i

The following paper was originally published in the
Proceedings of the Fifth USENIX UNIX Security Symposium
Salt Lake City, Utah, June 1995.

Network Randomization Protocol:
A Proactive Pseudo-Random Generator

Chee-Seng Chow and Amir Herzberg
IBM T.J. Watson Research Center
Y orktown Heights, New Y ork

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org



Network Randomization Protocol:

A Proactive Pseudo-Random Generator

Chee-Seng Chow Amir Herzberg

IBM T.J. Watson Research Center
Yorktown Hewghts, NY 10598

{cschow,amir }@watson.ibm.com

Abstract

A major security threat to any security solutions
based on a centralized server is the possibility of an
adversary gaining access to and taking control of the
server. The adversary may then learn secrets, cor-
rupt data, or send erroneous messages. In practice,
such an adversary may be more prevalent than one
would like to admit. It may be a malicious hacker, a
virus in an application program, or an unscrupulous
system administrator.

Proactive security is a novel approach to the server
security problem. It uses the distribution of data and
control to multiple servers and periodic refreshes be-
tween servers. By distributing data and control, one
or more servers may be compromised without com-
promising the system. Periodic refreshes between
servers allow a compromised server to “recover” af-
ter the attacker leaves, thereby contributing to the
system security. A fraction (in some cases all) of
the servers must be compromised simultaneously in
order to compromise the system.

This paper describes the Network Randomization
Protocol (NRP) — a proactive protocol for gener-
ating cryptographically secure pseudo-random num-
bers. The protocol is designed for operation in the
Internet and includes defenses against clogging at-
tacks. Issues related to the design and implementa-
tion of the protocol are discussed.

As virtually no cryptographic task is possi-
ble without a source of randomness or pseudo-
randomness, NRP is an important basic building
block for many cryptographic functions. Further-
more, it serves to illustrate the main ideas and intu-
itions of proactive security.

Keywords: cryptography, proactive security, net-
work protocol, pseudo-random generator, Internet
security, client-server.

1 Introduction

1.1 Server Insecurity

Computers are often the main targets in security
attacks against computing systems. The security
problem becomes worse in a network environment.
The “system” is no longer a mainframe housed in
a physically secure room but consists of many geo-
graphically distributed machines linked together by
a communication network. Important data and vi-
tal functions are delegated to one or more servers,
which are not always physically secure.

While communication links in a computer network
are also subject to security attacks, the attacks are
handled by standard cryptographic techniques such
as encryption and authentication. However, security
threats against computers (servers, in particular) are
not readily dealt with. The attacks could be in the
form of a virus in an application program, a ma-
licious hacker, or an unscrupulous system operator.
The attacks may occur intermittently but over a long
period result in significant loss of secret information,
corruption of vital data, and disruption of services.
One reason why security threats against servers are
not easily addressed is that such threats, especially
internal threats, are hard to formalize. Few good
solutions are known.

1.2 Survey of Existing Solutions

We briefly review some existing solutions to the
problem of server security.

One approach is to use secure hardware. The ap-
proach assumes that a certain component of the sys-
tem (e.g., where secret keys are store) is physically
secure against intruders and system operators. The
security of the system depends on the security of
the component. However, such systems tend to be



expensive, hard to service, and proprietary. The de-
sign and implementation of the secure hardware is
often not open to public review since its security
may depend on its secrecy. In this paper, we will
not discuss hardware-based solutions. Instead we
will focus on software-based solutions, which rely on
cryptographic techniques.

The Unix password security system [MT79] re-
lies on the difficulty to invert a one-way function,
f. Instead of storing a user password, the system
stores f(password). To login, the user supplies a
password. The system authenticates the user by ap-
plying f to the supplied password and checking the
result against the password file. This solution en-
sures that even if an adversary gains access to the
password file, she cannot masquerade as the user.

However, the solution assumes that the commu-
nication between the user and the system is secure.
Otherwise, an adversary can obtain the password by
eavesdropping. A modified solution has been pro-
posed by Lamport to handle this problem [Lam81].

More recently, Bellovin and Merritt [BM93] have a
solution that ensures a user password remains secure
even if an attacker has access to the server database.
Furthermore, an eavesdropper cannot mount a dic-
tionary attack to guess the user password. This work
is an extension of their earlier work [BM92].

It is clear from this (non-exhaustive) survey of
server security solutions that server break-ins are a
major security concern. The common approach of
all the above solutions is to avoid keeping “secret”
in the server. Nevertheless, an active attacker can
disrupt services to selected clients by corrupting the
server database or masquerade as a server to unsus-
pecting clients.

1.3 Proactive Security

We now look at a different approach to server se-
curity, where there is secret information to be pro-
tected.

One solution is to do secret sharing [Sha79] on
multiple servers. This approach makes sense espe-
cially if the system already has multiple servers for
load-sharing. However traditional secret sharing has
the following drawback: An adversary can compro-
mise one server at a time until sufficient number of
servers are compromised to reveal the secret.

This is how proactive security comes in. The two
key ideas of proactive security are: (1) the distribu-
tion of data and control to multiple servers, and (2)
periodic refreshes between the servers. Each server is
initialized with an initial secret (share). By distrib-
uting data and control to multiple servers, a fraction

of the servers may be compromised without compro-
mising the system. The periodic refreshes allow a
compromised server to recover (regain secrecy) after
an attacker leaves. The refresh period is a security
parameter; it could be minutes, hours, days, weeks,
or months depending on the application and the se-
curity desired. It is a tradeoff between security and
performance.

Since a compromised server can recover and con-
tribute to the overall system security, in order to
compromise the system, a fraction (in some cases
all) of the servers must be compromised simultane-
ously. In particular, an attacker can compromise one
server at a time until all servers have been compro-
mised (though not in the same time period) and yet
the system remains secure. The notion of recovery
is a key property of proactive security.

The idea of a mobile adversary has been used by
others [OY91] in another context. It does not model
all attacks, but captures a large class of real-life at-
tacks. Some examples of such “transient” attacks
are malicious hackers (who carry out attacks from
the network during wee hours), untrustworthy sys-
tem operators (who snoop during their shifts), and
viruses (which are removed when the system period-
ically reboots).

We call the approach proactive security because
the refreshes are send periodically independent of
whether the system is under attack or not. In par-
ticular, they are not sent in reaction to attacks or
suspected attacks. While a server is compromised,
refreshes from its neighbors do not help. But as soon
as the adversary leaves, the refreshes help the server
recover. By sending the refreshes periodically, the
system does not need to know whether a server is
compromised or not, since detecting an attack is of-
ten harder than preventing one.

In practice, servers often have the same flaws.
While it is true that an adversary may exploit
the same weaknesses to break into multiple servers,
proactive security makes this significantly harder,
since the adversary must break into the servers si-
multaneously. Of course, one can also improve secu-
rity by making sure that the servers are sufficiently
different in architecture, located far apart, and ad-
ministered by different groups of people.

We and others in our group are currently explor-
ing various applications of proactive security. Some
possible applications are: (1) public key certification
and signature authority (2) authentication and key
distribution center (3) server-server key maintenance
(4) pseudo-random number generation.

In this paper, we discuss the application of proac-
tive security to the problem of generating pseudo-



random numbers. This is the simplest application;
it is also the best understood. More importantly,
we have actually implemented the solution and have
dealt with the implementation issues. This simple
but important application serves well to illustrate
the main ideas and the power of proactive security.

1.4 Pseudo-Random Number Gener-
ation

We briefly review the problem of pseudo-random
number generation and the importance of random-
ness in security. For a more detailed discussion, see
[ECS94] for an excellent treatment of the topic.

Modern security systems increasingly rely on cryp-
tography for security assurances. However, the secu-
rity of many cryptographic algorithms and protocols
depends on a continuous source of random numbers.
Some crucial applications of such numbers are in the
generation of cryptographic keys, key renewal, nonce
generation, and so on. In particular, the Unix pass-
word solution [MT79] and its modification [Lam81]
both require randomness for password generation.
The works of Bellovin and Merritt [BM92, BM93]
also require a random source. Virtually no crypto-
graphic task is possible without a source of random-
ness or pseudo-randomness.

The most direct means of getting random num-
bers is through special hardwares. As discussed ear-
lier, special hardwares are expensive, non-portable,
and usually proprietary. Moreover, most existing
computers, including many security servers, are not
equipped with such hardwares. There are many pit-
falls in using supposedly random sources in a com-
puter (such as disk access times and system clocks)
as a source of randomness. (See [ECS94].)

In contrast, software solutions are cheap, portable,
and are repeatable (an essential property in testing
and debugging). The problem of generating numbers
with random properties in software is well-studied.
(See, e.g., [Knu8l].) Such numbers are pseudo-
random, in contrast to random numbers generated
from physical random sources such as shot-noise or
quantum devices. A basic requirement of pseudo-
random numbers is that they have similar statistical
properties to random numbers.

For security applications, we are interested in
the generation of cryptographically secure pseudo-
random numbers. A computationally bounded ad-
versary cannot distinguish such numbers from ran-
dom numbers (except for some negligible advan-
tage). In particular, the numbers should appear un-
predictable to the adversary.

To generate cryptographically secure pseudo-

random numbers, the program must hold a secret
key (seed) unknown to the adversary. (The algo-
rithm is “public knowledge”.) If only one server is
used and the server is compromised, then the num-
bers generated are no longer secure since the adver-
sary can also generate them (using the same seed as
the server). This suggests a proactive approach to
the problem.

1.5 Network Randomization Proto-
col

Network randomization protocol (NRP) is a practi-
cal adaptation of the theoretical protocol in [CH94].
Whereas [CH94] is synchronous, assumes a fully con-
nected topology, and is based on pseudo-random func-
tions, NRP is asynchronous, allows arbitrary topol-
ogy, and 1s based on pseudo-random generators. Un-
like [CH94] which also provides reconstructibility,
the sole purpose of NRP is randomization.

Similar in concepts to the Network Time Proto-
col, which provides time services using a group of
servers for synchronization, NRP provides (crypto-
graphically secure) pseudo-random numbers using a
group of servers. Each server is initialized with a
randomly (or pseudo-randomly chosen) seed and pe-
riodically generates and sends pseudo-random val-
ues (refreshes) to its neighbors. Upon receiving a
refresh, the server updates its seed. NRP provides
a simple, uniform way to integrate different sources
of randomness (local such as disk-access time, user-
keyboard time and remote such as network delay or
random values from other servers).

NRP is specifically designed for the Internet en-
vironment. In this environment, it is easier for an
adversary to break into a server or to carry out ac-
tive attacks against a server than to eavesdrop or to
intercept all messages to a server. Messages may ar-
rive at the server via different routes. The protocol
is also applicable to other network environments as
well. Finally, NRP is designed to run as a daemon
process, as we do not expect servers dedicated for
running NRP.

1.6 Contributions

This paper introduces the key ideas of proactive se-
curity from a system perspective. The discussion is
informal and intuitive. We show that the ideas are
practical, efficient, and simple by presenting an in-
depth discussion on the design and implementation
of NRP. The discussion is distilled from our experi-
ence implementing the protocol on an IBM RS/6000
workstation running AIX.



1.7 Organization

The paper is organized as follows: In section 2 we
discuss the adversary model, introduce a modified
pseudo-random generator, and describe the random-
1zation protocol. In Section 3, we discuss the design
and implementation of the server, server-server com-
munications, and some practical extensions to the
protocol. Section 4 describes the client-server in-
terface and addresses some related security issues.
Finally, we summarize and discuss some conclusions
in Section b.

2 Basic Concepts

2.1 Adversary Model

Throughout this paper we make the standard com-
putational complexity assumptions in cryptography
such as certain problems cannot be efficiently solved
(e.g., in polynomial time) and that adversaries are
computationally bounded. All actions by the adver-
saries or servers occur in polynomial time.

When servers are compromised, the adversaries
have total control of the servers. Adversaries can
learn secret information, corrupt critical data, crash
servers, and make them send erroneous messages to
other servers. The adversaries can do all these in a
fully coordinated manner.

In addition, the adversaries are mobile. An adver-
sary can move from one server to another. When
an adversary leaves, the server reverts to the origi-
nal program, though corrupted program data remain
corrupted. (This is to model a large class of attacks
that are transient.) Without such an assumption,
the notion of an adversary leaving a server would
not make sense.

Another type of attacks are “clogging attacks”,
which deny service to the server by overwhelming
the server with messages. In general such attacks,
are extremely difficult, if not impossible, to prevent.
The best that one can do is to log the occurrences
for a system administrator to handle offline and to
limit the maximal work in response to a message.

Communication links between servers are not im-
mune from attacks. Links may be compromised, in
which case an adversary can read, remove, alter, or
inject messages. We assume that injecting a message
is easier than eavesdropping (which is often the case
in Internet).

Servers can protect their communications through
cryptographic techniques such as encryption and au-
thentication. However, all these techniques require a
server to keep some secret keys. Consequently when

a server is compromised all communications into and
out of the server are also compromised. Further-
more, a malicious adversary may corrupt the keys,
resulting in communication breakdowns even though
the physical links are fully operational. Fortunately,
as we will see in Section 3, NRP does not need en-
cryption or authentication.

2.2 Pseudo-Random Generator

The network randomization protocol is based on a
modified pseudo-random generator to be described
in this section. The discussion is informal and intu-
itive. Proofs and a more formal treatment are de-
ferred to another paper.

A traditional pseudo-random generator [BM84] is
a function that when given a secret seed outputs a
stream of bits that appear random to the adversary.
In particular, the adversary cannot guess an unseen
bit better than chance (plus a negligible advantage)
after observing other output bits. The adversary
also cannot guess the secret seed better than chance
(plus a negligible advantage). In practice, there are
efficient implementations which are believed to be
pseudo-random. For example, one can use the out-
put of the DES-CBC encryption function, with the
secret seed as encryption key, on some input string.

For our purpose, we use a modified pseudo-
random generator (PRG) that consists of an s-bit in-
ternal seed variable and a traditional pseudo-random
generator function. To limit the damage when the
server i1s compromised, the seed is updated whenever
an output is generated.

The following operations are supported by the
PRG: PRG-Create, PRG-Free, PRG-Get-
value, and PRG-Update-seed. The first func-
tion PRG-Create takes as input an s-bit pseudo-
random value, instantiates a PRG, and initializes the
seed with the input. The second function releases
system resources used by the PRG. Of interest are
the last two functions.

The function PRG-Get-value when invoked (af-
ter PRG-Create) outputs an £-bit pseudo-random
value and updates the internal seed. A possible im-
plementation of the function is as follows: The seed
1s used by the traditional generator function to gen-
erate s+ ¢ pseudo-random bits, where £ bits are out-
put. The remaining s bits are used to update the
seed.

Let fi denote the traditional pseudo-random gen-
erator with seed k, and (o1, 03) denote the output of
fr, where o7 and oy are of lengths s and ¢, respec-
tively. When PRG-Get-Value is invoked, the PRG



1s updated according to the following equations:

(01,02) — fu

k 01,

and PRG-Get-Value outputs os.
The function PRG-Get-value should have the
following properties:

A.1 An adversary cannot guess an output value bet-
ter than chance (plus some negligible advan-
tage) by observing other outputs. In particu-
lar, an adversary cannot guess any seed values
better than chance (plus some negligible prob-
ability).

A.2 If the seed is revealed to the adversary at some
time, then the adversary cannot guess any prior
unseen outputs of PRG-Get-value better than
chance (plus some negligible advantage).

Property A.2 limits the amount of information re-
vealed when a server is compromised. In particu-
lar, the adversary cannot deduce its prior pseudo-
random outputs from the seed.

Refreshes from other servers provide new random-
izations to a server. The pseudo-random values
from other servers are incorporated into the PRG
using PRG-Update-seed, which takes an s-bit in-
put. PRG-Update-seed does not simply replace
the seed with the input but combine them in such a
way that the following properties hold:

A.3 If an adversary does not know the seed, then no
matter what sequence of updates wuy, us,...,un
an adversary chooses and applies to the PRG
(using PRG-Update-seed), the seed of the
PRG remains pseudo-random. The adversary
may invoke any number of PRG-Get-value in
between PRG-Update-seed.

A.4 If an adversary knows the seed and chooses all
of the updates uy, us,...,u;, ..., unN, except u;
which is a pseudo-random value unknown to the
adversary, then the PRG regains its pseudo-
randomness when updated with u;. The ad-
versary may invoke any number of PRG-Get-
value in between PRG-Update-seed. (Note
that all the updates except uw; may be known to
the adversary; they may be functions of w;.)

Property A.3 ensures that a server PRG remains
pseudo-random even if an adversary has complete
control of all communications into a server.

Property A.4 (is often stronger than needed but)
ensures that a single refresh that evades the adver-
sary allows a previously compromised server to re-

gain pseudo-randomness. This property handles re-
play attacks where the adversary resends an update
without knowing the value (e.g., the value is en-
crypted). Note that simply taking the exclusive or
of the seed with the update would not satisfy Prop-
erty A.4, since an adversary may resend u;, without
knowing u;, to nullify it.

A possible implementation of PRG-Update-
seed is as follows: An s-bit value is formed by taking
the exclusive or of the input with the current seed.
The value is used in the traditional pseudo-random
generator function to generate an s-bit value which
will be the new seed. If PRG-Update-seed is given
the update u, PRG is updated as follows:

k — kdu
(01,02) — fx
k. — 01.

(Note that this is simply invoking PRG-Get-value
once, after taking the exclusive or of the update with
the current seed.)

2.3 Network Randomization Proto-
col

Network randomization protocol (NRP) runs on a
group of servers. The subset of servers that a server
refreshes are its meighbors. For simplicity, we will
assume that the graph of neighborhood relationship
is symmetric and connected.

2.3.1 Update Protocol

Each server has its own PRG. At the beginning,
the PRG in every server is initialized with an in-
dependently and pseudo-randomly chosen seed. Pe-
riodically, a server sends to each of its neighbors
a pseudo-random value, the output of PRG-Get-
value. When a server receives a refresh, it updates
its seed using PRG-Update-seed with the refresh
as input. Each server runs the update protocol inde-
pendently, possibly with a different refresh period.

The state of a server is completely determined by
its seed and the refreshes received. (For simplic-
ity, we have assumed that the sending of refreshes
within a period is an atomic operation.) To predict
the state of the server, an adversary must know the
seed and monitors all refreshes into the server. If
the adversary misses a single refresh, the server will
regain its pseudo-randomness.

2.3.2 Properties
NRP have following properties:



B.1 If all, but one, servers are compromised, then
the uncompromised server remains secure no
matter what refreshes are sent to it.

B.2 If an adversary knows the states of all servers
and knows all messages in transit except for
one refresh, then the unseen refresh can re-
randomize the entire network.

Intuitively, it is easy to see that Properties B.1 and
B.2 follow from Properties A.3 and A.4 of the PRG,
respectively. A more formal treatment and proofs of
the properties are deferred to another paper.

3 Server Design

This section describes some practical aspects related
to the design and implementation of an NRP server.
The security of server-server communications and
some practical extensions to the protocol are also
discussed. We begin with a review of the design ob-
jectives.

3.1 Design Objectives

The objectives are to keep the server simple and effi-
cient. To minimize processing, no detailed account-
ing of refreshes is kept. Refreshes are sent using the
unreliable datagram protocol (UDP) for efficiency.
The idea is that pseudo-random values are cheap to
produce (cf. Property A.2) and are readily incorpo-
rated (cf. Property A.3).

One of the states of a server is its seed. The goal is
to avoid introducing new states to the server. This
is especially important in proactive security since it
limits what an adversary can learn or corrupt when
the server is compromised; it also simplifies the re-
covery process when the adversary leaves.

3.2 Server-Server Communications

At first it seems that cryptographic means are
needed to ensure confidentiality and authentication
of server-server communications. This is not an ap-
pealing prospect as it introduces shared keys be-
tween neighbors. Beside being computationally ex-
pensive, it introduces states in the server.
Fortunately, the encryption and authentication of
refreshes are not needed. They do not improve se-
curity in our model. The reasons are as follows:
We consider two cases. First, if the adversary has
complete information about a server and monitors
all communications into the server, it can perfectly

predict the server states. No cryptographic process-
ing in the server can help. Second, if the adver-
sary does not know some secret information in the
server (e.g., an encryption key), then that informa-
tion could have been incorporated into the PRG
(using PRG-Update-seed) and no matter what
an adversary does to the communication links, the
server remains secure.

Some of the data in a refresh are as follows: a
message-type field, a positive count to indicate the
number of pseudo-random values in the message, an
array of pseudo-random values. More details on the
message format will be provided in another docu-

ment [CH95].

3.3 Sources of Randomness

To improve randomization, NRP can (and should)
be used in conjunction with any locally available ran-
dom sources. Three interfaces are provided for this
purpose: (1) message IPC queue (2) UDP port (3)
function linkage.

The first two methods involve sending a message
to the server. The last method requires implement-
ing and linking with the server a function that gets
values from local random sources. At initialization,
the operator can also input a “password” to generate
the initial seed for the PRG.

For further randomization, we provide a program
that “samples” micro-second clock readings. The
sampler provides periodic local randomness to the
server.

Normally the system clock would be a poor source
of randomness. A novelty here is the interaction
between the server and the random sampler (which
runs as a separate Unix process). The sampler gets
random values from the server (using the client-
server interface to be described in the next section)
and combines them with the clock readings (using
DES for mixing).

The sampler sends random values to the server
using the message IPC queue. The server updates
its pseudo-random generator using refreshes received
from the sampler. (Refreshes from the sampler
are treated no different from refreshes from other
servers.) This interaction and feedback between the
sampler and the server can be viewed as a local ver-
sion of NRP.

3.4 Practical Extensions

There are some simple, practical extensions to im-
prove the security of the protocol.



To make it harder for an adversary to monitor
communications, a server can send refreshes prob-
abilistically (e.g., send a refresh only if the parity
of a pseudo-random value is even). And to ex-
ploit the randomness of network delays, the send-
ing of refreshes can be spread out over the refresh
period. This allows incoming refreshes to interleave
with outgoing refreshes. By interleaving invocations
of PRG-Get-value with PRG-Update-seed, the
server makes it much harder for an adversary to
track its states. Since refreshes are sent unreliably,
the loss of refreshes over the links is an additional
source of randomness.

To detect clogging attacks, the server checks that
the number of UDP messages received in a period is
below some threshold. When an attack is detected,
the server raises an alarm and logs all relevant mes-
sages. The final determination and handling of the
attack is left to the system administrator.

4 Client-Server Interface

We now discuss the design and implementation of
the client-server interface. The interface allows
clients to get pseudo-random values from their local
Security issues related to malicious clients
are also addressed.

SErver.

4.1 Modified Adversary Model

In this section we consider a modified adversary
model where the adversary has partial control of a
server machine. In a multi-user, multi-process envi-
ronment such as Unix, the adversary may control a
client process without controlling the operating sys-
tem or the server process. Such an adversary may
eavesdrop or disrupt client-server communications,
masquerade as a client or as a server, and attack the
server or other clients within the limitationsimposed
by the operating system.

4.2 Design Objectives

For clients to regain security after an adversary
leaves (i.e., to be proactive), they should periodically
get pseudo-random values from the server. A simple
function call interface, which hides the interprocess
communication (IPC) details, is provided.

The objectives are to protect the server and the
clients from malicious clients with partial control of
the system and to keep the server stateless. The
design of the interface is complicated because Unix

does not provide secure IPC mechanisms. Extra ef-
forts are needed to authenticate messages between
processes.

4.3 Application Programming Inter-
face

We design a simple, secure application programming
interface (API) for client applications to get pseudo-
random values from the server. The interface is im-
plemented using a PRG (pseudo-random generator).
Instead of directly using pseudo-random values ob-
tained from the server, each client has its own PRG.
Pseudo-random values from the server are used to
update the PRG. This provides proactive security to
clients and at the same time reduces communication
overhead.

We would like to design the interface similar to the
standard C-library pseudo-random functions srand
and rand (Note that this library is not cryptograph-
ically secure.) However our interface is necessarily
more complicated because it hides the IPC details.

The API provides the following functions: NRP-
Create, NRP-Free, and NRP-Get-value.

NRP-Create creates and initializes a PRG by
requesting a pseudo-random value from the server.
The client can also provide a pseudo-random value
for additional randomization.

NRP-Free performs the reverse operations,
cleans up and releases resources to system.

NRP-Get-value gets pseudo-random outputs
from the PRG (using PRG-Get-value). Periodi-
cally it uses a secure IPC interface to get pseudo-
random values from the server to randomize the
PRG (using PRG-Update-seed).

4.4 Secure IPC from Server to Client

We now describe the IPC mechanism between clients
and the server.

A general solution to ensure secure client-server
communication is to introduce shared keys between
server and clients. However, the server doesn’t need
any keys, since only clients need to obtain secure
pseudo-random values from the server. Therefore it
suffices for the server to provide a unique pseudo-
random value to each client at the beginning of ser-
vice. A client can then use the value to initialize its
PRG.

The IPC message interface between client and
server is implemented as follows: The server has a
well-known IPC queue that only it can read but can
be written by other processes. To keep the server
stateless, the server sends a pseudo-random value



(from PRG-Get-value) in response to a request
from a client. To reduce the effect of clogging at-
tacks, the server process is not interrupted when an
IPC message arrives on its queue. Instead, the server
handles the requests when it wakes up to send peri-
odic refreshes. (An adversary can still clog the server
input queue with spurious messages.) The server
raises an alarm and logs the appropriate messages
when the number of requests exceeds some thresh-
old.

All book-keeping needed to correlate reply to re-
quest is handled by the interface. The client creates
a private reply queue that only it can read from and
other processes can write to. The reply queue ID is
included in the request to the server. The client can
either wait for a reply from the server (in which case
NRP-Get-value would block) or retrieve the re-
ply at a subsequent invocation of NRP-Get-value.
The queue is destroyed when the reply is received. It
remains to show how the client authenticates a reply
from the server.

4.5 Authentication of Server

A well-known authentication technique is the ran-
dom challenge-response protocol. In this protocol
a client puts a pseudo-random value in the request.
The server puts the same value in the reply. The
client authenticates the reply by checking the value
in the reply. Since only the server and the client
can read their respective queues, the protocol should
work. However, it doesn’t because the client may not
be able to generate a secure pseudo-random value in
the first place.

The solution we implemented uses the System V
message IPC facility and the Unix file protection.
First the server creates a file that only it can write
to but can be read by others. The server writes its
process ID in the file. When a client receives an
IPC message, it first checks that there is exactly one
message in its queue. Since a queue is used only once
for each IPC request, more than one message in the
queue indicates an attack. The client obtains the
process ID of the sender through the message IPC
facility and authenticates the server by checking the
ID against the file.

4.6 Shared Memory Interface

The message IPC mechanism is expensive. There-
fore this interface is used at the beginning and in-
frequently thereafter. For better performance and
better resilency against clogging attacks, we provide
a more efficient, less secure interface.

The simplest interface is to use shared memory
for the server to refresh the clients. When a client
invokes NRP-Create, a shared memory region is
allocated and initialized. The server periodically
updates the shared memory region with pseudo-
random values. The client reads from the region
to update its PRG, whenever NRP-Get-value is
invoked.

However, in Unix it is not practical to provide a
private shared region between the server and each
client. (There may be thousands of clients.) More-
over, the design also introduces states in the server.

A Dbetter design is to use a single shared mem-
ory region that only the the server can write to but
can be read by all the clients. The server does not
need to keep track of its clients and thus remains
stateless. The server periodically writes an array of
pseudo-random values in the shared memory region.
Clients can then randomly choose some combination
of values from the region to update their PRGs. By
simultaneously writing multiple pseudo-random val-
ues in the shared region, the server provides addi-
tional randomization with minimal additional costs.

We note that a malicious client can continuously
monitor the entire shared region to learn the updates
used by other clients. However, this is not sufficient
for the adversary to learn the states of other clients,
since the IPC interface ensures that the initial seeds
in the PRGs of the other clients are secure.

4.7 Final Design

We now summarize the final design of the client-
server interface. Each client uses its own PRG to
generate pseudo-random values. The interface uses
a combination of IPC messages and shared memory
to obtain pseudo-random values from the server to
update the PRG.

Periodically or after some number of invocations
of NRP-Get-value, the interface reads from the
shared memory to update the PRG. At initializa-
tion (and infrequently thereafter), a secure, but more
expensive, message IPC mechanism is used to ob-
tain private pseudo-random values from the server
directly. (In this design, the server can run as an
ordinary Unix process.)

To detect clogging attacks, the server checks that
the number of IPC messages in its queue is below
some threshold. When an attack is detected, the
server raises an alarm, logs the relevant messages,
and leaves the handling of the attacks to the system
administrator.

The design has been implemented on AIX. The
implementation should be easily ported to other



Unix systems. It should be possible to port to other
multi-user, multi-process operating systems with ba-
sic file protection and IPC mechanisms.

5 Summary and Conclusions

Proactive security introduces periodic refreshes to
the traditional notions of distributed control and se-
cret sharing. Some of the novel properties of a proac-
tive system are the robustness and resiliency against
powerful mobile adversaries, which model real-life
security threats such as hackers, untrustworthy sys-
tem administrators, viruses, and rogue programs. In
practice, the threats are often less mobile and less
coordinated.

We presented an in-depth discussion on the design
and implementation of NRP (Network Randomiza-
tion Protocol). The problem of generating crypto-
graphically secure numbers is important and non-
trivial. NRP may not completely solve the problem
but makes it significantly harder for an adversary
to compromise the system. In practice, most peo-
ple would not implement stand-alone NRP servers,
but would combine the protocol with other security
functions served by these servers.

An interesting practical question is whether NRP
can produce strong pseudo-random numbers using
only weak random sources in the servers (e.g., clock
drifts, disk access times, and message delays). A re-
lated theoretical question is whether NRP can pro-
duce pseudo-randomness using only “weak” PRGs.

NRP is simple, lightweight, robust, and has many
interesting properties. More work is needed to for-
malize and prove these properties. It is a useful basic
building blocks for higher-level cryptographic appli-
cations. Beside fulfilling an important cryptographic
function, NRP serves well to illustrate the principles
and the power of proactive security.

Availability

NRP is available by anonymous ftp from
software.watson.ibm.comin /pub/security/nrp.
The code was developed and tested on AIX 3.2.5 us-
ing IBM xlc compiler and has been ported to SunOS

4.1.2 using GNU gcc compiler.

References

[BM84] Manuel Blum and Silvio Micali.
to generate cryptographically strong se-

How

[BM92]

[BM93]

[CHY4]

[CHO5)

[ECS94]

[Knu81]

[Lam81]

[MT79]

[0Y91]

[Sha79]

quences of pseudo-random bits. SIAM J.
Computing, pages 850-864, 1984.

Steven M. Bellovin and Michael Merritt.
Encrypted key exchange: password based
protocols secure against dictionary attacks.
In Proc. IEEE Computer Society Symp. on
Research in Security and Privacy, pages

72-84, May 1992.

Steven M. Bellovin and Michael Merritt.
Augmented encrypted key exchange: a
password based protocol secure against dic-
tionary attacks and password file compro-
mise. In 1st ACM Conference on Computer
and Communications Security, pages 244—

250, November 1993.

Ran Canetti and Amir Herzberg. Main-
taining security in the presence of transient
faults. Crypto, pages 425-438, 1994.

Chee-Seng Chow and Amir Herzberg. Net-
work randomization protocol: A proactive
pseudo-random generator. Internet Work-
ing Draft — In preparation, 1995.

Donald E. Eastlake, Stephen D. Crocker,
and Jeffrey I. Schiller. Randomness re-
quirements for security. Internet RFC

1750, 1994.

Donald Knuth. The Art of Computer Pro-
gramming Vol. 2: Seminumerical Algo-

rithm. Addison-Wesley, 1981.

Leslie Lamport. Password identification
with insecure communication. Communi-

cations of the ACM, pages 770-772, 1981.

R.H. Morris and K. Thompson. Unix
password security. Communications of the

ACM, 22:594, 1979.

Rafail Ostrovsky and Moti Yung. How to
withstand mobile virus attacks. In Pro-
ceedings of the 10** Annual ACM Sympo-
stum on Principles of Distributed Comput-
ing, Montreal, Quebec, Canada, pages H1—
59, 1991.

Adi Shamir. How to share a secret. ACM,
22(11):612-613, November 1979.



