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Accessing the network through which a propagation dynamics diffuses is

essential for understanding and controlling it. In a few cases, such information

is available through direct experiments or thanks to the very nature of propa-

gation data. In a majority of cases however, available information about the

network is indirect and comes from partial observations of the dynamics, ren-

dering the network reconstruction a fundamental inverse problem. Here we

show that it is possible to reconstruct the whole structure of an interaction

network and to simultaneously infer the complete time course of activa-

tion spreading, relying just on single epoch (i.e. snapshot) or time-scattered

observations of a small number of activity cascades. The method that we

present is built on a belief propagation approximation, that has shown impress-

ive accuracy in a wide variety of relevant cases, and is able to infer interactions

in the presence of incomplete time-series data by providing a detailed model-

ling of the posterior distribution of trajectories conditioned to the observations.

Furthermore, we show by experiments that the information content of full cas-

cades is relatively smaller than that of sparse observations or single snapshots.

1. Introduction
Much effort has been devoted recently to the inverse problem of reconstructing the

topology of a network from time-series of a dynamical process acting on it [1–4].

When observation of the full time-series of the process is available, the problem

can be, and has been, recast into relatively simple terms, since a sequence of

time-consecutive states of a pair of nodes gives direct information about the poten-

tial interaction between them. In many cases, however, the set of available

observations is much sparser, possibly on a much slower time scale than that of

the dynamics, and often skipping the initial stages of the propagation which

would give precious information about the initial condition. In particular, in an

observation consisting of a single snapshot of the system there is no direct infor-

mation about the interaction of nodes, as evidence of interaction indeed comes

from variation of the state of nodes in time. Examples of important applications

in which such a complete measurement of dynamical quantities in a full time-

series is inaccessible are second messenger cascades in a cell, rapid-firing neuron

cascades in the human brain during epileptic seizures or in the context of epidemic

and/or information spreading in a network of individuals. In all these examples,

typically, there is no information about which was the first active node, little is

known about the underlying networks of contacts, which may even be dynami-

cally changing over time and moreover an observation of the full time-series is

prohibitive or plainly impossible.

Even though direct experimental data about contact networks in diverse

contexts are being collected at a fast rate [5–7], there are some strong experimental
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and technical limitations to this collection, sometimes due to

privacy protection regulations or concerns. However, knowl-

edge of propagation networks would have a large list of

benefits. First, it may allow one to understand the propagation

process better, including finding entry-points (e.g. the so-called

index case or patient zero in epidemiological jargon) of an

ongoing epidemic. Second, itmay allow one to devise strategies

to control the process in various ways, for example, hindering

the propagation (e.g. targeted vaccination) or favouring it

(e.g. in the context of maximizing information diffusion on

social networks, in viral or targeted advertising, etc.). In this

respect, a number of computational studies have introduced

optimization methods based on message-passing that address

the problem of containing [8] or maximizing spreading [9,10].

Recently, several approaches have been proposed for the

problem of deducing the propagation network from time-

series, based onBayesian approaches [3,11,12] (we alsomention

[13,14] where computations are based on efficient dynamic

message-passing equations), maximum-likelihood approach

[3], compressed sensing schemes [15], genetic [16] and dynamic

programming algorithms [17], tensor decomposition [18] or on

Monte Carlo sampling [19]. We also mention [20,21] in which

the network inference is performedmodel-free, namelywithout

any a priori knowledge about the dynamic rules and the kind

of interaction among nodes. These methods all share the need

for observations at consecutive epochs. An attempt to infer a

network from a single snapshot is proposed in [22] where the

authors, using a topology-based method, limit the set

of possible candidate networks to d-dimensional grids or

Erdos–Rényi (ER) graphs.

Despite this recent progress, in most contexts the available

observations of each cascade are sparse, noisy and especially

discontinuous in time. One example is the problem of infer-

ring functional contacts in signalling pathways, in which

interacting proteins generate cascades of phosphorylation

which eventually transmit signals from the cell membrane

to the nucleus. Observations come in general from gene

expression data, and the network to be inferred is a sub-

network of a large-scale protein–protein interaction (PPI)

network, also known as interactome. Although several exper-

imental and computational approaches are able to identify

candidate links of these networks, they lack in distinguishing

false positive (FP) from true positive (TP) links [23–25] that

seems to be a challenging task. Social science and epidemio-

logy offer another interesting domain of application, as one

generally tries to infer the network of social contacts (even

through the Web [26,27]) from a limited amount of sparse

and noisy observations of some propagation histories.

Here we present a Bayesian technique that allows one to

uncover the complete functional structure (including its topology

and parameters) of a network from a limited amount of single

snapshots of the state of the network cascades. We assume that

the dynamics is well described by progressive propagation

models like susceptible–infected (SI), susceptible–infected–

recovered (SIR), independent cascades and variants, including

models with hidden variables (e.g. representing latency times).

Reversible processes, like susceptible–infected–susceptible epi-

demics, cannot be treated by our algorithm as, in this case, the

probability space of a single-site trajectory can grow exponen-

tially with the time horizon, making the method impractical.

Note that these models have absorbing states (all states with no

individuals in state I), that limit severely the amount of infor-

mation that it is possible to retrieve from a single time-series.

Starting from a functional parametrization of the posterior

probability distribution of propagation trajectories, our tech-

nique builds on a message passing procedure that allows one

to compute, and then maximize, the likelihood of a given

network structure. This computation can be performed effi-

ciently thanks to belief propagation (BP), which is proven to

be exact for tree graphs and has been successfully used in a

variety of problems in general graphs with loops. Upon con-

vergence, the parameters allow one to identify both the

network and the sources of the infection for each cascade

with great accuracy. We called this method gradient ascent

belief propagation (GABP).

Although the proposed inferencemachinery is very general,

we focus on the well-known SIR [28] model, which describes

those diseases in which infected individuals become immune

to future infections after recovery (such as measles, rubella,

chicken pox and generic influenza) or the interaction dynamics

among proteins. We also propose some results using the SI

model when dealing with the spreading of rumour and

information over a network. In particular, we evaluate the per-

formances of GABP comparing our results to a ground-truth

when dealing with synthetic cascades of both synthetically

generated and real-world networks; we also use real cascades

measurements and apply our method for inferring the graph

structure underlying several websites that have published the

same trend topic [29].

Our minimal model of activity propagation in a network

is very simple: if a node i is active (infected) at time t, it

has a finite probability lij to activate (or infect) any of its

neighbours j, which will in turn be active at time t þ 1. Exclu-

sively in the SIR model, an active node will recover in each

time-step with a (generally site-dependent) recovery prob-

ability mi. Once recovered, nodes do not become active

anymore, and will not be able to infect other nodes. This

will result in a propagation throughout the network, that

we call a cascade.

Let us then suppose that a number M of statistically

independent realizations (or cascades) of the SIR dynamics can

be observed. In the prototypical situation, the complete history

of the propagation is unavailable and we do not assume any a

priori knowledge about the network structure: all we can

observe is, for each cascade, a number of ‘frozen’ snapshots of

a wavefront of the activity at a given time T, when all the

states of thenodes in thenetwork canbeassessed toa reasonable

extent of accuracy. Our aim is to identify the hidden network

structure and the set of transmission probabilities for each

link. Our method could in principle accommodate cases with

different types and/or amount of information (including even

partial and noisy observations from previous time-steps)

but we limit ourselves to consider a limit ‘worst’ case in

which a single snapshot ofnodal states, percascade, is observed.

Figure 1 shows a cartoon representation of the problem.

Each column represents an epidemic process that evolves in

time t (the evolution of nodal states is shown in the rows of

figure 1). What we observe is the collection of final states

within the ampoule, for all the cascades.

We underline that if the states of the nodes were known for

the whole process, namely the time-series of all the states, esti-

mating the infection and recovery probabilities reduces to an

easier problem, as the likelihood of the parameters has a

closed expression that can, in principle, be climbed by local gra-

dient algorithms. Here we consider cases in which we reduce

the observations of each epidemic at a specific time T: the
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past states of the nodes are unknown dynamical variables over

which we need to consider all their possible realizations.

2. Results

2.1. A static formulation of the dynamical process
Reconstructing the unknown connectivity structure of the net-

work is inevitably coupled to that of tracing back in time the

entire history of the spreading process for each cascade m[

f1, . . ., Mg, which in turn results in the identification of the

sources of diffusion. Our approach builds on computing a

joint posterior probability distribution over all cascades that

are compatible with the observations, and then maximizing

the likelihood of interaction parameters of the network at the

same time. To set our notation, let us consider a weighted

undirected graph G ¼ (V, E, L, V) with a number jVj of

nodes, where L ¼ flijgij[E play the role of edge-dependent

infection probabilities in an SIR stochastic model, and that

is also equipped with a set V ¼ fmigi[V of site-dependent

recovery probabilities. For directed graphs, we allow par-

ameters lij= lji. Focusing, for the moment, on a single

cascade, at any point in time each node i will be in one of

three possible states: susceptible (S), infected (I) and recov-

ered/removed (R). The state of node i at time t in each

cascade m is represented by a variable xi(t)[ fS, I, Rg, with t

in some discrete set. At each time step (e.g. a day) of the sto-

chastic dynamics, an infected node i can first spread the

disease to each susceptible neighbour j with given probability

lij, then recover with probability mi. Each cascade is defined by

the set of vectors xm(t), with m labelling the cascade, and we

assume that for each cascade the initial state xm(0) is composed

of just one infected node im0 , with all the other nodes in the

network being in the susceptible state. We will assume that

we have access to the state of the nodes in the networks only

Tm
¼ T steps after the initiation of each cascade.

Let us consider a node i which gets infected at its infection

time ti: since it has a finite probability to pass the disease to a

neighbour j in each time step, this results in a stochastic trans-

mission delay sij. In addition, the individual i recovers at time

ti þ gi, with gi a stochastic recovery delay. Owing to the irrever-

sibility of the spreading process, each cascade is fully specified

by the quantities fti, gigi[V and fsijg(i,j )[E for each node and

each link in the network. It is then possible to construct a

simple static graphical model representation of the dynamical

process for each cascade on the grounds of the following

simple observation: the time at which a given node i gets

infected only depends on the infection times of its neighbours

j, and the infection delays of these nodes. Infection times ti. 0

are related by the deterministic equations

ti ¼ 1þmin
j[@i

{t j þ s ji}, (2:1)

which are a set of jVj constraints encoding the infection

dynamics, involving only local quantities at each node. Once

the initial condition x(0) and stochastic quantities sij and gi
are thrown independently from their own distributions,

the infection times are given deterministically by virtue of

equation (2.1).

This observationwas exploited in a series ofworks [9,30,31]

to develop a fully Bayesian method for approximating the

whole probability distribution of the time evolution of the

system, conditioned on some observations, and was originally

used to identify the origin of the epidemic outbreak in SIR and

similar models. The method is built on a BP approximation

(see Methods), which is exact on tree graphs and has proven

successful in general networks with loops.

What if the underlying network is unknown, and so are

the epidemic parameters flij, mig? In a maximum-likelihood

approach, one needs to define the quantity P({xm(T)}j

{lij}, {mi}), namely the likelihood of epidemic parameters with

respect to observations, and then be able to maximize over the

relevant parameters. Note that in a fully Bayesian framework,

incorporating a priori information on the network topology

or epidemic parameters is straightforward: it would lead

to adding a log-prior term fl,m ¼ logPl({lij})þ logPm({mi})

to the log-likelihood to obtain a log-posterior. The log-

likelihood of the parameters coincides with the so-called

free-entropy of the system L({lij}, {mi}) ¼ logP({xm(T)}j

{lij}, {mi}) ¼ �f({lij}, {mi}), which can be computed, consist-

ently with the BP approximation, employing the Bethe

decomposition (see Methods).

The BP method for the (cavity) marginal distributions

of infection times can be then interleaved with simple log-

likelihood climbing steps in a gradient ascent (GA) scheme,

leading to a unique set of equations that are solved by iteration.

In this setting, the computation of the gradient of the log-like-

lihood relies only on local updates involving the BP cavity

messages. Ultimately, all the information has to be processed

locally at each node. That, in addition to other simplifications,

entails a huge reduction of computational time, making the

analysis of large-scale networks feasible efficiently (see

Methods). One starts from a flat assignment of the parameters,

and the initial fully connected network gets progressively

pruned by means of the GA updates, eventually leading to a

reconstructed network strongly resembling the real one.

2.2. Reconstructing random networks
We start by investigating three basic random network struc-

tures, namely random regular (RR), ER and Barabási–Albert

(BA) scale-free networks: an impressive level of accuracy may

be reached with a small number M of observations. In an

RR network, each node is connected at random with a fixed

number of neighbours in the networks, whereas in the ER

graph the number of neighbours is Poisson distributed.

m = 1

t

t = T GABP

m = 2 m = 3 m = 4 ...

Figure 1. Cartoon representation of the network reconstruction problem: M

independent cascades starting from different sources (highlighted in the first

frame of each vertical stripe) are represented, with time flowing downward.

Infected nodes are red, susceptible nodes are blue and recovered nodes are

purple. The GABP algorithm is provided a set of M snapshots taken T time

steps after the cascade onset: the goal is to reconstruct the functional inter-

actions in the network G as well as to identify the source of each cascade.

(Online version in colour.)
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Scale-free networks, on the other hand, possess a power-law

degree distribution, and are known to capture some key

ingredients of many real networks encountered in practical

applications (for a review, see [32]).

As a first step, a random graph is constructed, and a set of

M cascades are simulated, each one being an independent

realization of the stochastic SIR process with a random initial

source im0 . GABP is then run until the parameters lij and mi

reach a stable value. Since the goal of the inference is twofold,

we use two different measures of the inference performance.

For each cascade m, the nodes in the network are ranked in

decreasing order with respect to the estimated probability

of being the origin of the observed epidemic: the ability to

identify the sources of the spreading is easily quantified by

the rank of im0 , namely the position of im0 in the ordered list.

On the other hand, a simple method for quantifying the

accuracy of network reconstruction is the receiver operating

characteristic (ROC) curve, namely a plot of the TP rate against

the FP rate in a binary classification problem. Constructing the

ROC curve in the present case is very easy: the inferred values

of lij are ranked in decreasing order, and one step upward in

the ROC is taken if the link is present in the original graph

(TP) or one step rightward if the link is absent (FP). The area

under the ROC curve is a good indication of the discrimination

ability: areas close to one signal a good discrimination between

true links and non-existent links. The reconstruction perform-

ances are compared to those of an empirical correlations

based method. For each possible couple of nodes we compute,

at the time of the observation T, the probability of having an

edge (i, j) as the mutual information (MI) between node i and

j; details of the calculations are reported in theMethods section.

As for the case of parameters lij, we construct ROC curves and

we compute ROC areas from the set of correlationmeasuresmij.

We report in figure 2a a systematic investigation of the

reconstruction performances of GABP and MI in the three

types of random networks with an increasing number of

cascades M. The parameters of the infection are l ¼ 0.6 and

m ¼ 0.4 for all the experiments (except when differently

noted). These parameters seem to ensure a reasonable infection

size at the observation time in a way that we can use sufficient

information for inferring the network.1 For all values of M

GABP outperforms theMImethod as the ROC areas associated

with the GABP predictions are notably greater than the one

obtained from MI. In the case of BA graphs, we notice smaller

values of the ROC areas because, for these values of the par-

ameters of the SIR dynamics, we observe huge epidemics in

which at time T almost all nodes are infected or recovered.

This efficient spreading is caused by the presence of hubs that

easily infect a good portion of the network in one time-step.

In this regime and even for large value of M, there is not suffi-

cient information to fully recover the true links of the graphs.

The ability to identify the sources of spreading (patient

zero) is easily quantified by the rank r(m)
0 of the true patient

zero im0 in each of the M cascades: if M is high enough so that

enough information is conveyed on the underlying network

structure, GABP is able to successfully identify most of the

true initial spreaders in each cascade. This can be seen in

figure 2b, that shows the distribution of r(m)
0 for a value of

M ¼ 150 in the three types of random networks considered

here, which is fairly concentrated on low values of r(m)
0 .

The reconstruction performance is expected to be substan-

tially related to the density of the network. This can be

investigated by systematically varying the degree of connec-

tivity of a network, as is shown in figure 2c, where the

performance of GABP is assessed in a RR graph of size

jVj ¼ 50 with an increasing connectivity degree d, from d ¼

4 to 10. The accurate reconstruction of denser networks

requires, consequently, a larger number of cascades M.

As can be seen in figure 3a, the distribution of inferred

values of true links rapidly separates from the one of non-

existent ones, that concentrates around vanishing values

even for a very small number of observations. The strict sep-

aration of the two distributions confirms the results from the

area under the ROC curve.

It is worth noting that GABPachieves a good level of recon-

struction accuracy in a very small number of steps. The

dynamics of the inferred lij as a function of iterations of the

algorithm is exemplified in figure 3b. Even after a very small

number of iterations, true links are clearly distinguished from

non-existent ones, as can be seen from the steep rise of the
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Figure 2. (a) Reconstruction accuracy in three types of random networks using GABP and MI. Each curve is an average over 30 random instances of the area under

the ROC curve, as a function of the number of observed cascades M at time T ¼ 5. Epidemic parameters, lij ¼ 0.6 and mi ¼ 0.4, are the same for all the three

types of networks. The size of the network is jVj ¼ 50. Red curve: RR graphs with degree d ¼ 4; light blue curve: BA (scale-free) networks with average degree

dav ¼ 4; blue curve: ER graphs with average degree dav ¼ 4. Triangular and circular marks show GABP and MI results, respectively. (b) Identification of initial

spreaders. Each filled curve is the histogram of the rank of the true patient zero im0 at M ¼ 150 for the three types of network. Histograms refer to 30

random instances, thus considering a total of 30 � 150 ¼ 4500 independent cascades. (c) Reconstruction accuracy versus connectivity. The blue curve is the

area under the ROC curve in different instances of RR graphs of size jVj ¼ 50 with increasing degree d. In each case, M ¼ 50 cascades are observed at time

T ¼ 7. Recovery rate is fixed to mi ¼ 0.4, lij is scaled down as degree increases in order to keep the size of epidemics roughly constant. Inset: area under

the ROC curve as a function of the number of observed cascades M in a random regular graph with degree d ¼ 10 (corresponding to the red point at the

end of the blue curve in the main plot). (Online version in colour.)
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area under the ROC curve as a function of iterations: we

observe that this kind of behaviour is quite general and not

restricted to the case M ¼ O(jVj).

2.3. Reconstructing real networks
We tested the GABP algorithm on two different real inter-

action networks on which information about contacts is

available for validation purposes. The first dataset consists

of a network of Twitter retweets [33,34]: the network is com-

posed of jVj ¼ 96 nodes, which represent Twitter users,

linked through jEj ¼ 117 edges corresponding to retweets

(these were collected from various social and political

hash-tags). The average degree of a node in the network is

dav ¼ 2, with a minimum degree of 1 and a maximum

degree of 17. Figure 4a,b shows the reconstruction perform-

ance in the retweet network using two different observation

paradigms: in the single-observation-per-cascade paradigm

(which we considered as the standard case), the node state

is available only once per cascade, whereas in the whole-

cascade paradigm all nodes are observable at all times. In

the first algorithm, the number of cascades coincides with

the number of observations O while in the whole-

cascade reconstruction the number of observations is still O

but the number of available cascades is normalized with

respect to the number of time-steps, namely O/T . We simu-

late several spreading cascades with infection probability

lij ¼ 0.5 and recovery probability mi ¼ 0.4. It is apparent

that an extremely accurate reconstruction is achievable with

a number of cascades M quite small compared with jVj and

0
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cascades in an RR graph with size jVj ¼ 50, lij ¼ 0.6, mi ¼ 0.4 and d ¼ 4; shaded areas correspond to the intervals between the 10th and the 90th percentile

in each distribution. (b) The thin lines represent the lij values of a random subset of 200 links in the case with M ¼ 200 cascades as a function of iterations of the

GABP algorithm; black thick line: area under the ROC curve. (Online version in colour.)
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furthermore it is worth noting that when a number of

possible observations is fixed, considering many cascades at

a single time instead of the full time-series of a smaller

number of cascades leads to better predictions.

We repeat the same experiment using an SI dynamics

with true infection probability lij ¼ 0.3; figure 4c shows

that as for the SIR case few cascades suffice to reach a very

high value of the area under the ROC curve and that the

single-observation paradigm has to be preferred to the

whole-cascade one when few observations are available. As

for the SIR results, the value of the infection probability is

correctly estimated for a large number of cascades and the

presence of a link (characterized by a non-zero lij) is clearly

detectable after about 100 cascades as shown in figure 4d.

As another illustrative example, in figure 5 we show a pic-

torial representation of the reconstruction of the Zachary’s

Karate Club network, a small social network which consists

of jVj ¼ 34 nodes and jEj ¼ 78 edges, documenting the pair-

wise interactions over the course of three years among

members of a university-based karate club. In this case, we

simulated up to M ¼ 102 cascades and investigated the

performance of the inference method with homogeneous par-

ameters l ¼ 0.3 and m ¼ 0.4 at increasing M. In figure 5, links

not present in the actual graph are coloured in red, and

appear clearly distinguished from the true ones (coloured in

black) even for very small values of M.

For a more thorough representation of the reconstruction

process in the Karate Club network, we show in figure 6a a

colour intensity plot of the dynamics of inference as the

number of cascades is increased: true links are immediately

identified, as the ROC area indicates (figure 6b, blue curve).

It is very interesting to note that, while observing cas-

cades in their entirety clearly conveys a lot of information

on the network structure, if the total number of observations

of the full state of the network is constrained, distributing

these observations far apart in time (or better, on inde-

pendent cascades) pays better. This is clearly shown in

figure 6b by the difference in the area under the ROC curve

between the whole cascade (light-blue curve) scenario and

the single-observation-per-cascade paradigm.

2.4. Detecting false positive links in protein–protein

interaction networks
A challenging problem in reconstructing PPI networks con-

sists in discriminating between TP and FP links. We show

in this section how GABP algorithm can be used as a post-

processing method to tackle this issue.

In our experiments, we consider as ground-truth networks

the giant components of five interactomes of the PSICQUIC

dataset [35] available in the software Cytoscape 3.5.1 [36]

(properties are summarized in table 1), while contact cascades

are synthetically simulated with infection parameters l ¼ 0.8

M = 14 M = 41 M = 68 M = 102

Figure 5. Pictorial representation of the GABP performance in Zachary’s Karate Club network with an increasing number of cascades M. An edge is thrown between

node i and node j if lij in non-zero, the width of the edge being proportional to the value lij. True links are coloured in black, red links are not present in the

original network. (Online version in colour.)
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Figure 6. (a) Reconstruction performance of GABP in the Zachary’s Karate Club network with different numbers M of independent cascades. M is on the y-axis. The

links are on the x-axis, ordered in such a way that the first 78 are the true links in the original graph. The colour intensity is proportional to the value lij for each

putative link (i, j ) at increasing values of M. (b) Area under the ROC curve (y-axis) for increasing total observations (see text) of the entire networks (x-axis, scale as

in the left part). The blue curve corresponds to a single final observations per cascade at time T ¼ 5, the light-blue curve shows the case in which cascades are fully

observed. (Online version in colour.)

Table 1. Properties of the interactomes. This table shows the name of the

organisms, the number of nodes and edges of the PPI networks and the

name of the public datasets supported by PSICQUIC.

organism jVj jEj dataset name

Caenorhabditis elegans 372 400 MINT [37]

Drosophila melanogaster 398 491 MINT

Homo sapiens 801 1190 BHF-UCL

Mus musculus 172 217 EBI-GOA-miRNA

Saccharomyces cerevisiae 185 1476 UniProt [38]
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and m ¼ 0.3. To the true networks, we add Z ¼ ajEj extra

edges, for a [ [0.2, 0.5], that mimic the presence of FP inter-

actions. This step is performed in a ‘scale-free’ fashion: we

first pick a node i with probability proportional to its

degree and then we connect it to a node j � @i chosen uni-

formly at random. We then simulate M [ [3, 150]

cascades on the true network and, from the final obser-

vations (at time T ¼ 5), we try to infer the transmission

parameters lij associated with both TP and FP edges of the

extended graph that, at variance with the cases examined

before, is not a fully connected graph. We compare our

reconstructions to the ones obtained by an MI-based

method. In figure 7, we plot the areas under the ROC

curves as a function of the number of cascades of the five

interaction networks. Each row of the main figure corre-

sponds to the extreme values of a ¼ f0.2, 0.5g. For all

organisms, the areas under the ROC curves of GABP results

are significantly larger than those of MI reconstructions and

they reach values above 0.9 even when few cascades are

available, i.e. M ¼ 10. Quite surprisingly, performances

seem to be independent of a, i.e. the number of extra

edges, suggesting that our method is quite robust in detect-

ing FP links when the extended graph to be pruned has a

reasonable number of edges.

To underline the performances of GABP, we show in

figure 8a the Mus musculus interactome containing the TP

(green links) and 80 FP edges (red links). The retrieved net-

work for an increasing number of cascades is plotted in

figure 8b; edge thickness is proportional to the inferred

values of lij for GABP and to mij for MI. It is worth noting

that, for very few cascades (M ¼ 3), both GABP and MI are

able to recognize almost all true links but GABP misclassifies

fewer FP than MI. When M increases, GABP detects all true

edges as the associated lij significantly increase and it incor-

rectly classifies only few FP edges that, in any case, exhibit

values of the infection parameters close to zero and negligible

if compared to the ones associated with TP links. On the con-

trary, MI distributes the weights over all the edges and, for

large M, it is not able to sharply distinguish the two sets of

links as some of the FP edges have values of mij comparable

to those of TP links.

2.5. Reconstructing the website influence network

through trend topic cascades
Epidemic spreading is also a good model for describing trend

topic dynamics in ‘information’ networks such as the World

Wide Web. In [29], the authors present a huge dataset contain-

ing more than 108 webpages that from August 2008 to April

2009 were involved in about 2� 108 tracked trend topics.

With each cascade they associate a temporal window in

which the news was ‘viral’, a representative sentence appear-

ing in all the tracked articles and the list of webpages

publishing the topic within the temporal window. In [3], they

try to infer the links among the webpages using the full time-

series of the spreading events.

In this section, we show how to use GABP to infer influence

sub-network links from only the final observations of some

selected trend topic cascades. Within the SI model formalism,

each website (the nodes of our graph) will be characterized by

the state ‘I’ if it participates to the cascade or ‘S’ otherwise;

webpages that have published in the same day are considered

as ‘infected’ in the same time-step. The size of the network

makes the use of the entire dataset impractical. We therefore

analyse single cascades that (a) contain a keyword of our

choice in the representative sentence; (b) the number of web-

pages involved in the epidemics is larger than a certain

threshold (usually 5–10) and (c) the whole spreading event

does not last more than T days (usually 10–20). These three con-

ditions are able to isolate sub-sets of nodes labelled by our

chosen keyword.We show in figure 9 the sub-network structure

of the nodes participating to cascades that contain the word

‘Korea’. Edge thickness and colour are proportional to the

values of the inferred infection probabilities, with themost infec-

tious links having the darkest and thickest arrows. Node sizes

instead reflect the degree of the nodes. A giant component is

clearly visible in the centre of the picture, where edge colour

and thickness are inhomogeneous. Several disconnected cliques

are also apparent on the sides. These homogeneously connected

nodes are observed onlyonce in a unique cascade: our algorithm

thus predicts a ‘flat’ assignment of small lij for all possible links

of the disconnected components, since there is not enough infor-

mation to discriminate between zero and non-zero infection
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probabilities. This is less evident in figure 10 for tag ‘iPhone’.

Other reconstructed networks are shown in the electronic sup-

plementary material.

2.6. Inferring transmission probabilities
Let us now briefly consider a slightly different application of

the general formalism presented so far. Suppose that the

underlying network structure is known but little or any infor-

mation is available on the transmission probabilities lij, which

are, in the general case, inhomogeneous. Our method can be

easily accommodated so as to provide themaximum likelihood

estimation of the quantities lij. Starting from an initial assign-

ment of the coupling parameters (we used lij; 0.5) defined

over a known topology, one seeks a fixed point of the coupled

BP and gradient equations using GABP.

As an example, we consider an RR graph of size jVj ¼ 20

with degree d ¼ 4, and evaluate the inference performance

with increasing number of cascades M. Figure 11a shows the

value of the mean square error MSE ¼
P

(ij)[E (lij � ltrueij )2=jEj

between the inferred transmission probabilities lij and the true

ones, ltrueij . To better appreciate the quality of the inference, we

show a scatter plot for two different values ofM in figure 11b.

2.7. Mutual information based pruning
GABP is an iterative algorithm where fixed-point equations

are efficiently updated until convergence as explained in

the Discussion section and in the electronic supplementary

material. The epidemic parameters are inferred through an

expectation maximization (EM) scheme (see also the elec-

tronic supplementary material) which does not affect the

performances of the method. The running time is thus gov-

erned by the O(TjE0j) operations of the main BP algorithm,

where jE0j is the number of candidate edges. In all the cases

we have considered so far, no a priori knowledge of the net-

work structure is assumed and therefore this number scales

as jVj2, except for the PPI networks in which, along with

the existing edges, we consider Z additional FP links, jE0j ¼

jEj þ Z. We show in this section how to reduce the number

of parameters to be inferred by pruning the network of all

possible connections.

Consider the case in which two variables appear to be

correlated (e.g. their mutual information is very large). This

can be a direct effect due to the presence of a link between

the two or an indirect effect carried by paths that connect the

two nodes (either exploiting other mediator nodes or because
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Figure 9. Reconstruction of website influence network participating in 30 trend topic cascades having the word ‘Korea’ in the representative sentence. The number

of nodes is 269 while the number of edges is 2306. (Online version in colour.)
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co-infections are the consequence of a single initial event).

From pure correlation evaluation, we cannot distinguish

the two cases. However, if two variables are uncorrelated, the

presence of a link is unlikely.

As an example, we consider here M ¼ 50 cascades spread-

ing in an RR graph of jVj ¼ 50 nodes and fixed degree d ¼ 6.

We take as candidate edges E0 a certain percentage of the

most correlated links (computed via (4.15)) among all
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Figure 10. Webpage networks publishing trend topics containing the word ‘iPhone’. Here M ¼ 91, jVj ¼ 562 and jEj ¼ 3831.
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Figure 11. Reconstructing spreading couplings in inhomogeneous networks. (a) Mean squared reconstruction error MSE ¼
P

i,j (lij � ltrueij )2=jEj in a random
regular graph of size jVj ¼ 20 and degree d ¼ 4, as a function of the number of observed cascades M. The network structure is known in advance. The spreading

couplings ltrueij have been extracted randomly from the homogeneous distribution in the interval [0, 1]. The state of the network is observed only at time T ¼ 5 for

each cascade. (b) Scatter plot of reconstructed transmission probabilities lij versus true spreading couplings ltrueij for the cases M ¼ 20 and M ¼ 400,

corresponding to the golden and green points in (a), respectively. (Online version in colour.)
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the possible ones. When jE0j reaches 800 edges, 65% of the

possible edges, we achieve an area under the ROC curve of

0.84, which is equivalent to the one obtainedwhen considering

all connections.

3. Discussion
We have presented a new method that allows one to recon-

struct a hidden network from limited information of

activity propagations, and showed that the reconstruction

performance is extremely accurate even when the number

of snapshot observations is very small. This scheme can be

effectively applied to the detection of FP links in PPI net-

works even when the number of candidate false edges is

comparable to the effective number of TP contacts. In this

particular case, it suffices very few independent cascades to

correctly classify the great majority of the links.

There are several advantages of this approach over existing

ones. The main one is that several inference problems can be

treated under a unique formulation. Our technique can be

easily extended to incorporate effects of unreliable observations,

taking into account noisy measurements, and/or cases where

susceptible nodes cannot be distinguished from recovered

ones [31]. When a complete list of contact times between

nodes is available, the construction of an equivalent network

of time-dependent infection probability is straightforward,

and the current approach has been proven to be effective.

Owing to the generality of the Bayesian method, the

described technique is capable of dealing with a wide variety

of irreversible spreading processes on networks. A possible

simple generalization is to the (random) bootstrap percolation

casewhere each node gets activatedwhen the aggregated input

from neighbours overcomes an intrinsic stochastic activation

threshold of the node. These models are widely used to

describe the features of dynamical processes in neuronal

networks, and we consider this an exciting research direction.

4. Methods

4.1. Graphical model formulation of the spreading

process
Let us first consider a single cascade on a networkwith a fixed top-
ology. For a fixed initial configuration x(0), a realization of the
stochastic process can be generated by drawing randomly a set
of infection transmission delay sij for all pairs (ij) and the recovery
times gi of each node i. The recovery times fgig are independent
random variables extracted from the geometric distributions
Gi(gi) ¼ mi(1� mi)

gi , the delays fsijg are conditionally indepen-
dent random variables distributed according to a truncated
geometric distribution

vij(sijjgi) ¼
lij(1� lij)

sij , sij � gi

(1� lij)
giþ1, sij = 1.

�

(4:1)

Note that we concentrate in the value sij ¼1 themass of the distri-
bution beyond the hard cut-off gi imposed by the recovery time.
The joint probability distribution of infection and recovery times
conditioned on the initial state is easily written as

P(t, gjx(0)) ¼
X

s

P(sjg)P(tjx(0), s, g)P(g)

¼
X

s

Y

i,j

vij(sijjgi)
Y

i

ci(ti, {tk, ski}k[@i)Gi(gi), (4:2)

where

ci(ti, {tk, ski}k[@i) ¼ d(ti,I[xi(0)= I](1þmin
k[@i

{tk þ ski})) (4:3)

is a characteristic function which imposes on each node i the
dynamical constraint of equation (2.1).

Using the Bayes formula, the posterior probability of the
initial configuration given an observation at time T reads

P(x(0)jx(T))/
X

t,g

P(x(T)jt, g)P(t, gjx(0))P(x(0)) (4:4)

¼
X

t,g,s

Y

i,j

vij

Y

i

ciGigiz
T
i , (4:5)

where P(x(0)) ¼
Q

i gi(xi(0)) is a factorized prior on the initial
infection with

gi(xi(0)) ¼ gd(xi(0), I)þ (1� g)d(xi(0), S) (4:6)

for a generally small constant g (we do not allow state (R) at time
0). Note that the network state x(t) is a deterministic function of
the set of infection and recovery times (t, g), so that we obtain

P(x(T)jt, g) ¼
Y

i

zTi (ti, gi, xi(T)) (4:7)

with zti ¼ I[xi(t) ¼ S, t , ti]þ I[xi(t) ¼ I, ti � t , ti þ gi]þ I

[xi(t) ¼ R, ti þ gi � t]: Note that assuming xi(0) [ f(S), (I )g,

then ci(ti, ftk, skigk[@i) could be also rewritten equivalently as

z0i (ti, gi, xi(0))[d(ti,1þmink[@i {tk þ ski})þ d(ti, 0)]. Now, if we

introduce a set of observational weights zm,T
i , one for each obser-

vation m, together with a set of priors zm,0
i , the posterior

distribution of the initial states conditioned to observations,
because of the assumption of independence, will be proportio-
nal to the product over all the single probability weights

for each cascade P(x1:M(0)jx1:M(T))/
QM

m¼1

Pm
tm ,g P(x

m(T)jtm, gm)

P(tm, gmjxm(0))P(xm(0)) that taking into account equation (4.5)
will take the form

P(x1:M(0)jx1:M(T))/
Y

M

m¼1

X

tm ,gm ,sm

Y

i,j

vm
ij

Y

i

cm
i G

m
i g

m
i z

m,T
i , (4:8)

where all the factors have been labelled with an extra cascade
index m and x1: M(T ) ¼ (xm(T ))m¼1, . . . ,M. Since we have no a

priori information on the graph topology, the product in the
term

Q

i,j v
m
ij runs over all the possible pairs i and j in the set

V, meaning that we always work in the setting of a fully con-
nected network with weights flijg. If the number of cascades
M is large enough, the non-zero elements of the matrix flijg
will signal, upon convergence of the GABP algorithm, the true
links in the original graph, their value being informative of the
heterogeneity of infection probabilities. The same holds for the
set of recovery parameters fmig. Note that for lij ¼ 0, (4.1)
imposes the condition sij ¼1, meaning that (ij) can be ignored
in (2.1), effectively pruning the link from the equations.

4.2. Belief propagation approach
Given a high-dimensional probability distribution M(z) with a
locally factorized interaction structure, computing marginals and
aggregated quantities may be addressed with the use of a message
passing procedure built on a cavity approximation for locally tree-
like graphs [39–41]. In the present problem, we obtain a full set of
(cavity) marginal probabilities over the set of all the possible cas-
cades compatible with the observations. BP is proven to be exact
on tree graphs, and has been successfully employed on general
loopy graphs under mild regularity conditions [9,42].

To briefly describe the essence of the method, let us consider
a probability distribution over the variables z ¼ fzig that has the
following factorized form:

M(z) ¼
1

Z

Y

a

xa(za), (4:9)
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where each xa is called a compatibility function, or factor. We
write za ¼ fzigi[@a as the set of variables it depends on, @a the
subset of indices of variables in factor xa, and accordingly @i

will be the subset of factors that depend on zi. BP equations are
a set of self-consistent equations for the so-called cavity messages

(or beliefs), a set of single-site probability distributions which are
associated with each directed link in the graphical model repre-
senting the joint distribution of equation (4.9). The general
form of the BP equations is the following:

pxa!i(zi) ¼
1

Zai

X

{z j :j[@ani}

xa(za)
Y

j[@ani

m j!xa (z j), (4:10)

mi!xa (zi) ¼
1

Zia

Y

b[@ina

pxb!i(zi) (4:11)

and mi(zi) ¼
1

Zi

Y

b[@i

pxb!i(zi), (4:12)

where the terms Zia, Zai and Zi are local partition functions, ser-
ving as normalizers. To solve equations (4.10) and (4.11), an
iterative procedure is typically used, where the cavity messages
are initialized with uniform distributions and they are asynchro-
nously updated until convergence to a fixed point (see [39,41]
for an introduction). The BP equations can be thought of as
local update rules for messages in a so-called factor graph, a
bipartite graph where each term xa is associated with a factor
node, connected to all the variable nodes in the set za it depends
on. A naive implementation of the BP scheme at the level of
equation (4.8) would simply not work, since the corresponding
graphical model has a loopy structure both at local and global
scale. It is however possible to construct a disentangled factor
graph by means of a re-parametrization of the cavity messages.
We provide a brief description of this procedure in the electronic
supplementary material, Methods. For a thorough discussion, we
refer the reader to previous works [30,31]. Here we just want to
stress that the modified factor graph is an enriched dual version
of the original graph, whence the particular appeal of the
method. In particular, this implies that BP provides the exact
Bayesian solution when the underlying network is acyclic.

While the computation of equation (4.11) is straightforward,
the sum in equation (4.10) generally involves a number of steps
growing exponentially with the size of @a. An efficient
implementation of the BP equations for the posterior distribution
is given in the electronic supplementary material, Methods. Once
BP converges, equation (4.12) can be used to compute the mar-
ginal probability P(tni ¼ 0 j {xm(T)}), which brings a posterior
estimation of the probability for the node i to be active at time
t ¼ 0 in the mth cascade.

4.3. Network reconstruction algorithm
We employ an alternating optimization scheme in which BP is
coupled to a maximum-likelihood strategy, implemented with
a GA method. In the BP phase, the network parameters flij,
mig are kept fixed and a solution is searched iteratively for
equations (4.10) and (4.11). At this stage, the source can be
located independently for each cascade looking at the single-
site marginals P(xmi (0)j{x

m(T)}). In the maximum likelihood
phase, the log-likelihood of network parameters is maximized
by means of a simple GA procedure. The gradient may be
computed efficiently in the BP approximation. The likelihood
P({xm(T)}j{lij}, {mi}) with respect to the network parameters is

Z({lij}, {mi}) ¼
Y

M

m¼1

X

xm(0),tm ,gm
P(xm(T)jtm, gm)P(tm, gmjxm(0))P(xm(0)):

The logarithm of this quantity (log-likelihood) corresponds to the
negative free energy of the model L({lij}, {mi}) ¼ �f ({lij}, {mi}) ¼
logZ({lij}, {mi}), and can be expressed as a sum of local
terms depending only on the BP messages (see electronic

supplementary material, Methods). BP updates for the distri-
bution in equation (4.8) are then coupled to GA updates with
respect to each network parameter, that take the form

lij  lij þ e
@L

@lij
(4:13)

and

mi  mi þ e
@L

@mi

(4:14)

with e a small multiplier parameter (we found e ¼ 1024 yields
good results and stable convergence and used this value for all
our simulations). The results presented in this work have been
obtained by interleaving one BP step with a GA step: this simple
scheme suffices to provide good joint estimates for the patient
zero in each cascade, together with a remarkably good reconstruc-
tion of the underlying network. An alternative method would
consist of applying an EM scheme, in which alternatively BP
equations are iterated to convergence (BP step) and parameters
are fully optimized for fixed BP messages (EM step). However,
the EM step requires the maximization of a high-order polynomial
that must be solved numerically in any case (e.g. in a GA scheme).
We obtained faster convergence by alternating single GA and BP
steps rather than alternating full convergence cycles of both steps.

4.4. Mutual information
For comparison, we tried to reconstruct the networks of interest
using correlation-based measures. At the observation time, we
have computed the probabilities of observing edges (i, j ) as the
mutual information between nodes i and j:

mij ¼
X

{xi ,x j}

fij(xi(T), x j(T)) log
fij(xi(T), x j(T))

fi(xi(T))f j(x j(T))
, (4:15)

where fij, fi are empirical probabilities computed as

fij(xi(T), x j(T)) ¼
1

M

X

m

dxi(T), xmi (T)dx j(T), xmj (T)
(4:16)

and

fi(xi(T)) ¼
1

M

X

m

dxi(T), xmi (T): (4:17)

Data accessibility. Retweet data are openly available at http://network
repository.com/rt_retweet.php. Interactome networks are openly
available as part of the PSICQUIC dataset in Cytoscape 3.5.1
(https://cytoscape.org/), and the memetracker phrase cluster data
are available at http://www.memetracker.org/data.html.
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Endnote
1Suppose of observing some spreading cascades in a network where the
infection probability is very small (or the recovery probability is huge in
the SIR model). At the observation times the majority of nodes might
not have been touched by any of the spreading events and thus no
information can be extracted on a huge fraction of the edges. At the
same time, a huge infection probability in the SI (SIR) model may let
the epidemics propagate so fast that at the observation time all nodes
are in the ‘I’ state (‘R’ state). Also in this case, there is no way of inferring
the epidemic parameters with this type of observations.
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