation of NRP �Network Randomiza�
tion Protocol�� The problem of generating crypto�
graphically secure numbers is important and non�
trivial� NRP may not completely solve the problem
but makes it signi
cantly harder for an adversary
to compromise the system� In practice� most peo�
ple would not implement stand�alone NRP servers�
but would combine the protocol with other security
functions served by these servers�
An interesting practical question is whether NRP

can produce strong pseudo�random numbers using
only weak random sources in the servers �e�g�� clock
drifts� disk access times� and message delays�� A re�
lated theoretical question is whether NRP can pro�
duce pseudo�randomness using only �weak� PRGs�

NRP is simple� lightweight� robust� and has many
interesting properties� More work is needed to for�
malize and prove these properties� It is a useful basic
building blocks for higher�level cryptographic appli�
cations� Beside ful
lling an important cryptographic
function� NRP serves well to illustrate the principles
and the power of proactive security�

Availability

NRP is available by anonymous ftp from
software�watson�ibm�com in �pub�security�nrp�
The code was developed and tested on AIX ����� us�
ing IBM xlc compiler and has been ported to SunOS
����� using GNU gcc compiler�

References

�BM��� Manuel Blum and Silvio Micali� How
to generate cryptographically strong se�

quences of pseudo�random bits� SIAM J�
Computing� pages ��� ���� �����

�BM��� Steven M� Bellovin and Michael Merritt�
Encrypted key exchange� password based
protocols secure against dictionary attacks�
In Proc� IEEE Computer Society Symp� on
Research in Security and Privacy� pages

� ��� May �����

�BM��� Steven M� Bellovin and Michael Merritt�
Augmented encrypted key exchange� a
password based protocol secure against dic�
tionary attacks and password 
le compro�
mise� In �st ACM Conference on Computer
and Communications Security� pages ��� 
���� November �����

�CH��� Ran Canetti and Amir Herzberg� Main�
taining security in the presence of transient
faults� Crypto� pages ��� ���� �����

�CH��� Chee�Seng Chow and Amir Herzberg� Net�
work randomization protocol� A proactive
pseudo�random generator� Internet Work�
ing Draft � In preparation� �����

�ECS��� Donald E� Eastlake� Stephen D� Crocker�
and Je�rey I� Schiller� Randomness re�
quirements for security� Internet RFC
�	
�� �����

�Knu��� Donald Knuth� The Art of Computer Pro�
gramming Vol� �
 Seminumerical Algo�
rithm� Addison�Wesley� �����

�Lam��� Leslie Lamport� Password identi
cation
with insecure communication� Communi�
cations of the ACM� pages 

� 

�� �����

�MT
�� R�H� Morris and K� Thompson� Unix
password security� Communications of the
ACM� ������� ��
��

�OY��� Rafail Ostrovsky and Moti Yung� How to
withstand mobile virus attacks� In Pro�
ceedings of the ��th Annual ACM Sympo�
sium on Principles of Distributed Comput�
ing� Montreal� Quebec� Canada� pages �� 
��� �����

�Sha
�� Adi Shamir� How to share a secret� ACM�
���������� ���� November ��
��


